JP2007315228A - Internal combustion engine and method of burning in internal combustion engine - Google Patents

Internal combustion engine and method of burning in internal combustion engine Download PDF

Info

Publication number
JP2007315228A
JP2007315228A JP2006143871A JP2006143871A JP2007315228A JP 2007315228 A JP2007315228 A JP 2007315228A JP 2006143871 A JP2006143871 A JP 2006143871A JP 2006143871 A JP2006143871 A JP 2006143871A JP 2007315228 A JP2007315228 A JP 2007315228A
Authority
JP
Japan
Prior art keywords
intake
ignition
swirl
combustion chamber
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006143871A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
一浩 渡辺
Masayoshi Nishizawa
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006143871A priority Critical patent/JP2007315228A/en
Publication of JP2007315228A publication Critical patent/JP2007315228A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent knocking from occurring due to a difference in temperature between an intake side and an exhaust side in a combustion chamber in a three-point igniting internal combustion engine. <P>SOLUTION: In this internal combustion engine 1, a first ignition plug 11 is installed in the center area of the combustion chamber, and second and third ignition plugs 12, 13 are arranged in the peripheral areas of the combustion chamber on both sides of the intake and exhaust valves which are generally symmetric with respect to the first ignition plug 11. The internal combustion engine comprises a swirl generating means 23. When the area of the combustion chamber where the intake valve 6 is disposed and the area thereof where the exhaust valve 7 is disposed on the line extending through the ignition plugs 11 to 13 are defined as an intake side area and an exhaust side area, respectively, the swirl generating means can generate swirl flow from the intake side area toward the exhaust side area near the second ignition plug 12 and from the exhaust side area toward the intake side area near the third ignition plug 13. At least in the operating state of generating the swirl flow, the third ignition plug 13 is ignited before the first and second ignition plugs 11, 12 are ignited. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、1気筒当り複数の点火装置を備える多点点火式の内燃機関に関し、特に、ノッキング発生の防止に関する。   The present invention relates to a multipoint ignition internal combustion engine having a plurality of ignition devices per cylinder, and more particularly to prevention of knocking.

内燃機関の燃焼性を向上させるために、1つの気筒に複数の点火栓を設けた多点点火式内燃機関が知られている。この多点点火式内燃機関は、各点火栓から発する火炎の伝播距離を短くすることで完全燃焼に近づけることを目的とするものである。   In order to improve the combustibility of the internal combustion engine, a multipoint ignition type internal combustion engine in which a plurality of spark plugs are provided in one cylinder is known. This multi-point ignition internal combustion engine is intended to be close to complete combustion by shortening the propagation distance of flames emitted from each spark plug.

しかしながら、多点点火式内燃機関では燃焼期間が短縮されて、いわゆる急速燃焼となるため、筒内圧や筒内温度の上昇が1点点火の場合と比べて急峻となり、ノッキングが発生し易くなるという弊害がある。   However, in a multipoint ignition type internal combustion engine, the combustion period is shortened and so-called rapid combustion occurs, so that the increase in in-cylinder pressure and in-cylinder temperature is steeper than in the case of one-point ignition, and knocking is likely to occur. There are harmful effects.

この問題を解決するための手段として、シリンダボア外周付近に設けた複数の点火栓により着火し、火炎をスワール流動に乗せてシリンダボアの広い空間から狭い空間へと伝播させることによって、燃焼初期から中期にかけての火炎核の拡がりを抑制する構成が特許文献1に記載されている。
特開2005−248840号公報
As a means for solving this problem, it is ignited by a plurality of spark plugs provided near the outer periphery of the cylinder bore, and the flame is placed on the swirl flow to propagate from the wide space of the cylinder bore to the narrow space, so that from the initial stage to the middle stage of combustion. Patent Document 1 describes a configuration that suppresses the spread of flame nuclei.
JP 2005-248840 A

ところで、燃焼室内は排気側領域の方が吸気側領域に比べて高温となる。これは、排気バルブ及びその周辺が高温の既燃ガスが通過することにより温度上昇するのに対して、吸気バルブ及びその周辺は吸気行程において比較的低温の吸入空気に曝されることで冷却されるからである。このため、混合気の燃焼速度は燃焼室内の排気側領域の方が吸気側領域よりも高くなり、排気側領域では燃焼室周縁部まで火炎伝播した後でも、吸気側領域には未だ火炎が伝播していないため未燃のままの混合気が残る。この未燃の混合気が、火炎伝播により燃焼する前に、燃焼室内の圧力上昇によって圧縮自己着火すると、いわゆるノッキングが発生する。   By the way, in the combustion chamber, the exhaust side region has a higher temperature than the intake side region. This is because the exhaust valve and its surroundings rise in temperature due to the passage of high-temperature burned gas, whereas the intake valve and its surroundings are cooled by being exposed to relatively low-temperature intake air during the intake stroke. This is because that. For this reason, the combustion speed of the air-fuel mixture is higher in the exhaust side region in the combustion chamber than in the intake side region, and even after the flame has propagated to the periphery of the combustion chamber in the exhaust side region, the flame still propagates to the intake side region. As a result, the mixture remains unburned. If this unburned air-fuel mixture is combusted by compression due to a rise in pressure in the combustion chamber before burning by flame propagation, so-called knocking occurs.

特許文献1に記載の多点点火式内燃機関では、スワール流動を利用しているため火炎の伝播速度が速くなるが、上述したように排気側領域と吸気側領域の燃焼速度が異なる。しかも、複数の点火栓を同時に点火させるので、上述した原因によりノッキングが発生するおそれがある。   In the multipoint ignition type internal combustion engine described in Patent Document 1, since the swirl flow is used, the propagation speed of the flame is increased. However, as described above, the combustion speeds of the exhaust side region and the intake side region are different. In addition, since a plurality of spark plugs are ignited simultaneously, there is a possibility that knocking may occur due to the above-described causes.

そこで、本発明では、多点点火式内燃機関においてノッキングの発生を抑制することを目的とする。   Therefore, an object of the present invention is to suppress the occurrence of knocking in a multipoint ignition internal combustion engine.

本発明の内燃機関は、燃焼室に吸気弁と排気弁とをそれぞれ複数配置し、前記吸気弁および排気弁に包囲された燃焼室中央領域に第1の点火栓を設けると共に、第1の点火栓に関して略対称位置となる吸排気弁両側方の燃焼室周辺領域にそれぞれ第2、第3の点火栓を配置した内燃機関において、前記第1から第3の点火栓の点火時期を運転状態に応じて制御する点火時期制御手段と、前記各点火栓を通る線に対して前記吸気弁が配置された側の燃焼室領域を吸気側領域、前記排気弁が配置された側の燃焼室領域を排気側領域と定義したときに、前記第2の点火栓付近では前記吸気側領域から前記排気側領域方向、前記第3の点火栓付近では前記排気側領域から前記吸気側領域方向となるスワール流動を燃焼室内に生起させ得るスワール生起手段と、を備える。そして、少なくともスワール流動を生起させる運転状態では、前記第1、第2の点火栓に先立って前記第3の点火栓を点火させる。   In the internal combustion engine of the present invention, a plurality of intake valves and exhaust valves are respectively disposed in the combustion chamber, a first spark plug is provided in a central region of the combustion chamber surrounded by the intake valve and the exhaust valve, and a first ignition valve is provided. In an internal combustion engine in which second and third ignition plugs are arranged in the combustion chamber peripheral region on both sides of the intake and exhaust valves, which are substantially symmetrical with respect to the plugs, the ignition timings of the first to third ignition plugs are brought into operation. And an ignition timing control means that controls the combustion chamber region on the side where the intake valve is disposed with respect to the line passing through each spark plug, and the combustion chamber region on the side where the exhaust valve is disposed. When the exhaust side region is defined, swirl flow from the intake side region toward the exhaust side region near the second spark plug and from the exhaust side region toward the intake side region near the third spark plug Occurrence of swirl that can occur in the combustion chamber It includes a stage, a. Then, at least in the operation state in which the swirl flow is caused, the third spark plug is ignited prior to the first and second spark plugs.

本発明によれば、第3の点火栓により生成した火炎はスワール流動によって吸気側領域に伝播するので、燃焼速度が遅い吸気側領域で早期に燃焼が開始されることとなる。したがって、排気側領域での燃焼を開始した際に、吸気側領域で火炎伝播する前に未燃の混合気が圧縮自己着火してノッキングが発生することを防止できる。   According to the present invention, since the flame generated by the third spark plug propagates to the intake side region by swirl flow, combustion is started early in the intake side region where the combustion speed is slow. Therefore, when combustion in the exhaust side region is started, it is possible to prevent the unburned air-fuel mixture from undergoing compression self-ignition before the flame propagation in the intake side region and causing knocking.

以下本発明の実施形態を図面に基づいて説明する。図1は本発明が適用可能な内燃機関の概略構成図を示している。図中の1は複数の気筒を主軸方向に配設した気筒列を有する多気筒内燃機関の本体、2はその吸気通路、3は吸入ポート部、4はスロットル弁、5は排気ポート部、6は吸気弁、7は排気弁、8は燃焼噴射弁、9は燃焼室、10はピストン、11〜13は点火栓である。また、20はコントロールユニット、21は吸入空気量センサ、22はクランク角センサである。23はシリンダ内にスワール流動を生起させるためのスワール生起手段としてのスワールコントロールバルブ(以下、SCVという)であり、コントロールユニット20からの指令に基づき、比較的低負荷の運転条件下で後述するように吸気通路2の流路面積を絞ってシリンダへの吸気流速を高めることにより吸気スワールを生起する構成となっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration diagram of an internal combustion engine to which the present invention is applicable. In the figure, 1 is a main body of a multi-cylinder internal combustion engine having a cylinder array in which a plurality of cylinders are arranged in the main axis direction, 2 is an intake passage thereof, 3 is an intake port portion, 4 is a throttle valve, 5 is an exhaust port portion, 6 Is an intake valve, 7 is an exhaust valve, 8 is a combustion injection valve, 9 is a combustion chamber, 10 is a piston, and 11 to 13 are ignition plugs. Reference numeral 20 denotes a control unit, 21 denotes an intake air amount sensor, and 22 denotes a crank angle sensor. Reference numeral 23 denotes a swirl control valve (hereinafter referred to as SCV) as a swirl generating means for causing swirl flow in the cylinder, which will be described later under relatively low load operating conditions based on a command from the control unit 20. The intake swirl is generated by narrowing the flow passage area of the intake passage 2 and increasing the intake flow velocity to the cylinder.

コントロールユニット20は、CPUおよびその周辺装置からなるマイクロコンピュータにより構成されており、運転状態検出装置としての前記各センサ21、22からの入力に基づいて内燃機関の運転状態を判断し、燃料の噴射時期、噴射量、及び後述するSCV23の開度がそれぞれ所定の目標値に一致するように燃料噴射弁8及びSCV23の作動を制御する。また、同様に点火時期制御手段として点火栓11〜13の作動を制御する。   The control unit 20 is composed of a microcomputer comprising a CPU and its peripheral devices. The control unit 20 determines the operating state of the internal combustion engine based on the inputs from the sensors 21 and 22 as the operating state detecting device, and injects fuel. The operation of the fuel injection valve 8 and the SCV 23 is controlled so that the timing, the injection amount, and the opening degree of the SCV 23 described later coincide with a predetermined target value. Similarly, the operation of the spark plugs 11 to 13 is controlled as an ignition timing control means.

図2に前記3個の点火栓11〜13の配置の詳細を示す。この実施形態の内燃機関は図2に平面視にて示したように気筒当りに吸気弁6(6A、6B)と排気弁7(7A、7B)とをそれぞれ2個ずづ配置した4弁形式となっている。3個の点火栓のうち、中央に位置する第1の点火栓11はメインプラグと称し、前記都合4個の吸気弁6又は排気弁7に包囲された燃焼室9の中央領域に位置する。これに対して、第2、第3の点火栓12、13はサブプラグと称し、前記第1の点火栓11に関し略対称位置となる吸気弁6及び排気弁7の両側方の燃焼室9の周辺領域に位置する。   FIG. 2 shows details of the arrangement of the three spark plugs 11-13. The internal combustion engine of this embodiment is a four-valve type in which two intake valves 6 (6A, 6B) and two exhaust valves 7 (7A, 7B) are arranged per cylinder as shown in plan view in FIG. It has become. Of the three spark plugs, the first spark plug 11 located in the center is called a main plug, and is located in the central region of the combustion chamber 9 surrounded by the four intake valves 6 or the exhaust valves 7. On the other hand, the second and third spark plugs 12 and 13 are referred to as sub-plugs, and are located around the combustion chamber 9 on both sides of the intake valve 6 and the exhaust valve 7 that are substantially symmetrical with respect to the first spark plug 11. Located in the area.

また、SCV20は一方の吸気ポート6Bの流路面積を調節可能なバルブであり、例えば図2に示したようにシャフト23aを軸として開閉するバタフライバルブを用いることができる。このSCV20を、比較的低負荷での運転時のようにスワール流動を強める場合には弁開度が小さくなるように制御して吸気ポート3Bの流路面積を絞り、これにより両吸気ポート3A、3Bから燃焼室9に流入する吸入空気量に偏りを生じさせて、図3中に矢印で示すように図中時計回りの吸気スワールを生起させる。そして比較的高負荷での運転時のようにスワール流動を弱める場合には弁開度が大きくなるように制御し、両吸気ポート3A、3B間の吸入空気量の偏りを低減させる。   The SCV 20 is a valve capable of adjusting the flow passage area of one intake port 6B. For example, as shown in FIG. 2, a butterfly valve that opens and closes around the shaft 23a can be used. In the case where the swirl flow is increased as in the case of operation at a relatively low load, the SCV 20 is controlled so that the valve opening is reduced to narrow the flow passage area of the intake port 3B, thereby both the intake ports 3A, The amount of intake air flowing from 3B into the combustion chamber 9 is biased, and a clockwise intake swirl is generated as shown by an arrow in FIG. When the swirl flow is weakened, such as during operation at a relatively high load, control is performed so that the valve opening is increased, thereby reducing the deviation of the intake air amount between the intake ports 3A and 3B.

なお、シリンダヘッド1a側の燃焼室形状は、各点火栓11〜13のそれぞれの放電電極部11g〜13gを通る線の付近を稜線とするいわゆるペントルーフ形である。   The shape of the combustion chamber on the cylinder head 1a side is a so-called pent roof shape in which the vicinity of the line passing through the discharge electrode portions 11g to 13g of each spark plug 11 to 13 is a ridge line.

次に、比較的低負荷であってスワール流動を生起させる運転状態における各点火栓11〜13の点火時期について説明する。   Next, the ignition timing of each of the spark plugs 11 to 13 in the operation state in which the swirl flow is caused with a relatively low load will be described.

本実施形態では、ピストン10が圧縮上死点近傍まで上昇したときに、まず第3の点火栓13による点火を行う。なお、点火時期は一般の点火時期制御と同様に、運転状態に応じて進角・遅角するものとする。   In the present embodiment, when the piston 10 rises to the vicinity of the compression top dead center, first, ignition by the third spark plug 13 is performed. Note that the ignition timing is advanced or retarded according to the operating state, as in general ignition timing control.

燃焼室9内にはスワール流動が生起されているため、第3の点火栓13近傍の混合気は吸気弁6側の領域に向う。したがって第3の点火栓13から発した火炎は、図3中の矢印14で示したように、スワール流動によって吸気弁6Bから吸気弁6A方向に拡がる。すなわち、まず第3の点火栓(スワールの流れ方向から見て、吸気側の上流部近傍に位置する吸気スワール上流点火栓)13により点火を行うことにより、比較的低温で燃焼速度が比較的遅い吸気弁6側の領域から燃焼が開始される。   Since the swirl flow is generated in the combustion chamber 9, the air-fuel mixture in the vicinity of the third spark plug 13 is directed to the region on the intake valve 6 side. Therefore, the flame emitted from the third spark plug 13 spreads from the intake valve 6B toward the intake valve 6A by swirl flow, as indicated by an arrow 14 in FIG. That is, first, ignition is performed by a third spark plug (an intake swirl upstream spark plug located in the vicinity of the upstream portion on the intake side when viewed from the swirl flow direction) 13, so that the combustion speed is relatively low at a relatively low temperature. Combustion is started from the region on the intake valve 6 side.

続いて、吸気弁6A、6B付近の比較的低温の混合気が燃焼しきる前、例えば第3の点火栓13の点火してからクランク角で約15度程度進んだ時期に、第1の点火栓(スワールの流れが実質的に一方向に定まらずに、スワールの流れ方向で見て上流、下流の関係を有さない領域に位置する中立点火栓)11、および第2の点火栓(スワールの流れ方向から見て、排気側の上流部近傍に位置する排気スワール上流点火栓)12による点火を略同時に行う。   Subsequently, before the relatively low temperature air-fuel mixture in the vicinity of the intake valves 6A and 6B is combusted, for example, at a timing advanced about 15 degrees in crank angle after the third spark plug 13 is ignited, (Neutral spark plugs located in areas where there is no upstream or downstream relationship in the swirl flow direction when the swirl flow is not substantially determined in one direction) 11, and a second spark plug (swirl plug) When viewed from the flow direction, ignition by the exhaust swirl upstream spark plug (12) located near the upstream portion on the exhaust side is performed substantially simultaneously.

これにより、燃焼室9内には第3の点火栓13の点火により生成した火炎と、第1、第2の点火栓11、12の点火により生成した火炎が存在することとなり、各点火栓11〜13から発した火炎の伝播距離が一点点火の場合に比べて短くなるので、燃焼期間を短縮して時間損失を低減することができる。   As a result, a flame generated by the ignition of the third ignition plug 13 and a flame generated by the ignition of the first and second ignition plugs 11 and 12 exist in the combustion chamber 9. Since the propagation distance of flames emitted from ˜13 is shorter than that in the case of single point ignition, the combustion period can be shortened and time loss can be reduced.

なお、第3の点火栓13の点火から第1、第2の点火栓11、12の点火までのクランク角の最適値は、ボア径やピストン冠面形状、その他吸気ポート6の形状により定まるスワール流動の強さ等によって異なるので、エンジンの仕様に応じて設定する。また、スワール流動の強さや火炎伝播速度は機関運転状態に応じて変動するので、第3の点火栓13の点火から第1、第2の点火栓11、12の点火までのクランク角を機関運転状態に応じて可変に制御するようにしてもよい。   The optimum crank angle from the ignition of the third spark plug 13 to the ignition of the first and second spark plugs 11 and 12 is a swirl determined by the bore diameter, piston crown shape, and other intake port 6 shapes. Since it depends on the strength of the flow, etc., it is set according to the engine specifications. Further, since the strength of the swirl flow and the flame propagation speed fluctuate depending on the engine operating state, the crank angle from the ignition of the third ignition plug 13 to the ignition of the first and second ignition plugs 11 and 12 is determined as the engine operation. You may make it control variably according to a state.

そして、第1、第2の点火栓11、12の点火によって吸気弁6A、6B付近の混合気が燃焼した後に、再度、第1の点火栓11による点火を行い、スワール流動によって吸気弁6側の領域に向う未燃の混合気を燃焼させる。燃焼室9内の吸気弁6側の領域は、前述したように比較的低温であり、さらに燃焼室9周縁部付近ではシリンダ壁面からの冷却損失もあるため、火炎が伝播途中で消炎しやすく、燃焼期間終了後に燃焼室9周縁部付近(エンドゾーン)に未燃のままの混合気が残留するおそれがある。このようにしてエンドゾーンに残留した未燃の混合気は、次サイクルの膨張行程において、火炎が伝播してくる前に燃焼室内の圧力上昇によって圧縮自己着火し、いわゆるノッキングを引き起こすおそれがある。そこで、上記のように、第1、第2の点火栓11、12による点火の後、第1の点火栓11により再度点火を行うことにより、吸気弁6側の領域に未燃のまま残留する混合気の量を低減し、ノッキングの発生を抑制する。   Then, after the air-fuel mixture in the vicinity of the intake valves 6A and 6B is combusted by the ignition of the first and second ignition plugs 11 and 12, the first ignition plug 11 is ignited again, and the intake valve 6 side by swirl flow The unburned air-fuel mixture toward the region is burned. The region on the intake valve 6 side in the combustion chamber 9 is relatively low in temperature as described above, and further, there is a cooling loss from the cylinder wall surface in the vicinity of the periphery of the combustion chamber 9, so that the flame is easily extinguished during propagation, There is a possibility that an unburned air-fuel mixture may remain in the vicinity of the peripheral edge of the combustion chamber 9 (end zone) after the end of the combustion period. The unburned air-fuel mixture remaining in the end zone in this way may cause so-called knocking by compression self-ignition due to the pressure increase in the combustion chamber before the flame propagates in the expansion stroke of the next cycle. Therefore, as described above, after ignition by the first and second spark plugs 11 and 12, ignition is performed again by the first spark plug 11 to leave unburned in the region on the intake valve 6 side. Reduce the amount of air-fuel mixture and suppress the occurrence of knocking.

ここで、上記のような点火時期により第1〜第3の点火栓11〜13による点火を行った場合の燃焼圧の挙動について、図7を参照して説明する。図4は燃焼圧とクランク角との関係を示したものであり、図中実線は本実施形態の制御を実行した場合の挙動、破線は3つの点火栓を略同時に点火させる従来の制御(以下、従来の3点点火という)を実行した場合の挙動、鎖線は1つの点火栓による点火の場合をそれぞれ示している。   Here, the behavior of the combustion pressure when the first to third ignition plugs 11 to 13 are ignited at the above ignition timing will be described with reference to FIG. FIG. 4 shows the relationship between the combustion pressure and the crank angle. In the figure, the solid line shows the behavior when the control of this embodiment is executed, and the broken line shows the conventional control for igniting the three spark plugs almost simultaneously (hereinafter referred to as the control). , The behavior when the conventional three-point ignition is executed), and the chain line show the case of ignition by one spark plug.

従来の3点点火の場合は、1点点火の場合と比較して燃焼期間を飛躍的に短くすることができるが、燃焼が早すぎるために図に示すように燃焼圧の上昇が急峻になるので、却ってノッキング限界が低くなってしまう。一方、1点点火の場合は3点点火の場合に比べて火炎伝播に要する時間がかかるため、燃焼圧の上昇は緩慢になる。しかしながら、比較的低温となる吸気弁側の領域への火炎伝播の効率が悪いため、吸気弁側のエンドゾーン付近に未燃混合気が残留し易くなる。そして、この未燃混合気が次サイクルにおいて火炎伝播する前に圧力上昇によって圧縮自己着火するおそれがあるため、ノッキング限界が高いとはいえない。   In the case of the conventional three-point ignition, the combustion period can be drastically shortened compared with the case of the one-point ignition, but the combustion pressure rises sharply as shown in the figure because the combustion is too early. As a result, the knocking limit is lowered. On the other hand, in the case of one-point ignition, the time required for flame propagation is longer than in the case of three-point ignition, so the increase in the combustion pressure becomes slow. However, since the efficiency of flame propagation to the region on the intake valve side where the temperature is relatively low is poor, the unburned mixture tends to remain near the end zone on the intake valve side. And since this unburned air-fuel mixture may cause compression self-ignition due to pressure rise before propagating flame in the next cycle, it cannot be said that the knocking limit is high.

これらに対して、本実施形態の点火時期制御では、まず第3の点火栓13によってのみ点火するので、燃焼圧の立ち上がりは1点点火と同様に緩慢になる。しかし、その後第1、第2の点火栓11、12による点火を行うことにより、燃焼圧の上昇が1点点火と比較して燃焼期間が短縮される。また、第1の点火栓11による点火を再度行うことにより、未燃のまま燃焼室内に残留する混合気量を低減することができる。すなわち、燃焼期間を短縮しつつノッキングの発生を抑制することができる。   On the other hand, in the ignition timing control of the present embodiment, the ignition is first performed only by the third spark plug 13, so that the rise of the combustion pressure is slow as in the case of one-point ignition. However, by performing ignition with the first and second spark plugs 11 and 12 thereafter, the combustion period is shortened compared to the one-point ignition when the combustion pressure is increased. Further, by performing the ignition with the first spark plug 11 again, the amount of air-fuel mixture remaining in the combustion chamber without being burned can be reduced. That is, the occurrence of knocking can be suppressed while shortening the combustion period.

図5は従来の3点点火及び本実施形態の、ノック強度と点火時期との関係を示すものであり、図中の実線は本実施形態、鎖線は従来の3点点火、破線は許容し得るノック強度(以下、許容ノック強度という)を示している。上述したように本実施形態は従来の3点点火よりも燃焼圧の上昇を緩慢にすることでノッキングの発生を抑制しているため、図57に示すように、本実施形態によれば従来の3点点火と比較してノック強度が許容ノック強度を超える点火時期が進角側になる。すなわち、より点火時期を進角させることで出力向上を図ることができる。   FIG. 5 shows the relationship between knock intensity and ignition timing in the conventional three-point ignition and the present embodiment. The solid line in the figure is the present embodiment, the chain line is the conventional three-point ignition, and the broken line is acceptable. Knock strength (hereinafter referred to as allowable knock strength) is shown. As described above, the present embodiment suppresses the occurrence of knocking by slowing the increase in the combustion pressure more slowly than the conventional three-point ignition. Therefore, as shown in FIG. The ignition timing at which the knock intensity exceeds the allowable knock intensity as compared with the three-point ignition becomes the advance side. That is, the output can be improved by advancing the ignition timing.

以上説明したように、本実施形態では、第3の点火栓13を最初に点火させ、これにより生成した火炎をスワール流動を利用して吸気側領域に伝播させるので、燃焼速度の低い吸気側領域で早期に燃焼が行われ、吸気側領域での圧縮自己着火によるノッキングの発生を防止することができる。   As described above, in the present embodiment, the third spark plug 13 is ignited first, and the flame generated thereby is propagated to the intake side region using swirl flow. Thus, combustion is performed at an early stage, and knocking due to compression self-ignition in the intake side region can be prevented.

また、第3の点火栓13による点火の後、所定期間、例えば第3の点火栓により生成した火炎が第1、第2の点火栓11、12付近まで伝播する期間よりも長い期間が経過した後に、第1、第2の点火栓11、12を略同時に点火させるので、燃焼時間を短縮して時間損失を低減することができる。   Further, after ignition by the third spark plug 13, a predetermined period, for example, a period longer than the period in which the flame generated by the third spark plug propagates to the vicinity of the first and second spark plugs 11 and 12 has elapsed. Later, since the first and second spark plugs 11 and 12 are ignited substantially simultaneously, the combustion time can be shortened and the time loss can be reduced.

さらに、第1、第2の点火栓11、12を点火させた後に、再度第1の点火栓11を点火させるので、燃焼室内に未燃混合気が残ることを防止できる。   Furthermore, since the first ignition plug 11 is ignited again after the first and second ignition plugs 11 and 12 are ignited, it is possible to prevent the unburned mixture from remaining in the combustion chamber.

また、燃焼開始後の燃焼圧の上昇を緩慢にすることで、燃焼に起因する打音(燃焼音)を抑制することができる。   Further, by slowing the increase in the combustion pressure after the start of combustion, it is possible to suppress the hitting sound (combustion noise) resulting from the combustion.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

本実施形態を適用する内燃機関の全体構成図である。1 is an overall configuration diagram of an internal combustion engine to which the present embodiment is applied. 本実施形態の燃焼室構造の概略を示す上面図である。It is a top view which shows the outline of the combustion chamber structure of this embodiment. 燃焼室内のスワール流動を説明するための図である。It is a figure for demonstrating the swirl flow in a combustion chamber. 燃焼圧の特性を説明するための図である。It is a figure for demonstrating the characteristic of a combustion pressure. ノック強度の特性を説明するための図である。It is a figure for demonstrating the characteristic of knock intensity | strength.

符号の説明Explanation of symbols

1 内燃機関の本体
2 吸気通路
3 吸入ポート部
4 スロットル弁
5 排気ポート部
6 吸気弁
7 排気弁
8 燃焼噴射弁
9 燃焼室
10 ピストン
11 第1の点火栓
12 第2の点火栓
13 第3の点火栓
DESCRIPTION OF SYMBOLS 1 Main body of internal combustion engine 2 Intake passage 3 Intake port part 4 Throttle valve 5 Exhaust port part 6 Intake valve 7 Exhaust valve 8 Combustion injection valve 9 Combustion chamber 10 Piston 11 1st spark plug 12 2nd spark plug 13 3rd spark plug 13 Spark plug

Claims (6)

燃焼室に吸気弁と排気弁とをそれぞれ複数配置し、前記吸気弁および排気弁に包囲された燃焼室中央領域に第1の点火栓を設けると共に、第1の点火栓に関して略対称位置となる吸排気弁両側方の燃焼室周辺領域にそれぞれ第2、第3の点火栓を配置した内燃機関において、
前記第1から第3の点火栓の点火時期を運転状態に応じて制御する点火時期制御手段と、
前記各点火栓を通る線に対して前記吸気弁が配置された側の燃焼室領域を吸気側領域、前記排気弁が配置された側の燃焼室領域を排気側領域と定義したときに、前記第2の点火栓付近では前記吸気側領域から前記排気側領域方向、前記第3の点火栓付近では前記排気側領域から前記吸気側領域方向となるスワール流動を前記燃焼室内に生起させ得るスワール生起手段と、を備え、
前記点火時期制御手段は、少なくとも前記スワール生起手段によりスワール流動を生起させる運転状態では、前記第1、第2の点火栓に先立って前記第3の点火栓を点火させることを特徴とする内燃機関。
A plurality of intake valves and exhaust valves are arranged in the combustion chamber, a first spark plug is provided in the central region of the combustion chamber surrounded by the intake valve and the exhaust valve, and the position is substantially symmetrical with respect to the first spark plug. In the internal combustion engine in which the second and third spark plugs are arranged in the combustion chamber peripheral region on both sides of the intake and exhaust valves,
Ignition timing control means for controlling the ignition timing of the first to third spark plugs according to the operating state;
When the combustion chamber region on the side where the intake valve is disposed with respect to the line passing through each spark plug is defined as the intake side region, and the combustion chamber region on the side where the exhaust valve is disposed is defined as the exhaust side region, Swirl generation that can cause swirl flow in the combustion chamber in the vicinity of the second spark plug from the intake side region toward the exhaust side region, and in the vicinity of the third spark plug from the exhaust side region toward the intake side region. Means, and
The internal combustion engine characterized in that the ignition timing control means ignites the third spark plug prior to the first and second spark plugs at least in an operation state in which a swirl flow is caused by the swirl generating means. .
前記第3の点火栓の点火後、所定期間が経過してから前記第1、第2の点火栓を点火させることを特徴とする請求項1に記載の内燃機関。   2. The internal combustion engine according to claim 1, wherein the first and second ignition plugs are ignited after a predetermined period elapses after the third ignition plug is ignited. 前記所定期間は、少なくとも前記第3の点火栓の点火により生成した火炎が前記第2の点火栓付近まで伝播するのに要する期間よりも長い期間であることを特徴とする請求項2に記載の内燃機関。   The said predetermined period is a period longer than the period required for the flame produced | generated at least by the ignition of the said 3rd spark plug to propagate to the said 2nd spark plug vicinity. Internal combustion engine. 前記第1、第2の点火栓の点火を略同時期に行うことを特徴とする請求項2または3に記載の内燃機関。   The internal combustion engine according to claim 2 or 3, wherein the first and second spark plugs are ignited substantially simultaneously. 前記第1、第2の点火栓の点火後、所定期間が経過してから再度前記第1の点火栓を点火させることを特徴とする請求項2から4のいずれか一つに記載の内燃機関。   5. The internal combustion engine according to claim 2, wherein after the first and second ignition plugs are ignited, the first ignition plug is ignited again after a predetermined period of time elapses. . スワール生起手段を有する内燃機関の燃焼方法において、
前記内燃機関は、
燃焼室領域の吸気弁が配置された側を吸気側、排気弁が配置された側を排気側と定義したときに、
スワールの流れ方向で見て、前記吸気側の燃焼室領域のスワール流れ上流部分近傍に位置する吸気スワール上流点火栓および、
スワールの流れ方向で見て、前記排気側の燃焼室領域のスワール流れ上流部分近傍に位置する排気スワール上流点火栓もしくは燃焼室中央領域近傍のスワールの流れが実質的に一方向に定まらない領域に位置する中立点火栓の少なくともどちらか一方を有し、
スワール生起手段によりスワールを生起させるときに、吸気スワール上流点火栓を他の点火栓に対して早いタイミングで点火させることを特徴とする内燃機関の燃焼方法。
In a combustion method of an internal combustion engine having a swirl generating means,
The internal combustion engine
When the side of the combustion chamber area where the intake valve is located is defined as the intake side and the side where the exhaust valve is located is defined as the exhaust side,
An intake swirl upstream spark plug located in the vicinity of the swirl flow upstream portion of the combustion chamber region on the intake side when viewed in the flow direction of the swirl; and
In the swirl flow direction, the exhaust swirl upstream spark plug located in the vicinity of the swirl flow upstream portion of the exhaust-side combustion chamber region or the swirl flow region in the vicinity of the combustion chamber central region is not substantially determined in one direction. Having at least one of the neutral spark plugs located,
A combustion method for an internal combustion engine, characterized in that when a swirl is generated by a swirl generating means, an intake swirl upstream spark plug is ignited at an early timing with respect to another spark plug.
JP2006143871A 2006-05-24 2006-05-24 Internal combustion engine and method of burning in internal combustion engine Pending JP2007315228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143871A JP2007315228A (en) 2006-05-24 2006-05-24 Internal combustion engine and method of burning in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143871A JP2007315228A (en) 2006-05-24 2006-05-24 Internal combustion engine and method of burning in internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007315228A true JP2007315228A (en) 2007-12-06

Family

ID=38849328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143871A Pending JP2007315228A (en) 2006-05-24 2006-05-24 Internal combustion engine and method of burning in internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007315228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229109B1 (en) * 2017-04-04 2017-11-08 康仁 矢尾板 4-valve combustion chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229109B1 (en) * 2017-04-04 2017-11-08 康仁 矢尾板 4-valve combustion chamber
JP2018178758A (en) * 2017-04-04 2018-11-15 康仁 矢尾板 Four-valve type combustion chamber

Similar Documents

Publication Publication Date Title
JP6225938B2 (en) Control device for internal combustion engine
JP6206364B2 (en) Internal combustion engine
JP2016000969A5 (en)
JP2016089747A (en) Control device of internal combustion engine
JP2016000969A (en) Internal combustion engine control device
JP2009041397A (en) Combustion chamber structure of multiple ignition engine
WO2018216153A1 (en) Internal combustion engine control method and control device
JP2008088861A (en) Spark ignition type direct injection gasoline engine
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP5494557B2 (en) Control method of spark ignition engine and spark ignition engine
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP2007278257A (en) Direct injection type spark ignition internal combustion engine
JP2007002800A (en) Structure of engine combustion chamber
JP5239720B2 (en) Spark ignition internal combustion engine
JP2007239627A (en) Spark ignition type internal combustion engine
JP2007315228A (en) Internal combustion engine and method of burning in internal combustion engine
WO2018216154A1 (en) Internal combustion engine control method and control device
JP5316113B2 (en) Control unit for gasoline engine
JP2007009864A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4501743B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2020020306A (en) Engine control device
JP2008025400A (en) Control device of direct injection type spark ignition internal combustion engine
JP2020020307A (en) Engine control device
JP4862756B2 (en) Engine knocking detection device
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine