JP2007313458A - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP2007313458A
JP2007313458A JP2006147366A JP2006147366A JP2007313458A JP 2007313458 A JP2007313458 A JP 2007313458A JP 2006147366 A JP2006147366 A JP 2006147366A JP 2006147366 A JP2006147366 A JP 2006147366A JP 2007313458 A JP2007313458 A JP 2007313458A
Authority
JP
Japan
Prior art keywords
electrode
infrared
high voltage
atomizing electrode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147366A
Other languages
Japanese (ja)
Other versions
JP5108256B2 (en
Inventor
Tetsuya Maekawa
哲也 前川
Yukiyasu Asano
幸康 浅野
Hiroshi Suda
洋 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006147366A priority Critical patent/JP5108256B2/en
Publication of JP2007313458A publication Critical patent/JP2007313458A/en
Application granted granted Critical
Publication of JP5108256B2 publication Critical patent/JP5108256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic atomizer capable of stably increasing the quantity of electrically charged fine particle water without increasing applied voltage between an atomizing electrode and a counter electrode. <P>SOLUTION: The electrostatic atomizer is provided with a high voltage applying part 1, an atomizing electrode 2 to which high voltage generated in the high voltage applying part is applied, a counter electrode 3 opposed to the atomizing electrode 2 and a water supply means 4 for supplying water to be atomized to the atomizing electrode 2. An infrared irradiation means 5 for irradiating the water on the atomizing electrode 2 with infrared light of near infrared region. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水に高電圧を印加して帯電微粒子水を発生させる静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer that generates charged fine particle water by applying a high voltage to water.

霧化電極と、霧化電極と対向する対向電極と、霧化電極と対向電極との間に高電圧を印加するための高電圧発生回路とを備え、霧化電極上の水に高電圧を印加して帯電微粒子水を発生させる静電霧化装置が知られている(例えば特許文献1参照)。   An atomizing electrode, a counter electrode facing the atomizing electrode, and a high voltage generating circuit for applying a high voltage between the atomizing electrode and the counter electrode, and applying high voltage to the water on the atomizing electrode An electrostatic atomizer that generates charged fine particle water when applied is known (see, for example, Patent Document 1).

このような静電霧化装置にあっては、帯電微粒子水の発生量を増やす場合、従来においては高電圧発生回路にて霧化電極と対向電極との間に印加する電圧を高くする方法が採られていた。   In such an electrostatic atomizer, when increasing the generation amount of charged fine particle water, there is conventionally a method of increasing the voltage applied between the atomization electrode and the counter electrode in a high voltage generation circuit. It was taken.

この場合、霧化電極と対向電極との間に印加される電圧が高くなると、アーク放電や短絡する惧れが生じ、帯電微粒子水を安定的に発生させることが出来ず、また、オゾンの発生量が多くなってしまう、という問題があった。
特開2005−131549号公報
In this case, if the voltage applied between the atomizing electrode and the counter electrode becomes high, there is a risk of arc discharge or short-circuiting, and it is not possible to stably generate charged fine particle water. There was a problem that the amount would increase.
JP 2005-131549 A

本発明は上記の点に鑑みてなされたものであり、その目的とするところは、霧化電極と対向電極との間の印加電圧を高くすることなく、安定的に帯電微粒子水の発生量を増やすことを可能とする静電霧化装置を提供することを課題とするものである。   The present invention has been made in view of the above points, and the object of the present invention is to stably increase the generation amount of charged fine particle water without increasing the applied voltage between the atomizing electrode and the counter electrode. It is an object of the present invention to provide an electrostatic atomizer that can be increased.

上記課題を解決するために請求項1に係る発明にあっては、高電圧印加部1と、高電圧印加部1で発生させた高電圧が印加される霧化電極2と、霧化電極2と対向する対向電極3と、霧化電極2に霧化させるべき水を供給する水供給手段4とで主体が構成される静電霧化装置であって、霧化電極2上の水に近赤外領域の赤外線を照射する赤外線照射手段5を設けて成ることを特徴とする特徴とするものである。   In order to solve the above problems, in the invention according to claim 1, the high voltage application unit 1, the atomization electrode 2 to which the high voltage generated by the high voltage application unit 1 is applied, and the atomization electrode 2 Is an electrostatic atomizer composed mainly of a counter electrode 3 opposed to the water supply means 4 for supplying water to be atomized to the atomizing electrode 2, and is close to the water on the atomizing electrode 2. Infrared irradiation means 5 for irradiating infrared rays in the infrared region is provided.

このような構成とすることで、霧化電極2と対向電極3との間の印加電圧を高くすることなく、安定的に帯電微粒子水の発生量を増やすことができる。   By setting it as such a structure, the generation amount of charged fine particle water can be increased stably, without making the applied voltage between the atomization electrode 2 and the counter electrode 3 high.

また、請求項2に係る発明にあっては、請求項1に係る発明において、照射する近赤外領域の赤外線を集光するレンズ53を設けて成ることを特徴とするものである。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, a lens 53 for condensing infrared rays in the near infrared region to be irradiated is provided.

このような構成とすることで、所望の照射位置に正確に大量の赤外線を照射することができて、効率良く帯電微粒子水の発生量を増大させることが可能となる。   With such a configuration, it is possible to accurately irradiate a large amount of infrared rays at a desired irradiation position, and it is possible to efficiently increase the generation amount of charged fine particle water.

また、請求項3に係る発明にあっては、請求項1又は2に係る発明において、照射する近赤外領域の赤外線が霧化電極2及び対向電極3に照射されるのを防止する遮光部を設けて成ることを特徴とするものである。   Moreover, in the invention which concerns on Claim 3, in the invention which concerns on Claim 1 or 2, the light shielding part which prevents that the infrared rays of the near infrared region to irradiate are irradiated to the atomization electrode 2 and the counter electrode 3 It is characterized by providing.

このような構成とすることで、所望の照射位置に照射することができて、効率良く帯電微粒子水の発生量を増大させることが可能となる。   With such a configuration, it is possible to irradiate a desired irradiation position, and it is possible to efficiently increase the generation amount of charged fine particle water.

また、請求項4に係る発明にあっては、請求項1乃至3のいずれか一項に係る発明において、照射する近赤外領域の赤外線の照射量を静電霧化の発生周波数以上の周波数でON/OFFすることで制御する制御部7を備えて成ることを特徴とするものである。   Moreover, in the invention which concerns on Claim 4, in the invention which concerns on any one of Claim 1 thru | or 3, the irradiation amount of the infrared rays of the near infrared region to irradiate is a frequency more than the generation frequency of electrostatic atomization. It is characterized by comprising a control section 7 that is controlled by turning on / off at.

このような構成とすることで、静電霧化の発生周波数がある一定の周波数となっている場合には特に発生を安定させることができ、またエネルギーを効率よく使用することが可能となる。   By adopting such a configuration, when the frequency of occurrence of electrostatic atomization is a certain frequency, generation can be stabilized, and energy can be used efficiently.

また、請求項5に係る発明にあっては、請求項1乃至4のいずれか一項に係る発明において、高電圧印加部1により霧化電極2と対向電極3との間に印加される電圧及び前記両電極の間を流れる電流の値に基づいて、照射する近赤外領域の赤外線の照射量を制御する制御部7を備えて成ることを特徴とするものである。   Moreover, in the invention which concerns on Claim 5, in the invention which concerns on any one of Claim 1 thru | or 4, the voltage applied between the atomization electrode 2 and the counter electrode 3 by the high voltage application part 1 And a control unit 7 for controlling the irradiation amount of the infrared light in the near infrared region to be irradiated based on the value of the current flowing between the electrodes.

このような構成とすることで、発生する帯電微粒子水の量を一定にして安定的に霧化を持続させることが可能となる。   With such a configuration, the amount of the charged fine particle water generated can be made constant and the atomization can be stably maintained.

また、請求項6に係る発明にあっては、請求項1乃至4のいずれか一項に係る発明において、温度センサー81又は湿度センサー82又はガスセンサー83を備え、前記いずれかのセンサーの計測値に基づいて、照射する近赤外領域の赤外線の照射量を制御する制御部7を備えて成ることを特徴とするものである。   Further, in the invention according to claim 6, in the invention according to any one of claims 1 to 4, the temperature sensor 81, the humidity sensor 82, or the gas sensor 83 is provided, and the measured value of any one of the sensors is provided. The control unit 7 is configured to control the irradiation amount of infrared rays in the near infrared region to be irradiated based on the above.

このような構成とすることで、発生する帯電微粒子水の量を一定にして安定的に霧化を持続させることが可能となる。特に、水供給手段として冷却手段にて結露水を供給するものにおいては、環境温度、環境湿度に応じて水の供給量及び照射量を制御することができて特に有効であり、また、ガス濃度に応じて効率よく帯電微粒子水を発生させてガスを分解することができる。   With such a configuration, the amount of the charged fine particle water generated can be made constant and the atomization can be stably maintained. In particular, in the case where condensed water is supplied by a cooling means as a water supply means, the supply amount and irradiation amount of water can be controlled according to the environmental temperature and environmental humidity, and the gas concentration is particularly effective. Accordingly, the charged fine particle water can be efficiently generated to decompose the gas.

本発明にあっては、霧化電極と対向電極との間の印加電圧を高くすることなく、安定的に帯電微粒子水の発生量を増やすことができて、アーク放電や短絡する惧れが生じて帯電微粒子水を安定的に発生させることが出来なかったり、また、オゾンの発生量が多くなってしまうといったことを防止することができる。   In the present invention, the amount of charged fine particle water can be stably increased without increasing the applied voltage between the atomizing electrode and the counter electrode, which may cause arc discharge or short circuit. Thus, it is possible to prevent the charged fine particle water from being stably generated and the generation amount of ozone from being increased.

以下、本発明を添付図面に示す実施形態に基いて説明する。図1に、本発明の一実施形態の静電霧化装置を示している。まず、基本構成について説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. In FIG. 1, the electrostatic atomizer of one Embodiment of this invention is shown. First, the basic configuration will be described.

静電霧化装置は、高電圧印加部1と、高電圧印加部1で発生させた高電圧が印加される霧化電極2と、霧化電極2と対向する対向電極3と、霧化電極2に霧化させるべき水を供給する水供給手段4とで主体が構成される。   The electrostatic atomizer includes a high voltage application unit 1, an atomization electrode 2 to which a high voltage generated by the high voltage application unit 1 is applied, a counter electrode 3 facing the atomization electrode 2, and an atomization electrode. The main body is constituted by water supply means 4 for supplying water to be atomized to 2.

霧化電極2と対向電極3は、ケーシングとなる略筒状をした筐体6に取り付けられる。筐体6の一方の端縁には対向電極3が取り付けられ、他方の端縁は水供給手段4が取り付けられる。本実施形態では、水供給手段4は冷却手段によって空気中の水蒸気を結露させるもので、冷却手段には半導体電子熱交換素子であるペルチェモジュール40を用いており、ペルチェモジュール40の吸熱部分41を熱伝導率が高く且つ電気伝導率が低い絶縁材料等の材料からなる冷却部42に接続すると共に、ペルチェモジュール40の放熱部分43を熱伝導率が高い例えばアルミニウム等の材料からなりフィンを有する放熱部44に接続して水供給手段4が構成してある。冷却部42は、筒状をした筐体6の他方の端縁に取り付けられ、筐体6内に位置する部分が内部に向けて円錐台状に隆起する基台部42aとなっており、霧化電極2が立設される。   The atomizing electrode 2 and the counter electrode 3 are attached to a substantially cylindrical casing 6 serving as a casing. The counter electrode 3 is attached to one end edge of the housing 6, and the water supply means 4 is attached to the other end edge. In the present embodiment, the water supply means 4 condenses water vapor in the air by the cooling means, and the cooling means uses the Peltier module 40 which is a semiconductor electronic heat exchange element, and the heat absorbing portion 41 of the Peltier module 40 is provided. The heat dissipation part 43 of the Peltier module 40 is made of a material having a high thermal conductivity such as aluminum and having fins, while being connected to the cooling unit 42 made of a material such as an insulating material having a high thermal conductivity and a low electrical conductivity. The water supply means 4 is connected to the section 44. The cooling unit 42 is attached to the other end edge of the cylindrical casing 6, and a portion located in the casing 6 serves as a base 42 a that protrudes in a truncated cone shape toward the inside, The activating electrode 2 is erected.

霧化電極2は、熱伝導率が高く且つ電気伝導率が高い例えば銅のような材料からなり、円柱状に形成してあり、その先端部21は鋭利な円錐状となっている。そして、霧化電極2の基端部22を上記基台部42aの平面視中央部に埋設して、霧化電極2の先端部21を筐体6のもう一方の端縁側に向けて筐体6の途中まで突出させている。   The atomizing electrode 2 is made of a material such as copper having a high thermal conductivity and a high electrical conductivity, and is formed in a columnar shape, and its tip 21 has a sharp conical shape. Then, the base end portion 22 of the atomizing electrode 2 is embedded in the central portion of the base portion 42 a in a plan view, and the tip end portion 21 of the atomizing electrode 2 is directed toward the other edge side of the housing 6. 6 is projected halfway.

対向電極3は円環状をしたもので、筒状をした筐体6の一方の端縁に取り付けられ、中央の穴部30を介して筐体6の内外が連通されている。この対向電極3と霧化電極2とは、平面視において対向電極3の中央の穴部30の中心部に霧化電極2が配置され、側面視において対向電極3と霧化電極2の先端部21とが一定間隔をおいて配置されており、高電圧印加部1によって対向電極3と霧化電極2との間に高電圧が印加される。高電圧印加部1は、前記両電極間に数千Vの電圧を印加することが可能で、例えば対向電極3と霧化電極2との間の距離が12mmで6千Vの電圧を印加することで500V/mmの電界を発生させることができる。   The counter electrode 3 has an annular shape, is attached to one end edge of a cylindrical housing 6, and the inside and outside of the housing 6 communicate with each other through a central hole 30. The counter electrode 3 and the atomizing electrode 2 are arranged such that the atomizing electrode 2 is disposed at the center of the hole 30 at the center of the counter electrode 3 in plan view, and the tip of the counter electrode 3 and the atomizing electrode 2 in side view. The high voltage applying unit 1 applies a high voltage between the counter electrode 3 and the atomizing electrode 2. The high voltage application unit 1 can apply a voltage of several thousand V between the electrodes. For example, the distance between the counter electrode 3 and the atomizing electrode 2 is 12 mm and a voltage of 6,000 V is applied. Thus, an electric field of 500 V / mm can be generated.

上述した静電霧化装置の基本構成の動作について説明する。霧化電極2に水を供給するため、冷却制御部45を稼動して冷却手段のペルチェモジュール40に電流を供給すると、ペルチェモジュール40内において熱の移動が生じ、ペルチェモジュール40の吸熱部分41で吸熱が行なわれると共に放熱部分43にて放熱が行なわれる。そして、吸熱部分41に接続されている冷却部42を介して霧化電極2が冷却され、霧化電極2の周囲の空気が冷却されて結露点以下に至ることで該霧化電極2の表面上に結露水が生じ、これが霧化電極2により霧化させる水となる。そして、霧化電極2の先端部21に結露水が付着した状態で、高電圧印加部1により霧化電極2の先端部21側がマイナス電極となり電荷が集中するように高電圧を印加することにより、先端部21に付着している水が大きなエネルギーを受けてレイリー分裂を繰り返し、例えば1kH前後の周波数で断続的にナノメートルサイズの帯電微粒子水が大量に発生する。発生した帯電微粒子水は、マイナスの電荷を帯びており、霧化電極2と対向電極3との間に発生している電界によって対向電極3の方へ移動し、対向電極3の中央の穴部30から筐体6外へ吐出される。また、静電霧化により発生する帯電微粒子水の量は、高電圧印加部1によって対向電極3と霧化電極2の間に印加される電圧と前記両電極間に流れる電流の値によって推定されるもので、電圧を印加した際に流れる電流値を計測する電流計11が霧化電極2と対向電極3との間に設けてあり、計測した電流値に応じて高電圧印加部1にて印加する電圧および両電極間に流す電流を電子回路からなる制御部7によって調節可能となっている。印加電圧が一定の場合、電流値が大きい程帯電微粒子水の発生量が大きい。   The operation of the basic configuration of the electrostatic atomizer described above will be described. In order to supply water to the atomizing electrode 2, when the cooling control unit 45 is operated and current is supplied to the Peltier module 40 of the cooling means, heat transfer occurs in the Peltier module 40, and the heat absorbing portion 41 of the Peltier module 40 Heat is absorbed and heat is radiated at the heat radiating portion 43. And the atomization electrode 2 is cooled through the cooling part 42 connected to the heat absorption part 41, the air around the atomization electrode 2 is cooled, and reaches the dew point or less, so that the surface of the atomization electrode 2 Condensed water is generated on the top, and this becomes water to be atomized by the atomizing electrode 2. Then, with the condensed water adhering to the tip 21 of the atomizing electrode 2, the high voltage application unit 1 applies a high voltage so that the tip 21 side of the atomizing electrode 2 becomes a negative electrode and charges are concentrated. The water adhering to the tip 21 receives a large amount of energy and repeatedly undergoes Rayleigh splitting. For example, a large amount of charged nanoparticle water is intermittently generated at a frequency of about 1 kHz. The generated charged fine particle water has a negative charge and moves toward the counter electrode 3 by the electric field generated between the atomizing electrode 2 and the counter electrode 3. 30 is discharged out of the housing 6. The amount of charged fine particle water generated by electrostatic atomization is estimated by the voltage applied between the counter electrode 3 and the atomization electrode 2 by the high voltage application unit 1 and the value of the current flowing between the electrodes. Therefore, an ammeter 11 for measuring a current value that flows when a voltage is applied is provided between the atomizing electrode 2 and the counter electrode 3, and the high voltage application unit 1 according to the measured current value. The applied voltage and the current flowing between both electrodes can be adjusted by the control unit 7 composed of an electronic circuit. When the applied voltage is constant, the amount of charged fine particle water generated increases as the current value increases.

静電霧化により発生した帯電微粒子水には、スーパーオキサイドラジカルやヒドロキシラジカルが含まれており、脱臭効果や除菌効果、アレルゲン不活化効果、農薬分解効果等の効果があることがわかっており、帯電微粒子水の発生量を安定させ増加させることで効果も飛躍的に向上する。   It is known that the charged fine particle water generated by electrostatic atomization contains superoxide radicals and hydroxy radicals, and has effects such as deodorizing and sterilizing effects, allergen inactivating effects, and agricultural chemical degrading effects. The effect is also greatly improved by stabilizing and increasing the amount of charged fine particle water generated.

また本実施形態では、静電霧化装置が設置される部屋等の外部環境の温度、湿度、ガス濃度を検知する温度センサー81、湿度センサー82、ガスセンサー83を設け、制御部7がこれらのセンサーの計測値を読み込んで帯電微粒子水の発生量が適切となるように冷却制御部45にペルチェモジュール40への直流の通電量を調節させ、帯電微粒子水を安定的に持続させることが可能となっている。ペルチェモジュール40への通電量の調節はデューティ制御により好適に行なわれる。   In the present embodiment, a temperature sensor 81, a humidity sensor 82, and a gas sensor 83 are provided for detecting the temperature, humidity, and gas concentration of an external environment such as a room where the electrostatic atomizer is installed. It is possible to stably maintain the charged fine particle water by reading the measured value of the sensor and adjusting the amount of direct current supplied to the Peltier module 40 in the cooling control unit 45 so that the generation amount of the charged fine particle water becomes appropriate. It has become. Adjustment of the energization amount to the Peltier module 40 is preferably performed by duty control.

上述した筐体6、冷却制御部45、ペルチェモジュール40の吸熱部分41及び放熱部分43、冷却部42及び放熱部44、制御部7、高電圧印加部1、後述する赤外線照射手段5は図示しない外殻ケーシング内に収容され、温度センサー81等の各センサーも外殻ケーシングに取り付けてある。   The housing 6, the cooling control unit 45, the heat absorption part 41 and the heat radiation part 43 of the Peltier module 40, the cooling part 42 and the heat radiation part 44, the control part 7, the high voltage application part 1, and the infrared irradiation means 5 described later are not shown. Each sensor such as the temperature sensor 81 is accommodated in the outer shell casing and is also attached to the outer shell casing.

水の分子間に働く水素結合のエネルギーは水9.6〜26.4(kJ/mol)であり、水が霧化されて発生する帯電微粒子水は、霧化電極2と対向電極3との間に印加する電圧を大きくすれば水素結合が切れ易くなって発生する量が増大するが、印加電圧を大きくするとアーク放電や短絡する惧れが生じて帯電微粒子水を安定的に発生させることが出来なかったり、オゾンの発生量が多くなってしまったりするため限界がある。そこで本発明では、霧化電極2と対向電極3との間に印加する電圧を大きくすることなく、帯電微粒子水の発生量を増大させるため、赤外線照射手段5を設けてある。   The energy of hydrogen bonds between water molecules is 9.6 to 26.4 (kJ / mol), and charged fine particle water generated by atomizing water is generated between the atomizing electrode 2 and the counter electrode 3. Increasing the voltage applied in between increases the amount of hydrogen bonds that are likely to break, but increasing the applied voltage may cause arc discharge or short-circuiting, and stably generate charged particulate water. There is a limit because it cannot be done or the amount of ozone generated increases. Therefore, in the present invention, the infrared irradiation means 5 is provided to increase the amount of charged fine particle water generated without increasing the voltage applied between the atomizing electrode 2 and the counter electrode 3.

赤外線照射手段5は、上記制御部7に制御されて照射する赤外線の量を調節する赤外線制御部51と、赤外線制御部51より通電量が調節されて任意の量の赤外線を照射する赤外線照射部52とを備えている。赤外線照射部52は、筐体6の側壁の外側に配置され、赤外線照射部52と霧化電極2の先端部21との間に位置する筐体6の側壁には開口61が形成されてあり、赤外線照射部52で発振された赤外線は前記開口61を介して霧化電極2の先端部21に照射される。なお図1に示すように、赤外線照射部52の照射側の部分にレンズ53を設けることで、広範囲に向けて発光した赤外線を所望の照射位置に正確に集中的に照射することができて、効率良く帯電微粒子水の発生量を増大させることが可能となる。   The infrared irradiating means 5 is controlled by the control unit 7 to adjust the amount of infrared light to be radiated, and the infrared irradiating unit to irradiate an arbitrary amount of infrared light by adjusting the energization amount by the infrared control unit 51. 52. The infrared irradiation unit 52 is disposed outside the side wall of the housing 6, and an opening 61 is formed in the side wall of the housing 6 positioned between the infrared irradiation unit 52 and the tip portion 21 of the atomizing electrode 2. The infrared light oscillated by the infrared irradiation unit 52 is applied to the tip 21 of the atomizing electrode 2 through the opening 61. As shown in FIG. 1, by providing the lens 53 on the irradiation side portion of the infrared irradiation unit 52, it is possible to irradiate the infrared light emitted toward a wide range accurately and intensively to a desired irradiation position. It is possible to increase the generation amount of charged fine particle water efficiently.

照射する赤外線は、近赤外線が好ましい。これは、図2に示すように、電磁波の水への吸収率は波長1〜10μmの近赤外領域が高くて好ましく、また図3に示すように、波長が短い程エネルギーが大きいため、吸収率が高くエネルギーが大きい3μm近傍の波長がより望ましい。   Infrared rays to be irradiated are preferably near infrared rays. As shown in FIG. 2, the absorption rate of electromagnetic waves into water is preferably high in the near-infrared region with a wavelength of 1 to 10 μm. Also, as shown in FIG. A wavelength in the vicinity of 3 μm with a high rate and high energy is more desirable.

また、照射する赤外線が霧化電極2と対向電極3に照射されるのを防止する遮光部を設けてもよく、本実施形態では筐体6が遮光部となっている。筐体6には前記開口61が形成してあるため、赤外線照射部52(本実施形態ではレンズ53)と霧化電極2の先端部21とを結ぶ直線は開口61を介して直通して筐体6の側壁に遮られないが、赤外線照射部52と霧化電極2および対向電極3とをそれぞれ結ぶ直線は筐体6の側壁に遮られ、霧化電極2と対向電極3とには赤外線が照射されないようにしてある。図4に遮蔽部として開口61を形成した筐体6を示す。図4(a)は開口61を円形状とした例、図4(b)は開口61を横長の長方形状とした例、図4(c)は開口61を正方形状とした例を示す。赤外線が照射されると温度が上昇するため、遮光部によって所望の照射位置に照射することが可能となって、霧化電極2と対向電極3とが過熱されて動作不良となるのを防止することができる。特に、本実施形態のように水供給手段4として結露水を生成することで水を供給する冷却手段を設けたものの場合、霧化電極2が加熱されると結露能力が低下するため、水供給能力を維持するという点においてもより一層の効果が得られるものである。   Moreover, you may provide the light-shielding part which prevents that the infrared rays to irradiate are irradiated to the atomization electrode 2 and the counter electrode 3, and the housing | casing 6 is a light-shielding part in this embodiment. Since the opening 61 is formed in the housing 6, the straight line connecting the infrared irradiation unit 52 (the lens 53 in the present embodiment) and the tip 21 of the atomizing electrode 2 passes directly through the opening 61. Although not blocked by the side wall of the body 6, the straight lines connecting the infrared irradiation part 52, the atomizing electrode 2, and the counter electrode 3 are blocked by the side wall of the housing 6. Is prevented from being irradiated. FIG. 4 shows a housing 6 in which an opening 61 is formed as a shielding part. 4A shows an example in which the opening 61 has a circular shape, FIG. 4B shows an example in which the opening 61 has a horizontally long rectangular shape, and FIG. 4C shows an example in which the opening 61 has a square shape. Since the temperature rises when irradiated with infrared rays, it is possible to irradiate a desired irradiation position by the light shielding portion, and prevent the atomization electrode 2 and the counter electrode 3 from being overheated and causing malfunction. be able to. In particular, in the case where a cooling means for supplying water by generating condensed water is provided as the water supply means 4 as in the present embodiment, the condensation capability is reduced when the atomizing electrode 2 is heated. A further effect can be obtained in terms of maintaining the ability.

霧化により発生する帯電微粒子水の発生量は、高電圧印加部1による霧化電極2と対向電極3との間への印加電圧を一定とした場合、赤外線照射手段5による赤外線の照射量を大きくする程増加するものである。そして本実施形態では、霧化電極2と対向電極3との間に印加している電圧及び前記両電極間に流れる電流の値より発生している帯電微粒子水の量を推定することができるため、所望の帯電微粒子水の発生量に安定させるため赤外線照射手段5による赤外線の照射量を制御部7および赤外線制御部51によって調節するようにしている。赤外線の照射量の調節は、赤外線の照射を上述した帯電微粒子水の発生の周波数よりも大きな周波数でON、OFFするデューティ制御にて行なう。   The amount of charged fine particle water generated by atomization is the amount of infrared irradiation by the infrared irradiation means 5 when the voltage applied between the atomizing electrode 2 and the counter electrode 3 by the high voltage application unit 1 is constant. Increasing the value increases. In this embodiment, the amount of charged fine particle water generated can be estimated from the voltage applied between the atomizing electrode 2 and the counter electrode 3 and the value of the current flowing between the electrodes. In order to stabilize the generated amount of charged fine particle water, the amount of infrared irradiation by the infrared irradiation means 5 is adjusted by the control unit 7 and the infrared control unit 51. The infrared irradiation amount is adjusted by duty control in which infrared irradiation is turned ON / OFF at a frequency larger than the frequency of generation of the charged fine particle water described above.

一例として、電流値に基づいて、冷却手段による結露水の生成量と赤外線の照射量を調節する場合について説明する。これは、電流計11での電流の計測値を制御部7が読み込み、目標値よりも計測値が大きい場合には、冷却制御部45を制御して冷却能力を下げると共に、赤外線制御部51を制御して赤外線の照射量を大きくするものである。赤外線の照射量は、例えば電流の目標値が6μAに対して計測値が8μAの場合、照射量を6Wから8Wに増大させるといった制御を行う。   As an example, a case where the amount of condensed water generated by the cooling means and the amount of infrared irradiation are adjusted based on the current value will be described. This is because the control unit 7 reads the measured current value of the ammeter 11 and when the measured value is larger than the target value, the cooling control unit 45 is controlled to lower the cooling capacity and the infrared control unit 51 is controlled. The amount of infrared irradiation is increased by control. For example, when the target value of the current is 6 μA and the measured value is 8 μA, the infrared irradiation amount is controlled to be increased from 6 W to 8 W.

このように印加電圧や電流の値に基づいて赤外線の照射量を制御することで、発生する帯電微粒子水の量を一定にして安定的に霧化を持続させることが可能となる。そしてデューティ制御を行なうことで、静電霧化の発生周波数がある一定の周波数となっている場合には特に発生を安定させることができて、エネルギーを効率よく使用することが可能となり、また、デューティ比を変更することで容易に帯電微粒子水の発生量を変更することが可能となる。   In this way, by controlling the irradiation amount of infrared rays based on the value of applied voltage and current, it becomes possible to keep the amount of charged fine particle water generated constant and stably maintain the atomization. And by performing duty control, it is possible to stabilize the generation particularly when the frequency of occurrence of electrostatic atomization is a certain frequency, it is possible to use energy efficiently, By changing the duty ratio, the generation amount of charged fine particle water can be easily changed.

また、冷却手段による結露水の生成量と照射する近赤外領域の赤外線の照射量を制御するにあたり、温度センサー81、湿度センサー82、ガスセンサー83のうちの一つ又は複数の計測値に基づいて行なってもよい。   Further, in controlling the amount of condensed water produced by the cooling means and the amount of irradiated infrared light in the near-infrared region, based on one or a plurality of measured values of the temperature sensor 81, the humidity sensor 82, and the gas sensor 83. You may do it.

温度センサー81および湿度センサー82を用いる場合、温度と湿度との組み合わせに対してあらかじめ冷却手段における冷却能力と照射量を設定したテーブルを備え、このテーブルに基づいて制御部7が冷却制御部45を制御して冷却能力を調節すると共に赤外線制御部を制御して赤外線の照射量を調節し、所望の帯電微粒子水発生量を得るものである。   When the temperature sensor 81 and the humidity sensor 82 are used, a table in which the cooling capacity and the irradiation amount in the cooling means are set in advance for the combination of temperature and humidity is provided, and the control unit 7 sets the cooling control unit 45 based on this table. Control is performed to adjust the cooling capacity and the infrared control unit is controlled to adjust the amount of infrared irradiation to obtain a desired amount of charged fine particle water generation.

また、ガスセンサー83を用いる場合について説明する。ガスセンサー83は、ある特定のガス(例えばメタンガス)の成分の濃度を検知するもので、対象となるガスの種類は特に限定されない。そして、ガスセンサー83にて計測したガス濃度に基づいて赤外線の照射量を調節する。ガス濃度が高い場合には、冷却手段による結露水の生成量と赤外線の照射量を増加させて帯電微粒子水の発生量を増大させる。これにより、ガス濃度に応じて帯電微粒子水を発生させて、帯電微粒子水によってガスを効率よく分解することができる。   A case where the gas sensor 83 is used will be described. The gas sensor 83 detects the concentration of a component of a specific gas (for example, methane gas), and the type of target gas is not particularly limited. Then, the irradiation amount of infrared rays is adjusted based on the gas concentration measured by the gas sensor 83. When the gas concentration is high, the generation amount of condensed water by the cooling means and the irradiation amount of infrared rays are increased to increase the generation amount of charged fine particle water. Thereby, charged fine particle water is generated according to the gas concentration, and the gas can be efficiently decomposed by the charged fine particle water.

このように上記センサーに基づいて冷却手段による結露水の生成量と赤外線の照射量を制御することで、発生する帯電微粒子水の量を一定にして安定的に霧化を持続させることが可能となる。そしてデューティ制御を行なうことで、静電霧化の発生周波数がある一定の周波数となっている場合には特に発生を安定させることができて、エネルギーを効率よく使用することが可能となり、また、デューティ比を変更することで容易に帯電微粒子水の発生量を変更することが可能となる。   In this way, by controlling the amount of condensed water generated by the cooling means and the amount of infrared irradiation based on the above sensor, the amount of charged fine particle water generated can be kept constant and atomization can be stably maintained. Become. And by performing duty control, it is possible to stabilize the generation particularly when the frequency of occurrence of electrostatic atomization is a certain frequency, it is possible to use energy efficiently, By changing the duty ratio, the generation amount of charged fine particle water can be easily changed.

本発明の一実施形態の構成図である。It is a block diagram of one Embodiment of this invention. 電磁波の波長−水への吸収率の関係を示す図である。It is a figure which shows the relationship between the wavelength of electromagnetic waves-the absorption factor to water. 電磁波の波長−エネルギーの関係を示す図である。It is a figure which shows the wavelength-energy relationship of electromagnetic waves. (a)(b)(c)はそれぞれ遮光部としての筐体の例を示す図である。(A) (b) (c) is a figure which shows the example of the housing | casing as a light-shielding part, respectively.

符号の説明Explanation of symbols

1 高電圧印加部
2 霧化電極
3 対向電極
4 水供給手段
5 赤外線照射手段
DESCRIPTION OF SYMBOLS 1 High voltage application part 2 Atomization electrode 3 Counter electrode 4 Water supply means 5 Infrared irradiation means

Claims (6)

高電圧印加部と、高電圧印加部で発生させた高電圧が印加される霧化電極と、霧化電極と対向する対向電極と、霧化電極に霧化させるべき水を供給する水供給手段とで主体が構成される静電霧化装置であって、霧化電極上の水に近赤外領域の赤外線を照射する赤外線照射手段を設けて成ることを特徴とする特徴とする静電霧化装置。   A high voltage applying unit, an atomizing electrode to which a high voltage generated by the high voltage applying unit is applied, a counter electrode facing the atomizing electrode, and a water supply means for supplying water to be atomized to the atomizing electrode An electrostatic atomizer comprising a main body comprising: an infrared irradiating means for irradiating water on an atomizing electrode with infrared light in a near infrared region. Device. 照射する近赤外領域の赤外線を集光するレンズを設けて成ることを特徴とする請求項1記載の静電霧化装置。   The electrostatic atomizer according to claim 1, further comprising a lens that collects infrared rays in a near infrared region to be irradiated. 照射する近赤外領域の赤外線が霧化電極及び対向電極に照射されるのを防止する遮光部を設けて成ることを特徴とする請求項1又は2記載の静電霧化装置。   The electrostatic atomizer according to claim 1, further comprising a light-shielding portion that prevents the near-infrared region to be irradiated from being irradiated with infrared rays to the atomization electrode and the counter electrode. 照射する近赤外領域の赤外線の照射量を静電霧化の発生周波数以上の周波数でON/OFFすることで制御する制御部を備えて成ることを特徴とする請求項1乃至3のいずれか一項に記載の静電霧化装置。   The control part which controls by turning ON / OFF the irradiation amount of the infrared rays of the near-infrared area | region to irradiate with the frequency more than the generation frequency of an electrostatic atomization is provided. The electrostatic atomizer according to one item. 高電圧印加部により霧化電極と対向電極との間に印加される電圧及び前記両電極の間を流れる電流の値に基づいて、照射する近赤外領域の赤外線の照射量を制御する制御部を備えて成ることを特徴とする請求項1乃至4のいずれか一項に記載の静電霧化装置。   A control unit that controls the irradiation amount of infrared light in the near infrared region to be irradiated based on the voltage applied between the atomizing electrode and the counter electrode by the high voltage application unit and the value of the current flowing between the electrodes. The electrostatic atomizer as described in any one of Claims 1 thru | or 4 characterized by the above-mentioned. 温度センサー又は湿度センサー又はガスセンサーを備え、前記いずれかのセンサーの計測値に基づいて、照射する近赤外領域の赤外線の照射量を制御する制御部を備えて成ることを特徴とする請求項1乃至4のいずれか一項に記載の静電霧化装置。   A temperature sensor, a humidity sensor, or a gas sensor is provided, and a control unit that controls an irradiation amount of infrared rays in a near infrared region to be irradiated based on a measurement value of any one of the sensors is provided. The electrostatic atomizer as described in any one of 1-4.
JP2006147366A 2006-05-26 2006-05-26 Electrostatic atomizer Expired - Fee Related JP5108256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147366A JP5108256B2 (en) 2006-05-26 2006-05-26 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147366A JP5108256B2 (en) 2006-05-26 2006-05-26 Electrostatic atomizer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011082469A Division JP2011189343A (en) 2011-04-04 2011-04-04 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2007313458A true JP2007313458A (en) 2007-12-06
JP5108256B2 JP5108256B2 (en) 2012-12-26

Family

ID=38847803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147366A Expired - Fee Related JP5108256B2 (en) 2006-05-26 2006-05-26 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP5108256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313463A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Electrostatic atomizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682330A (en) * 1979-12-11 1981-07-06 Matsushita Electric Ind Co Ltd Humidifying apparatus
JPS6172950A (en) * 1984-09-18 1986-04-15 Uetsuto Master Kk Infrared rays humidifier
JP2006068711A (en) * 2004-09-06 2006-03-16 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2006098015A (en) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd Humidifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682330A (en) * 1979-12-11 1981-07-06 Matsushita Electric Ind Co Ltd Humidifying apparatus
JPS6172950A (en) * 1984-09-18 1986-04-15 Uetsuto Master Kk Infrared rays humidifier
JP2006068711A (en) * 2004-09-06 2006-03-16 Matsushita Electric Works Ltd Electrostatic atomizing device
JP2006098015A (en) * 2004-09-30 2006-04-13 Matsushita Electric Ind Co Ltd Humidifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313463A (en) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd Electrostatic atomizer
JP4645528B2 (en) * 2006-05-26 2011-03-09 パナソニック電工株式会社 Electrostatic atomizer

Also Published As

Publication number Publication date
JP5108256B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP2005296753A (en) Electrostatic atomizing device
US20120126041A1 (en) Discharge device and electrostatic atomization device comprising same
US20200140274A1 (en) Active ingredient generator
JP4442444B2 (en) Electrostatic atomizer
JP2009105006A (en) Method for radiating euv light and exposure method of sensitive substrate using euv light
JP4120685B2 (en) Electrostatic atomizer
WO2013080686A1 (en) Electrostatic atomizing device
JP2009274069A (en) Electrostatic atomizing device
JP4877173B2 (en) Electrostatic atomizer and heated air blower equipped with the same
JP4862779B2 (en) Electrostatic atomizer and hair dryer provided with the same
JP5108256B2 (en) Electrostatic atomizer
JP2008155144A (en) Electrostatic atomizing device
JP2011189343A (en) Electrostatic atomizer
US20130020418A1 (en) Electrostatic atomizer
JP2014231047A (en) Electrostatic atomizer
JP4788835B2 (en) Moisturizing method and hair moisturizing apparatus using ion mist
TW201127272A (en) Discharge device
JP4645528B2 (en) Electrostatic atomizer
JP5342464B2 (en) Electric appliance
JP5314606B2 (en) Electrostatic atomization method
WO2011152513A1 (en) Electrostatic atomization device
JP2011036735A (en) Electrostatic atomization apparatus
CN217444829U (en) Water ion generating apparatus and personal care appliance
JP5514342B2 (en) Skin moisturizer
JP2010089088A (en) Electrostatic atomizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110411

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees