JP2007313750A - Composite of metal with resin and process for producing the same - Google Patents

Composite of metal with resin and process for producing the same Download PDF

Info

Publication number
JP2007313750A
JP2007313750A JP2006145707A JP2006145707A JP2007313750A JP 2007313750 A JP2007313750 A JP 2007313750A JP 2006145707 A JP2006145707 A JP 2006145707A JP 2006145707 A JP2006145707 A JP 2006145707A JP 2007313750 A JP2007313750 A JP 2007313750A
Authority
JP
Japan
Prior art keywords
resin
metal
composite
weight
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006145707A
Other languages
Japanese (ja)
Other versions
JP4452256B2 (en
Inventor
Naoki Yamano
直樹 山野
Naoki Ando
直樹 安藤
Masanori Narutomi
正徳 成富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Tosoh Corp
Original Assignee
Taisei Purasu Co Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006145707A priority Critical patent/JP4452256B2/en
Application filed by Taisei Purasu Co Ltd, Tosoh Corp filed Critical Taisei Purasu Co Ltd
Priority to US12/089,097 priority patent/US8703272B2/en
Priority to EP06811204A priority patent/EP1944389A4/en
Priority to CN2006800437892A priority patent/CN101313087B/en
Priority to KR1020087008830A priority patent/KR100982357B1/en
Priority to PCT/JP2006/319864 priority patent/WO2007040245A1/en
Publication of JP2007313750A publication Critical patent/JP2007313750A/en
Priority to HK09101509.3A priority patent/HK1124641A1/en
Application granted granted Critical
Publication of JP4452256B2 publication Critical patent/JP4452256B2/en
Priority to US14/197,439 priority patent/US9724898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/04Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium

Abstract

<P>PROBLEM TO BE SOLVED: To strongly and integrally bond (cement) a magnesium alloy or metal parts made of a magnesium alloy containing crystals of a metal oxide and the like on its surface, with a resin. <P>SOLUTION: Magnesium alloy parts having been subjected to chemical treatment can be used. On the surface layer having a crystal layer of a metal oxide, metal carbonate or metal phosphate, a resin composition containing 70-99 wt.% of polyphenylene sulfide (PPS) and 1-30 wt.% of a polyolefin resin is firmly fixed. The resin composition is superior in the bond strength by the injection bonding to polyphenylene sulfide alone. The surfaces of the magnesium alloy parts are subjected to chemical conversion treatment, these are inserted in a mold, and the above resin composition is injected and bonded to obtain the composite. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子機器の筐体、家電機器の筐体、構造用部品、機械部品等に用いられる金属部品と樹脂組成物からなる複合体、及びその製造方法に関する。更に詳しくは、各種機械加工で作られた金属部品と熱可塑性樹脂組成物を一体化した構造物及びその製造方法に関し、モバイル用の各種電子機器、家電製品、医療機器、車両用構造部品、車両搭載用品、建築資材の部品、その他の構造用部品や外装用部品等に用いられる金属部品と熱可塑性樹脂組成物との複合体、及びその製造方法に関する。   The present invention relates to a composite body made of a metal component and a resin composition used for a housing of an electronic device, a housing of a home appliance, a structural component, a mechanical component, and the like, and a method for manufacturing the same. More specifically, the present invention relates to a structure in which metal parts and thermoplastic resin compositions made by various machinings are integrated, and a method for manufacturing the same, and various electronic devices for mobile devices, home appliances, medical devices, structural components for vehicles, and vehicles. The present invention relates to a composite of a metal part and a thermoplastic resin composition used for mounting articles, parts for building materials, other structural parts and exterior parts, and a method for producing the same.

金属と樹脂を一体化する技術は、自動車、家庭電化製品、産業機器等の広い産業分野から求められており、このために両者を固着するための多くの接着剤が開発されている。常温、又は加熱により機能を発揮する接着剤は、金属と合成樹脂の間に介在させて両者を一体化するものであり、この方法は現在では一般的な接合(固着)技術である。しかしながら、接着剤を使用しない、より合理的な接合方法も従来から研究されてきた。   A technique for integrating a metal and a resin is demanded from a wide range of industrial fields such as automobiles, home appliances, and industrial equipment, and for this reason, many adhesives for fixing the two have been developed. An adhesive exhibiting a function at room temperature or by heating is to interpose between a metal and a synthetic resin to integrate both, and this method is currently a common joining (fixing) technique. However, more rational joining methods that do not use an adhesive have been studied.

マグネシウム、アルミニウムやその合金である軽金属類、又、ステンレスなど鉄合金類に対し、接着剤の介在なしで高強度のエンジニアリング樹脂を一体化する方法がその一例である。例えば、射出等の方法で同時に接合する方法(以下、射出接合という。)として、本発明者等は、アルミニウム合金に対しポリブチレンテレフタレート樹脂(以下「PBT」という。)、又はポリフェニレンサルファイド樹脂(以下「PPS」という。)を、射出成形させる製造技術を提案している(例えば特許文献1参照。)。又、他にアルミニウム材の陽極酸化皮膜に大きめの孔を形成し、この孔に合成樹脂体を食い込ませ固着させる接合技術が開示されている(例えば特許文献2参照。)。   One example is a method of integrating a high-strength engineering resin into a light metal such as magnesium, aluminum or an alloy thereof, or an iron alloy such as stainless steel without an adhesive. For example, as a method of joining at the same time by a method such as injection (hereinafter referred to as injection joining), the present inventors have used polybutylene terephthalate resin (hereinafter referred to as “PBT”) or polyphenylene sulfide resin (hereinafter referred to as “injection joining”) for an aluminum alloy. "PPS") has been proposed (for example, see Patent Document 1). In addition, there has been disclosed a joining technique in which a large hole is formed in an anodized film of an aluminum material, and a synthetic resin body is bitten into the hole and fixed (for example, see Patent Document 2).

特許文献1の提案におけるこの射出接合の原理は、推定であるが以下のように考えられる。この射出接合は、前処理として、アルミニウム合金製の金属部品を水溶性アミン系化合物の希薄水溶液に浸漬させる。この金属部品の浸漬により、その弱塩基性水溶液によって、アルミニウム合金の表面がエッチングされ超微細な凹部が形成され、同時にアルミニウム合金表面にアミン系化合物分子が吸着させる。   Although the principle of this injection joining in the proposal of patent document 1 is estimation, it is considered as follows. In this injection joining, as a pretreatment, a metal part made of an aluminum alloy is immersed in a dilute aqueous solution of a water-soluble amine compound. By soaking the metal part, the surface of the aluminum alloy is etched by the weakly basic aqueous solution to form ultrafine recesses, and at the same time, amine compound molecules are adsorbed on the surface of the aluminum alloy.

この吸着処理がなされた金属部品を、射出成形金型にインサートし、溶融した熱可塑性樹脂を高圧でその金型に射出させる。この射出のとき、前述したPBT、又はPPSと、アルミニウム合金の表面に吸着していたアミン系化合物分子が遭遇して発熱する。このときアルミニウム合金は低温の金型温度に保たれたているが、この発熱により急冷固化せんとした樹脂は、固化が遅れて超微細なアルミニウム合金面上の凹部にも潜り込むことになる。そのことにより、アルミニウム合金と熱可塑性樹脂は樹脂がアルミニウム合金表面から剥がれることなく強固に接合(固着)する。即ち、PBT、又はPPSと、アミン化合物との間の発熱反応により、強固な射出接合ができるものを提案した。本発明者等は、実際にアミン系化合物と発熱反応できるPBT、又はPPSがこのアルミニウム合金と射出接合ができることを確認している。   The metal part subjected to the adsorption treatment is inserted into an injection mold, and the molten thermoplastic resin is injected into the mold at a high pressure. During this injection, the PBT or PPS described above and the amine compound molecules adsorbed on the surface of the aluminum alloy encounter and generate heat. At this time, the aluminum alloy is kept at a low mold temperature. However, the resin that has been rapidly solidified by this heat generation is delayed in solidification, and also enters the recesses on the surface of the ultrafine aluminum alloy. As a result, the aluminum alloy and the thermoplastic resin are firmly bonded (fixed) without the resin peeling off from the surface of the aluminum alloy. In other words, a material capable of strong injection joining by an exothermic reaction between PBT or PPS and an amine compound has been proposed. The present inventors have confirmed that PBT or PPS which can actually generate an exothermic reaction with an amine compound can be injection-bonded with the aluminum alloy.

特開2004−216425号JP 2004-216425 A WO2004−055248 A1号WO2004-055248 A1

本発明者等は、前記した発明を更に有効にすべく射出接合に適した樹脂組成物の開発を行った。即ち、金属表面に微細凹部を無数に設けて接着させる技術をさらに発展させその開発を行った。その結果、アルミニウム合金と線膨張率を合わせただけの単純なPPS系組成物ではなく、PPSの結晶性に関する性質を変化させた組成物が特に有効である現象を発見した。   The present inventors have developed a resin composition suitable for injection joining in order to make the above-described invention more effective. In other words, the technology was further developed and developed to provide innumerable fine recesses on the metal surface for adhesion. As a result, they discovered a phenomenon in which not only a simple PPS-based composition in which the linear expansion coefficient is combined with that of an aluminum alloy, but also a composition in which properties relating to crystallinity of PPS are changed is particularly effective.

そして、本発明者等は、前述の発明を発展させ、樹脂組成物を改良することで金属部品に必要な前述した前処理の制限を少なくできないか検討した結果、特定のPPS製の樹脂組成物と金属部品とからなる複合体が、この金属部品とPPS製の樹脂組成物の間で優れた接着性を有することを見出し、本発明を完成するに至った。   The present inventors have developed the above-described invention and studied whether or not the above-described pretreatment necessary for metal parts can be reduced by improving the resin composition. As a result, a specific PPS resin composition is obtained. The present invention has been completed by finding that a composite comprising a metal part and a metal part has excellent adhesion between the metal part and a resin composition made of PPS.

本発明は、前述の技術背景のもとになされたものであり、下記の目的を達成する。本発明の目的は、アルミニウム合金製の金属部品のみならずマグネシウム合金製の金属部品にも使用できようにしたものであり、化成処理したマグネシウム合金に関してPPS組成物との接合性を得ることのできる技術の提供にある。   The present invention has been made based on the above technical background and achieves the following object. An object of the present invention is to be able to be used not only for metal parts made of aluminum alloy but also for metal parts made of magnesium alloy, and it is possible to obtain bondability with a PPS composition for a magnesium alloy subjected to chemical conversion treatment. The provision of technology.

そこで、マグネシウム合金につきその特徴について若干述べる。即ち、マグネシウム合金は実用金属中で最も軽量で、かつ機械的な強度が高いという特筆すべき特徴があり、軽量で重宝されているアルミニウム合金(比重2.7)に比較しても比重1.7付近と非常な軽さである。しかしながら、一方でアルミニウム合金より一段と化学的に活性であり、このために機械加工、表面処理等の点で取り扱いが難しい。   Therefore, some characteristics of the magnesium alloy will be described. That is, a magnesium alloy has a remarkable feature that it is the lightest and most mechanically strong metal in practical metals, and has a specific gravity of 1. compared to an aluminum alloy (specific gravity 2.7) that is light and useful. It is around 7 and very light. However, on the other hand, it is more chemically active than aluminum alloys, and is therefore difficult to handle in terms of machining, surface treatment, and the like.

即ち、マグネシウム合金では、研磨等でむき出しの金属面とした直後に自然酸化層が生じ、しかもその表面の自然酸化層の化学的な安定度や機械的な強度は、アルミニウム合金の表面の酸化層より格段に劣る。アルミニウム合金では自然酸化層の上に防錆剤としての油膜、又は塗装塗膜が存在すれば、結露がない室内放置では十年以上の安定が保たれるが、マグネシウム合金では1年もしない内に脹れや錆が生じる。   That is, in a magnesium alloy, a natural oxide layer is formed immediately after forming a bare metal surface by polishing or the like, and the chemical stability and mechanical strength of the natural oxide layer on the surface are determined by the oxide layer on the surface of the aluminum alloy. It is much inferior. If an aluminum film has an oil film or a paint film as a rust inhibitor on the natural oxide layer, it will remain stable for more than 10 years when left indoors without condensation. Swells and rusts.

この理由は、マグネシウム合金表面上の油膜や塗膜を介して拡散してくる炭酸ガスや水分子が、マグネシウム自然酸化層と反応するのである。要するにマグネシウム合金を実際に使用する場合、自然酸化層膜に代わる丈夫な皮膜でまず覆うことが必要である。具体的には化成処理、電解酸化の何れかの手法でマグネシウム合金を処理することである。本発明者等は、まず化成処理がされたマグネシウム合金に対して樹脂を射出接合できる技術を確立しようとしたものである。   The reason for this is that carbon dioxide gas and water molecules diffusing through the oil film or coating film on the surface of the magnesium alloy react with the magnesium natural oxide layer. In short, when a magnesium alloy is actually used, it is necessary to first cover it with a strong film instead of a natural oxide film. Specifically, the magnesium alloy is treated by either chemical conversion treatment or electrolytic oxidation. The present inventors first tried to establish a technique capable of injection-bonding a resin to a magnesium alloy subjected to chemical conversion treatment.

本発明は、前記目的を達成するために次の手段をとる。
即ち、本発明1の金属と樹脂の複合体は、表層に金属酸化物、金属炭酸化物、及び金属リン酸化物から選択される何れか1種の結晶を含むマグネシウム合金又はマグネシウム合金製の金属部品において、
前記結晶は、クロム、マンガン、カルシウム、ストロンチウム、アルミニウム、亜鉛、ジルコニウム、チタン、及びバナジウムから選択される1種以上の金属を含んだものであり、
前記結晶にポリフェニレンサルファイド樹脂70〜99重量%及びポリオレフィン系樹脂1〜30重量%を含む樹脂組成物が固着されていることを特徴とする。
本発明2の金属と樹脂の複合体は、本発明1において、前記樹脂組成物は、ポリフェニレンサルファイド樹脂80〜97重量%及びポリオレフィン系樹脂3〜20重量%であることを特徴とする。
The present invention takes the following means to achieve the above object.
That is, the composite of the metal and resin of the first aspect of the present invention is a magnesium alloy or metal component made of a magnesium alloy that includes any one kind of crystal selected from metal oxide, metal carbonate, and metal phosphate in the surface layer. In
The crystal contains one or more metals selected from chromium, manganese, calcium, strontium, aluminum, zinc, zirconium, titanium, and vanadium,
A resin composition containing 70 to 99% by weight of a polyphenylene sulfide resin and 1 to 30% by weight of a polyolefin resin is fixed to the crystal.
The metal-resin composite of the present invention 2 is characterized in that, in the present invention 1, the resin composition is 80 to 97% by weight of a polyphenylene sulfide resin and 3 to 20% by weight of a polyolefin resin.

本発明3の金属と樹脂の複合体は、本発明1又は2において、前記マグネシウム又はマグネシウム合金製部品の表層には、電子顕微鏡観察で1μm当りに板状結晶が2個以上認められることを特徴とする。 The metal-resin composite according to the third aspect of the present invention is that the surface layer of the magnesium or magnesium alloy part in the first or second aspect of the present invention has two or more plate crystals per 1 μm 2 observed by an electron microscope. Features.

本発明4の金属と樹脂の複合体は、本発明1又は2において、前記マグネシウム又はマグネシウム合金製部品の表層には、電子顕微鏡観察で見て針状や棒状結晶、又は針状や棒状結晶外皮を有する塊状結晶が覆う面積の比が30%以上であることを特徴とする。   The metal-resin composite according to the fourth aspect of the present invention is the first or second aspect of the present invention, wherein the surface layer of the magnesium or magnesium alloy part has a needle-like or rod-like crystal, or a needle-like or rod-like crystal hull as viewed with an electron microscope. The ratio of the area covered by the block crystal having a diameter is 30% or more.

本発明5の金属と樹脂の複合体は、本発明1ないし4において、前記樹脂組成物は、前記ポリフェニレンサルファイド樹脂とポリオレフィン系樹脂の合計樹脂分100重量部に対して、さらに多官能性イソシアネート化合物0.1〜6重量部及び/又はエポキシ樹脂1〜25重量部を配合してなる樹脂組成物であることを特徴とする。   The metal-resin composite according to the fifth aspect of the present invention is the first to fourth aspect of the present invention, wherein the resin composition further comprises a polyfunctional isocyanate compound with respect to 100 parts by weight of the total resin content of the polyphenylene sulfide resin and the polyolefin resin. It is a resin composition formed by blending 0.1 to 6 parts by weight and / or 1 to 25 parts by weight of an epoxy resin.

本発明6の金属と樹脂の複合体は、本発明1ないし5において、前記樹脂組成物は、前記ポリフェニレンサルファイド樹脂とポリオレフィン系樹脂の合計樹脂分100重量部に対して、さらに充填剤1〜200重量部を配合してなるものであることを特徴とする。   The metal-resin composite according to the sixth aspect of the present invention is the first to fifth aspects of the present invention, wherein the resin composition further comprises 1 to 200 fillers relative to a total resin content of 100 parts by weight of the polyphenylene sulfide resin and the polyolefin resin. It is characterized by blending parts by weight.

本発明7の金属と樹脂の複合体は、本発明6の複合体において、前記充填剤は、ガラス繊維、炭素繊維、アラミド繊維、炭酸カルシウム、炭酸マグネシウム、シリカ、タルク、粘土、及びガラス粉から選ばれる1種以上であることを特徴とする。   The composite of metal and resin of the present invention 7 is the composite of the present invention 6, wherein the filler is made of glass fiber, carbon fiber, aramid fiber, calcium carbonate, magnesium carbonate, silica, talc, clay, and glass powder. It is one or more types selected.

本発明8の金属と樹脂の複合体は、本発明1ないし7の複合体において、前記ポリオレフィン系樹脂が、無水マレイン酸変性エチレン系共重合体、グリシジルメタクリレート変性エチレン系共重合体、グリシジルエーテル変性エチレン系共重合体、及びエチレンアルキルアクリレート共重合体から選択される少なくとも1種のポリオレフィン系樹脂であることを特徴とする。   The metal-resin composite of the present invention 8 is the composite of the present invention 1 to 7, wherein the polyolefin resin is a maleic anhydride modified ethylene copolymer, a glycidyl methacrylate modified ethylene copolymer, a glycidyl ether modified It is at least one polyolefin resin selected from an ethylene copolymer and an ethylene alkyl acrylate copolymer.

本発明9の金属と樹脂の複合体は、本発明1ないし7の複合体において、ポリオレフィン系樹脂が、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体、エチレン−グリシジルメタクリレートニ元共重合体から選択される少なくとも1種のポリオレフィン系樹脂であることを特徴とする。   The composite of metal and resin of the present invention 9 is the composite of the present invention 1 to 7, wherein the polyolefin resin is an ethylene-acrylic acid ester-maleic anhydride terpolymer, ethylene-glycidyl methacrylate binary copolymer. It is characterized by being at least one polyolefin resin selected from coalescence.

本発明10の複合体の製造方法は、マグネシウム又はマグネシウム合金素材を鋳造物や中間材からの機械加工で形状部品化する形状加工工程と、前記形状化した形状部品を、クロム、マンガン、カルシウム、ストロンチウム、ジルコニウム、チタン、バナジウム、カリウム、及びナトリウムから選択される1種以上の金属を含んだ水溶液又は水性懸濁液に浸漬することにより、前記形状部品の表層に、金属酸化物、金属炭酸化物、及び金属リン酸化物から選択される1種以上の被膜を形成する液処理工程と、前記液処理工程後の前記形状部品を射出成形金型にインサートしてポリフェニレンサルファイド70〜99重量%及びポリオレフィン系樹脂1〜30重量%を含む樹脂分組成の樹脂組成物を射出し前記形状部品と前記樹脂組成物とを一体に固着する固着工程とからなる。以下、上記手段を構成する各要素について具体的に説明する。   The manufacturing method of the composite of the present invention 10 includes a shape processing step of forming magnesium or a magnesium alloy material into a shape part by machining from a cast or an intermediate material, and the shaped shape part is made of chromium, manganese, calcium, By immersing in an aqueous solution or aqueous suspension containing one or more metals selected from strontium, zirconium, titanium, vanadium, potassium, and sodium, a metal oxide, a metal carbonate is formed on the surface layer of the shaped part. And a liquid treatment step for forming one or more kinds of coatings selected from metal phosphorous oxides, and the shaped parts after the liquid treatment step are inserted into an injection mold to obtain 70 to 99% by weight of polyphenylene sulfide and polyolefin A resin composition having a resin composition containing 1 to 30% by weight of a resin is injected to combine the shaped part and the resin composition together. Consisting of a fixing step to stick to. Hereinafter, each element which comprises the said means is demonstrated concretely.

〔金属部品〕
本発明で使用されるマグネシウム又はマグネシウム合金は、表層に金属酸化物、金属炭酸化物、及び金属リン酸化物から選択される何れか1種の結晶を含むものである。又、この結晶は、クロム、マンガン、カルシウム、ストロンチウム、アルミニウム、亜鉛、ジルコニウム、チタン、バナジウムから選択される1種以上の金属を含んだものである。
[Metal parts]
Magnesium or a magnesium alloy used in the present invention includes any one crystal selected from metal oxides, metal carbonates, and metal phosphates in the surface layer. The crystal contains one or more metals selected from chromium, manganese, calcium, strontium, aluminum, zinc, zirconium, titanium, and vanadium.

このマグネシウム又はマグネシウム合金は、日本工業規格で規定されているAZ31等の展伸用合金、AZ91、AZ92合金等のように、規格化、又は市販されている全てのマグネシウム又はマグネシウム合金が対象である。マグネシウム又はマグネシウム合金で作られる形状部品としては、鋳造用合金等であれば、ダイカスト、チクソモールド、射出成形等の方法で形状化した部品、更にはそれらを機械加工して所望の形状に加工した部品を用いる。又、展伸用合金等では、板材、管材、棒材等の中間材をプレス加工、切削、研削加工等の機械加工を加えて形状化した部品を使用する。   This magnesium or magnesium alloy is intended for all magnesium or magnesium alloys that are standardized or commercially available, such as AZ31 and other wrought alloys defined in Japanese Industrial Standards, AZ91, AZ92 alloys, and the like. . Shaped parts made of magnesium or magnesium alloy, if it is an alloy for casting, etc., parts shaped by methods such as die casting, thixomolding, injection molding, etc., and further machining them into the desired shape Use parts. Moreover, in the alloy for extending | stretching etc., the components which shape | molded intermediate materials, such as a board | plate material, a pipe material, and a rod material, by applying mechanical processing, such as press work, cutting, and grinding, are used.

〔金属部品の表面〕
通常、マグネシウム合金の表面は、イオン化傾向が高く空気中の湿気からでも腐食酸化し易いので表面処理が必要とされる。このためにマグネシウム又はマグネシウム合金は、異種金属の塩や酸の水溶液に浸漬することで、その表面に異種金属を含む金属酸化物、金属炭酸化物、金属リン酸化物等の安定層を形成させ、その層の存在によって内部金属の防食を行うという措置が一般に採用されている。金属業界ではこのような浸漬型表面処理を化成処理と称されているが、その前に行う脱脂や化学エッチングも含めて化成処理と言うことも多い。なお、本発明では混同することがないよう、化成処理は耐食層を作るための狭い意味での処理を示すことを意味し、その前に通常は行う脱脂やエッチング等の処理は前処理と称し、更に、前処理と化成処理の双方を含む全体を液処理と称することにする。
[Surface of metal parts]
Usually, the surface of a magnesium alloy is highly ionized and easily corroded even from moisture in the air, so that surface treatment is required. For this purpose, magnesium or a magnesium alloy is immersed in an aqueous solution of a salt or acid of a different metal to form a stable layer such as a metal oxide, metal carbonate, or metal phosphate containing a different metal on its surface, In general, measures are taken to protect the inner metal by the presence of the layer. In the metal industry, such immersion type surface treatment is referred to as chemical conversion treatment, but is often referred to as chemical conversion treatment including degreasing and chemical etching performed before that. In order to avoid confusion in the present invention, the chemical conversion treatment means that the treatment in a narrow sense for forming the corrosion-resistant layer is indicated, and the treatment such as degreasing and etching usually performed before that is referred to as pretreatment. Furthermore, the whole including both the pretreatment and the chemical conversion treatment will be referred to as a liquid treatment.

マグネシウムやマグネシウム合金に対して為す化成処理として知られているのは、クロム酸を含んだ水溶液に浸漬し、クロム酸化物やクロムのリン酸化物を主成分とする防食層を表面に設ける化成処理であり、一般にクロメート処理と呼ばれている(例えば、米国特許2438877号参照)。最近では、マンガン塩又はマンガン酸塩とリン酸等の混合水溶液に浸漬して表層として酸化マンガンやリン酸マンガンを主成分とする防食層を設ける処理が多く使用されている。   Known as a chemical conversion treatment for magnesium and magnesium alloys is a chemical conversion treatment that involves immersing in an aqueous solution containing chromic acid and providing an anticorrosion layer mainly composed of chromium oxide or chromium phosphate on the surface. And is generally called chromate treatment (see, for example, US Pat. No. 2,438,877). Recently, many treatments are used which are immersed in a manganese salt or a mixed aqueous solution of manganate and phosphoric acid to provide an anticorrosion layer mainly composed of manganese oxide or manganese phosphate as a surface layer.

これらクロム系以外の化成処理はノンクロメート処理と呼ばれている(例えば、特開平7−126858号、特開2001−123274号参照)。この他に、アルミニウム、バナジウム、亜鉛、ジルコニウム、チタン等の複合酸化物層を防食層として、表面に設ける方法(例えば、特開2000−199077号参照)もノンクロメート処理として知られている。歴史的には、クロム化合物を使用するクロメート処理法が耐食性に優れた処理法として長く使用されてきた。   These chemical conversion treatments other than chromium-based treatment are called non-chromate treatments (see, for example, JP-A-7-126858 and JP-A-2001-123274). In addition, a method of providing a composite oxide layer of aluminum, vanadium, zinc, zirconium, titanium, or the like as an anticorrosion layer on the surface (for example, see JP 2000-199077 A) is also known as non-chromate treatment. Historically, chromate treatment methods using chromium compounds have long been used as treatment methods with excellent corrosion resistance.

しかしながら、クロメート処理用のクロム酸水溶液を用いるので、これが環境上で問題ある6価クロムを含むことから問題となり、現在はクロムを使用しない化成処理法が求められていた。そこで、前述したマンガンやその他の金属を使用した方法が開発された。最近では、マンガン化合物を使った方法がクロメート処理に代替し得る方法と見られているようである。本発明で用いる金属部品は、これらの何れの方法で表面処理されたものであっても使用できる。   However, since a chromic acid aqueous solution for chromate treatment is used, this causes a problem because it contains hexavalent chromium, which is problematic in the environment. At present, a chemical conversion treatment method using no chromium has been demanded. Therefore, a method using the aforementioned manganese and other metals has been developed. Recently, it seems that a method using a manganese compound is regarded as an alternative to the chromate treatment. The metal part used in the present invention can be used even if it is surface-treated by any of these methods.

本発明者らの研究結果によれば、より好ましい要件は、(1)防食性が十分あること、(2)化成処理で得られた表面層に凹凸があり、且つ電子顕微鏡で見て表面に多くの結晶状物が認められることである。(1)及び(2)の双方が必要だが、本発明では特に(2)に注目する。マグネシウム又はマグネシウム合金が金属酸化物や金属炭酸化物や金属リン酸化物の硬く丈夫な表層を有することが好ましいからである。これは射出された結晶性熱可塑性樹脂が、前述した硬く丈夫な凹凸のある表層に食い込んで結晶化固化することが強い接合力を生むことから来ている。   According to the research results of the present inventors, more preferable requirements are (1) sufficient corrosion resistance, (2) the surface layer obtained by chemical conversion treatment has irregularities, and the surface is viewed with an electron microscope. Many crystalline substances are observed. Although both (1) and (2) are necessary, the present invention pays particular attention to (2). This is because magnesium or a magnesium alloy preferably has a hard and strong surface layer of metal oxide, metal carbonate, or metal phosphate. This is because the injected crystalline thermoplastic resin generates a strong bonding force when it bites into the hard and strong uneven surface layer and crystallizes and solidifies.

化成処理で得られた硬く丈夫な表面層が、1μm以下の長さ単位で凹凸形状を有していたり、50〜100nm程度の深さの凹部形状で覆われている等の形状であれば、樹脂が金属の表面で係止されることになり、即ち樹脂が金属表面層の凹凸に引っかかり、即ち、アンカー効果を生むのに好ましい。更には、1μm当りに板状結晶が2個以上認められる場合や、針状や棒状結晶が表面を広く覆っているか又は針状や棒状結晶を外皮とする塊状結晶が連結して表面を覆っている場合が好ましい。1μm当りに板状結晶が2個以上認められる場合、板状結晶が凹凸部の壁の役割を為し、丈夫な凸部の壁となって射出接合力を高くするのに有効である。一方、針状や棒状結晶が表面を30%以上覆っていると、自然と丈夫な凹凸を為し且つ樹脂との引っかかりを良くして射出接合力を高くするのに有効である。以下、各工程の具体的な実施法とその考え方について述べる。 If the hard and durable surface layer obtained by the chemical conversion treatment has a concavo-convex shape with a length unit of 1 μm or less, or is covered with a concave shape having a depth of about 50 to 100 nm, The resin is locked on the surface of the metal, that is, the resin is caught on the unevenness of the metal surface layer, that is, it is preferable for producing an anchor effect. Furthermore, when two or more plate crystals are observed per 1 μm 2 , the needle-like or rod-like crystals cover the surface widely, or the bulk crystals having the needle-like or rod-like crystals as the outer skin are connected to cover the surface. Is preferred. When two or more plate-like crystals are observed per 1 μm 2 , the plate-like crystal serves as a wall of the concavo-convex portion, and is effective for increasing the injection joining force by forming a strong convex portion wall. On the other hand, when the surface is covered with 30% or more of needle-like or rod-like crystals, it is effective for naturally producing strong irregularities and improving the engagement with the resin to increase the injection joining force. In the following, the specific implementation method of each process and its concept will be described.

〔マグネシウム又はマグネシウム合金部品の表面処理/前処理〕
マグネシウム又はマグネシウム合金からなる金属部品は、まず脱脂槽に浸漬して機械加工で付着した油剤や指脂を除くのが好ましい。具体的には、市販のマグネシウム用脱脂材を、その薬剤メーカーの指定通りの濃度でマグネシウム用脱脂材を湯に投入した水溶液を用意し、これに金属部品を浸漬した後に、更に水洗するのが好ましい。通常の市販品では、濃度5〜10%として液温を50〜80℃とし5〜10分浸漬する。次いで、酸性水溶液に浸漬してエッチングし、マグネシウム合金部品の表層を溶かして汚れと残存した油剤や界面活性剤の残分を除く。
[Surface treatment / pretreatment of magnesium or magnesium alloy parts]
It is preferable that metal parts made of magnesium or a magnesium alloy are first immersed in a degreasing tank to remove oils and finger grease adhered by machining. Specifically, a commercially available magnesium degreasing material is prepared with an aqueous solution in which magnesium degreasing material is poured into hot water at a concentration specified by the drug manufacturer, and after immersing metal parts in this, it is further washed with water. preferable. In an ordinary commercial product, the concentration is 5 to 10%, the liquid temperature is 50 to 80 ° C., and the immersion is performed for 5 to 10 minutes. Next, it is immersed and etched in an acidic aqueous solution to dissolve the surface layer of the magnesium alloy part and remove the dirt and the remaining oil agent or surfactant residue.

使用液は、PH2.0〜5.0の、有機カルボン酸、例えば酢酸、プロピオン酸、クエン酸、安息香酸、フタル酸等の弱酸性水溶液が使用できる。マグネシウム純度が100%に近い高純度マグネシウム以外は、マグネシウム合金に異種金属が含まれている。例えば、AZ31、AZ91ではアルミニウムが3〜9%、亜鉛が1%程度含まれており、アルミニウムや亜鉛は弱酸性水溶液を使ったこのエッチング工程では溶け難く不溶物として表面に沈着するから、これら沈着物を溶かして除去して清浄にする工程が必要である。   As the working solution, a weakly acidic aqueous solution of an organic carboxylic acid having a pH of 2.0 to 5.0, such as acetic acid, propionic acid, citric acid, benzoic acid and phthalic acid can be used. Except for high-purity magnesium whose magnesium purity is close to 100%, the magnesium alloy contains dissimilar metals. For example, AZ31 and AZ91 contain about 3% to 9% aluminum and about 1% zinc. Since aluminum and zinc are hardly dissolved in this etching process using a weakly acidic aqueous solution, they are deposited on the surface as insoluble materials. A process of melting and removing the object to clean it is necessary.

いわゆるスマット除去と呼ばれている除去技術である。AZ31やAZ91では、まず弱塩基性水溶液に浸漬してアルミニウムのスマットを溶解し(第一スマット処理)、次に強塩基性水溶液に浸漬して亜鉛のスマットを溶かし去る(第二スマット処理)のが普通である。前記第一スマット処理では市販のアルミニウム合金用の脱脂材水溶液が弱塩基性にて使用でき、本発明者等は、そのような市販されているアルミ用脱脂剤を5〜10%濃度で60〜80℃の水溶液として数分浸漬する方法を取った。又、第二スマット処理としては、15〜25%濃度の苛性ソーダ水溶液を70〜80℃として、5〜10分間浸漬する方法を取った。   This is a removal technique called so-called smut removal. In AZ31 and AZ91, the aluminum smut is first dissolved by dissolving in a weakly basic aqueous solution (first smut treatment), and then the zinc smut is dissolved away by immersing in a strong basic aqueous solution (second smut treatment). Is normal. In the first smut treatment, a commercially available degreasing agent aqueous solution for an aluminum alloy can be used with a weak basicity, and the present inventors have used such a commercially available degreasing agent for aluminum in a concentration of 5 to 10% at a concentration of 60 to A method of immersing as an aqueous solution at 80 ° C. for several minutes was taken. Further, as the second smut treatment, a method of dipping for 5 to 10 minutes at a temperature of 70 to 80 ° C. with a caustic soda solution having a concentration of 15 to 25% was employed.

〔マグネシウム又はマグネシウム合金部品の表面処理/本処理〕
次いで液処理の中で本処理と言える処理を行う。本処理は通常2段階の浸漬処理、即ちまず、弱酸性水溶液に極短時間浸漬して微細エッチングを行い、次いで従来技術である各種マグネシウム合金用の化成処理法を改善して実施することである。微細エッチング工程には、PH2.0〜6.0の有機カルボン酸、例えば酢酸、プロピオン酸、クエン酸、安息香酸、フタル酸、フェノール、フェノール誘導体、等の弱酸性水溶液が使用でき、浸漬時間も15〜40秒と極短時間が好ましい。
[Surface treatment of magnesium or magnesium alloy parts / main treatment]
Next, processing that can be called main processing is performed in the liquid processing. This treatment is usually a two-step dipping treatment, that is, first dipping in a weakly acidic aqueous solution for a very short time to perform fine etching, and then improving the conventional chemical conversion treatment method for various magnesium alloys. . In the fine etching process, an organic carboxylic acid having a pH of 2.0 to 6.0, for example, a weakly acidic aqueous solution such as acetic acid, propionic acid, citric acid, benzoic acid, phthalic acid, phenol, and a phenol derivative can be used, and the immersion time is also long. An extremely short time of 15 to 40 seconds is preferable.

又、化成処理工程は従来知られている化成処理と基本的には同じ工程である。即ち、この化成処理方法は多数の特許が出願され公知技術であり、例えばクロム、マンガン、カルシウム、ストロンチウム、ジルコニウム、チタン、バナジウム、カリウム、及びナトリウムから選択される1種以上の金属を含んだ水溶液、水性懸濁液に浸漬することにより、表層に金属酸化物、金属炭酸化物、又は金属リン酸化物を形成させてマグネシウム合金の耐食性を向上させるものも提案されている。一方、実際に商業化されている化成処理は、本発明者等が知る限りにおいて、クロム酸系の水溶液に浸漬して酸化クロム、又はマグネシウムを含むクロム酸化物で表面を覆うクロメート法か、リン酸マンガン系水溶液に浸漬してマンガンのリン酸化物で覆う方法の2種のようである。   Further, the chemical conversion treatment step is basically the same as the conventionally known chemical conversion treatment. That is, this chemical conversion treatment method is a well-known technique for which many patents have been filed. For example, an aqueous solution containing one or more metals selected from chromium, manganese, calcium, strontium, zirconium, titanium, vanadium, potassium, and sodium. Further, it has been proposed to improve the corrosion resistance of a magnesium alloy by forming a metal oxide, metal carbonate or metal phosphate on the surface layer by immersing in an aqueous suspension. On the other hand, as far as the present inventors know, the chemical conversion treatment that is actually commercialized is either a chromate method in which the surface is covered with chromium oxide or chromium oxide containing magnesium by immersing in a chromic acid aqueous solution, or phosphorous. There seem to be two kinds of methods of immersing in manganese acid aqueous solution and covering with manganese phosphate.

現在、6価クロムの使用は人体への影響から敬遠されており、前述した表面処理では後者が主流になってノンクロメート法として呼ばれているものに変わりつつある状況である。本発明者等にとって本処理の目的は、耐食性を与えるだけでなく、射出接合されたとき材料力学的に機械強度が高い表面を形成することにある。本発明者等の検討結果によると、前記微細エッチング工程を省き、前述した特許出願されているタイプの化成処理や、クロメート、ノンクロメート処理法の何れも十分な耐食性が与えられ、且つ必要程度の強固な射出接合物が得られた。その中でも、特に射出接合によりその金属表面と樹脂との間で、より強固な表面形状は電子顕微鏡で見て結晶が多く明確に観察された物であり、電子顕微鏡で見て結晶が多く観察された物を調整するには微細エッチング工程を経たものが好ましい。   Currently, the use of hexavalent chromium is avoided from the influence on the human body, and in the surface treatment described above, the latter has become the mainstream and is changing to what is called the non-chromate method. For the present inventors, the purpose of this treatment is not only to provide corrosion resistance, but also to form a surface having high mechanical strength in terms of material mechanics when injection-bonded. According to the examination results of the present inventors, the fine etching process is omitted, and the above-mentioned patent-application type chemical conversion treatment, chromate, and non-chromate treatment methods are all provided with sufficient corrosion resistance, and the necessary degree. A strong injection-bonded product was obtained. Among them, the stronger surface shape between the metal surface and the resin, especially by injection joining, is a product with many crystals clearly observed when viewed with an electron microscope, and many crystals are observed with an electron microscope. In order to adjust the product, it is preferable to use a fine etching process.

前処理を終わったマグネシウム合金部品を、再度、40℃前後とした0.1〜0.5%濃度の水和クエン酸水溶液に15〜60秒浸漬し微細エッチングし、イオン交換水で水洗する。次いで化成処理液として、過マンガン酸カリ1〜5%、酢酸1〜3%、水和酢酸ナトリウム0.1〜1.0%を含む水溶液を40〜60℃として用意し、これに先ほどのマグネシウム合金部品を0.5〜2分浸漬し水洗する。これを60〜90℃とした温風乾燥機に5〜20分入れて乾燥する。   The magnesium alloy part that has been pretreated is again immersed in a 0.1 to 0.5% strength hydrated citric acid aqueous solution at around 40 ° C. for 15 to 60 seconds, finely etched, and washed with ion-exchanged water. Next, an aqueous solution containing potassium permanganate 1-5%, acetic acid 1-3%, and hydrated sodium acetate 0.1-1.0% was prepared as a chemical conversion treatment solution at 40-60 ° C. Immerse the alloy parts for 0.5-2 minutes and wash with water. This is put into a warm air dryer set at 60 to 90 ° C. for 5 to 20 minutes and dried.

一方、耐食性として最も優れていると一般に認められるクロメート処理法で本発明を実施するに好ましい方法の一例を示す。前記前処理を終わったマグネシウム合金部品を、再度、40℃前後とした0.1〜0.5%濃度の水和クエン酸水溶液に15〜60秒浸漬し微細エッチングし、イオン交換水で水洗する。次いで化成処理液として、無水クロム酸(三酸化クロム)の15〜20%濃度の水溶液を60〜80℃として用意し、これに先ほどのマグネシウム片を2〜4分浸漬し水洗する。これを60〜90℃とした温風乾燥機に5〜20分入れて乾燥する。表面が灰色となったマグネシウム合金部品が得られる。   On the other hand, an example of a preferable method for carrying out the present invention by a chromate treatment method generally recognized as the most excellent corrosion resistance will be described. The pretreated magnesium alloy part is again immersed in a 0.1 to 0.5% strength hydrated citric acid aqueous solution at around 40 ° C. for 15 to 60 seconds, finely etched, and washed with ion exchange water. . Next, a 15-20% strength aqueous solution of chromic anhydride (chromium trioxide) is prepared as a chemical conversion treatment solution at 60-80 ° C., and the magnesium piece is immersed in this for 2-4 minutes and washed with water. This is put into a warm air dryer set at 60 to 90 ° C. for 5 to 20 minutes and dried. A magnesium alloy part with a gray surface is obtained.

〔樹脂組成物〕
本発明を構成する樹脂組成物は、PPS70〜99重量%、及びポリオレフィン系樹脂1〜30重量%を含む樹脂分組成物からなり、好ましくは接合性に優れた複合体とするにはPPS80〜97重量%、及びポリオレフィン系樹脂3〜20重量%を含む樹脂分組成とすることが良い。ここで、PPSが70重量%未満である場合、又は、99重量%を越える場合、得られる複合体は金属部品と樹脂組成物との接合性(固着性)に劣るものとなる。
(Resin composition)
The resin composition constituting the present invention is composed of a resin component composition containing 70 to 99% by weight of PPS and 1 to 30% by weight of a polyolefin-based resin. Preferably, PPS 80 to 97 is used to form a composite excellent in bondability. It is good to set it as the resin component composition containing 3% by weight and 3-20% by weight of polyolefin resin. Here, when PPS is less than 70% by weight, or when it exceeds 99% by weight, the obtained composite is inferior in bondability (adhesiveness) between the metal part and the resin composition.

PPSとしては、PPSと称される範疇に属するものであればよく、その中でも樹脂組成物とする際の成形加工性に優れることから直径1mm、長さ2mmのダイスを装着した高化式フローテスターにて、測定温度315℃、荷重10kgの条件下、測定した溶融粘度が100〜30,000ポイズであるものであることが好ましい。また、PPSはアミノ基やカルボキシル基等で置換したものや、重合時にトリクロロベンゼン等で共重合したものであってもよい。   Any PPS may be used as long as it belongs to the category called PPS, and among them, a high-flow type flow tester equipped with a die having a diameter of 1 mm and a length of 2 mm because of excellent molding processability when used as a resin composition. Therefore, it is preferable that the measured melt viscosity is 100 to 30,000 poise under the conditions of a measurement temperature of 315 ° C. and a load of 10 kg. PPS may be substituted with an amino group, a carboxyl group or the like, or may be copolymerized with trichlorobenzene or the like during polymerization.

また、PPSとしては、直鎖状のものであっても、分岐構造を導入したものであっても、不活性ガス中で加熱処理を施したものであってもかまわない。更に、このPPSは、加熱硬化前又は後に脱イオン処理(酸洗浄や熱水洗浄等)、或いはアセトン等の有機溶媒による洗浄処理を行うことによって、イオン、オリゴマー等の不純物を低減させたものであってもよいし、重合反応終了後に酸化性ガス中で加熱処理を行って硬化を進めたものであってもよい。   Further, the PPS may be linear, introduced with a branched structure, or heat-treated in an inert gas. Furthermore, this PPS has reduced impurities such as ions and oligomers by performing deionization treatment (acid washing, hot water washing, etc.) before or after heat curing, or washing with an organic solvent such as acetone. Alternatively, it may be cured by performing a heat treatment in an oxidizing gas after completion of the polymerization reaction.

ポリオレフィン系樹脂としては、通常知られているエチレン系樹脂、プロピレン系樹脂等であり、市販されているものであってもよい。その中でも、特に接着性に優れた複合体を得るという観点から、無水マレイン酸変性エチレン系共重合体、グリシジルメタクリレート変性エチレン系共重合体、グリシジルエーテル変性エチレン共重合体、エチレンアルキルアクリレート共重合体等であることが好ましい。   Examples of the polyolefin-based resin include commonly known ethylene-based resins and propylene-based resins, and may be commercially available. Among these, from the viewpoint of obtaining a composite having particularly excellent adhesiveness, maleic anhydride-modified ethylene copolymer, glycidyl methacrylate-modified ethylene copolymer, glycidyl ether-modified ethylene copolymer, ethylene alkyl acrylate copolymer Etc.

この無水マレイン酸変性エチレン系共重合体としては、例えば無水マレイン酸グラフト変性エチレン重合体、無水マレイン酸−エチレン共重合体、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体等をあげることができ、その中でも特に優れた複合体が得られることから、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体であることが好ましく、このエチレン−アクリル酸エステル−無水マレイン酸三元共重合体の具体的例示としては、「ボンダイン(アルケマ社(大阪府大阪市)製)」等が挙げられる。   Examples of the maleic anhydride-modified ethylene copolymer include maleic anhydride graft-modified ethylene polymer, maleic anhydride-ethylene copolymer, ethylene-acrylic acid ester-maleic anhydride terpolymer. Among them, an ethylene-acrylic acid ester-maleic anhydride terpolymer is preferable because a particularly excellent composite is obtained, and this ethylene-acrylic acid ester-maleic anhydride terpolymer is preferable. Specific examples of coalescence include “Bondyne (manufactured by Arkema Inc. (Osaka City, Osaka))” and the like.

このグリシジルメタクリレート変性エチレン系共重合体としては、グリシジルメタクリレートグラフト変性エチレン重合体、グリシジルメタクリレート−エチレン共重合体を挙げることができ、その中でも特に優れた複合体が得られることからグリシジルメタクリレート−エチレン共重合体であることが好ましく、このグリシジルメタクリレート−エチレン共重合体の具体例としては、「ボンドファースト(住友化学社(東京都中央区)製)」等が挙げられる。   Examples of the glycidyl methacrylate-modified ethylene-based copolymer include glycidyl methacrylate graft-modified ethylene polymer and glycidyl methacrylate-ethylene copolymer. Among them, particularly excellent composites are obtained, and therefore glycidyl methacrylate-ethylene copolymer. A polymer is preferred, and specific examples of this glycidyl methacrylate-ethylene copolymer include “Bond First” (manufactured by Sumitomo Chemical Co., Ltd. (Chuo-ku, Tokyo)).

このグリシジルエーテル変性エチレン共重合体としては、例えばグリシジルエーテルグラフト変性エチレン共重合体、グリシジルエーテル−エチレン共重合体を挙げることができ、該エチレンアルキルアクリレート共重合体の具体例としては、「ロトリル(アルケマ社製)」等が挙げられる。   Examples of the glycidyl ether-modified ethylene copolymer include glycidyl ether graft-modified ethylene copolymer and glycidyl ether-ethylene copolymer. Specific examples of the ethylene alkyl acrylate copolymer include “rotoryl ( Arkema) ”and the like.

本発明の複合体においては金属部品と樹脂組成物との接合性がより優れたものとなることから、樹脂組成物はPPS70〜99重量%及びポリオレフィン系樹脂1〜30重量%を含む樹脂分合計100重量部に対し、さらに多官能性イソシアネート化合物0.1〜6重量部及び/又はエポキシ樹脂1〜25重量部を配合してなるものであることが好ましい。   In the composite of the present invention, since the bondability between the metal part and the resin composition becomes better, the resin composition has a total resin content including 70 to 99% by weight of PPS and 1 to 30% by weight of polyolefin resin. It is preferable that 0.1 to 6 parts by weight of a polyfunctional isocyanate compound and / or 1 to 25 parts by weight of an epoxy resin is further blended with 100 parts by weight.

この多官能性イソシアネート化合物は、市販の非ブロック型、ブロック型のものが使用できる。該多官能性非ブロック型イソシアネート化合物としては、例えば4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルプロパンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ビス(4−イソシアネートフェニル)スルホン等が例示される。また、該多官能性ブロック型イソシアネート化合物としては、分子内に2個以上のイソシアネート基を有し、そのイソシアネート基を揮発性の活性水素化合物と反応させて、常温では不活性としたものであり、該多官能性ブロック型イソシアネート化合物の種類は特に規定したものではなく、一般的には、アルコール類、フェノール類、ε−カプロラクタム、オキシム類、活性メチレン化合物類等のブロック剤によりイソシアネート基がマスクされた構造を有する。該多官能性ブロック型イソシアネートとしては、例えば「タケネート(三井竹田ケミカル社製)」等が挙げられる。   As this polyfunctional isocyanate compound, a commercially available non-block type or block type compound can be used. Examples of the polyfunctional non-blocked isocyanate compound include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenylpropane diisocyanate, toluene diisocyanate, phenylene diisocyanate, bis (4-isocyanatophenyl) sulfone, and the like. The polyfunctional block type isocyanate compound has two or more isocyanate groups in the molecule, and the isocyanate group is reacted with a volatile active hydrogen compound so as to be inactive at room temperature. The type of the polyfunctional block type isocyanate compound is not particularly specified. Generally, the isocyanate group is masked by a blocking agent such as alcohols, phenols, ε-caprolactam, oximes, and active methylene compounds. Has a structured. Examples of the polyfunctional block type isocyanate include “Takenate (manufactured by Mitsui Takeda Chemical Co.)”.

このエポキシ樹脂としては、一般にビスフェノールA型、クレゾールノボラック型等として知られているエポキシ樹脂を用いることができ、該ビスフェノールA型エポキシ樹脂としては、例えば「エピコート(ジャパンエポキシレジン社製)」等が挙げられ、該クレゾールノボラック型エポキシ樹脂としては、「エピクロン(大日本インキ化学工業社(東京都中央区)製)」等が挙げられる。   As this epoxy resin, an epoxy resin generally known as a bisphenol A type, a cresol novolac type or the like can be used. As the bisphenol A type epoxy resin, for example, “Epicoat (manufactured by Japan Epoxy Resin Co., Ltd.)” or the like can be used. Examples of the cresol novolac type epoxy resin include “Epiclon (manufactured by Dainippon Ink and Chemicals, Chuo-ku, Tokyo)” and the like.

また、本発明の複合体は、金属部品と樹脂組成物の線膨張率差の調整及び樹脂組成物の機械的強度を向上することを目的として、PPS70〜99重量%及びポリオレフィン系樹脂30〜1重量%を含む樹脂分合計100重量部に対し、さらに充填剤1〜200重量部、より好ましくは10〜150重量部を含んでなる樹脂組成物であることが好ましい。   In addition, the composite of the present invention has a PPS of 70 to 99% by weight and a polyolefin resin 30 to 1 for the purpose of adjusting the difference in linear expansion coefficient between the metal part and the resin composition and improving the mechanical strength of the resin composition. It is preferable that the resin composition further comprises 1 to 200 parts by weight, more preferably 10 to 150 parts by weight of the filler with respect to 100 parts by weight of the total resin content including wt%.

この充填剤としては繊維状充填剤、粒状充填剤、板状充填剤等の充填剤を挙げることができ、該繊維状充填剤としては、例えばガラス繊維、炭素繊維、アラミド繊維などが挙げられ、ガラス繊維の具体的例示としては、平均繊維径が6〜14μmのチョップドストランド等が挙げられる。また、該板状、粒状充填剤としては、例えば炭酸カルシウム、マイカ、ガラスフレーク、ガラスバルーン、炭酸マグネシウム、シリカ、タルク、粘土、炭素繊維やアラミド繊維の粉砕物等が挙げられる。該充填剤は、シランカップリング剤、チタネート系カップリング剤で処理したものあることが好ましい。   Examples of this filler include fillers such as a fibrous filler, a granular filler, and a plate-like filler. Examples of the fibrous filler include glass fiber, carbon fiber, and aramid fiber. Specific examples of the glass fiber include chopped strands having an average fiber diameter of 6 to 14 μm. Examples of the plate-like and granular fillers include calcium carbonate, mica, glass flakes, glass balloons, magnesium carbonate, silica, talc, clay, pulverized products of carbon fibers and aramid fibers. The filler is preferably treated with a silane coupling agent or a titanate coupling agent.

〔複合体の製造方法〕
本発明の複合体の製造方法は金属部品を射出成形金型にインサートする射出成形法であり、以下のように行う。射出成形金型を用意し、金型を開いてその一方に前述の液処理を行ったマグネシウム合金部品をインサートし、金型を閉じ、PPS70〜99重量%及びポリオレフィン系樹脂1〜30重量%を含む樹脂分組成の熱可塑性樹脂組成物を射出し、固化した後に金型を開き離型することにより、複合体の製造を行う。
[Production method of composite]
The method for producing a composite of the present invention is an injection molding method in which a metal part is inserted into an injection mold, and is performed as follows. Prepare an injection mold, open the mold, insert the magnesium alloy part that has been subjected to the above liquid treatment into one of the molds, close the mold, and add PPS 70 to 99 wt% and polyolefin resin 1 to 30 wt%. A composite is manufactured by injecting and solidifying a thermoplastic resin composition having a resin component composition, and then opening and releasing the mold.

射出条件について説明する。金型温度としては特に固化後樹脂強度への影響が少なく、複合体の生産効率に優れることから100℃以上が好ましく、より好ましくは120℃以上である。一方、射出温度、射出圧、射出速度は特に通常の射出成形と変わらないが、強いて言えば、射出速度と射出圧は高目にする。   The injection conditions will be described. The mold temperature is preferably 100 ° C. or higher, and more preferably 120 ° C. or higher because it has little influence on the resin strength after solidification and is excellent in production efficiency of the composite. On the other hand, the injection temperature, the injection pressure, and the injection speed are not particularly different from those of ordinary injection molding.

〔作用〕
以上詳記したように、本発明の接合方法を適用することにより、接合性の向上、効率化、適用範囲の拡大等を図ることができた。この結果、モバイル電子機器や家電機器の軽量化や、自動車の搭載機器用部品の軽量化、産業用であるロボットの腕や足等の軽量化、その他多くの産業分野に使用されている部品、筐体の供給、軽量化、生産性に寄与することができる。
[Action]
As described in detail above, by applying the bonding method of the present invention, it was possible to improve the bonding property, increase the efficiency, expand the application range, and the like. As a result, the weight of mobile electronic devices and home appliances, the weight of components for automobiles, the weight of robot arms and legs for industrial use, and other parts used in many industrial fields, It can contribute to the supply, weight reduction, and productivity of the housing.

以上詳記したように、本発明の複合体は、樹脂組成物と金属部品とが容易に剥がれることなく一体化されたものである。マグネシウム合金部品に特定の化成処理をしたもの、及び、PPS70〜99重量%とポリオレフィン系樹脂1〜30重量%を含む樹脂分組成を有する熱可塑性樹脂組成物を使用することにより、接合性を保ちつつ金属側の環境安定性が高まった。   As described in detail above, the composite of the present invention is an integral body of the resin composition and the metal part without being easily peeled off. By using a specific chemical conversion treatment for a magnesium alloy part and using a thermoplastic resin composition having a resin composition containing 70 to 99% by weight of PPS and 1 to 30% by weight of a polyolefin resin, the bondability is maintained. However, environmental stability on the metal side increased.

以下、本発明の実施の形態を実施例によって説明する。図1は、後述する実施例で使用した射出成形金型の断面を図式的に示すものである。図2は、射出成形金型で成形された金属と樹脂の複合体7の外観を示す外観図である。射出成形金型10は、可動側型板2、固定側型板3、キャビティー部、ピンポイントゲート5、ランナー等からなる通常の金型である。複合体7の成形は、可動側型板2を開いて、固定側型板3のキャビティー部にアルミニウム合金片1をインサートし、可動側型板2を閉じる。   Hereinafter, embodiments of the present invention will be described by way of examples. FIG. 1 schematically shows a cross-section of an injection mold used in examples described later. FIG. 2 is an external view showing an external appearance of a metal / resin composite 7 molded by an injection mold. The injection mold 10 is a normal mold including a movable side mold plate 2, a fixed side mold plate 3, a cavity portion, a pinpoint gate 5, a runner, and the like. For forming the composite 7, the movable side mold plate 2 is opened, the aluminum alloy piece 1 is inserted into the cavity portion of the fixed side mold plate 3, and the movable side mold plate 2 is closed.

ピンポイントゲート5を介して溶融した樹脂をキャビティ内に射出し、樹脂部4を成形して、複合体7が得られる。複合体7は、アルミニウム合金片1と樹脂部4との接合面5を有しており、この接合面5の面積は、後述するように5mm×10mmである。即ち、接合面の面積は0.5cmである。 The molten resin is injected into the cavity through the pinpoint gate 5, and the resin portion 4 is molded to obtain the composite body 7. The composite 7 has a joint surface 5 between the aluminum alloy piece 1 and the resin portion 4, and the area of the joint surface 5 is 5 mm × 10 mm as will be described later. That is, the area of the joint surface is 0.5 cm 2 .

以下、本発明の実施例を詳記する。
以下に実施例より得られた複合体の評価・測定方法を示す。
〜PPSの溶融粘度測定〜
直径1mm、長さ2mmのダイスを装着した高化式フローテスター「CFT−500(島津製作所社製)」にて、測定温度315℃、荷重10kgの条件下で溶融粘度の測定を行った。
〜X線表面観察(XPS観察)〜
数μm径の表面を深さ数nmまでの範囲で観察する形式のESCA「AXIS−Nova(クラトス/島津製作所社製)」を使用した。
〜電子顕微鏡観察〜
SEM型の電子顕微鏡「S−4800(日立製作所社製)」及び「JSM−6700F(日本電子)」を使用し1〜2KVにて観察した。
〜走査型プローブ顕微鏡観察〜
「SPM−9600(島津製作所社製)」を使用した。
〜複合体の接合強度の測定〜
引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
Examples of the present invention will be described in detail below.
The evaluation / measurement methods for the composites obtained from the examples are shown below.
-Measurement of melt viscosity of PPS-
The melt viscosity was measured under the conditions of a measurement temperature of 315 ° C. and a load of 10 kg with a Koka flow tester “CFT-500 (manufactured by Shimadzu Corp.)” equipped with a die having a diameter of 1 mm and a length of 2 mm.
-X-ray surface observation (XPS observation)-
An ESCA “AXIS-Nova (Kuratos / Shimadzu Corporation)” in a format that observes a surface having a diameter of several μm within a depth of several nm was used.
-Electron microscope observation-
SEM type electron microscopes “S-4800 (manufactured by Hitachi, Ltd.)” and “JSM-6700F (JEOL)” were used to observe at 1-2 KV.
-Observation with scanning probe microscope-
“SPM-9600 (manufactured by Shimadzu Corporation)” was used.
-Measurement of composite bond strength-
Using a tensile tester “Model 1323 (manufactured by Aiko Engineering Co., Ltd.)”, the shear breaking force was measured at a pulling speed of 10 mm / min.

[調整例1](PPS組成物の調製例)
この調整例1は、PPSとポリオレフィン系樹脂の混合した調整例を示すものである。攪拌機を装備する50リットルオートクレーブに、NaS・2.9HO6214g、及びN−メチル−2−ピロリドン17000gを仕込み、窒素気流下で攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p−ジクロロベンゼン7160gとN−メチル−2−ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。
[Preparation Example 1] (Preparation Example of PPS Composition)
This Adjustment Example 1 shows an adjustment example in which PPS and polyolefin resin are mixed. A 50 liter autoclave equipped with a stirrer was charged with 6214 g of Na 2 S · 2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone and gradually heated to 205 ° C. with stirring under a nitrogen stream, Water was distilled off. After the system was cooled to 140 ° C., 7160 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. This system was heated to 225 ° C. over 2 hours and polymerized at 225 ° C. for 2 hours, then heated to 250 ° C. over 30 minutes, and further polymerized at 250 ° C. for 3 hours.

重合終了後、室温まで冷却しポリマーを遠心分離機により単離した。該固形分を温水でポリマーを繰り返し洗浄し100℃で一昼夜乾燥することにより、溶融粘度が280ポイズのPPS(以下、PPS(1)と記す。)を得た。このPPS(1)を、さらに窒素雰囲気下250℃で3時間硬化を行いPPS(以下、PPS(2)と記す。)を得た。得られたPPS(2)の溶融粘度は、400ポイズであった。   After completion of the polymerization, the mixture was cooled to room temperature and the polymer was isolated using a centrifuge. The solid content was repeatedly washed with warm water and dried at 100 ° C. for a whole day and night to obtain PPS having a melt viscosity of 280 poise (hereinafter referred to as PPS (1)). This PPS (1) was further cured at 250 ° C. for 3 hours under a nitrogen atmosphere to obtain PPS (hereinafter referred to as PPS (2)). The resulting PPS (2) had a melt viscosity of 400 poise.

得られたPPS(2)を6.0kgと、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体1.5kg「ボンダインTX8030(アルケマ社製)」、エポキシ樹脂「エピコート1004(ジャパンエポキシレジン社製)」0.5kgをあらかじめタンブラーにて均一に混合した。その後、二軸押出機「TEM−35B(東芝機械社製)」にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91(日本板硝子社製)」を、サイドフィーダーから添加量が20重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(1)を得た。得られたPPS組成物(1)を175℃で5時間乾燥した。   6.0 kg of the obtained PPS (2), 1.5 kg of ethylene-acrylic acid ester-maleic anhydride terpolymer “Bondyne TX8030 (manufactured by Arkema)”, epoxy resin “Epicoat 1004 (Japan Epoxy Resin Co., Ltd.) 0.5 kg) was previously mixed uniformly with a tumbler. Thereafter, the glass fiber “RES03-TP91 (manufactured by Nippon Sheet Glass Co., Ltd.)” having an average fiber diameter of 9 μm and a fiber length of 3 mm is added from the side feeder with a twin screw extruder “TEM-35B (manufactured by Toshiba Machine Co., Ltd.)”. While being fed so as to be 20% by weight, a PPS composition (1) which was melt-kneaded at a cylinder temperature of 300 ° C. and pelletized was obtained. The obtained PPS composition (1) was dried at 175 ° C. for 5 hours.

[調整例2](PPS組成物の調製)
調整例1で得られたPPS(1)を、酸素雰囲気下250℃で3時間硬化を行いPPS(以下、PPS(3)と記す。)を得た。得られたPPS(3)の溶融粘度は、1800ポイズであった。得られたPPS(3)5.98kgとポリエチレン0.02kg「ニポロンハード8300A(東ソー社製)」をあらかじめタンブラーにて均一に混合した。その後、二軸押出機「TEM−35B」にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91」をサイドフィーダーから添加量が40重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(2)を得た。得られたPPS組成物(2)を175℃で5時間乾燥した。
[Preparation Example 2] (Preparation of PPS composition)
PPS (1) obtained in Preparation Example 1 was cured at 250 ° C. for 3 hours in an oxygen atmosphere to obtain PPS (hereinafter referred to as PPS (3)). The melt viscosity of the obtained PPS (3) was 1800 poise. 5.98 kg of the obtained PPS (3) and 0.02 kg of polyethylene “Nipolon Hard 8300A (manufactured by Tosoh Corporation)” were uniformly mixed in advance with a tumbler. Thereafter, in the twin screw extruder “TEM-35B”, while supplying glass fiber “RES03-TP91” having an average fiber diameter of 9 μm and a fiber length of 3 mm from the side feeder so that the addition amount becomes 40% by weight, the cylinder temperature PPS composition (2) pelletized by melt-kneading at 300 ° C. was obtained. The obtained PPS composition (2) was dried at 175 ° C. for 5 hours.

[調整例3](PPS組成物の調製)
実施例1で得られたPPS(2)7.2kgとグリシジルメタクリレート−エチレン共重合体0.8kg「ボンドファーストE(住友化学社製)」をあらかじめタンブラーにて均一に混合した。その後、二軸押出機「TEM−35B」にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91」をサイドフィーダーから添加量が20重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(3)を得た。得られたPPS組成物(3)を175℃で5時間乾燥した。
[Preparation Example 3] (Preparation of PPS composition)
7.2 kg of PPS (2) obtained in Example 1 and 0.8 kg of “glycidyl methacrylate-ethylene copolymer” “Bond First E (manufactured by Sumitomo Chemical Co., Ltd.)” were uniformly mixed in advance by a tumbler. Thereafter, in the twin screw extruder “TEM-35B”, while supplying glass fiber “RES03-TP91” having an average fiber diameter of 9 μm and a fiber length of 3 mm from the side feeder so that the addition amount becomes 20% by weight, the cylinder temperature A PPS composition (3) which was melt-kneaded at 300 ° C. and pelletized was obtained. The obtained PPS composition (3) was dried at 175 ° C. for 5 hours.

[調整例4](PPS組成物の調製)
調整例1で得られたPPS(2)4.0kgとエチレン−アクリル酸エステル−無水マレイン酸三元共重合体4.0kg「ボンダインTX8030(アルケマ社製)」をあらかじめタンブラーにて均一に混合した。その後、二軸押出機「TEM−35B」にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91」をサイドフィーダーから添加量が20重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(4)を得た。得られたPPS組成物(4)を175℃で5時間乾燥した。
[Preparation Example 4] (Preparation of PPS composition)
4.0 kg of PPS (2) obtained in Preparation Example 1 and 4.0 kg of ethylene-acrylic acid ester-maleic anhydride terpolymer “Bondyne TX8030 (manufactured by Arkema)” were uniformly mixed in advance using a tumbler. . Thereafter, in the twin screw extruder “TEM-35B”, while supplying glass fiber “RES03-TP91” having an average fiber diameter of 9 μm and a fiber length of 3 mm from the side feeder so that the addition amount becomes 20% by weight, the cylinder temperature A PPS composition (4) pelletized by melt-kneading at 300 ° C. was obtained. The obtained PPS composition (4) was dried at 175 ° C. for 5 hours.

[実施例1]
最終処理が湿式バフ掛けの、平均の金属結晶粒径が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本金属社製)を購入し、18mm×45mm(0.8mm厚)の長方形片多数に切断し、金属板1であるマグネシウム合金片とした。この合金片の端部に穴を開け、十数個に対し塩化ビニルでコートした銅線を通し、合金片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。
[Example 1]
Purchase 0.8mm-thick AZ31B magnesium alloy (manufactured by Nippon Metals Co., Ltd.) with an average metal crystal grain size of 7μm by wet buffing, and make 18mm x 45mm (0.8mm thick) rectangular pieces It cut | disconnected and it was set as the magnesium alloy piece which is the metal plate 1. FIG. Drill holes at the ends of this alloy piece, pass through copper wires coated with vinyl chloride to dozens of pieces, bend and process the copper wires so that the alloy pieces do not overlap each other, so that all can be suspended at the same time did.

槽に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス社製)」を水に投入して75℃、濃度10%の水溶液とした。これに前記合金片を5分浸漬しよく水洗した。   A commercially available magnesium alloy degreasing agent “Cleaner 160 (manufactured by Meltex Co., Ltd.)” was poured into water to obtain an aqueous solution having a concentration of 75 ° C. and a concentration of 10%. The alloy piece was immersed in this for 5 minutes and washed thoroughly with water.

続いて別の槽に40℃とした2%酢酸水溶液を用意し、これに前記の合金片を2分浸漬してよく水洗した。黒色のスマットが付着していた。続いて別の槽に75℃としたアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%水溶液を用意し、5分浸漬してよく水洗した。この液の弱塩基性でスマットの内のアルミニウム分が溶解できたものと見られた。続いて別の槽に75℃とした20%苛性ソーダ水溶液を用意し、これに前記の合金片を5分浸漬してよく水洗した。これでスマットの内の亜鉛分が溶解できたものとみた。   Subsequently, a 2% acetic acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 2 minutes and washed with water. Black smut was attached. Subsequently, a 7.5% aqueous solution of aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co.)” adjusted to 75 ° C. in another tank was prepared and immersed in water for 5 minutes. It was considered that the aluminum content in the smut could be dissolved due to the weak basicity of this solution. Subsequently, a 20% aqueous solution of caustic soda at 75 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 5 minutes and washed with water. It was assumed that the zinc content in the smut could be dissolved.

続いて別の槽に用意した40℃の2%の硝酸水溶液に1.5分浸漬してよく水洗した。次いで別の槽に45℃としたリン酸マンガン系のノンクロメート化成処理液を用意した。即ち、重リン酸マンガン2.5%、85%濃度リン酸を2.5%、トリエチルアミンを2%含む水溶液を用意し、これに5分浸漬し、よく水洗して60℃にした温風乾燥機に10分入れて乾燥した。乾燥後、きれいなアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、更にこれをポリ袋に入れて封じ保管した。このとき、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。   Subsequently, it was immersed in a 2% nitric acid aqueous solution at 40 ° C. prepared in a separate tank for 1.5 minutes and washed with water. Next, a manganese phosphate non-chromate chemical conversion treatment liquid at 45 ° C. was prepared in another tank. That is, prepare an aqueous solution containing 2.5% manganese phosphate, 2.5% 85% phosphoric acid, and 2% triethylamine, soak it in water for 5 minutes, wash thoroughly with water and dry at 60 ° C. The machine was dried for 10 minutes. After drying, the copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped in a lump, and then stored in a plastic bag. At this time, the finger did not touch the surfaces to be joined (the end on the opposite side from where the holes were made).

2日後、このうち1個を電子顕微鏡観察した。表面層は板状結晶層が多く見え、その他に不定形の付着物が見えた。これを図3に示す。又、板状結晶同士は空隙部を作っており、その間隔は300〜1000nmで400〜600nmが多かった。この金属板を走査型プローブ顕微鏡で観察し、表面凹凸具合と凹部の深さを観察した。その凹部の深さは50〜150nmが多かった。電子顕微鏡観察によって10箇所を観察したが、1μmに確認できる板状結晶は2〜5個であった。又、同日、別の1個をESCAで観察しマンガンと燐、酸素が大量に観察され、微量のマグネシウム、亜鉛、アルミニウムが観察され、主成分はリン酸マンガンであることが確認された。 Two days later, one of them was observed with an electron microscope. On the surface layer, many plate-like crystal layers were visible, and other irregular deposits were visible. This is shown in FIG. Further, the plate crystals formed voids, and the interval was 300 to 1000 nm, and many were 400 to 600 nm. This metal plate was observed with a scanning probe microscope to observe the surface irregularity and the depth of the recess. The depth of the concave portion was often 50 to 150 nm. Although 10 places were observed by electron microscope observation, 2 to 5 plate crystals could be confirmed at 1 μm 2 . On the same day, another one was observed by ESCA. Manganese, phosphorus and oxygen were observed in large quantities, trace amounts of magnesium, zinc and aluminum were observed, and it was confirmed that the main component was manganese phosphate.

更に1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。金型を閉じ調製例1により得られたPPS組成物(1)を射出温度310℃で射出した。金型温度は140℃であり、図2で示す一体化した複合体7を20個を得た。樹脂部の大きさは10mm×45mm×5mmであり、接合面6は10mm×5mmの0.5cmであった。成形当日に4個を引っ張り破断試験したところ、平均のせん断破断力は13MPaであった。又、成形当日に170℃の熱風乾燥機に1時間投入してアニールした5個は、更にその1日後に引っ張り試験したが、平均のせん断破断力は12.8MPaであった。 Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a hole was picked with a glove so that oil and the like would not adhere, and inserted into an injection mold set at 140 ° C. The mold was closed and the PPS composition (1) obtained in Preparation Example 1 was injected at an injection temperature of 310 ° C. The mold temperature was 140 ° C., and 20 integrated composites 7 shown in FIG. 2 were obtained. The size of the resin part was 10 mm × 45 mm × 5 mm, and the bonding surface 6 was 0.5 cm 2 of 10 mm × 5 mm. When four pieces were subjected to a tensile breaking test on the day of molding, the average shear breaking force was 13 MPa. In addition, five pieces annealed by putting them in a hot air dryer at 170 ° C. for 1 hour on the day of molding were further subjected to a tensile test one day later, and the average shear breaking force was 12.8 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例1]
調製例1により得られたPPS組成物(1)の代わりに、調製例2により得られたPPS組成物(2)を用いた以外は、実施例1と全く同様にしてマグネシウム合金片を作成し、射出成形し、複合体を得た。得られた複合体を170℃で1時間アニールした。要するに、ポリオレフィン系ポリマーを僅かしか含まないPPSとフィラーのみのPPS系樹脂組成物を使用した実験である。1日後、これらを引っ張り試験したところ、せん断破断力は10個の平均で9.0MPaであった。実施例1の数値の約70%に過ぎず使用した樹脂材料の差異が結果として出たものである。
[Comparative Example 1]
A magnesium alloy piece was prepared in exactly the same manner as in Example 1, except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. The composite was obtained by injection molding. The resulting composite was annealed at 170 ° C. for 1 hour. In short, it is an experiment using a PPS resin composition containing only a small amount of polyolefin polymer and PPS and filler. One day later, when these were subjected to a tensile test, the shear breaking strength was 9.0 MPa on an average of 10 pieces. It is only about 70% of the numerical value of Example 1, and the difference of the used resin material came out as a result.

[比較例2]
化成処理をしなかった他は実施例1と全く同様にしてマグネシウム合金片を得た。即ち、AZ31マグネシウム合金片を作り、脱脂し、荒エッチングし、脱スマットし、微細エッチングし、脱スマットまでした。要するに、リン酸マンガン系のノンクロメート処理だけせず水洗して乾燥した。電子顕微鏡観察で結晶は観察されず、表面はマグネシウムの自然酸化物層であった。
[Comparative Example 2]
A magnesium alloy piece was obtained in exactly the same manner as in Example 1 except that the chemical conversion treatment was not performed. That is, an AZ31 magnesium alloy piece was made, degreased, roughly etched, desmutted, finely etched, and desmutted. In short, it was washed with water and dried without being treated with non-chromate manganese phosphate. Crystals were not observed by electron microscope observation, and the surface was a natural oxide layer of magnesium.

2日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。金型を閉じ調製例1により得られたPPS組成物(1)を射出温度310℃で射出した。金型温度は140℃であり、図2で示す一体化した複合体14個を得た。樹脂部の大きさは10mm×45mm×5mmであり、接合面6は10mm×5mmの0.5cmであった。成形当日に4個を引っ張り破断試験したところ、平均のせん断破断力は11.3MPaであった。 Two days later, the remaining magnesium alloy piece was taken out, and the one with a hole so that oil and the like would not adhere was picked with gloves and inserted into an injection mold set at 140 ° C. The mold was closed and the PPS composition (1) obtained in Preparation Example 1 was injected at an injection temperature of 310 ° C. The mold temperature was 140 ° C., and 14 integrated composites shown in FIG. 2 were obtained. The size of the resin part was 10 mm × 45 mm × 5 mm, and the bonding surface 6 was 0.5 cm 2 of 10 mm × 5 mm. When four pieces were subjected to a tensile breaking test on the day of molding, the average shear breaking force was 11.3 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。翌日、この塗装品に対し、5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したところ、全ての一体化品で細かい塗膜脹れが観察された。この10個全てについて引っ張り破断試験をしたところせん断破断力は平均で7.0MPaとなった。破断面にも脆い酸化膜が浸入しており、化成処理をしていない場合は塗装のみでは実使用に耐えないことが確認された。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. The next day, this coated product was sprayed with salt water for 8 hours at 35 ° C. using 5% salt water, washed with water and dried. As a result, fine film swelling was observed in all the integrated products. When all 10 pieces were subjected to a tensile breaking test, the shear breaking strength was 7.0 MPa on average. A brittle oxide film also penetrated the fractured surface, and it was confirmed that if it was not chemically treated, it could not withstand actual use only by painting.

[実施例2]
調製例1により得られたPPS組成物(1)の代わりに、調製例3により得られたPPS組成物(3)を用いた以外は、実施例1と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断破断力を測定したところ、平均で12.5MPaであった。 残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。
[Example 2]
A composite was obtained in the same manner as in Example 1, except that the PPS composition (3) obtained in Preparation Example 3 was used instead of the PPS composition (1) obtained in Preparation Example 1. It was. The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shear breaking strength with a tensile tester. As a result, the average was 12.5 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例3]
PPS組成物(1)の代わりに、調製例4により得られたPPS組成物(4)とした以外は、実施例1と同様の方法により複合体の製造を試みた。要するに、ポリオレフィン系ポリマーをごく大量に含むPPS系樹脂組成物を使用した実験である。しかしながら、成形時に多量のガスが発生し、成形を中断した。
[Comparative Example 3]
A composite was produced in the same manner as in Example 1, except that the PPS composition (4) obtained in Preparation Example 4 was used instead of the PPS composition (1). In short, this is an experiment using a PPS resin composition containing a very large amount of polyolefin polymer. However, a large amount of gas was generated during molding and the molding was interrupted.

[実施例3]
仕上げ表面加工が湿式バフ掛けであり、平均の金属結晶粒径が16μmである0.8mm厚のAZ31Bマグネシウム合金板を入手し、化成処理での液レシピーを以下に変えた以外は実施例1と全く同様にして、切断して長方形片とし、液処理をした。 即ち、液処理は微細エッチングをせず、重リン酸マンガン2.5%、85%濃度リン酸を2.5%、トリエチルアミンを2%含む45℃の水溶液に1分浸漬することで化成処理とした。
[Example 3]
Example 1 with the exception that a 0.8 mm thick AZ31B magnesium alloy plate having a surface finish of wet buffing and an average metal crystal grain size of 16 μm was obtained and the liquid recipe in the chemical conversion treatment was changed to the following: In exactly the same manner, it was cut into rectangular pieces and treated with liquid. In other words, the liquid treatment does not require fine etching, and chemical conversion treatment is performed by immersing in a 45 ° C. aqueous solution containing 2.5% manganese phosphate, 2.5% 85% phosphoric acid, and 2% triethylamine for 1 minute. did.

乾燥2日後に、処理したうちの1個を電子顕微鏡で観察した。その写真を図4に示すが、板状結晶が図3に比較してずっと少なく、1μm当たり0〜1個であった。写真で明らかな様に不定形の付着物が多く見えた。又、同日、別の1個をESCAで観察しマンガンと燐、炭素、酸素が大量に観察され、微量のマグネシウム、亜鉛、アルミニウム、珪素が観察され、主成分はリン酸マンガンであることが確認された。更に1日後に残りのマグネシウム合金片を取り出し、実施例1と全く同様にしてインサート射出成形した。 Two days after drying, one of the treated pieces was observed with an electron microscope. The photograph is shown in FIG. 4, and the number of plate crystals was much smaller than that in FIG. 3, and 0 to 1 per 1 μm 2 . As can be seen in the photo, many irregular deposits were visible. On the same day, another one was observed with ESCA, a large amount of manganese, phosphorus, carbon, and oxygen were observed, trace amounts of magnesium, zinc, aluminum, and silicon were observed, and it was confirmed that the main component was manganese phosphate. It was done. Further, after one day, the remaining magnesium alloy piece was taken out and insert injection molded in exactly the same manner as in Example 1.

成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は10.0MPaであった。接合していたが接合力は十分高いと言えなかった。材料AZ31B合金の結晶粒径の違いと液処理法の違いによって、実施例1による液処理後の表面結晶状態が変わっていたのが原因とみられた。   On the day of molding, the sample was put into a hot air dryer at 150 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear breaking strength was 10.0 MPa. Although it was joined, it could not be said that the joining force was sufficiently high. It was considered that the surface crystal state after the liquid treatment in Example 1 was changed due to the difference in the crystal grain size of the material AZ31B alloy and the difference in the liquid treatment method.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[実施例4]
平均の金属結晶粒径が7μmである厚さ0.8mmのAZ31合金板を使用した。実施例1と同様に切断して長方形片とし、これを75℃とした脱脂剤「クリーナー160」10%濃度の水溶液に5分浸漬し、よく水洗した。続いて別の槽に40℃とした酢酸2%の水溶液を用意し、これに前記の合金片を2分浸漬してよく水洗した。黒色のスマットが付着していた。続いて別の槽に75℃としたアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%水溶液を用意し、5分浸漬してよく水洗した。続いて別の槽に75℃とした20%苛性ソーダ水溶液を用意し、これに前記の合金片群を5分浸漬してよく水洗した。ここまでが前処理であり、処理法は実施例1と同じであった。
[Example 4]
An AZ31 alloy plate having a thickness of 0.8 mm and an average metal crystal grain size of 7 μm was used. A rectangular piece was cut in the same manner as in Example 1, and this was immersed in a 10% strength aqueous solution of the degreasing agent “Cleaner 160” at 75 ° C. for 5 minutes and washed thoroughly with water. Subsequently, a 2% aqueous solution of acetic acid at 40 ° C. was prepared in a separate tank, and the alloy pieces were immersed in this for 2 minutes and washed with water. Black smut was attached. Subsequently, a 7.5% aqueous solution of aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co.)” adjusted to 75 ° C. in another tank was prepared and immersed in water for 5 minutes. Subsequently, a 20% sodium hydroxide aqueous solution at 75 ° C. was prepared in another tank, and the alloy piece group was immersed in this for 5 minutes and washed with water. Up to here is the pretreatment, and the treatment method was the same as in Example 1.

続いて別の槽に用意した40℃で0.5%濃度の水和クエン酸水溶液に15秒浸漬し、水洗した。次いで、過マンガン酸カリ3%、酢酸1%、水和酢酸ナトリウム0.5%を含む水溶液を45℃として用意し、1分浸漬し、よく水洗した。褐色となっていた。60℃にした温風乾燥機に10分入れて乾燥した。綺麗なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。   Subsequently, it was immersed in a 0.5% strength aqueous hydrated citric acid solution at 40 ° C. prepared in a separate tank for 15 seconds and washed with water. Next, an aqueous solution containing potassium permanganate 3%, acetic acid 1% and hydrated sodium acetate 0.5% was prepared at 45 ° C., immersed for 1 minute, and thoroughly washed with water. It was brown. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the hole).

2日後、このうち1個を電子顕微鏡と走査型プローブ顕微鏡による観察を行ったところ、個数平均径100nmの球状結晶が観測され、且つ、これらの球状結晶が連結して表層全面を為していた。電子顕微鏡観察の結果を図5に示す。又、同日、別の1個をESCAで観察しマンガンと酸素が大量に観察され微量のマグネシウム、亜鉛、アルミニウム、炭素、珪素も観察された。主成分は二酸化マンガンを主成分とする酸化マンガンとみられた。色調も褐色でこれを裏付けた。
更に1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。実施例1と全く同様にして図2に示す一体化した複合体7を20個得た。成形当日に170℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は15.1MPaであった。
Two days later, one of them was observed with an electron microscope and a scanning probe microscope. As a result, spherical crystals having a number average diameter of 100 nm were observed, and these spherical crystals were connected to form the entire surface layer. . The result of electron microscope observation is shown in FIG. On the same day, another one was observed with ESCA, a large amount of manganese and oxygen were observed, and trace amounts of magnesium, zinc, aluminum, carbon and silicon were also observed. The main component was considered to be manganese oxide mainly composed of manganese dioxide. The color tone was also brown, confirming this.
Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a hole was picked with a glove so that oil and the like would not adhere, and inserted into an injection mold set at 140 ° C. Twenty integrated composites 7 shown in FIG. 2 were obtained in exactly the same manner as in Example 1. On the day of molding, the sample was annealed for 1 hour in a hot air dryer at 170 ° C., and a tensile test was conducted one day later. The average shear breaking strength was 15.1 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例4]
調製例1により得られたPPS組成物(1)に代えて調製例2により得られたPPS組成物(2)を使った以外は、実施例4と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断破断力を測定したところ、平均で8.0MPaであった。これは実施例4の約66%であった。
[Comparative Example 4]
A composite was obtained in the same manner as in Example 4 except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. . The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shear breaking strength with a tensile tester. As a result, the average was 8.0 MPa. This was about 66% of Example 4.

[実施例5]
平均の金属結晶粒径が7μmである厚さ0.8mmのAZ31合金板を入手した。実施例1と同様に切断して長方形片とし前処理を行った。前処理法も実施例1と同じであった。続いて別の槽に用意した40℃で0.25%濃度の水和クエン酸水溶液に30秒浸漬し、水洗した。次いで三酸化クロム20%を含む75℃とした水溶液に前記マグネシウム片を5分間浸漬し、よく水洗した。次いで60℃とした温風乾燥機に10分入れて乾燥した。綺麗なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。
[Example 5]
An AZ31 alloy plate having a thickness of 0.8 mm with an average metal crystal grain size of 7 μm was obtained. Cut in the same manner as in Example 1 into a rectangular piece, and pretreated. The pretreatment method was the same as in Example 1. Subsequently, it was immersed in a 0.25% strength aqueous hydrated citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Next, the magnesium piece was immersed in an aqueous solution containing 20% chromium trioxide at 75 ° C. for 5 minutes and washed thoroughly with water. Then, it was put into a warm air dryer set to 60 ° C. for 10 minutes and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the hole).

1日後、1個をESCAで観察した。クロムと酸素が大量に観察された。
更に1日後、マグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。実施例1と全く同様にして図2で示す一体化した複合体20個を得た。そのまま170℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は13MPaであった。
One day later, one was observed with ESCA. A large amount of chromium and oxygen was observed.
Further, one day later, the magnesium alloy piece was taken out, and the one with a hole so that oil and the like would not adhere was picked with gloves and inserted into an injection mold set at 140 ° C. In the same manner as in Example 1, 20 integrated composites shown in FIG. 2 were obtained. As it was, it was annealed by putting it in a hot air dryer at 170 ° C. for 1 hour, and then a tensile test was conducted one day later. The average shear breaking strength was 13 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例5]
調製例1により得られたPPS組成物(1)に代えて調製例2により得られたPPS組成物(2)である以外は、実施例5と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断破断力を測定したところ、平均で5.8MPaであった。これは実施例5の約50%であった。
[Comparative Example 5]
A composite was obtained in the same manner as in Example 5 except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shear breaking strength with a tensile tester. The average was 5.8 MPa. This was about 50% of Example 5.

[実施例6]
最終処理が湿式バフ掛けの、平均の金属結晶粒径が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本金属社製)を切断して実施例1と同じ形の長方形片とし、前処理を行った。前処理法は実施例5と同じであった。続いて別の槽に用意した40℃で0.25%濃度の水和クエン酸水溶液に30秒浸漬し、水洗した。次いで、ジルコンアセチルアセトナート0.12%、弗化チタン酸の40%水溶液を0.05%含む60℃とした水溶液に2分浸漬し、よく水洗した。
[Example 6]
The final treatment is a wet buffing, 0.8 mm thick AZ31B magnesium alloy (manufactured by Nippon Metal Co., Ltd.) with an average metal crystal grain size of 7 μm is cut into rectangular pieces of the same shape as in Example 1, and the pretreatment is performed went. The pretreatment method was the same as in Example 5. Subsequently, it was immersed in a 0.25% strength aqueous hydrated citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Next, it was immersed in a 60 ° C. aqueous solution containing 0.12% zircon acetylacetonate and 0.05% 40% aqueous solution of fluorotitanic acid for 2 minutes and washed thoroughly with water.

60℃にした温風乾燥機に10分間入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。1日後、1個をESCAで観察した。ジルコニウムとチタン及び酸素が大量に、又少量のマグネシウムが観察された。主成分はジルコニウムとチタンの酸化物とみられた。   It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the hole). One day later, one was observed with ESCA. Large amounts of zirconium, titanium and oxygen, and small amounts of magnesium were observed. The main components were seen as oxides of zirconium and titanium.

更に、1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。実施例1と全く同様にして射出成形し、図2に示す一体化した複合体20個を得た。成形当日に170℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は11.2MPaであった。   Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a hole was picked with a glove so that oil and the like would not adhere to it, and was inserted into an injection mold set at 140 ° C. Injection molding was performed in exactly the same manner as in Example 1 to obtain 20 integrated composites shown in FIG. On the day of molding, the sample was put into a hot air drier at 170 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear breaking strength was 11.2 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例6]
調製例1により得られたPPS組成物(1)に代えて調製例2により得られたPPS組成物(2)である以外は、実施例6と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断破断力を測定したところ、平均で6.8MPaであった。これは実施例6の約60%であった。
[Comparative Example 6]
A composite was obtained in the same manner as in Example 6 except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shear breaking strength with a tensile tester. As a result, the average was 6.8 MPa. This was about 60% of Example 6.

[実施例7]
最終処理が湿式バフ掛けの、平均の金属結晶粒径が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本金属社製)を切断して実施例1と同じ形の長方形片とし、前処理を行った。前処理法は実施例6と同じであった。続いて別の槽に用意した40℃で0.25%濃度のクエン酸水溶液に30秒浸漬し、水洗した。次いで、炭酸カリウム1%を含む70℃とした水溶液に5分浸漬し、よく水洗した。
[Example 7]
The final treatment is a wet buffing, 0.8 mm thick AZ31B magnesium alloy (manufactured by Nippon Metal Co., Ltd.) with an average metal crystal grain size of 7 μm is cut into rectangular pieces of the same shape as in Example 1, and the pretreatment is performed went. The pretreatment method was the same as in Example 6. Subsequently, it was immersed in a 0.25% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Subsequently, it was immersed in the 70 degreeC aqueous solution containing 1% of potassium carbonate for 5 minutes, and washed with water well.

60℃にした温風乾燥機に10分入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。1日後、1個を電子顕微鏡で観察した。その結果を図6に示す。微細網目模様の綺麗な結晶構造であった。一方、ESCAによる分析ではマグネシウム、酸素、炭素、及び微量の亜鉛、アルミニウム、珪素が認められた。使用した薬品から、酸化マグネシウムと炭酸マグネシウム、又はその錯化合物が主成分で表層を為していると推定した。   It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the hole). One day later, one was observed with an electron microscope. The result is shown in FIG. The crystal structure was fine with a fine mesh pattern. On the other hand, ESCA analysis revealed magnesium, oxygen, carbon, and trace amounts of zinc, aluminum, and silicon. From the chemicals used, it was estimated that magnesium oxide and magnesium carbonate, or complex compounds thereof, were the main components and formed the surface layer.

更に、1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。実施例1と全く同様にして射出成形し、図2に示す一体化した複合体20個を得た。成形当日に170℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は10.1MPaであった。残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a hole was picked with a glove so that oil and the like would not adhere to it, and was inserted into an injection mold set at 140 ° C. Injection molding was performed in exactly the same manner as in Example 1 to obtain 20 integrated composites shown in FIG. On the day of molding, the sample was put into a hot air dryer at 170 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear breaking strength was 10.1 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例7]
調製例1により得られたPPS組成物(1)に代えて調製例2により得られたPPS組成物(2)を使用した以外は、実施例7と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断破断力を測定したところ、平均で6.0MPaであった。これは実施例7の約60%であった。
[Comparative Example 7]
A composite was obtained in the same manner as in Example 7 except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. . The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shear breaking strength with a tensile tester. As a result, the average was 6.0 MPa. This was about 60% of Example 7.

[実施例8]
実施例7と全く同様にして、平均の金属結晶粒径が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本金属社製)片を使って前処理まで行った。 次いで別の槽に用意した40℃で0.25%濃度のクエン酸水溶液に30秒浸漬し、水洗した。次いで、水和硝酸カルシウム1%、水和硝酸ストロンチウム1%、塩素化ナトリウム0.05%、及び80%リン酸を0.95%含む65℃とした水溶液に10分浸漬し、よく水洗した。60℃にした温風乾燥機に10分入れて乾燥した。
[Example 8]
In exactly the same manner as in Example 7, pretreatment was performed using a 0.8 mm-thick AZ31B magnesium alloy (manufactured by Nippon Metal Co., Ltd.) piece having an average metal crystal grain size of 7 μm. Subsequently, it was immersed in a 0.25% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Subsequently, it was immersed for 10 minutes in 65 degreeC aqueous solution which contains 0.95% of hydrated calcium nitrate 1%, hydrated strontium nitrate 1%, sodium chlorination 0.05%, and 80% phosphoric acid, and washed with water well. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried.

清浄なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。1日後、1個をESCAで観察した。マグネシウム、カルシウム、ストロンチウム、及び酸素が大量に、又、少量の燐、微量の亜鉛、アルミニウム、炭素、珪素が観察された。主成分はマグネシウムとカルシウムとストロンチウムの酸化物かリン酸化物かこれらの錯化合物とみられた。   The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the hole). One day later, one was observed with ESCA. Large amounts of magnesium, calcium, strontium, and oxygen were observed, as well as small amounts of phosphorus, trace amounts of zinc, aluminum, carbon, and silicon. The main components were found to be magnesium, calcium and strontium oxides or phosphorus oxides or their complex compounds.

更に、1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。実施例1と全く同様にして射出成形し、図2に示す一体化した複合体20個を得た。成形当日に170℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は10.0MPaであった。残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a hole was picked with a glove so that oil and the like would not adhere to it, and was inserted into an injection mold set at 140 ° C. Injection molding was performed in exactly the same manner as in Example 1 to obtain 20 integrated composites shown in FIG. On the day of molding, the sample was put into a hot air dryer at 170 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear breaking strength was 10.0 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例8]
調製例1により得られたPPS組成物(1)に代えて調製例2により得られたPPS組成物(2)を使用した以外は、実施例8と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断破断力を測定したところ、平均で4.8MPaであった。これは実施例8の約50%であった。
[Comparative Example 8]
A composite was obtained in the same manner as in Example 8, except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. . The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shear breaking strength with a tensile tester. The average was 4.8 MPa. This was about 50% of Example 8.

[実施例9]
実施例8と全く同様にして、平均の金属結晶粒径が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本金属社製)片を使って前処理まで行った。 次いで別の槽に用意した40℃で0.25%濃度のクエン酸水溶液に30秒浸漬し、水洗した。次いで、三塩化バナジウム1%を含む45℃とした水溶液に2分浸漬し、よく水洗した。60℃にした温風乾燥機に10分入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Example 9]
In exactly the same manner as in Example 8, a 0.8 mm-thick AZ31B magnesium alloy (manufactured by Nippon Metals Co., Ltd.) piece having an average metal crystal grain size of 7 μm was used for pretreatment. Subsequently, it was immersed in a 0.25% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Then, it was immersed in an aqueous solution containing 45% vanadium trichloride at 45 ° C. for 2 minutes and washed thoroughly with water. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag.

この作業で、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。1日後、1個をESCAで観察した。バナジウム、酸素が大量に、マグネシウムが少量、又ごく少量の亜鉛、アルミニウム、珪素が観察された。主成分はバナジウム酸化物かバナジウムとマグネシウムの酸化物とみられた。   In this operation, the finger did not touch the surface to be joined (the end opposite to the hole). One day later, one was observed with ESCA. A large amount of vanadium, oxygen, a small amount of magnesium, and a very small amount of zinc, aluminum, and silicon were observed. The main component was seen as vanadium oxide or oxide of vanadium and magnesium.

更に、1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。実施例1と全く同様にして射出成形し、図2に示す一体化した複合体20個を得た。成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は11.0MPaであった。   Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a hole was picked with a glove so that oil and the like would not adhere to it, and was inserted into an injection mold set at 140 ° C. Injection molding was performed in exactly the same manner as in Example 1 to obtain 20 integrated composites shown in FIG. On the day of molding, the sample was put into a hot air dryer at 150 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear breaking strength was 11.0 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例9]
調製例1により得られたPPS組成物(1)に代えて調製例2により得られたPPS組成物(2)を使用した以外は、実施例9と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断破断力を測定したところ、平均で8.0MPaであった。これは実施例9の約70%であった。
[Comparative Example 9]
A composite was obtained in the same manner as in Example 9, except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. . The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shear breaking strength with a tensile tester. As a result, the average was 8.0 MPa. This was about 70% of Example 9.

[実施例10]
実施例9と全く同様にして、平均の金属結晶粒径が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本金属社製)片を使って前処理まで行った。 続いて別の槽に用意した40℃で0.25%濃度の水和クエン酸水溶液に30秒浸漬し、水洗した。次いで、過マンガン酸カリ2%、酢酸1%、水和酢酸ナトリウム0.5%を含む水溶液を45℃として用意し、30秒浸漬した。
[Example 10]
In exactly the same manner as in Example 9, a 0.8 mm-thick AZ31B magnesium alloy (manufactured by Nippon Metal Co., Ltd.) piece having an average metal crystal grain size of 7 μm was used for pretreatment. Subsequently, it was immersed in a 0.25% strength aqueous hydrated citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Next, an aqueous solution containing potassium permanganate 2%, acetic acid 1%, and hydrated sodium acetate 0.5% was prepared at 45 ° C. and immersed for 30 seconds.

次いで、過マンガン酸カリ2%、酢酸1%、水和酢酸ナトリウム0.5%を含む水溶液を10℃として用意し、5分浸漬した。褐色となっていた。60℃にした温風乾燥機に10分入れて乾燥した。綺麗なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(穴を開けたのと反対側の端部)に指は触れなかった。   Next, an aqueous solution containing potassium permanganate 2%, acetic acid 1%, and hydrated sodium acetate 0.5% was prepared at 10 ° C. and immersed for 5 minutes. It was brown. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the hole).

3日後にこのマグネシウム合金片を取り出し、油分等が付着せぬよう穴のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。実施例1と全く同様にして図2に示す一体化した複合体20個を得た。同日、170℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断破断力は18.0MPaであった。   Three days later, this magnesium alloy piece was taken out, and the one with a hole so that oil and the like would not adhere was picked with gloves and inserted into an injection mold set at 140 ° C. In the same manner as in Example 1, 20 integrated composites shown in FIG. 2 were obtained. On the same day, the sample was put into a hot air dryer at 170 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear breaking strength was 18.0 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(大橋化学社製)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。この実験は、実施例4の結果が良かったので化成処理の温度条件を若干修飾して実施したものである。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (Ohashi Chemical Co., Ltd.)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance. Since the result of Example 4 was good, this experiment was carried out by slightly modifying the temperature conditions for the chemical conversion treatment.

図1は、マグネシウム板片と樹脂組成物との複合体を製造する過程を模式的に示した金型構成図である。FIG. 1 is a mold configuration diagram schematically showing a process of manufacturing a composite of a magnesium plate piece and a resin composition. 図2は、マグネシウム板片と樹脂組成物との複合体を模式的に示す単体の外観図である。FIG. 2 is an external view of a single body schematically showing a composite of a magnesium plate piece and a resin composition. 図3は、酢酸水溶液を荒エッチング剤として使用し、微細エッチング剤として希硝酸を使用し、更にリン酸マンガン系の化成処理をして得た金属結晶平均粒径7μmのAZ31Bマグネシウム合金の表面写真である。FIG. 3 is a surface photograph of an AZ31B magnesium alloy having an average particle diameter of 7 μm obtained by chemical conversion treatment using an aqueous acetic acid solution as a rough etching agent, dilute nitric acid as a fine etching agent, and manganese phosphate. It is. 図4は、酢酸水溶液を荒エッチング剤として使用し、微細エッチング剤として希硝酸を使用し、更にリン酸マンガン系の化成処理をして得た金属結晶平均粒径16μmのAZ31Bマグネシウム合金の表面写真である。FIG. 4 shows a surface photograph of an AZ31B magnesium alloy having a metal crystal average particle size of 16 μm obtained by using an aqueous acetic acid solution as a rough etching agent, using dilute nitric acid as a fine etching agent, and further subjecting it to chemical conversion treatment of manganese phosphate. It is. 図5は、酢酸水溶液を荒エッチング剤として使用し、微細エッチング剤としてクエン酸を使用し、更に過マンガン酸カリ系の化成処理をして得た金属結晶粒径7μmのAZ31Bマグネシウム合金の表面写真である。FIG. 5 is a surface photograph of an AZ31B magnesium alloy having a metal crystal grain size of 7 μm obtained by using an acetic acid aqueous solution as a rough etching agent, citric acid as a fine etching agent, and further subjected to a potassium permanganate chemical conversion treatment. It is. 図6は、酢酸水溶液を荒エッチング剤として使用し、微細エッチング剤としてクエン酸を使用し、更に炭酸カリ系の化成処理をして得た金属結晶粒径7μmのAZ31Bマグネシウム合金の表面写真である。FIG. 6 is a surface photograph of an AZ31B magnesium alloy having a metal crystal grain size of 7 μm obtained by using an acetic acid aqueous solution as a rough etching agent, citric acid as a fine etching agent, and further subjected to a potassium carbonate-based chemical conversion treatment. .

符号の説明Explanation of symbols

1:金属板
2,3:金型
4:樹脂組成物
5:ピンポイントゲート
6:接合面
7:複合体
1: Metal plate 2, 3: Mold 4: Resin composition 5: Pinpoint gate 6: Bonding surface 7: Composite

Claims (10)

表層に金属酸化物、金属炭酸化物、及び金属リン酸化物から選択される何れか1種の結晶を含むマグネシウム合金又はマグネシウム合金製の金属部品において、
前記結晶は、クロム、マンガン、カルシウム、ストロンチウム、アルミニウム、亜鉛、ジルコニウム、チタン、及びバナジウムから選択される1種以上の金属を含んだものであり、
前記結晶にポリフェニレンサルファイド樹脂70〜99重量%及びポリオレフィン系樹脂1〜30重量%を含む樹脂組成物が固着されている
ことを特徴とする金属と樹脂の複合体。
In the metal part made of magnesium alloy or magnesium alloy containing any one kind of crystal selected from metal oxide, metal carbonate, and metal phosphate in the surface layer,
The crystal contains one or more metals selected from chromium, manganese, calcium, strontium, aluminum, zinc, zirconium, titanium, and vanadium,
A metal-resin composite characterized in that a resin composition containing 70 to 99% by weight of a polyphenylene sulfide resin and 1 to 30% by weight of a polyolefin resin is fixed to the crystal.
請求項1に記載の金属と樹脂の複合体において、
前記樹脂組成物は、ポリフェニレンサルファイド樹脂80〜97重量%及びポリオレフィン系樹脂3〜20重量%である
ことを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1,
The resin composition is a polyphenylene sulfide resin of 80 to 97% by weight and a polyolefin resin of 3 to 20% by weight.
請求項1又は2に記載の金属と樹脂の複合体において、
前記マグネシウム又はマグネシウム合金製部品の表層には、電子顕微鏡観察で1μm当りに板状結晶が2個以上認められることを特徴とする金属と樹脂の複合体。
In the composite of the metal and resin according to claim 1 or 2,
2. A metal / resin composite characterized in that two or more plate crystals per 1 μm 2 are observed on the surface layer of the magnesium or magnesium alloy part by electron microscope observation.
請求項1又は2に記載の金属と樹脂の複合体において、
前記マグネシウム又はマグネシウム合金製部品の表層には、電子顕微鏡観察で見て針状や棒状結晶、又は針状や棒状結晶外皮を有する塊状結晶が覆う面積の比が30%以上である
ことを特徴とする金属と樹脂の複合体。
In the composite of the metal and resin according to claim 1 or 2,
The surface layer of the magnesium or magnesium alloy part is characterized in that the ratio of the area covered with acicular or rod-like crystals or massive crystals having acicular or rod-like crystal shells as viewed with an electron microscope is 30% or more. A composite of metal and resin.
請求項1ないし4から選択される1項に記載の金属と樹脂の複合体において、
前記樹脂組成物は、前記ポリフェニレンサルファイド樹脂と前記ポリオレフィン系樹脂の合計樹脂分100重量部に対して、さらに多官能性イソシアネート化合物0.1〜6重量部及び/又はエポキシ樹脂1〜25重量部を配合してなる
ことを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1 selected from claims 1 to 4.
The resin composition further comprises 0.1 to 6 parts by weight of a polyfunctional isocyanate compound and / or 1 to 25 parts by weight of an epoxy resin with respect to 100 parts by weight of the total resin content of the polyphenylene sulfide resin and the polyolefin resin. A composite of metal and resin characterized by blending.
請求項1ないし5から選択される1項に記載の金属と樹脂の複合体において、
前記樹脂組成物は、前記ポリフェニレンサルファイド樹脂と前記ポリオレフィン系樹脂の合計樹脂分100重量部に対して、さらに充填剤1〜200重量部を配合してなるものであることを特徴とする金属と樹脂の複合体。
In the metal-resin composite according to claim 1 selected from claims 1 to 5,
The resin composition is obtained by further blending 1 to 200 parts by weight of a filler with respect to 100 parts by weight of the total resin content of the polyphenylene sulfide resin and the polyolefin resin. Complex.
請求項6に記載の金属と樹脂の複合体において、
前記充填剤は、ガラス繊維、炭素繊維、アラミド繊維、炭酸カルシウム、炭酸マグネシウム、シリカ、タルク、粘土、及びガラス粉から選ばれる1種以上であることを特徴とする金属と樹脂の複合体。
In the composite of the metal and resin according to claim 6,
The filler is at least one selected from glass fiber, carbon fiber, aramid fiber, calcium carbonate, magnesium carbonate, silica, talc, clay, and glass powder.
請求項1ないし7から選択される1項に記載の金属と樹脂の複合体において、
前記ポリオレフィン系樹脂が、無水マレイン酸変性エチレン系共重合体、グリシジルメタクリレート変性エチレン系共重合体、グリシジルエーテル変性エチレン系共重合体、及びエチレンアルキルアクリレート共重合体から選択される少なくとも1種のポリオレフィン系樹脂であることを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1 selected from claims 1 to 7,
The polyolefin resin is at least one polyolefin selected from maleic anhydride-modified ethylene copolymer, glycidyl methacrylate-modified ethylene copolymer, glycidyl ether-modified ethylene copolymer, and ethylene alkyl acrylate copolymer. A composite of a metal and a resin, characterized in that it is a resin.
請求項1ないし7から選択される1項に記載の金属と樹脂の複合体において、
ポリオレフィン系樹脂が、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体、エチレン−グリシジルメタクリレートニ元共重合体から選択される少なくとも1種のポリオレフィン系樹脂であることを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1 selected from claims 1 to 7,
Metal and resin characterized in that the polyolefin resin is at least one polyolefin resin selected from ethylene-acrylic acid ester-maleic anhydride terpolymer and ethylene-glycidyl methacrylate binary copolymer Complex.
マグネシウム又はマグネシウム合金素材を鋳造物や中間材からの機械加工で形状部品化する形状加工工程と、
前記形状化した形状部品を、クロム、マンガン、カルシウム、ストロンチウム、ジルコニウム、チタン、バナジウム、カリウム、及びナトリウムから選択される1種以上の金属を含んだ水溶液又は水性懸濁液に浸漬することにより、前記形状部品の表層に、金属酸化物、金属炭酸化物、及び金属リン酸化物から選択される1種以上の被膜を形成する液処理工程と、
前記液処理工程後の前記形状部品を射出成形金型にインサートしてポリフェニレンサルファイド70〜99重量%及びポリオレフィン系樹脂1〜30重量%を含む樹脂分組成の樹脂組成物を射出し前記形状部品と前記樹脂組成物とを一体に固着する固着工程と、
からなる金属と樹脂の複合体の製造方法。
A shape processing step for converting magnesium or a magnesium alloy material into a shape part by machining from a cast or an intermediate material;
By immersing the shaped part into an aqueous solution or suspension containing one or more metals selected from chromium, manganese, calcium, strontium, zirconium, titanium, vanadium, potassium, and sodium, A liquid treatment step of forming one or more kinds of coatings selected from metal oxides, metal carbonates, and metal phosphates on the surface of the shaped part;
The shaped part after the liquid treatment step is inserted into an injection mold, and a resin composition having a resin component composition containing 70 to 99% by weight of polyphenylene sulfide and 1 to 30% by weight of a polyolefin resin is injected with the shaped part and An adhering step for adhering the resin composition together;
A method for producing a composite of a metal and a resin comprising:
JP2006145707A 2005-10-04 2006-05-25 Metal-resin composite and method for producing the same Active JP4452256B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006145707A JP4452256B2 (en) 2006-05-25 2006-05-25 Metal-resin composite and method for producing the same
EP06811204A EP1944389A4 (en) 2005-10-04 2006-10-04 Composite of metal with resin and process for producing the same
CN2006800437892A CN101313087B (en) 2005-10-04 2006-10-04 Composite of metal with resin and process for producing the same
KR1020087008830A KR100982357B1 (en) 2005-10-04 2006-10-04 Composite of metal and resin and method for manufacturing same
US12/089,097 US8703272B2 (en) 2005-10-04 2006-10-04 Composite of metal and resin and method for manufacturing same
PCT/JP2006/319864 WO2007040245A1 (en) 2005-10-04 2006-10-04 Composite of metal with resin and process for producing the same
HK09101509.3A HK1124641A1 (en) 2005-10-04 2009-02-18 Composite of metal with resin and process for producing the same
US14/197,439 US9724898B2 (en) 2005-10-04 2014-03-05 Composite of metal and resin and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145707A JP4452256B2 (en) 2006-05-25 2006-05-25 Metal-resin composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007313750A true JP2007313750A (en) 2007-12-06
JP4452256B2 JP4452256B2 (en) 2010-04-21

Family

ID=38848053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145707A Active JP4452256B2 (en) 2005-10-04 2006-05-25 Metal-resin composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4452256B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058173A1 (en) * 2009-11-16 2011-05-19 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Method and device for producing a composite component, and composite component
JP2012000810A (en) * 2010-06-15 2012-01-05 Kyocera Chemical Corp Housing for electronic device, and method for producing the same
JP2012006392A (en) * 2010-06-23 2012-01-12 Shenzhen Futaihong Precision Industrial Co Ltd Metal-and-resin composite and method for making the same
JP2015071266A (en) * 2013-10-03 2015-04-16 三井化学株式会社 Metal/resin composite structure and production method thereof
JP2015511190A (en) * 2012-02-24 2015-04-16 ビーワイディー カンパニー リミテッドByd Company Limited Metal-resin composite and method for producing the same
WO2016038945A1 (en) * 2014-09-11 2016-03-17 オリンパス株式会社 Insert molded article, device using said insert molded article, and method for producing insert molded article
CN111801442A (en) * 2018-03-08 2020-10-20 三井化学株式会社 Magnesium alloy/resin composite structure and method for producing same
CN112549887A (en) * 2019-09-26 2021-03-26 住友理工株式会社 Resin assembly for vehicle and method for manufacturing resin assembly for vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058173A1 (en) * 2009-11-16 2011-05-19 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Method and device for producing a composite component, and composite component
JP2012000810A (en) * 2010-06-15 2012-01-05 Kyocera Chemical Corp Housing for electronic device, and method for producing the same
JP2012006392A (en) * 2010-06-23 2012-01-12 Shenzhen Futaihong Precision Industrial Co Ltd Metal-and-resin composite and method for making the same
JP2015511190A (en) * 2012-02-24 2015-04-16 ビーワイディー カンパニー リミテッドByd Company Limited Metal-resin composite and method for producing the same
JP2015071266A (en) * 2013-10-03 2015-04-16 三井化学株式会社 Metal/resin composite structure and production method thereof
WO2016038945A1 (en) * 2014-09-11 2016-03-17 オリンパス株式会社 Insert molded article, device using said insert molded article, and method for producing insert molded article
JP5945650B1 (en) * 2014-09-11 2016-07-05 オリンパス株式会社 Insert molded product, apparatus using the insert molded product, and method of manufacturing the insert molded product
CN106029370A (en) * 2014-09-11 2016-10-12 奥林巴斯株式会社 Insert molded article, device using said insert molded article, and method for producing insert molded article
CN111801442A (en) * 2018-03-08 2020-10-20 三井化学株式会社 Magnesium alloy/resin composite structure and method for producing same
US20210008768A1 (en) * 2018-03-08 2021-01-14 Mitsui Chemicals, Inc. Magnesium alloy/resin composite structure and method for manufacturing the same
CN112549887A (en) * 2019-09-26 2021-03-26 住友理工株式会社 Resin assembly for vehicle and method for manufacturing resin assembly for vehicle
CN112549887B (en) * 2019-09-26 2023-05-05 住友理工株式会社 Resin component for vehicle and method for manufacturing resin component for vehicle

Also Published As

Publication number Publication date
JP4452256B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4927864B2 (en) Method for producing high corrosion resistance composite
KR100982357B1 (en) Composite of metal and resin and method for manufacturing same
JP4927871B2 (en) Metal-resin composite and method for producing the composite
JP4452256B2 (en) Metal-resin composite and method for producing the same
JP5167261B2 (en) Metal-resin composite and method for producing the same
JP4452220B2 (en) Composite and production method thereof
JP4527196B2 (en) Composite and production method thereof
JP4927491B2 (en) Metal-resin composite and method for producing the same
JP4927876B2 (en) Metal-resin composite and method for producing the same
KR101188027B1 (en) Composite of metal with resin and process for producing the same
JP5733999B2 (en) Method for producing metal resin composite
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
TW201127992A (en) Aluminum alloy article, aluminum alloy member, and production method therefor
JP2008173967A (en) Composite of metal and resin, and its manufacturing method
JP6421906B1 (en) Aluminum paint for joining and aluminum resin composite
JP2012213922A (en) Composite, and method for producing the same
JP5166978B2 (en) Method for producing composite of metal alloy and resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Ref document number: 4452256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250