JP2007315786A - Autoanalyzer - Google Patents

Autoanalyzer Download PDF

Info

Publication number
JP2007315786A
JP2007315786A JP2006142698A JP2006142698A JP2007315786A JP 2007315786 A JP2007315786 A JP 2007315786A JP 2006142698 A JP2006142698 A JP 2006142698A JP 2006142698 A JP2006142698 A JP 2006142698A JP 2007315786 A JP2007315786 A JP 2007315786A
Authority
JP
Japan
Prior art keywords
light
light receiving
containers
automatic analyzer
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006142698A
Other languages
Japanese (ja)
Inventor
Yuji Ogawa
祐司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006142698A priority Critical patent/JP2007315786A/en
Priority to PCT/JP2007/060057 priority patent/WO2007135923A1/en
Publication of JP2007315786A publication Critical patent/JP2007315786A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an autoanalyzer capable of obtaining photometric data that are different in wavelengths, even if the processing of data detected by a plurality of light detection elements is not performed, at the same time. <P>SOLUTION: The autoanalyzer 1 is constituted so as to make the liquids, held in a plurality of liquid holding containers 5, react with each other to measure the optical characteristics of the reaction liquid for analyzing the reaction liquids and equipped with a first light detecting element 11e for detecting the first luminous flux transmitted through the liquid held in a first container to output the light detecting signal corresponding to the detected quantity of light; a second light detecting element 11f for detecting the second luminous flux transmitted through the liquid held to a second container, when the first luminous flux is not detected by the first light detecting element for outputting a light detection signal, corresponding to the quantity of the detected light; a cuvet wheel 4 for relatively moving a plurality of the containers and the first and second light detecting elements, along the arranging direction of a plurality of the containers; and a measurement circuit 16, connected to the first and second light detecting elements and successively measuring the signals output from the first and second light detecting elements. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動分析装置に関するものである。   The present invention relates to an automatic analyzer.

従来、自動分析装置は、光源から出射された光束を分光手段によって所望波長の光束に分光する。この所望波長の光束を反応容器に照射し、反応容器に保持された反応液を透過した光束を受光素子で受光することにより、所望波長の測光データを得ている。このような自動分析装置で使用する分光装置は、異なる波長の測光データを得るため、複数個の受光素子を反応容器の配列間隔の整数倍の間隔で複数配置したものが知られている(例えば、特許文献1参照)。   Conventionally, an automatic analyzer separates a light beam emitted from a light source into a light beam having a desired wavelength by a spectroscopic unit. Photometric data of the desired wavelength is obtained by irradiating the reaction vessel with the light beam having the desired wavelength and receiving the light beam transmitted through the reaction liquid held in the reaction vessel with the light receiving element. In order to obtain photometric data of different wavelengths, a spectroscopic device used in such an automatic analyzer is known in which a plurality of light receiving elements are arranged at intervals of an integral multiple of the arrangement interval of reaction vessels (for example, , See Patent Document 1).

実公平06−19079号公報No. 06-19079

ところで、特許文献1に開示された分光装置は、複数の反応容器が同時に光束を横切るように構成されていることから、複数の反応容器を透過した複数の透過光が対応する受光素子に同時に入射する。このため、特許文献1の分光装置を使用した自動分析装置は、各受光素子に入射した透過光に基づく吸光度の測定に関するデータ処理を同時に行わなければならないという問題があった。   By the way, since the spectroscopic device disclosed in Patent Document 1 is configured such that a plurality of reaction containers simultaneously traverse the light beam, a plurality of transmitted lights that have passed through the plurality of reaction containers are simultaneously incident on corresponding light receiving elements. To do. For this reason, the automatic analyzer using the spectroscopic device of Patent Document 1 has a problem that data processing related to measurement of absorbance based on transmitted light incident on each light receiving element must be performed simultaneously.

本発明は、上記に鑑みてなされたものであって、複数の受光素子が受光したデータ処理を同時に行わなくとも波長の異なる測光データを得ることが可能な自動分析装置を提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide an automatic analyzer capable of obtaining photometric data having different wavelengths without simultaneously performing data processing received by a plurality of light receiving elements. To do.

上述した課題を解決し、目的を達成するために、請求項1に係る自動分析装置は、所定の間隔で配列され、液体を保持する複数の容器に保持された液体をそれぞれ反応させ、反応液の光学的特性を測定して前記反応液を分析する自動分析装置であって、第一の容器に保持された液体を透過した第一の光束を受光し、受光した光量に応じた受光信号を出力する第一の受光素子と、前記第一の受光素子とは異なる位置に配置され、前記第一の受光素子が前記第一の光束を受光していない場合に、前記第一の容器とは異なる第二の容器に保持された液体を透過した第二の光束を受光し、受光した光量に応じた受光信号を出力する第二の受光素子と、前記複数の容器と前記第一及び第二の受光素子とを前記複数の容器の配列方向に沿って相対移動させる移動手段と、前記第一及び第二の受光素子に接続され、当該第一及び第二の受光素子から出力される受光信号から透過光束の強度を順次測定する測定回路と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the automatic analyzer according to claim 1 reacts the liquid held in a plurality of containers arranged at predetermined intervals and holding the liquid, respectively, Is an automatic analyzer that analyzes the reaction liquid by measuring the optical characteristics of the first light beam, which receives the first light beam transmitted through the liquid held in the first container, and receives a light reception signal corresponding to the received light quantity. When the first light receiving element to be output and the first light receiving element are arranged at different positions, and the first light receiving element is not receiving the first light flux, the first container is A second light receiving element that receives a second light beam transmitted through a liquid held in a different second container and outputs a light reception signal corresponding to the received light quantity; the plurality of containers; and the first and second containers Relative to the light receiving element in the arrangement direction of the plurality of containers. A moving means; and a measurement circuit connected to the first and second light receiving elements and sequentially measuring the intensity of the transmitted light beam from the light receiving signals output from the first and second light receiving elements. Features.

また、請求項2に係る自動分析装置は、上記の発明において、前記第一及び第二の受光素子は、前記複数の容器とは異なる間隔で前記複数の容器の配列方向に沿って配置されることを特徴とする。   In the automatic analyzer according to claim 2, in the above invention, the first and second light receiving elements are arranged along an arrangement direction of the plurality of containers at intervals different from the plurality of containers. It is characterized by that.

また、上述した課題を解決し、目的を達成するために、請求項3に係る自動分析装置は、所定の間隔で配列され、液体を保持する複数の容器に保持された液体をそれぞれ反応させ、反応液の光学的特性を測定して前記反応液を分析する自動分析装置であって、mを自然数、nを正の実数とし、m≧1>n、前記複数の容器の配列間隔をLとした場合に、第一の容器に保持された液体を透過した第一の光束を受光し、受光した光量に応じた受光信号を出力する第一の受光素子と、前記第一の受光素子とは異なる位置に配置され、前記第一の容器とは異なる第二の容器に保持された液体を透過した第二の光束を受光し、受光した光量に応じた光信号を出力する第二の受光素子とが間隔P=mL±nLの関係を満たして配置されていることを特徴とする。   In order to solve the above-described problems and achieve the object, the automatic analyzer according to claim 3 reacts with each of the liquids arranged in a predetermined interval and held in a plurality of containers holding the liquids. An automatic analyzer for analyzing the reaction liquid by measuring optical characteristics of the reaction liquid, wherein m is a natural number, n is a positive real number, m ≧ 1> n, and the arrangement interval of the plurality of containers is L In this case, the first light receiving element that receives the first light flux that has passed through the liquid held in the first container and outputs a light reception signal corresponding to the received light amount, and the first light receiving element A second light receiving element that is disposed at a different position, receives a second light beam transmitted through a liquid held in a second container different from the first container, and outputs an optical signal corresponding to the received light quantity Are arranged so as to satisfy the relationship P = mL ± nL. That.

また、請求項4に係る自動分析装置は、上記の発明において、前記第一及び第二の光束は、それぞれ波長が異なることを特徴とする。   The automatic analyzer according to claim 4 is characterized in that, in the above invention, the first and second light beams have different wavelengths.

また、請求項5に係る自動分析装置は、上記の発明において、前記移動手段は、前記複数の容器を前記第一及び第二の受光素子に対して一定速度で相対移動させることを特徴とする。   The automatic analyzer according to claim 5 is characterized in that, in the above invention, the moving means moves the plurality of containers relative to the first and second light receiving elements at a constant speed. .

また、請求項6に係る自動分析装置は、上記の発明において、前記測定回路を複数有することを特徴とする。   According to a sixth aspect of the present invention, in the above invention, the automatic analyzer includes a plurality of the measurement circuits.

本発明にかかる自動分析装置は、第一の受光素子と、第一の受光素子が第一の容器に保持された液体を透過した第一の光束を受光していない場合に、第二の容器に保持された液体を透過した第二の光束を受光し、受光した光量に応じた受光信号を出力する第二の受光素子から出力される信号を順次測定する測定回路を有しているので、複数の受光素子が受光したデータ処理を同時に行う必要がなく、データ処理を同時に行わなくとも波長の異なる測光データを得ることができるという効果を奏する。   The automatic analyzer according to the present invention includes the first container and the second container when the first light receiver does not receive the first light flux that has passed through the liquid held in the first container. Since it has a measurement circuit that sequentially measures the signal output from the second light receiving element that receives the second light flux that has passed through the liquid held in the light and outputs a light reception signal according to the received light quantity. There is no need to simultaneously process data received by a plurality of light receiving elements, and photometric data having different wavelengths can be obtained without simultaneously performing data processing.

(実施の形態1)
以下、本発明の自動分析装置にかかる実施の形態1について、図面を参照しつつ詳細に説明する。図1は、実施の形態1の自動分析装置の概略構成図である。図2は、反応容器の配列間隔と受光素子の配置間隔を説明する模式図である。
(Embodiment 1)
Hereinafter, a first embodiment of the automatic analyzer according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of the automatic analyzer according to the first embodiment. FIG. 2 is a schematic diagram for explaining the arrangement interval of the reaction containers and the arrangement interval of the light receiving elements.

自動分析装置1は、図1に示すように、試薬テーブル2,3、キュベットホイール4、検体容器移送機構8、分析光学系11、洗浄機構12、第一攪拌装置13と第二攪拌装置14及び制御部15を備えている。   As shown in FIG. 1, the automatic analyzer 1 includes reagent tables 2 and 3, a cuvette wheel 4, a specimen container transfer mechanism 8, an analysis optical system 11, a cleaning mechanism 12, a first stirrer 13 and a second stirrer 14, A control unit 15 is provided.

試薬テーブル2,3は、図1に示すように、それぞれ周方向に配置される複数の試薬容器2a,3aを保持し、駆動手段に回転されて試薬容器2a,3aを周方向に搬送する。ここで、試薬テーブル2,3の外周には、試薬容器2a,3aに貼付したバーコードラベルに記録された試薬の種類,ロット及び有効期限等の情報を読み取り、制御部15へ出力する読取装置が設置されている。   As shown in FIG. 1, the reagent tables 2 and 3 hold a plurality of reagent containers 2a and 3a arranged in the circumferential direction, respectively, and are rotated by a driving unit to convey the reagent containers 2a and 3a in the circumferential direction. Here, on the outer periphery of the reagent tables 2 and 3, a reading device that reads information such as the type, lot, and expiration date of the reagent recorded on the barcode label attached to the reagent containers 2 a and 3 a and outputs the information to the control unit 15. Is installed.

キュベットホイール4は、図1に示すように、複数の反応容器5が周方向に沿って配列され、試薬テーブル2,3とは異なる駆動手段によって矢印で示す方向に回転されて反応容器5を周方向に移動させる移動手段である。反応容器5は、近傍に設けた試薬分注機構6,7によって試薬テーブル2,3の試薬容器2a,3aから試薬が分注される。ここで、試薬分注機構6,7は、それぞれ水平面内を矢印方向に回動するアーム6a,7aに試薬を分注するプローブ6b,7bが設けられ、洗浄水によってプローブ6b,7bを洗浄する洗浄手段を有している。   As shown in FIG. 1, the cuvette wheel 4 has a plurality of reaction vessels 5 arranged in the circumferential direction and is rotated in a direction indicated by an arrow by a driving means different from the reagent tables 2 and 3 to surround the reaction vessel 5. It is a moving means for moving in the direction. In the reaction container 5, the reagent is dispensed from the reagent containers 2a and 3a of the reagent tables 2 and 3 by the reagent dispensing mechanisms 6 and 7 provided in the vicinity. Here, the reagent dispensing mechanisms 6 and 7 are respectively provided with probes 6b and 7b for dispensing reagents on arms 6a and 7a that rotate in the direction of the arrow in a horizontal plane, and wash the probes 6b and 7b with washing water. Has cleaning means.

反応容器5は、分析光学系11から出射された分析光(340〜800nm)に含まれる光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等によって四角筒状に成形されたキュベットと呼ばれる容器である。   The reaction vessel 5 is an optically transparent material that transmits 80% or more of the light contained in the analysis light (340 to 800 nm) emitted from the analysis optical system 11, such as glass containing heat-resistant glass, cyclic olefin, and polystyrene. It is a container called a cuvette formed into a square cylinder shape by the like.

検体容器移送機構8は、図1に示すように、配列された複数のラック9を矢印方向に沿って1つずつ歩進させながら移送する。ラック9は、検体を収容した複数の検体容器9aを保持している。ここで、検体容器9aは、検体容器移送機構8によって移送されるラック9の歩進が停止するごとに、水平方向に回動するアーム10aとプローブ10bとを有する検体分注機構10によって検体が各反応容器5へ分注される。このため、検体分注機構10は、洗浄水によってプローブ10bを洗浄する洗浄手段を有している。   As shown in FIG. 1, the specimen container transfer mechanism 8 transfers the plurality of arranged racks 9 while stepping one by one along the arrow direction. The rack 9 holds a plurality of sample containers 9a that store samples. Here, each time the step of the rack 9 transferred by the sample container transfer mechanism 8 stops, the sample container 9a receives the sample by the sample dispensing mechanism 10 having the arm 10a and the probe 10b that rotate in the horizontal direction. Dispense into each reaction vessel 5. For this reason, the sample dispensing mechanism 10 has a cleaning means for cleaning the probe 10b with cleaning water.

分析光学系11は、試薬と検体とが反応した反応容器5内の液体試料に分析光(340〜800nm)を透過させて分析する光学系であり、図1及び図2に示すように、光源11a、フィルタ板11b、光ファイバ11c,11d及び受光素子11e,11fを有している。光源11aは、ハロゲンランプ等の白色光源である。フィルタ板11bは、図3に示すように、ピーク波長λ1の光束(第一の光束)を選択的に透過させる光学フィルタF1と、ピーク波長λ2の光束(第二の光束)を選択的に透過させる光学フィルタF2を保持している。光ファイバ11cは、光学フィルタF1を透過したピーク波長λ1の光束を案内して反応容器5に照射する。光ファイバ11dは、光学フィルタF2を透過したピーク波長λ2の光束を案内して反応容器5に照射する。   The analysis optical system 11 is an optical system that transmits and analyzes the analysis light (340 to 800 nm) through the liquid sample in the reaction vessel 5 in which the reagent and the sample have reacted. As shown in FIGS. 11a, filter plate 11b, optical fibers 11c and 11d, and light receiving elements 11e and 11f. The light source 11a is a white light source such as a halogen lamp. As shown in FIG. 3, the filter plate 11b selectively transmits an optical filter F1 that selectively transmits a light beam having a peak wavelength λ1 (first light beam) and a light beam having a peak wavelength λ2 (second light beam). The optical filter F2 is held. The optical fiber 11c guides the light beam having the peak wavelength λ1 transmitted through the optical filter F1 and irradiates the reaction vessel 5. The optical fiber 11d guides the light beam having the peak wavelength λ2 transmitted through the optical filter F2 and irradiates the reaction vessel 5.

そして、反応容器5内の液体試料を透過した波長λ1,λ2の光は、光ファイバ11c,11dと対向する位置に設けた受光素子11e,11fによって異なるタイミングで受光される。受光素子11e,11fは、測定回路16と接続されており、反応容器5を透過したピーク波長λ1の光束を受光する受光素子11eが第一の受光素子であり、反応容器5を透過したピーク波長λ2の光束を受光する受光素子11fが第二の受光素子である。受光素子11e,11fは、図2に示すように、反応容器5の配列間隔をLとすると、配置間隔PがL+L/3に設定されている。このとき、mを自然数、nを正の実数とし、m≧1>nとすると、配置間隔Pは、P=mL±nLとなる(図2の場合は、m=1,n=1/3)。   And the light of wavelength (lambda) 1, (lambda) 2 which permeate | transmitted the liquid sample in the reaction container 5 is light-received at different timing by the light receiving element 11e, 11f provided in the position facing optical fiber 11c, 11d. The light receiving elements 11e and 11f are connected to the measurement circuit 16, and the light receiving element 11e that receives the light beam having the peak wavelength λ1 transmitted through the reaction container 5 is the first light receiving element, and the peak wavelength transmitted through the reaction container 5 The light receiving element 11f that receives the light flux of λ2 is the second light receiving element. As shown in FIG. 2, the arrangement interval P of the light receiving elements 11 e and 11 f is set to L + L / 3, where L is the arrangement interval of the reaction vessels 5. At this time, when m is a natural number, n is a positive real number, and m ≧ 1> n, the arrangement interval P is P = mL ± nL (in the case of FIG. 2, m = 1, n = 1/3). ).

洗浄機構12は、ノズル12aによって反応容器5内の液体試料を吸引して排出した後、ノズル12aによって洗剤や洗浄水等の洗浄液等を繰り返し注入し、吸引することにより、分析光学系11による分析が終了した反応容器5を洗浄する。   The cleaning mechanism 12 sucks and discharges the liquid sample in the reaction vessel 5 by the nozzle 12a, and then repeatedly injects and sucks a cleaning liquid such as detergent and cleaning water by the nozzle 12a, thereby performing analysis by the analysis optical system 11. The reaction vessel 5 that has been completed is washed.

第一攪拌装置13及び第二攪拌装置14は、分注された検体と試薬とを攪拌棒13a,14aによって攪拌し、反応させる。   The first stirrer 13 and the second stirrer 14 stir the dispensed specimen and reagent with the stirrers 13a and 14a and cause them to react.

制御部15は、試薬テーブル2,3、キュベットホイール4、試薬分注機構6,7、検体容器移送機構8、検体分注機構10、分析光学系11、洗浄機構12、測定回路16、入力部17及び表示部18等と接続され、例えば、分析結果を記憶する記憶機能を備えたマイクロコンピュータ等が使用される。制御部15は、測定回路16が測定した受光素子11e,11fに入射した透過光束の強度をもとに各反応容器5内の液体試料の吸光度を求め、検体の成分濃度等を分析する。また、制御部15は、自動分析装置1の各部の作動を制御すると共に、前記バーコードラベルの記録から読み取った情報に基づき、試薬のロットが異なる場合や有効期限外等の場合に分析作業を停止するように自動分析装置1を制御し、或いはオペレータに警告を発する機能を備えている。   The control unit 15 includes the reagent tables 2 and 3, the cuvette wheel 4, the reagent dispensing mechanisms 6 and 7, the sample container transfer mechanism 8, the sample dispensing mechanism 10, the analysis optical system 11, the cleaning mechanism 12, the measurement circuit 16, and an input unit. 17 and the display unit 18 and the like, for example, a microcomputer having a storage function for storing the analysis result is used. The control unit 15 obtains the absorbance of the liquid sample in each reaction vessel 5 based on the intensity of the transmitted light beam incident on the light receiving elements 11e and 11f measured by the measurement circuit 16, and analyzes the component concentration and the like of the specimen. The control unit 15 controls the operation of each unit of the automatic analyzer 1 and performs analysis work when the reagent lot is different or when the expiration date is out of date, based on the information read from the barcode label record. The automatic analyzer 1 is controlled so as to stop, or has a function of issuing a warning to the operator.

測定回路16は、分析光学系11に接続され、受光素子11e,11fから出力される受光信号から透過光束の強度を測定する。入力部17は、制御部15へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。表示部18は、分析内容,分析結果或いは警報等を表示するもので、ディスプレイパネル等が使用される。   The measurement circuit 16 is connected to the analysis optical system 11 and measures the intensity of the transmitted light beam from the light reception signals output from the light receiving elements 11e and 11f. The input unit 17 is a part that performs an operation of inputting an inspection item or the like to the control unit 15, and for example, a keyboard or a mouse is used. The display unit 18 displays analysis contents, analysis results, alarms, or the like, and a display panel or the like is used.

以上のように構成される自動分析装置1は、回転するキュベットホイール4によって周方向に沿って搬送されてくる複数の反応容器5に試薬分注機構6が試薬容器2aから第一試薬を順次分注する。第一試薬が分注された反応容器5は、検体分注機構10によってラック9に保持された複数の検体容器9aから検体が順次分注される。検体が分注された反応容器5は、キュベットホイール4が停止する都度、第一攪拌装置13によって攪拌されて第一試薬と検体が反応する。第一試薬と検体が攪拌された反応容器5は、試薬分注機構7によって試薬容器3aから第二試薬が順次分注された後、キュベットホイール4の停止時に第二攪拌装置14によって攪拌され、更なる反応が促進される。   In the automatic analyzer 1 configured as described above, the reagent dispensing mechanism 6 sequentially dispenses the first reagent from the reagent container 2a to the plurality of reaction containers 5 conveyed along the circumferential direction by the rotating cuvette wheel 4. Note. In the reaction container 5 into which the first reagent has been dispensed, the specimen is sequentially dispensed from the plurality of specimen containers 9 a held in the rack 9 by the specimen dispensing mechanism 10. The reaction container 5 into which the sample has been dispensed is stirred by the first stirring device 13 each time the cuvette wheel 4 is stopped, and the first reagent reacts with the sample. The reaction container 5 in which the first reagent and the sample are stirred is sequentially stirred by the second stirring device 14 when the cuvette wheel 4 is stopped after the second reagent is sequentially dispensed from the reagent container 3a by the reagent dispensing mechanism 7. Further reaction is promoted.

次いで、反応容器5は、キュベットホイール4が再び回転したときに分析光学系11を通過する。このとき、各反応容器5内の液体試料は、光ファイバ11c,11dによって導かれた波長λ1,λ2の光が透過する。そして、各反応容器5内の液体試料を透過した波長λ1,λ2の光は、それぞれ異なるタイミングで受光素子11e,11fによって受光され、測定回路16が測定する反応容器5を透過する透過光束の強度をもとに制御部15において成分濃度等が分析される。このとき、制御部15には、成分濃度等の分析結果が記憶される。このようにして、分析が終了した反応容器5は、洗浄機構12によって洗浄された後、再度検体の分析に使用される。   Next, the reaction vessel 5 passes through the analysis optical system 11 when the cuvette wheel 4 rotates again. At this time, the liquid sample in each reaction vessel 5 transmits light having wavelengths λ1 and λ2 guided by the optical fibers 11c and 11d. The light of the wavelengths λ1 and λ2 that has passed through the liquid sample in each reaction vessel 5 is received by the light receiving elements 11e and 11f at different timings, and the intensity of the transmitted light beam that passes through the reaction vessel 5 measured by the measurement circuit 16 Based on the above, the component concentration and the like are analyzed in the control unit 15. At this time, the control unit 15 stores analysis results such as component concentrations. Thus, after the analysis is completed, the reaction vessel 5 is washed by the washing mechanism 12 and then used again for analyzing the specimen.

ここで、自動分析装置1は、図2に示すように、反応容器5の配列間隔をLとした場合に、受光素子11e,11fの配置間隔PがL+L/3に設定されている。このため、自動分析装置1は、キュベットホイール4の矢印方向への回転に伴って、反応容器5が保持した液体試料を透過したピーク波長λ1の光束とピーク波長λ2の光束が、それぞれ異なるタイミングで受光素子11e,11fに入射する。例えば、図2において、光ファイバ11cと受光素子11eとの間を反応容器53が横切る場合(図4の時刻t0に対応)、反応容器53を透過したピーク波長λ1の光束を受光素子11eが受光し、受光素子11eから出力される受光信号から測定回路16が透過光束の強度を測定する。そして、透過光束の強度から制御部15が、吸光度を求め、検体の成分濃度等を分析する。   Here, as shown in FIG. 2, in the automatic analyzer 1, when the arrangement interval of the reaction vessels 5 is L, the arrangement interval P of the light receiving elements 11e and 11f is set to L + L / 3. For this reason, the automatic analyzer 1 causes the luminous flux of the peak wavelength λ1 and the luminous flux of the peak wavelength λ2 transmitted through the liquid sample held in the reaction vessel 5 to be different at different timings as the cuvette wheel 4 rotates in the arrow direction. It enters the light receiving elements 11e and 11f. For example, in FIG. 2, when the reaction vessel 53 crosses between the optical fiber 11c and the light receiving element 11e (corresponding to the time t0 in FIG. 4), the light receiving element 11e receives the light beam having the peak wavelength λ1 transmitted through the reaction vessel 53. Then, the measurement circuit 16 measures the intensity of the transmitted light beam from the light reception signal output from the light receiving element 11e. And the control part 15 calculates | requires a light absorbency from the intensity | strength of transmitted light beam, and analyzes the component density | concentration etc. of a test substance.

そして、図2において、キュベットホイール4が更にL/3回転すると、光ファイバ11dと受光素子11fとの間を反応容器52が横切るので、反応容器52を透過したピーク波長λ2の光束を受光素子11fが受光し、測定回路16が測定した透過光束の強度をもとに制御部15が検体の成分濃度等を分析する。このため、受光素子11e,11fは、図4に示すように、ピーク波長λ1,λ2の光束をそれぞれ異なるタイミングで受光する。   In FIG. 2, when the cuvette wheel 4 further rotates by L / 3, the reaction vessel 52 crosses between the optical fiber 11d and the light receiving element 11f, so that the light beam having the peak wavelength λ2 transmitted through the reaction vessel 52 is reflected by the light receiving element 11f. Is received, and the control unit 15 analyzes the component concentration of the specimen based on the intensity of the transmitted light beam measured by the measurement circuit 16. For this reason, as shown in FIG. 4, the light receiving elements 11e and 11f receive light beams having peak wavelengths λ1 and λ2 at different timings.

従って、測定回路16は、受光素子11e,11fが受光した光信号の処理を同時に行わなくとも波長の異なる測光データを得ることができる。このため、自動分析装置1は、測定回路16が1つであっても受光素子11e,11fが受光した光束から各反応容器5内の液体試料の吸光度を求めると共に、検体の成分濃度等を分析することができる。この場合、自動分析装置1は、受光素子11e,11fが光束を受光するタイミングが異なるだけで、光束が各反応容器5を透過する時間は従来と同じであるので、従来と同じ測定精度を維持することができる。更に、自動分析装置1は、波長λ1,λ2の光束を受光するタイミングが異なるため、これらの光信号の同時処理が不要なので、測定のために受光素子の数分だけ測定回路を配置する必要はなく、安価に提供することができる。   Therefore, the measurement circuit 16 can obtain photometric data having different wavelengths without simultaneously processing the optical signals received by the light receiving elements 11e and 11f. For this reason, the automatic analyzer 1 obtains the absorbance of the liquid sample in each reaction vessel 5 from the light beams received by the light receiving elements 11e and 11f even if there is only one measuring circuit 16, and analyzes the component concentration of the specimen. can do. In this case, the automatic analyzer 1 maintains the same measurement accuracy as before because the light receiving elements 11e and 11f differ only in the timing at which the light beams are received and the time during which the light beams pass through each reaction vessel 5 is the same as before. can do. Furthermore, since the automatic analyzer 1 receives light beams having wavelengths λ1 and λ2 at different timings, it is not necessary to process these optical signals simultaneously. Therefore, it is necessary to arrange measurement circuits as many as the number of light receiving elements for measurement. And can be provided at low cost.

ここで、分析光学系11は、mを自然数、nを正の実数とし、m≧1>nとした場合に、受光素子11e,11fの配置間隔Pが、P=mL±nLとなっていれば、P=L+L/3に限定されるものではなく、受光素子の配置間隔Pが反応容器5の配列間隔より広くても良いし、狭くても良い。また、測定にはピーク波長の異なる複数の光束を使っているが、すべて同一ピーク波長の光束を用い、同一の波長で複数回の測定を行うようにしても良い。   Here, in the analysis optical system 11, when m is a natural number, n is a positive real number, and m ≧ 1> n, the arrangement interval P of the light receiving elements 11e and 11f is P = mL ± nL. For example, it is not limited to P = L + L / 3, and the arrangement interval P of the light receiving elements may be wider or narrower than the arrangement interval of the reaction vessels 5. Further, although a plurality of light fluxes having different peak wavelengths are used for measurement, it is also possible to use a light flux having the same peak wavelength and perform a plurality of measurements at the same wavelength.

(実施の形態2)
次に、本発明の自動分析装置にかかる実施の形態2について、図面を参照しつつ詳細に説明する。実施の形態1の分析光学系は光ファイバを用いて光源が出射した光を反応容器へ導いたが、実施の形態2の分析光学系は光ファイバを使用せず半導体光源を使用している。図5は、実施の形態2の自動分析装置における反応容器の配列間隔と受光素子の配置間隔を説明する模式図である。ここで、実施の形態2を含め、以下に説明する実施の形態の自動分析装置は、実施の形態1と同一であり、分析光学系の構成が異なるだけであるから、分析光学系11について説明する。
(Embodiment 2)
Next, a second embodiment of the automatic analyzer according to the present invention will be described in detail with reference to the drawings. In the analysis optical system of the first embodiment, the light emitted from the light source is guided to the reaction vessel using the optical fiber. However, the analysis optical system of the second embodiment uses a semiconductor light source without using the optical fiber. FIG. 5 is a schematic diagram for explaining the arrangement interval of the reaction containers and the arrangement interval of the light receiving elements in the automatic analyzer according to the second embodiment. Here, since the automatic analyzer according to the embodiment described below including the second embodiment is the same as the first embodiment and only the configuration of the analysis optical system is different, the analysis optical system 11 will be described. To do.

実施の形態2の分析光学系21は、図5に示すように、それぞれピーク波長λ1〜λ3の光束(第一〜第三の光束)を出力する半導体光源21a〜21cと、これらの半導体光源21a〜21cと反応容器5を挟んで対向する位置に配置される受光素子(第一〜第三の受光素子)21d〜21fを有している。分析光学系21は、半導体光源21a〜21cを使用しているので、実施の形態1の分析光学系11よりも小型にすることができるうえ、消費電力を小さく抑えることができる。   As shown in FIG. 5, the analysis optical system 21 of Embodiment 2 includes semiconductor light sources 21a to 21c that output light beams (first to third light beams) having peak wavelengths λ1 to λ3, respectively, and these semiconductor light sources 21a. Light receiving elements (first to third light receiving elements) 21d to 21f disposed at positions facing each other with the reaction container 5 interposed therebetween. Since the analysis optical system 21 uses the semiconductor light sources 21a to 21c, the analysis optical system 21 can be made smaller than the analysis optical system 11 of the first embodiment, and the power consumption can be reduced.

このとき、受光素子21d〜21fは、反応容器5の配列間隔をLとすると、受光素子21dと受光素子21eとの配置間隔P1がL−L/3に設定されている。但し、受光素子21eと受光素子21fとの配置間隔P2は、反応容器5の配列間隔と同じL(=P2)に設定されている。このとき、mを自然数、nを正の実数とし、m≧1>nとすると、受光素子21dと受光素子21eとの配置間隔P1は、P1=mL±nLとなる(図5の場合は、m=1,n=1/3)。   At this time, in the light receiving elements 21d to 21f, when the arrangement interval of the reaction vessels 5 is L, the arrangement interval P1 between the light receiving elements 21d and 21e is set to LL / 3. However, the arrangement interval P2 between the light receiving element 21e and the light receiving element 21f is set to L (= P2) which is the same as the arrangement interval of the reaction vessels 5. At this time, when m is a natural number, n is a positive real number, and m ≧ 1> n, the arrangement interval P1 between the light receiving element 21d and the light receiving element 21e is P1 = mL ± nL (in the case of FIG. 5, m = 1, n = 1/3).

このような配置とした分析光学系21を使用する場合、測定回路16は、受光素子21eと受光素子21fから同時にピーク波長λ2,λ3の信号が入る。このため、実施の形態2の自動分析装置は、ピーク波長λ2の信号とピーク波長λ3の信号とを同時に測定する必要がない場合に使用される。この場合、測定回路16は、受光素子21dの信号又は受光素子21fの信号のいずれかに切り替えて測光し、波長(λ1,λ2)或いは波長(λ1,λ3)の測光データを液体試料の分析に使用する。   When the analysis optical system 21 having such an arrangement is used, the measurement circuit 16 receives signals having peak wavelengths λ2 and λ3 simultaneously from the light receiving element 21e and the light receiving element 21f. For this reason, the automatic analyzer according to the second embodiment is used when it is not necessary to simultaneously measure the signal having the peak wavelength λ2 and the signal having the peak wavelength λ3. In this case, the measurement circuit 16 switches to either the signal of the light receiving element 21d or the signal of the light receiving element 21f and performs photometry, and the photometric data of the wavelength (λ1, λ2) or wavelength (λ1, λ3) is used for analyzing the liquid sample. use.

従って、実施の形態2の自動分析装置は、分析光学系21を使用することにより、波長(λ1,λ2)の測光データが必要な場合には、受光素子21d,21eが受光する光束のタイミングが異なり、波長(λ1,λ3)の測光データが必要な場合には、受光素子21d,21fが受光する光束のタイミングが異なってくる。このため、測定回路16は、受光素子21dと受光素子21e又は受光素子21dと受光素子21fが受光した光信号の処理を同時に行わなくとも波長の異なる測光データを得ることができる。この結果、実施の形態2の自動分析装置は、測定回路16が1つであっても受光素子21d〜21fが受光した光束から各反応容器5内の液体試料の吸光度を求めると共に、検体の成分濃度等を安価に分析することができる。このように、受光素子の一部が配置間隔P1を満たす配置間隔で配置されていれば、分析精度を下げることなく自動分析装置を安価に提供することができる。   Therefore, the automatic analyzer according to the second embodiment uses the analysis optical system 21 to determine the timing of the light beam received by the light receiving elements 21d and 21e when the photometric data of the wavelengths (λ1, λ2) is necessary. On the other hand, when the photometric data of the wavelengths (λ1, λ3) is necessary, the timing of the light beam received by the light receiving elements 21d, 21f is different. Therefore, the measurement circuit 16 can obtain photometric data having different wavelengths without simultaneously processing the optical signals received by the light receiving elements 21d and 21e or the light receiving elements 21d and 21f. As a result, the automatic analyzer according to the second embodiment obtains the absorbance of the liquid sample in each reaction vessel 5 from the light beam received by the light receiving elements 21d to 21f even if there is only one measurement circuit 16, and the components of the specimen. Concentration etc. can be analyzed at low cost. Thus, if a part of the light receiving elements are arranged at an arrangement interval that satisfies the arrangement interval P1, the automatic analyzer can be provided at low cost without reducing the analysis accuracy.

ここで、分析光学系21は、受光素子21dと受光素子21eとの配置間隔P1が、P1=mL±nLとなっていれば、P1=L−L/3に限定されるものではない。   Here, the analysis optical system 21 is not limited to P1 = L−L / 3 as long as the arrangement interval P1 between the light receiving element 21d and the light receiving element 21e is P1 = mL ± nL.

(実施の形態3)
次に、本発明の自動分析装置にかかる実施の形態3について、図面を参照しつつ詳細に説明する。実施の形態1の自動分析装置の分析光学系は、測定回路を1つ使用していた。これに対し、実施の形態3の自動分析装置の分析光学系は、実施の形態1の測定回路を2つ使用している。図6は、実施の形態3の自動分析装置における反応容器の配列間隔と受光素子の配置間隔を説明する模式図である。
(Embodiment 3)
Next, a third embodiment of the automatic analyzer according to the present invention will be described in detail with reference to the drawings. The analysis optical system of the automatic analyzer according to the first embodiment uses one measurement circuit. On the other hand, the analysis optical system of the automatic analyzer according to the third embodiment uses two measurement circuits according to the first embodiment. FIG. 6 is a schematic diagram for explaining the arrangement intervals of the reaction containers and the arrangement intervals of the light receiving elements in the automatic analyzer according to the third embodiment.

実施の形態3の分析光学系は、図6に示すように、実施の形態1の測定回路16と複数の受光素子の組を2組有しており、実施の形態1の分析光学系11に加え更に2組の光ファイバ11c,11dによってピーク波長λ1の光束(第一の光束)とピーク波長λ2の光束(第二の光束)を受光素子11e,11fへ導いている。   As shown in FIG. 6, the analysis optical system of the third embodiment has two sets of the measurement circuit 16 of the first embodiment and a plurality of light receiving elements. The analysis optical system 11 of the first embodiment includes In addition, a light beam having a peak wavelength λ1 (first light beam) and a light beam having a peak wavelength λ2 (second light beam) are guided to the light receiving elements 11e and 11f by two sets of optical fibers 11c and 11d.

従って、実施の形態3の自動分析装置は、図6に示す分析光学系を使用することにより、受光素子11e,11fが受光する光束のタイミングが異なっている。このため、実施の形態3の自動分析装置は、受光素子11e,11fが受光した光信号の処理を同時に行わなくとも波長の異なる測光データを得ることができる。このように、測定回路16と複数の受光素子の組を2組設けることにより、測定回数を増やすことができる。   Therefore, the automatic analyzer of the third embodiment uses the analysis optical system shown in FIG. 6 to change the timing of light beams received by the light receiving elements 11e and 11f. Therefore, the automatic analyzer according to the third embodiment can obtain photometric data having different wavelengths without simultaneously processing the optical signals received by the light receiving elements 11e and 11f. Thus, by providing two sets of the measurement circuit 16 and a plurality of light receiving elements, the number of measurements can be increased.

ここで、実施の形態1の自動分析装置1は、試薬テーブル2と試薬テーブル3の2つの試薬テーブルを備えていたが、試薬テーブルは1つであってもよい。また、本発明の自動分析装置は、図1に示す構造を1ユニットとして2以上のユニットを有する構造であってもよい。   Here, although the automatic analyzer 1 according to the first embodiment includes the two reagent tables, the reagent table 2 and the reagent table 3, the number of reagent tables may be one. Further, the automatic analyzer of the present invention may have a structure having two or more units with the structure shown in FIG. 1 as one unit.

また、実施の形態1の自動分析装置1は、キュベットホイール4を回転させることにより複数の反応容器5を第一及び第二の受光素子に対して反応容器5の配列方向に沿って移動させた。しかし、本発明の自動分析装置は、第一及び第二の受光素子のみ、又は、キュベットホイール4と第一及び第二の受光素子とを回転させることにより、複数の反応容器5と前記第一及び第二の受光素子とを反応容器5の配列方向に沿って相対移動させてもよい。   Further, the automatic analyzer 1 according to Embodiment 1 moves the plurality of reaction vessels 5 along the arrangement direction of the reaction vessels 5 with respect to the first and second light receiving elements by rotating the cuvette wheel 4. . However, in the automatic analyzer of the present invention, only the first and second light receiving elements, or the cuvette wheel 4 and the first and second light receiving elements are rotated, whereby the plurality of reaction vessels 5 and the first light receiving elements are rotated. The second light receiving element may be relatively moved along the arrangement direction of the reaction vessels 5.

実施の形態1の自動分析装置の概略構成図である。1 is a schematic configuration diagram of an automatic analyzer according to a first embodiment. 反応容器の配列間隔と受光素子の配置間隔を説明する模式図である。It is a schematic diagram explaining the arrangement | positioning space | interval of a reaction container and the arrangement | positioning space | interval of a light receiving element. 分析光学系のフィルタ板を示す斜視図である。It is a perspective view which shows the filter board of an analysis optical system. 分析光学系の二つの受光素子が透過光を受光するタイミングを示す信号波形図である。It is a signal waveform diagram which shows the timing which two light receiving elements of an analysis optical system receive transmitted light. 実施の形態2の自動分析装置における反応容器の配列間隔と受光素子の配置間隔を説明する模式図である。FIG. 10 is a schematic diagram for explaining an arrangement interval of reaction containers and an arrangement interval of light receiving elements in the automatic analyzer according to the second embodiment. 実施の形態3の自動分析装置における反応容器の配列間隔と受光素子の配置間隔を説明する模式図である。FIG. 10 is a schematic diagram for explaining an arrangement interval of reaction containers and an arrangement interval of light receiving elements in the automatic analyzer according to the third embodiment.

符号の説明Explanation of symbols

1 自動分析装置
2,3 試薬テーブル
4 キュベットホイール
5 反応容器
6,7 試薬分注機構
8 検体容器移送機構
9 ラック
10 検体分注機構
11 分析光学系
11e,11f 受光素子
12 洗浄機構
13 第一攪拌装置
14 第二攪拌装置
15 制御部
16 測定回路
17 入力部
18 表示部
21 分析光学系
21d〜21f 受光素子
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2,3 Reagent table 4 Cuvette wheel 5 Reaction container 6,7 Reagent dispensing mechanism 8 Specimen container transfer mechanism 9 Rack 10 Specimen dispensing mechanism 11 Analytical optical system 11e, 11f Light receiving element 12 Washing mechanism 13 First stirring Device 14 Second stirring device 15 Control unit 16 Measurement circuit 17 Input unit 18 Display unit 21 Analysis optical system 21d to 21f Light receiving element

Claims (6)

所定の間隔で配列され、液体を保持する複数の容器に保持された液体をそれぞれ反応させ、反応液の光学的特性を測定して前記反応液を分析する自動分析装置であって、
第一の容器に保持された液体を透過した第一の光束を受光し、受光した光量に応じた受光信号を出力する第一の受光素子と、
前記第一の受光素子とは異なる位置に配置され、前記第一の受光素子が前記第一の光束を受光していない場合に、前記第一の容器とは異なる第二の容器に保持された液体を透過した第二の光束を受光し、受光した光量に応じた受光信号を出力する第二の受光素子と、
前記複数の容器と前記第一及び第二の受光素子とを前記複数の容器の配列方向に沿って相対移動させる移動手段と、
前記第一及び第二の受光素子に接続され、当該第一及び第二の受光素子から出力される受光信号から透過光束の強度を順次測定する測定回路と、
を備えたことを特徴とする自動分析装置。
An automatic analyzer that analyzes the reaction liquid by measuring the optical characteristics of the reaction liquid by reacting each of the liquids held in a plurality of containers that hold the liquid, arranged at predetermined intervals,
A first light receiving element that receives the first light flux transmitted through the liquid held in the first container and outputs a light reception signal according to the received light amount;
When the first light receiving element is disposed at a position different from the first light receiving element and does not receive the first light flux, the first light receiving element is held in a second container different from the first container. A second light receiving element that receives the second light flux that has passed through the liquid and outputs a light reception signal corresponding to the amount of light received;
Moving means for relatively moving the plurality of containers and the first and second light receiving elements along an arrangement direction of the plurality of containers;
A measurement circuit connected to the first and second light receiving elements and sequentially measuring the intensity of the transmitted light flux from the light receiving signals output from the first and second light receiving elements;
An automatic analyzer characterized by comprising:
前記第一及び第二の受光素子は、前記複数の容器とは異なる間隔で前記複数の容器の配列方向に沿って配置されることを特徴とする請求項1に記載の自動分析装置。   2. The automatic analyzer according to claim 1, wherein the first and second light receiving elements are arranged along an arrangement direction of the plurality of containers at intervals different from the plurality of containers. 所定の間隔で配列され、液体を保持する複数の容器に保持された液体をそれぞれ反応させ、反応液の光学的特性を測定して前記反応液を分析する自動分析装置であって、
mを自然数、nを正の実数とし、m≧1>n、前記複数の容器の配列間隔をLとした場合に、第一の容器に保持された液体を透過した第一の光束を受光し、受光した光量に応じた受光信号を出力する第一の受光素子と、前記第一の受光素子とは異なる位置に配置され、前記第一の容器とは異なる第二の容器に保持された液体を透過した第二の光束を受光し、受光した光量に応じた光信号を出力する第二の受光素子とが間隔P=mL±nLの関係を満たして配置されていることを特徴とする自動分析装置。
An automatic analyzer that analyzes the reaction liquid by measuring the optical characteristics of the reaction liquid by reacting each of the liquids held in a plurality of containers that hold the liquid, arranged at predetermined intervals,
When m is a natural number, n is a positive real number, m ≧ 1> n, and the arrangement interval of the plurality of containers is L, the first light flux transmitted through the liquid held in the first container is received. The first light receiving element that outputs a light reception signal corresponding to the amount of received light and the liquid that is disposed in a position different from the first light receiving element and held in a second container different from the first container The second light receiving element that receives the second light flux that has passed through and outputs an optical signal corresponding to the received light quantity is disposed so as to satisfy the relationship of the interval P = mL ± nL. Analysis equipment.
前記第一及び第二の光束は、それぞれ波長が異なることを特徴とする請求項1又は3に記載の自動分析装置。   The automatic analyzer according to claim 1 or 3, wherein the first and second light beams have different wavelengths. 前記移動手段は、前記複数の容器を前記第一及び第二の受光素子に対して一定速度で相対移動させることを特徴とする請求項1に記載の自動分析装置。   2. The automatic analyzer according to claim 1, wherein the moving means moves the plurality of containers relative to the first and second light receiving elements at a constant speed. 前記測定回路を複数有することを特徴とする請求項1に記載の自動分析装置。   The automatic analyzer according to claim 1, comprising a plurality of the measurement circuits.
JP2006142698A 2006-05-23 2006-05-23 Autoanalyzer Withdrawn JP2007315786A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006142698A JP2007315786A (en) 2006-05-23 2006-05-23 Autoanalyzer
PCT/JP2007/060057 WO2007135923A1 (en) 2006-05-23 2007-05-16 Automatic analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142698A JP2007315786A (en) 2006-05-23 2006-05-23 Autoanalyzer

Publications (1)

Publication Number Publication Date
JP2007315786A true JP2007315786A (en) 2007-12-06

Family

ID=38723237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142698A Withdrawn JP2007315786A (en) 2006-05-23 2006-05-23 Autoanalyzer

Country Status (2)

Country Link
JP (1) JP2007315786A (en)
WO (1) WO2007135923A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045135A (en) * 2019-05-05 2019-07-23 深圳市新产业生物医学工程股份有限公司 Luminescence detection apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145552A (en) * 1987-12-02 1989-06-07 Olympus Optical Co Ltd Automatic apparatus for analysis
JPH01150842A (en) * 1987-12-09 1989-06-13 Olympus Optical Co Ltd Automatic analyzing device

Also Published As

Publication number Publication date
WO2007135923A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US8064062B2 (en) Photometric apparatus and automatic analyzer
JP7450656B2 (en) automatic analyzer
JP6576833B2 (en) Automatic analyzer
JP2007322324A (en) Analyzer
JP2007322287A (en) Autoanalyer
JP5865713B2 (en) Automatic analyzer
JP4758793B2 (en) Sample analysis method and sample analyzer
JP5946776B2 (en) Automatic analyzer
JP2007322246A (en) Autoanalyzer
JPWO2008139978A1 (en) Photometric method of automatic analyzer and automatic analyzer
JP2010169581A (en) Automatic analyzer
JP2007315786A (en) Autoanalyzer
JP6675226B2 (en) Automatic analyzer
CN115280155A (en) Sample analysis device and method
JP2010145377A (en) Automatic analyzer and photometry thereof
JP2001194371A (en) Chemical analyzer
JP2008281394A (en) Automatic analysis apparatus
JP4753645B2 (en) Automatic analyzer
JP2007057317A (en) Automatic analyzer
JP2013024746A (en) Automatic analyzer
WO2021024531A1 (en) Biochemical analysis device and biochemical analysis method
JPH07270427A (en) Blood coagulation measuring apparatus
JP5537141B2 (en) Automatic analyzer
JP2015175667A (en) Automatic analysis apparatus
JP2007333701A (en) Analyzing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804