JP2007313145A - Instrument for measuring blood vessel elastic property - Google Patents

Instrument for measuring blood vessel elastic property Download PDF

Info

Publication number
JP2007313145A
JP2007313145A JP2006147646A JP2006147646A JP2007313145A JP 2007313145 A JP2007313145 A JP 2007313145A JP 2006147646 A JP2006147646 A JP 2006147646A JP 2006147646 A JP2006147646 A JP 2006147646A JP 2007313145 A JP2007313145 A JP 2007313145A
Authority
JP
Japan
Prior art keywords
pressure
cuff
volume
blood vessel
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147646A
Other languages
Japanese (ja)
Other versions
JP4873998B2 (en
Inventor
Takahiro Soma
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2006147646A priority Critical patent/JP4873998B2/en
Publication of JP2007313145A publication Critical patent/JP2007313145A/en
Application granted granted Critical
Publication of JP4873998B2 publication Critical patent/JP4873998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument for measuring arterial elasticity capable of utilizing a merit to obtain a transmural pressure difference in a blood vessel in blood pressure measurement using a cuff in order to measure the arterial elasticity. <P>SOLUTION: In a process to measure blood pressure by using the cuff of a double cuff method, the blood vessel transmural pressure difference beneath the cuff is defined as zero when cuff pressure is systolic blood pressure, and a blood vessel volumetric change when the cuff pressure falls from the systolic blood pressure by prescribed pressure within 20mmHg is defined as the blood vessel volumetric change when the blood vessel transmural pressure difference beneath the cuff is imposed by prescribed pressure. The blood vessel volumetric change is calculated based on pressure pulse wave detected in blood pressure measurement through the use of air-pressure conversion relation acquired based on a cuff pressure change when prescribed air capacity is injected. The acquired blood vessel volumetric change is divided by the maximum volumetric change value of the pulse wave detected in the blood pressure measurement so as to perform normalization, and then, obtained as the elastic index of the blood vessel beneath the cuff. Accordingly, the influence of baroreflex from a cuff periphery is eliminated and also the edge effect of the cuff and an individual difference are made to be the minimum concerning the blood vessel elastic property measuring instrument. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、阻血用カフを用いた非観血血圧測定において検出される圧脈波を用い、カフ下の動脈血管の容積変化を測定しカフ下の動脈弾性特性を測定する装置に関する。特に、この現象を用い動脈弾性が劣化すると、測定血管に規定の血管内外圧差を加えたときに増加する容積が小さくなり、その程度を測定し、動脈弾性の指標とする血管弾性特性測定装置に関するものである。 The present invention relates to an apparatus for measuring arterial elasticity characteristics under a cuff by measuring a volume change of an arterial blood vessel under the cuff using a pressure pulse wave detected in non-invasive blood pressure measurement using an ischemic cuff. In particular, when arterial elasticity deteriorates using this phenomenon, the volume which increases when a prescribed intravascular external pressure difference is applied to the measurement blood vessel is reduced, and the degree is measured, and this relates to a vascular elastic property measuring apparatus which is used as an index of arterial elasticity. Is.

心血管に関する疾患には、動脈硬化肥厚による病変の進行度の量的異常と、不安定プラ−クとよばれる粥種の表面の繊維状皮膜が薄く脆弱なため、破錠して、血栓や出血、閉塞、狭窄を起こして狭心症や心筋梗塞、脳梗塞を発症する異常がある。動脈硬化症の測定の目的は、その成因である無症候性の危険因子と、動脈硬化の進展具合を正しく評価して、心血管障害を発症させないように予防することにある。最近の無浸襲にて動脈硬化を測定する装置は、血管弾性、脈波伝播スピ−ド、生理的パラメ−タの診断とCT、MRI、超音波等の画像診断に分けられる。画像診断は動脈硬化の質的および量的な進行度を見るのに適しているが、まだ、解像度の上で十分な性能に到っておらず、かつ、造影剤のリスクがあり、装置も大掛かりであり、予防を目的とする集団検診への適用には不向きである。これに較べ、生理的パラメ−タの測定は、測定が手軽に短時間で行え、装置も比較的小さな規模で実現できるので、集団検診のように予防のためのスクリ−ニング的検診には適している。 For cardiovascular diseases, there is a quantitative abnormality in the degree of lesion progression due to thickening of the arteriosclerosis, and the fibrous film on the surface of various species called unstable plaques is thin and fragile. There are abnormalities that cause bleeding, obstruction, and stenosis to cause angina, myocardial infarction, and cerebral infarction. The purpose of the measurement of arteriosclerosis is to prevent the occurrence of cardiovascular disorders by correctly evaluating the asymptomatic risk factors and the progress of arteriosclerosis. Devices that measure arteriosclerosis without recent invasion can be divided into vascular elasticity, pulse wave propagation speed, diagnosis of physiological parameters, and diagnostic imaging such as CT, MRI, and ultrasound. Diagnostic imaging is suitable for seeing the qualitative and quantitative progression of arteriosclerosis, but has not yet achieved sufficient performance in terms of resolution, and there is a risk of contrast agents. It is large-scale and is unsuitable for application to mass screening for the purpose of prevention. Compared to this, the measurement of physiological parameters can be performed easily in a short time, and the device can be realized on a relatively small scale, so it is suitable for screening screening for prevention like mass screening. ing.

生理的パラメ−タの測定法には、脈波伝搬速度測定法、加速度脈波法、Augumentaion Index(AI法)、コロトコフ音スペクトル法があるが、どれも、対称となる動脈の硬化が影響した力学的変化を間接的に検出する方法である。また、血管は一種の弾性チュ−ブであり、弾性チュ−ブは伸びによりその弾性が変化する性質を有する。伸びたときには硬く、伸びていないときは柔らかい特性を示す。したがって、血管弾性は血管内の圧力である血圧値により影響をうける。たとえば、血管弾性を測定した時の収縮期血圧が180mmHgの時と150mmHgの時とで150mmHgの方が柔らかく測定されることとなり、動脈の物性は変化しなくても、血圧が下がったことにより、動脈硬化の程度が改善されたような誤解を与える。臨床応用上、動脈血管内の圧力である血圧により補正が必要となる欠点を持っている。 Physiological parameter measurement methods include pulse wave velocity measurement method, acceleration pulse wave method, Augustaion Index (AI method), and Korotkoff sound spectrum method, all affected by symmetric arterial stiffness. This is a method of indirectly detecting mechanical changes. A blood vessel is a kind of elastic tube, and the elastic tube has a property that its elasticity changes with elongation. Hard when stretched and soft when not stretched. Therefore, vascular elasticity is influenced by the blood pressure value, which is the pressure in the blood vessel. For example, when the vasoelasticity is measured, when the systolic blood pressure is 180 mmHg and 150 mmHg, 150 mmHg is measured softer, and even though the physical properties of the artery do not change, the blood pressure decreases. Misleading as the degree of arteriosclerosis is improved. In clinical application, there is a drawback that correction is required due to blood pressure, which is the pressure in the arterial blood vessel.

最近、これらの欠点を解決するために、動脈の弾性をたとえば直接上腕動脈にて測定でき、かつ動脈の弾性を、血圧値による弾性変化特性として示す方法が提案されている(特許文献1:特開平7−124129号公報)。この方法は、動脈の血管内外圧差による弾性の変化特性を阻血用カフを用いた非観血血圧測定法において同時に行う方法である。光電容積脈波またはインピ−ダンス脈波を用いたOSC法による血圧測定時に検出された脈波の振幅を用いて、動脈の力学的特性である動脈内外圧−血管内容積特性を求め動脈弾性を測定するものである。
特開平7−124129号公報
Recently, in order to solve these drawbacks, a method has been proposed in which the elasticity of an artery can be directly measured, for example, in the brachial artery, and the elasticity of the artery is shown as an elastic change characteristic depending on a blood pressure value (Patent Document 1: Special). Kaihei 7-124129). This method is a method in which the change characteristic of elasticity due to the difference in pressure inside and outside the artery is simultaneously performed in a non-invasive blood pressure measurement method using a cuff for ischemia. Using the amplitude of the pulse wave detected at the time of blood pressure measurement by the OSC method using the photoelectric volume pulse wave or impedance pulse wave, the internal and external pressure-intra-arterial volume characteristic, which is a mechanical characteristic of the artery, is obtained to determine the arterial elasticity. Measure.
JP 7-124129 A

この方法は、阻血用のカフを用いて、カフ圧を収縮期血圧以上から拡張期血圧以下まで徐々に変化させ血圧を測定するときに検出した光電容積脈波またはインピ−ダンス脈波をカフ下の動脈の容積変化としてとらえ、Y軸をこの脈波振幅として、X軸を、拡張期血圧を血管内外圧差の基準とする、血管内外圧差値(血管内圧−血管外圧(カフ圧))として、検出した脈波全てについて、X軸上の検出した脈波毎に、該当する血管内外圧差と該当する血管内外圧差より脈圧(収縮期血圧−拡張期血圧)分高い血管内外圧差によるY軸上の+Δ変化がその脈波振幅値になるようにプロットし、その回帰曲線を求めこれを、動脈内外圧−血管内容積特性(動脈弾性特性)とし示す方法である。 This method uses a cuff for ischemia and gradually changes the cuff pressure from the systolic blood pressure to the diastolic blood pressure and measures the photoelectric volume pulse or impedance pulse wave detected when measuring the blood pressure. As an arterial volume change, the Y axis is the pulse wave amplitude, the X axis is the intravascular external pressure difference value (internal blood pressure-external blood pressure (cuff pressure)) with the diastolic blood pressure as the reference for the intravascular external pressure difference, For all detected pulse waves, for each detected pulse wave on the X-axis, on the Y-axis due to the difference between the corresponding intravascular external pressure and the intravascular external pressure difference higher than the corresponding intravascular external pressure difference by the pulse pressure (systolic blood pressure-diastolic blood pressure) This is a method of plotting so that the + Δ change of becomes the pulse wave amplitude value, obtaining a regression curve thereof, and indicating this as an intra-arterial external pressure-intravascular volume characteristic (arterial elastic characteristic).

特許文献1(特開平7−124129号公報)に開示されている動脈内外圧−血管内容積特性を求め動脈弾性を測定する方法は、阻血用カフを用いた非観血血圧測定において、カフ圧を拡張期血圧より低い圧力から収縮期血圧以上の圧力に、または、収縮期血圧より高い圧力から拡張期血圧以下の圧力に徐々に変化させた場合に検出される脈波を用いている。この脈波は収縮期血圧よりカフ圧が低くなってくると、カフの末梢側に流れる血流によりカフの末梢部位(上腕で測定する場合には前腕および手部)の動脈および静脈血管に流れた血液が徐々に貯まり、カフ末梢側血管の血管内圧が上昇する現象が起こる。この圧力の上昇はカフ下の血液の流を障害することとなりK音(コロトコフ音)の発生を減じる。一方、カフ下血管のラジアル方向にかかる圧力を上昇させることになる。この圧力が上昇すると脈波の振幅が大きくなる現象が生ずる。この現象は通常カフ圧が収縮期血圧から平均血圧にいたる間に生じ、この脈波より求めた動脈内外圧−血管容積特性に影響を与える。また、血管が太い場合には血管内外圧差に対する血管容積の変化は大きくなるため、血管の細い場合に較べて、血管コンプライアンスが大きく計測されてしまい、血管太さの個体差の影響を受ける問題点を有している。この問題を解決するためには、超音波断層装置かCTにより血管径を計測する必要があり、かなり大掛かりな検査となり、健康診断などの予防目的への利用の大きな障害になる。また、阻血用カフは、測定部位に巻いたときカフの幅方向のカフ中心部が最も測定部位を圧迫する力が強く、カフの幅方向の両端方向に圧迫する力が減衰し、端部出は圧迫する力はゼロになるエッジ効果を有する。このエッジ効果は、カフ構造、巻き方、測定部位の太さにより変化する。カフ下の、測定対象となる動脈の長さが、個体ごとに、また、測定ごとに不明になり、測定値間の比較が行えない問題点がある。 Patent Document 1 (Japanese Patent Application Laid-Open No. 7-124129) discloses a method for measuring arterial elasticity by determining intra-arterial / external pressure-vessel volume characteristics. In non-invasive blood pressure measurement using an ischemic cuff, cuff pressure is used. The pulse wave detected when the pressure is gradually changed from a pressure lower than the diastolic blood pressure to a pressure higher than the systolic blood pressure or from a pressure higher than the systolic blood pressure to a pressure lower than the diastolic blood pressure is used. When the cuff pressure is lower than the systolic blood pressure, this pulse wave flows into the arteries and venous blood vessels in the cuff's peripheral part (the forearm and hand when measuring with the upper arm) due to the blood flow flowing to the peripheral side of the cuff. The blood gradually accumulates, and the blood pressure inside the cuff peripheral blood vessel rises. This increase in pressure impedes blood flow under the cuff and reduces the generation of K sounds (Korotkoff sounds). On the other hand, the pressure applied in the radial direction of the cuff blood vessel is increased. When this pressure rises, a phenomenon occurs in which the amplitude of the pulse wave increases. This phenomenon usually occurs while the cuff pressure is from the systolic blood pressure to the average blood pressure, and affects the intra-arterial / external pressure-blood vessel volume characteristic obtained from this pulse wave. In addition, when the blood vessel is thick, the change in the blood vessel volume with respect to the pressure difference between the inside and outside of the blood vessel becomes large, so that the blood vessel compliance is measured larger than that when the blood vessel is thin, and it is affected by individual differences in the blood vessel thickness. have. In order to solve this problem, it is necessary to measure the diameter of the blood vessel using an ultrasonic tomography device or CT, which is a considerably large-scale examination, which is a great obstacle to use for preventive purposes such as health checkups. In addition, when the cuff for ischemia is wound around the measurement site, the center of the cuff in the width direction of the cuff has the strongest force to compress the measurement site, and the force of pressing in the both ends of the cuff in the width direction is attenuated. Has an edge effect where the pressing force is zero. The edge effect varies depending on the cuff structure, the winding method, and the thickness of the measurement site. The length of the artery to be measured under the cuff becomes unknown for each individual and for each measurement, and there is a problem that comparison between measured values cannot be performed.

ラテックス等弾性をもった物質で作られた弾性管の内径変化と管内外圧差(内圧−外圧)との関係を調べると、内外圧差がマイナスの状態からプラスの状態になると、圧閉状態から急激に開き、大きな内径変化を示すという特徴的な現象がみられる。また、この弾性管の材質を変えずに管壁の厚みのみをかえると、外圧を大きくしないと圧閉できなくなる現象の発生とともに、圧閉状態から管内外圧差を大きくしていった時、発生する急激な内径の変化がおきにくくなる現象が見られる。この現象は動脈硬化になったときの動脈血管の性状とよく似ている。本発明は、この現象を用い、動脈弾性が劣化すると、測定血管に規定の血管内外圧差を加えたときに増加する容積が小さくなり、その程度を測定し、動脈弾性の指標とする測定装置に関するものである。カフ下の動脈血管は弾性特性をもった管であり、弾性管と同様に、血管壁の肥厚もなく正常なときには、血管内外圧差がプラスになると、圧閉されていた血管が急激に開く特性をもっている。動脈硬化になり血管が肥厚してくると、血管のコンプライアンスが小さくなり血管が開きにくくなる現象が見られる。血圧測定のときのカフ下の血管に掛かる血管内外圧差(血管内圧(血圧)−血管外圧(カフ圧))は、カフ圧が収縮期血圧と一致したときがゼロで、カフ圧が収縮期血圧よりΔP下がると、カフ下の血管にΔPの血管内外圧差がかかることと等価になる。すなわち、カフを測定部位に巻いての血圧測定は、血管に内外圧差を都合よく掛けることが可能な方法である。しかし、血圧測定過程において、徐々にカフ圧を減圧して、カフ圧が収縮期血圧より低くなると、カフ末梢側に流れる血流により、徐々にカフ末梢側の血管内圧が上昇する現象が発生する。末梢側の圧力がカフ圧に近づいてくると末梢側からの圧力反射が生じ、カフ下の容積変化が大きくなる現象が生じ、血管内外圧差と容積変化の関係の計測に大きな影響をあたえるという問題点がある。 Examining the relationship between the change in the inner diameter of an elastic tube made of an elastic material such as latex and the internal / external pressure difference (internal pressure-external pressure), when the internal / external pressure difference goes from a negative state to a positive state, A characteristic phenomenon that shows a large change in inner diameter is observed. In addition, if only the thickness of the tube wall is changed without changing the material of the elastic tube, it will not be able to be closed unless the external pressure is increased, and it will occur when the pressure difference inside the tube is increased from the closed state. There is a phenomenon that sudden changes in the inner diameter are less likely to occur. This phenomenon is very similar to that of arterial blood vessels when arteriosclerosis occurs. The present invention relates to a measurement apparatus that uses this phenomenon, and when the arterial elasticity deteriorates, the volume that increases when a prescribed intravascular / external pressure difference is applied to the measurement blood vessel is reduced, and the degree is measured and used as an index of arterial elasticity. Is. The arterial blood vessel under the cuff is a tube with elastic properties, and like the elastic tube, when the blood vessel wall thickness is normal and the normal pressure difference between the blood vessel and the blood vessel is positive, the capped blood vessel opens rapidly Have When arteriosclerosis is caused and the blood vessels are thickened, there is a phenomenon that the blood vessel compliance becomes small and the blood vessels are difficult to open. The intra- and external-pressure difference (intravascular pressure (blood pressure)-external blood pressure (cuff pressure)) applied to the blood vessel under the cuff at the time of blood pressure measurement is zero when the cuff pressure matches the systolic blood pressure, and the cuff pressure is the systolic blood pressure. When ΔP is further lowered, this is equivalent to the fact that ΔP has an intravascular pressure difference applied to the blood vessel under the cuff. That is, blood pressure measurement with a cuff wrapped around a measurement site is a method that can conveniently apply a difference in internal and external pressure to a blood vessel. However, in the blood pressure measurement process, when the cuff pressure is gradually reduced and the cuff pressure becomes lower than the systolic blood pressure, the blood pressure flowing toward the cuff distal side causes a phenomenon that the intravascular pressure on the cuff distal side gradually increases. . When the pressure on the peripheral side approaches the cuff pressure, pressure reflection from the peripheral side occurs, causing a phenomenon in which the volume change under the cuff increases, which has a significant effect on the measurement of the relationship between the intravascular external pressure difference and the volume change There is a point.

本発明は、上記問題点に鑑みてなされたもので、動脈の弾性を測るための血管内外圧差をできるだけ小さく設定を行い、カフ末梢側への血液の拍出によりカフ末梢血管の内圧側が上がりカフ圧に近づく前に計測することにより、カフ末梢側からの圧力反射による影響を排除し、カフを用いた血圧測定法の血管内外圧差が都合よくかけられる利点を生かした動脈弾性測定装置を提供することにある。 The present invention has been made in view of the above problems, and sets the intravascular external pressure difference for measuring the elasticity of the artery as small as possible, and the internal pressure side of the cuff peripheral blood vessel rises due to the blood pumping out to the cuff peripheral side. An arterial elasticity measurement device that eliminates the effects of pressure reflection from the cuff distal side by measuring before approaching the pressure, and makes use of the advantage that the blood pressure measurement method using the cuff can be conveniently applied to the blood pressure inside and outside the blood vessel is provided. There is.

上記目的を達成するために、本発明の血管弾性特性測定装置は、阻血用空気袋と阻血用空気袋の概中央部の測定部位と阻血用空気袋の間に位置する脈波検出用空気袋を持ったカフと、このカフを加圧する加圧手段と、カフから空気を漏らす排気兼減圧手段と、阻血用空気袋のカフ圧力と脈波検出用空気袋からの脈波を検出する圧力検出手段と、圧力検出部からの信号からカフ圧と圧脈波信号を増幅分離しデジタル信号に変換する信号処理手段と、規定の空気容積を一定速度で脈波検出用空気袋に注入する空気注入手段と、収縮期血圧のときのカフ下の血管容積をゼロとして、収縮期血圧より規定圧力下がったときのカフ下血管容積変化を圧脈波信号から推定する容積推定手段と、カフ下の最大血管容積変化を圧脈波から推定する最大容積推定手段と、収縮期血圧より規定圧下がったときのカフ下血管容積変化を該最大容積変化で正規化する容積正規化手段を有することを特徴とするものである。また、規定圧力値が、20mmHg以下であることを特徴とする。また、空気注入手段が、定速、定容量を注入可能なシリンジポンプとシリンジよりなることを特徴とする。また、容積推定手段が、収縮期血圧のカフ圧下において、空気注入手段により注入した空気の注入容積波形を入力、カフ圧変化を出力した場合の、伝達関数を求めることを特徴とする。最大容積推定手段が、拡張期血圧のカフ圧下において、空気注入手段により注入した空気の注入容積波形を入力、カフ圧変化を出力した場合の、伝達関数を求めることを特徴とする。容積正規化手段は、容積推定手段で求めた収縮期血圧より規定圧力低いときのカフ下血管容積をカフ下の最大容積変化で除することにより行うことを特徴とする。 In order to achieve the above object, the blood vessel elastic characteristic measuring device according to the present invention is a pulse wave detecting air bag located between a measuring site at a substantially central portion of the ischemic air bag and the ischemic air bag and the ischemic air bag. Cuff with pressure, pressurizing means for pressurizing the cuff, exhaust and decompression means for leaking air from the cuff, pressure detection for detecting the cuff pressure of the air bag for ischemia and the pulse wave from the air bag for detecting the pulse wave Means, signal processing means for amplifying and separating the cuff pressure and the pressure pulse wave signal from the signal from the pressure detection unit and converting them into a digital signal, and air injection for injecting a specified air volume into the pulse wave detection air bag at a constant speed Means, a volume estimation means for estimating a change in blood volume under the cuff from the pressure pulse wave signal when the blood pressure under the cuff at the time of systolic blood pressure is zero, and when the pressure falls below the systolic blood pressure, and a maximum under the cuff. Maximum volume estimation to estimate blood vessel volume change from pressure pulse wave Stage and is characterized in that it has a volume normalization means for normalizing with said maximum volume change of the cuff under arterial volume change when dropped specified pressure from systolic blood pressure. The specified pressure value is 20 mmHg or less. In addition, the air injection means includes a syringe pump and a syringe capable of injecting a constant speed and a constant volume. Further, the volume estimation means is characterized in that, under the cuff pressure of systolic blood pressure, the transfer function is obtained when the injection volume waveform of the air injected by the air injection means is input and the change in cuff pressure is output. The maximum volume estimating means is characterized in that, under the cuff pressure of the diastolic blood pressure, an input volume waveform of the air injected by the air injecting means is input and a transfer function is obtained when a change in cuff pressure is output. The volume normalizing means is characterized in that it is performed by dividing the subcuff blood vessel volume when the pressure is lower than the systolic blood pressure obtained by the volume estimating means by the maximum volume change under the cuff.

また、本発明の血管弾性特性測定装置は、測定部位の血管を阻血する阻血用空気袋と阻血用空気袋と測定部位間のカフ幅方向の概中央部に脈波検出用空気袋を持ったカフと、圧力センサ−からの信号から阻血用空気袋のカフ圧と脈波検出用空気袋にて検出した圧脈波を分離し、デジタル信号に変換する信号処理手段と、このカフを加圧する加圧手段と、カフから空気を漏らす排気兼減圧手段と、ダブルカフ法による血圧測定を行う脈波とカフ圧デ−タを検出する血圧測定デ−タ検出部、及び血圧を決定する血圧測定部からなる血圧測定手段と、規定の空気容積を一定の速度で脈波検出用空気袋に注入する空気注入手段と、カフ圧を概収縮期血圧値に加圧しホ−ルドした状態で、概空気注入手段により注入した空気容積変化により発生するカフ圧変化から、注入空気容積を入力、それにより生じたカフ圧変化を出力としたときの伝達関数を求め、この伝達関数を用いて、収縮期血圧より1拍高い脈波から、収縮期血圧より規定圧下がった圧力より1拍低い脈波まで検出された圧脈波に対応する容積変化を推定する容積変化検出部1と、カフ圧が収縮期血圧より規定圧力低いカフ圧の血管容積を該容積変化検出部1にて求めた容積変化から推定する容積推定部からなる容積推定手段と、同様にカフ圧を概拡張期血圧値に加圧しホ−ルドした状態で、注入した空気容積変化により発生するカフ圧変化から、注入空気容積を入力、それにより生じたカフ圧変化を出力としたときの伝達関数を求め、この伝達関数を用いて、拡張期血圧より規定圧力高いカフ圧から拡張期血圧までに検出された圧脈波に対応する容積変化を求める容積変化検出部2と、求めた容積変化から最大値を求め最大容積変化量を推定する最大容積変化推定部からなる最大容積推定手段と、該容積推定手段のより求めた容積変化推定値と最大値推定手段より求めた最大容積変化推定値の割合を計算する容積正規化手段、および、計算結果の正規化した容積である血管容積変化率、エラ−信号を表示する表示部からなる。血圧測定手段の該血圧測定デ−タ検出部では、カフ圧を収縮期血圧より約30mmHg程度まで上げ、その後、カフ圧力を、2〜3mmHg/秒のほぼ一定の所定の減圧速度で徐々に減圧し、カフ圧が拡張期血圧より低い圧力になるまで、10ms毎(所定秒毎)にカフ圧と、このカフ圧に重畳している圧脈波信号を分離してペアで内部メモリ−に記録する。血圧測定手段の血圧測定部は、血圧測定デ−タ検出部に記録されている圧脈波信号の振幅をカフの減圧が開始されてから時系列にチュックし、振幅が急におおきくなった時のカフ圧を収縮期血圧、振幅が減少開始した時のカフ圧を拡張期血圧として記録する。容積推定手段の該容積変化検出部1は、血圧測定終了後、収縮期血圧値に加圧した状態でのカフ及び生体のコンプライアンスを伝達関数として検出するために、収縮期血圧のカフ圧にそれぞれ再度加圧、圧力をホ−ルドした状態で、空気注入ポンプにて脈波の容積変化に近い規定の空気量を脈波検出カフに矩形波状に注入し、この注入により発生する圧力変化を検出し、容積を入力値、そのときのカフ圧変化を出力値とし、その入出力間の伝達関数を求める。容積推定手段の容積推定部は血圧測定デ−タ検出部に記録されている収縮期血圧時から規定の圧力値さがった圧力値より高いカフ圧にて最初に検出された脈波と、収縮期血圧から規定の圧力値さがった圧力値より低いカフ圧にて最初に検出された脈波に該当する容積変化の平均値を求め、デ−タ記憶部に記憶する。最大容積推定手段の容積変化検出部2は容積脈波検出部1と同様に拡張期血圧のカフ圧にて伝達関数を求める。カフ圧が拡張期血圧より規定圧力値高い圧より拡張期血圧間に検出されている圧脈波より脈波の容積変化を求め、内部メモリに記録する。最大容積推定部はカフ下の血管全開時の容積を求めるため、血圧測定時に記録した最大容積変化値を求める。デ−タ記憶部に記録されている拡張期血圧より規定圧力高いカフ圧から拡張期血圧までに検出された脈波に対する容積変化から最大容積変化を検出しメモリ−に記録する。容積正規化手段は、カフ末梢側に流れる血流に起因しない、カフの阻血用空気袋の中央部にて血管が圧閉されている状態にて、血管圧閉部位の近くまで、心臓収縮期にカフ上流部から侵入してくる血流により生じる容積変化を排除するため、阻血カフの中央部脈波検出用空気袋に収縮期血圧ポイントより1つ前の脈波に該当する容積を記憶するノイズ除去部と、カフ下の血管容積の変化が、血管が太い場合には細い場合に較べ大きく、血管径の個体差によるバラツキを持っているので、このバラツキを排除するためカフ下の血管が全開状態となる容積により正規化を行っている正規化部とよりなる。正規化部にては、メモリ−に記録されている容積変化からを同様にメモリ−に記録されているノイズ分の容積を引いたものを、同様に最大容積変化からノイズ分の容積を引いたもので除算し、100倍して%で換算し、血管開口割合としてメモリ−に記憶する。表示部は、メモリに保管されている測定結果である収縮期血圧値、拡張期血圧値、血管容積変化率、及び、体動等ア−チファクトおよびノイズにより、計測ができなかった場合のエラ−内容を、LCD等にて表示する。 In addition, the blood vessel elastic property measuring apparatus of the present invention has a blood pressure detecting air bag for blocking blood vessels at a measurement site, a blood pressure detecting air bag, and a pulse wave detection air bag at a substantially central portion in the cuff width direction between the measurement sites. The cuff and the signal from the pressure sensor are separated from the cuff pressure of the air bag for ischemia and the pressure pulse wave detected by the air bag for pulse wave detection, and converted into a digital signal, and the cuff is pressurized. Pressurization means, exhaust / decompression means for leaking air from the cuff, blood pressure measurement data detection section for detecting pulse wave and cuff pressure data for blood pressure measurement by the double cuff method, and blood pressure measurement section for determining blood pressure A blood pressure measuring means comprising: an air injecting means for injecting a prescribed air volume into a pulse wave detection air bag at a constant speed; Cuff generated by change in volume of air injected by injection means From the change, the transfer function when the volume of the injected air is input and the change in the cuff pressure generated thereby is output is obtained. Using this transfer function, the pulse wave that is one beat higher than the systolic blood pressure is specified from the systolic blood pressure. A volume change detecting unit 1 that estimates a volume change corresponding to a pressure pulse wave that has been detected up to a pulse wave that is one beat lower than the reduced pressure, and a blood vessel volume with a cuff pressure that is a prescribed pressure lower than the systolic blood pressure is the volume. Generated by the volume change of the injected air in the same manner as the volume estimation means comprising the volume estimation section estimated from the volume change obtained by the change detection section 1 and the cuff pressure being increased to the approximate diastolic blood pressure value and held. From the change in cuff pressure, the transfer function when the volume of the injected air is input and the change in cuff pressure generated as a result is output is obtained. Using this transfer function, the cuff pressure is higher than the diastolic blood pressure by a specified pressure. Detected by A volume change detecting unit 2 for obtaining a volume change corresponding to a pulse wave; a maximum volume estimating unit comprising a maximum volume change estimating unit for obtaining a maximum value from the obtained volume change and estimating a maximum volume change amount; and The volume normalization means for calculating the ratio between the volume change estimated value obtained from the above and the maximum volume change estimated value obtained from the maximum value estimating means, and the blood vessel volume change rate and error signal, which are normalized volumes of the calculation results, It consists of a display unit that displays. The blood pressure measurement data detector of the blood pressure measurement means raises the cuff pressure from the systolic blood pressure to about 30 mmHg, and then gradually reduces the cuff pressure at a substantially constant predetermined pressure reduction rate of 2 to 3 mmHg / sec. Then, until the cuff pressure becomes lower than the diastolic blood pressure, the cuff pressure and the pressure pulse wave signal superimposed on the cuff pressure are separated and recorded in pairs in the internal memory every 10 ms (predetermined every second). To do. The blood pressure measurement unit of the blood pressure measurement means checks the amplitude of the pressure pulse wave signal recorded in the blood pressure measurement data detection unit in time series after the cuff decompression is started, and the amplitude suddenly increases. The cuff pressure is recorded as systolic blood pressure, and the cuff pressure when the amplitude starts decreasing is recorded as diastolic blood pressure. The volume change detection unit 1 of the volume estimation means detects the cuff and the compliance of the living body as a transfer function in a state in which the systolic blood pressure value is pressurized after the blood pressure measurement is finished. With pressurization and pressure held again, the air injection pump injects a specified amount of air close to the volume change of the pulse wave into the pulse wave detection cuff in a rectangular wave shape, and detects the pressure change generated by this injection Then, using the volume as the input value and the cuff pressure change at that time as the output value, the transfer function between the input and output is obtained. The volume estimation unit of the volume estimation means includes a pulse wave first detected at a cuff pressure higher than a pressure value obtained by reducing a prescribed pressure value from the systolic blood pressure recorded in the blood pressure measurement data detection unit, and a systolic period An average value of volume changes corresponding to a pulse wave first detected at a cuff pressure lower than the pressure value obtained by reducing the prescribed pressure value from the blood pressure is obtained and stored in the data storage unit. The volume change detector 2 of the maximum volume estimator obtains the transfer function using the cuff pressure of the diastolic blood pressure as in the volume pulse wave detector 1. The volume change of the pulse wave is obtained from the pressure pulse wave detected between the diastolic blood pressures from the pressure whose cuff pressure is higher than the diastolic blood pressure by a specified pressure value, and recorded in the internal memory. The maximum volume estimation unit obtains the maximum volume change value recorded at the time of blood pressure measurement in order to obtain the volume when the blood vessel under the cuff is fully opened. The maximum volume change is detected from the volume change with respect to the pulse wave detected from the cuff pressure higher than the diastolic blood pressure recorded in the data storage unit to the diastolic blood pressure and recorded in the memory. Volume normalization means is in the systolic phase until the blood vessel is closed in the central part of the cuff ischemic air bag, which is not caused by the blood flow flowing to the cuff peripheral side, to the vicinity of the vascular pressure closure site. In order to eliminate the volume change caused by the blood flow entering from the cuff upstream portion, the volume corresponding to the pulse wave immediately before the systolic blood pressure point is stored in the central pulse wave detection air bag of the ischemic cuff. The change in the volume of the blood vessel under the cuff and the noise removal unit is larger when the blood vessel is thicker than when it is thin, and there is a variation due to individual differences in the diameter of the blood vessel.To eliminate this variation, the blood vessel under the cuff It consists of a normalization part which normalizes with the volume which will be in a fully open state. In the normalization unit, the volume of noise recorded in the memory is subtracted from the volume change recorded in the memory, and the volume of noise is similarly subtracted from the maximum volume change. Divide by one, multiply by 100, convert to%, and store in the memory as the blood vessel opening ratio. The display unit displays an error when measurement is not possible due to artifacts such as systolic blood pressure value, diastolic blood pressure value, blood vessel volume change rate, and body movement artifacts and noise stored in the memory. The contents are displayed on an LCD or the like.

特許文献1に開示されている動脈内外圧−血管内容積特性を求め動脈弾性を測定する方法にては、阻血用カフを用いた非観血血圧測定において、カフ圧を拡張期血圧より低い圧力から収縮期血圧以上の圧力に、または、収縮期血圧より高い圧力から拡張期血圧以下の圧力に徐々に変化させた場合に検出される脈波を用いている。この脈波は収縮期血圧よりカフ圧が低い場合にカフの末梢側に流れる血流により、阻血カフの末梢部位(上腕で測定する場合には前腕および手部)の動脈および静脈血管にこの流れた血液が徐々に貯まり、カフ末梢側血管の血管内圧が上昇する現象が起こる。この圧力の上昇はカフ下の血液の流を障害することとなる。一方、血管のラジアル方向にかかる圧力を上昇させることになる。この圧力が上昇すると脈波の振幅が大きくなる現象が生ずる。この現象はカフ圧が収縮期血圧から平均血圧にいたる間に生じ、この脈波より求めた動脈内外圧−血管容積特性に影響を与える。しかし、本発明の血管弾性特性測定装置によれば、血管内外圧差の規定圧を、拍出によるカフ末梢側の血管圧力がカフ圧に近づきカフ末梢からの圧反射による影響がでるような大きな値にしないことにより、この影響を排除できる。また、血管が太い場合には血管内外圧差に対する血管容積の変化は大きくなるため、血管の細い場合に較べて、血管コンプライアンスが大きく計測されてしまい、血管太さの個体差の影響を受ける問題点を有している。また、阻血用カフは、測定部位に巻いたときカフの幅方向のカフ中心部が最も測定部位を圧迫する力が強く、カフの幅方向の両端方向に圧迫する力が減衰し、端部出は圧迫する力はゼロになるエッジ効果をも有する。このエッジ効果はカフの構造、カフの巻き方、測定部位の太さで変化する問題点を有している。この問題は、超音波断層装置かCTによりカフ下の血管圧迫状況を計測し、補正する必要がある。かなり大掛かりな検査となり、健康診断などの予防目的への利用の大きな障害になりえる。これに対して、本発明の本発明の血管弾性特性測定装置によれば,阻血用空気袋の中央部にて完全に覆われている脈波検出用空気袋で脈波を検出することにより、エッジまで均一に圧迫されたカフで脈波を検出することにより、また、カフ下の血管容積最大値にて、規定血管内外圧差にての血管容積変化を正規化しているので、血管径の個体差、カフエッジ効果の影響を排除した動脈弾性特性が測定可能である。 In the method of determining arterial elasticity by determining intra-arterial / external pressure-vessel volume characteristics disclosed in Patent Document 1, the cuff pressure is lower than the diastolic blood pressure in non-invasive blood pressure measurement using an ischemic cuff. The pulse wave detected when the pressure is gradually changed from a pressure higher than the systolic blood pressure to a pressure lower than the diastolic blood pressure is used. When the cuff pressure is lower than the systolic blood pressure, this pulse wave flows to the arterial and venous blood vessels in the peripheral part of the ischemic cuff (forearm and hand when measured with the upper arm) due to the blood flow flowing to the distal side of the cuff The blood gradually accumulates, and the blood pressure inside the cuff peripheral blood vessel rises. This increase in pressure will impede blood flow under the cuff. On the other hand, the pressure applied in the radial direction of the blood vessel is increased. When this pressure rises, a phenomenon occurs in which the amplitude of the pulse wave increases. This phenomenon occurs while the cuff pressure changes from the systolic blood pressure to the average blood pressure, and affects the intra-arterial / external pressure-blood vessel volume characteristic obtained from this pulse wave. However, according to the vascular elastic property measuring apparatus of the present invention, the specified pressure of the intravascular external pressure difference is a large value such that the blood pressure on the cuff distal side due to the pumping approaches the cuff pressure and the influence of baroreflex from the cuff peripheral appears. This effect can be eliminated by not making it. In addition, when the blood vessel is thick, the change in the blood vessel volume with respect to the pressure difference between the inside and outside of the blood vessel becomes large, so that the blood vessel compliance is measured larger than that when the blood vessel is thin, and it is affected by individual differences in the blood vessel thickness. have. In addition, when the cuff for ischemia is wound around the measurement site, the center of the cuff in the width direction of the cuff has the strongest force to compress the measurement site, and the force of pressing in the both ends of the cuff in the width direction is attenuated. Also has an edge effect where the pressing force is zero. This edge effect has a problem that it varies depending on the structure of the cuff, how to wind the cuff, and the thickness of the measurement site. To solve this problem, it is necessary to measure and correct the cuffed blood vessel compression situation using an ultrasonic tomograph or CT. This is a very large test and can be a major obstacle to preventive purposes such as health checkups. On the other hand, according to the blood vessel elastic property measuring apparatus of the present invention of the present invention, by detecting the pulse wave with the pulse wave detecting air bag completely covered with the central part of the air bag for ischemia, By detecting the pulse wave with a cuff that is uniformly compressed to the edge, and by maximizing the vascular volume change under the specified vascular internal / external pressure difference with the maximum vascular volume under the cuff, the individual of the vascular diameter It is possible to measure arterial elastic characteristics excluding the influence of the difference and the cuff edge effect.

以下、この発明の実施の形態について図面を参照し説明する。なお、実施例は一例でありこれに限定されるものではない。図1は本実施形態の動脈弾性測定システムの構成を示すブロック図である。動脈弾性測定装置30は、測定部位に装着する阻血用空気袋(阻血用カフ)2と脈波検出用空気袋(脈波検出用カフ)3を有する、いわゆるダブルカフ方式用のカフ1と、カフ1の空気を大気に開放する機能と密閉する機能と徐々に排気する機能を併せ持ったバルブ6による排気兼減圧手段と、カフ1を加圧する加圧ポンプ7による加圧手段と、カフ1が測定部位を加圧するカフ圧信号とこのカフ圧信号に重畳している脈波検出用空気袋3検出の圧脈波信号を検出する圧力センサ8と、脈波検出用空気袋3の検出する圧脈波信号のみを検出するために阻血用空気袋2により検出される圧脈波信号を減衰し、阻血用空気袋2の阻血圧力のみを検出するためのメカニカルフィルタを構成する流体抵抗5とバッファタンク4と、信号を増幅するAmp9と、カフ圧信号から重畳する圧脈波信号を分離するフィルタ10と、カフ圧信号と分離した圧脈波信号をデジタル信号に変換しCPU(中央制御部)13に送るA/Dコンバ−タ11とよりなる信号処理手段と、カフ1を収縮期血圧以上に加圧ポンプ7にて加圧し、バルブ6にて拡張期血圧以下のカフ圧まで定速で減圧しながらカフ1からカフ圧と圧脈波を計測し、記憶部20の血圧測定デ−タベ−ス22に記憶する血圧測定デ−タ検出部(1)14と、血圧測定デ−タベ−ス22に記憶されたカフ圧と圧脈波を用いて収縮期血圧と拡張期血圧を求めて、記憶部23の血圧値デ−タベ−スに記憶する血圧測定部15と、圧脈波から容積脈波を求めるために使用する伝達関数を求めるために、血圧測定後、血圧値デ−タベ−ス23に記憶した収縮期血圧値に再度カフ1を加圧し、カフ圧をホ−ルドした状態で、空気注入ポンプ12にて、規定量の空気を、規定速度で注入し、そのときのカフ1のカフ圧変化を圧力センサ8の信号から検出し、伝達関数を求め、その伝達関数を用いて、血圧測定デ−タベ−スに記憶されている圧脈波より容積変化を計算しデ−タ記憶部20の容積デ−タベ−ス24に記憶する容積変化検出部(1)16と、拡張期血圧値に再度カフ1を加圧し、カフ圧をホ−ルドした状態で、空気注入ポンプ12にて、規定量の空気を、規定速度で注入し、そのときのカフ1のカフ圧変化を圧力センサ8の信号から検出し、伝達関数を求め、その伝達関数を用いて、血圧測定デ−タベ−スに記憶されている圧脈波より容積変化を計算しデ−タ記憶部20の容積デ−タベ−ス24に記憶する容積変化検出部(2)17と、容積デ−タベ−ス24に記憶されている容積変化と血管内外圧差がペアになったデ−タから、ノイズ除去部18にて、カフ上流部にて発生するノイズを除去するためにもとめ、また、カフ下の血管に規定の内外圧差が掛かったときの血管容積変化を推定し、また、正規化部19にて最大容積変化で正規化を行い、デ−タ記憶部20のメモリ(4)28に記憶する。最終結果である規定の血管内外圧差を加えたときの血管容積変化率を動脈弾性の指標として、また、測定した収縮期血圧値、拡張期血圧値を出力する表示部21と、各部署の制御と演算等を行うCPU13と各種デ−タを記憶するデ−タ記憶部20と、各コンポ−ネントを接続するメインバスとを備える。なお、13aは装置30全体の制御プログラム等が記憶されたROM(EEPROM)、13bはRAMであり、CPU13から読み出されて、装置30全体の制御(処理フロー)が実行される。 Embodiments of the present invention will be described below with reference to the drawings. In addition, an Example is an example and is not limited to this. FIG. 1 is a block diagram showing the configuration of the arterial elasticity measurement system of this embodiment. The arterial elasticity measuring device 30 includes a cuff 1 for a so-called double cuff system, and a cuff 1 for a so-called double cuff system, which has an air bag for ischemia (ischemic cuff) 2 and a bag for detecting a pulse wave (cuff for detecting a pulse wave) 3 attached to a measurement site. Exhaust and decompression means by a valve 6 having both the function of opening 1 air to the atmosphere, the function of sealing, and the function of gradually exhausting, the pressurizing means by a pressurizing pump 7 that pressurizes the cuff 1, and the cuff 1 measure A pressure sensor 8 for detecting a cuff pressure signal for pressurizing a part, a pressure pulse wave signal for detecting a pulse wave detection air bag 3 superimposed on the cuff pressure signal, and a pressure pulse detected by the pulse wave detection air bag 3 A fluid resistance 5 and a buffer tank constituting a mechanical filter for attenuating only the pressure pulse wave signal detected by the ischemic air bladder 2 to detect only the wave signal and detecting only the ischemic pressure of the ischemic air bladder 2 4 and Am to amplify the signal 9, a filter 10 that separates the pressure pulse wave signal superimposed from the cuff pressure signal, and an A / D converter that converts the pressure pulse wave signal separated from the cuff pressure signal into a digital signal and sends it to a CPU (central control unit) 13. The cuff 1 is cuffed from the cuff 1 while the cuff 1 is pressurized by the pressurizing pump 7 above the systolic blood pressure and reduced to a cuff pressure below the diastolic blood pressure by the valve 6 at a constant speed. The blood pressure measurement data detector (1) 14 that measures the pressure pulse wave and stores it in the blood pressure measurement database 22 of the storage unit 20, and the cuff pressure stored in the blood pressure measurement database 22 The blood pressure measurement unit 15 obtains systolic blood pressure and diastolic blood pressure using the pressure pulse wave and stores them in the blood pressure value database of the storage unit 23, and is used to obtain the volume pulse wave from the pressure pulse wave In order to obtain a transfer function to be stored, after blood pressure measurement, it is stored in the blood pressure value database 23. The cuff 1 is pressurized again to the systolic blood pressure value, and the cuff pressure is held. The air injection pump 12 injects a specified amount of air at a specified speed, and the cuff 1 changes at that time. Is detected from the signal of the pressure sensor 8, a transfer function is obtained, and using the transfer function, a volume change is calculated from the pressure pulse wave stored in the blood pressure measurement database, and the data storage unit 20 The volume change detection unit (1) 16 stored in the volume database 24 and the cuff pressure is again pressurized to the diastolic blood pressure value, and the cuff pressure is held by the air infusion pump 12. An amount of air is injected at a specified speed, the change in cuff pressure of the cuff 1 at that time is detected from the signal of the pressure sensor 8, a transfer function is obtained, and the transfer function is used to obtain a blood pressure measurement database. The volume change is calculated from the stored pressure pulse wave and the volume data in the data storage unit 20 is calculated. -From the volume change detection unit (2) 17 stored in the source 24 and the data in which the volume change stored in the volume database 24 and the intra-vascular external pressure difference are paired, the noise removal unit 18 In order to remove noise generated in the upstream part of the cuff, the change in blood vessel volume when a prescribed internal / external pressure difference is applied to the blood vessel under the cuff is estimated, and the maximum volume change is performed in the normalization unit 19 Is normalized and stored in the memory (4) 28 of the data storage unit 20. The display unit 21 for outputting the measured systolic blood pressure value and diastolic blood pressure value, using the blood vessel volume change rate when the prescribed intravascular external pressure difference as the final result is applied as an index of arterial elasticity, and control of each department And a CPU 13 for performing calculations, a data storage unit 20 for storing various data, and a main bus for connecting the respective components. Reference numeral 13a denotes a ROM (EEPROM) in which a control program and the like for the entire apparatus 30 are stored, and reference numeral 13b denotes a RAM, which is read from the CPU 13 to execute control (processing flow) for the entire apparatus 30.

図2は本発明の実施例における動脈弾性測定装置における全体処理フロ−を示すフロ−チャ−トである。ステップS201で血圧測定に必要な圧脈波とカフ圧をペアにしたデ−タを規定のサンプリング周期で,一定速度で減圧しながら測定し、血圧測定デ−タベ−スに記憶する。具体的なデ−タ収集方法は、後述において、図3で説明する。
ステップS202にて血圧測定デ−タベ−ス22に記憶したデ−タを用いて収縮期血圧、拡張期血圧を計算し、血圧値デ−タベ−ス23に記憶する。具体的な血圧決定方法は、後述において、図4で説明する。
FIG. 2 is a flowchart showing the entire processing flow in the arterial elasticity measuring apparatus according to the embodiment of the present invention. In step S201, data obtained by pairing the pressure pulse wave and cuff pressure necessary for blood pressure measurement are measured at a constant sampling rate while reducing the pressure at a constant speed, and stored in the blood pressure measurement database. A specific data collection method will be described later with reference to FIG.
In step S202, systolic blood pressure and diastolic blood pressure are calculated using the data stored in the blood pressure measurement database 22, and stored in the blood pressure value database 23. A specific blood pressure determination method will be described later with reference to FIG.

ステップS203にて、カフ圧を再度、脈波容積を測定したい収縮期血圧値および拡張期血圧値にカフ圧に上げ、そのカフ圧でホ−ルドし、規定空気容積を規定速度で注入し、そのときのカフ圧変化を収集し、容積を入力、カフ圧を出力としたときの伝達関数を求め、この伝達関数を用いて、血圧測定デ−タベ−ス22に記憶した圧脈波デ−タより、収縮期血圧値から規定圧下がったときの血管容積変化と、脈波による最大容積変化を計算する。具体的な容積変化計測法と具体的な規定空気容積注入方法、および、具体的な伝達関数をもとめる方法は、後述において、図5、図6、図7で説明する。ステップS204にて、カフ下の血管に、規定の内外圧圧力差が掛かった時の血管容積変化が、カフ下の血管容積全体のどの程度割合かを計算する。ステップS205にて、この計算結果を血管開口割合として、また、測定した収縮期血圧値および拡張期血圧値と合わせて表示器に出力する。具体的な血管容積変化率を求める(演算)方法は、後述において、図8、図10、図11で説明する。 In step S203, the cuff pressure is increased again to the systolic blood pressure value and the diastolic blood pressure value at which the pulse wave volume is to be measured, held at the cuff pressure, and the specified air volume is injected at the specified speed. The change in cuff pressure at that time is collected, a transfer function when the volume is input and the cuff pressure is output is obtained, and the pressure pulse wave data stored in the blood pressure measurement database 22 is obtained using this transfer function. From the data, the blood vessel volume change when the prescribed pressure is reduced from the systolic blood pressure value and the maximum volume change due to the pulse wave are calculated. A specific volume change measurement method, a specific prescribed air volume injection method, and a method for obtaining a specific transfer function will be described later with reference to FIGS. 5, 6, and 7. In step S204, the ratio of the change in blood vessel volume when a prescribed internal / external pressure difference is applied to the blood vessel under the cuff is calculated to the extent of the total blood vessel volume under the cuff. In step S205, the calculation result is output to the display unit as the blood vessel opening ratio, and together with the measured systolic blood pressure value and diastolic blood pressure value. A specific method for calculating (calculating) the blood vessel volume change rate will be described later with reference to FIGS. 8, 10, and 11.

図3は本発明の実施形態による血圧測定デ−タの検出フロ−を示したフロ−チャ−トである。ステップS301にて圧力センサ−のゼロセットを行う。ステップS302にてバルブを閉じて、ステップS303にて加圧ポンプ7をONし、収縮期血圧より所定高い圧力(例えば、30mmHg程度高い圧力)を目標カフ圧として、ステップS304にてカフ圧が目標カフ圧に到ったかをチェックし、目標カフ圧を超えたらステップS305にて加圧ポンプ7をOFFする。ステップS306にて、バルブ6を制御してカフ圧を2〜3mmHg/秒の減圧スピ−ドにて減圧を開始する。減圧が開始したら、ステップS308にてカフ圧が30mmHg以下になったことを検出するまで、ステップS307にてA/Dコンバ−タより、所定間隔秒(例えば、10ms毎)に、カフ圧と圧脈波信号を取り込み、血圧測定デ−タベ−ス22に記憶することを繰り返し、カフ圧と圧脈波信号がペアになった時系列デ−タをつくる。カフ圧が30mmHg以下になったら、ステップS309にてバルブ6を大気圧に開放する。 FIG. 3 is a flow chart showing a detection flow of blood pressure measurement data according to the embodiment of the present invention. In step S301, the pressure sensor is zero-set. The valve is closed in step S302, the pressurizing pump 7 is turned on in step S303, a pressure higher than a systolic blood pressure (for example, a pressure higher by about 30 mmHg) is set as a target cuff pressure, and the cuff pressure is set in step S304. It is checked whether the cuff pressure has been reached. If the target cuff pressure is exceeded, the pressure pump 7 is turned off in step S305. In step S306, the valve 6 is controlled, and the cuff pressure is started to be reduced at a pressure reduction speed of 2 to 3 mmHg / sec. When the pressure reduction starts, the cuff pressure and pressure are detected at predetermined intervals (for example, every 10 ms) from the A / D converter in step S307 until it is detected in step S308 that the cuff pressure has become 30 mmHg or less. By repeatedly acquiring the pulse wave signal and storing it in the blood pressure measurement database 22, time series data in which the cuff pressure and the pressure pulse wave signal are paired is created. When the cuff pressure becomes 30 mmHg or less, the valve 6 is opened to atmospheric pressure in step S309.

図4は本発明の実施形態による血圧値決定方法を示したフロ−チャ−トである。ステップS401にて、血圧測定デ−タベ−ス22に記憶されている圧脈波デ−タを時間の古い方から新しい方に信号の変化を検索し、急な上昇ポイントを検出したら脈波のボトム点として、それに続く凸点をピ−ク点として検出したら、このボトムとピ−クを対にして圧脈波として検出する。ステップS402にて検出した圧脈波のピ−クからボトム差を振幅として、ボトム点のカフ圧値を圧脈波のカフ圧として血圧測定デ−タベ−ス22に記憶する。これをステップS403にて、血圧測定デ−タベ−ス22の10ms毎の時系列デ−タのENDが検出されるまで繰り返す。ステップS404にて、血圧測定デ−タベ−ス22に記憶した。圧脈波の振幅とカフ圧値が対になった時系列デ−タの時間の古い方から新しい方に圧脈波の振幅を検索しステップ状に増加した最初の圧脈波を収縮期血圧ポイントとしてこの圧脈波と対になっているカフ圧値を収縮期血圧値として血圧値デ−タベ−ス23に記憶する。ステップS405にて、収縮期血圧ポイントより新しい時間方向にデ−タベ−スを検索し、脈波振幅が最大となり、初めて減少したポイントの脈波を拡張期血圧ポイントとしてこの圧脈波と対になっているカフ圧値を拡張期血圧値として血圧値デ−タベ−ス23に記憶する。 FIG. 4 is a flowchart showing a blood pressure value determination method according to the embodiment of the present invention. In step S401, the pressure pulse wave data stored in the blood pressure measurement database 22 is searched for a change in signal from the oldest to the newer one, and if a sudden rise point is detected, the pulse wave data If the following convex point is detected as a peak point as a bottom point, this bottom and peak are detected as a pair of pressure pulses. The cuff pressure value at the bottom point is stored in the blood pressure measurement database 22 as the cuff pressure of the pressure pulse wave from the peak of the pressure pulse wave detected in step S402 as the amplitude. This is repeated until the END of the time series data every 10 ms of the blood pressure measurement database 22 is detected in step S403. In step S404, the blood pressure measurement database 22 stores the blood pressure. The amplitude of the pressure pulse wave and the cuff pressure value are paired, and the amplitude of the pressure pulse wave is retrieved from the oldest to the newest in the time series data time, and the first pressure pulse wave that has increased stepwise is used as the systolic blood pressure. As a point, the cuff pressure value paired with the pressure pulse wave is stored in the blood pressure value database 23 as a systolic blood pressure value. In step S405, the database is searched in a time direction newer than the systolic blood pressure point, the pulse wave amplitude is maximized, and the pulse wave at the first decreased point is paired with this pressure pulse wave as the diastolic blood pressure point. The cuff pressure value is stored in the blood pressure value database 23 as a diastolic blood pressure value.

図5は本発明の実施形態による容積変化検出全体を示したフロ−チャ−トである。ステップS501にてカフ圧が収縮期血圧値であるとき、流体注入手段としての空気注入手段(空気注入ポンプ)12にて注入した流体注入容積信号(空気注入容積信号)を入力、これにより生じたカフ圧信号を出力とした場合の伝達関数を求める。ステップS502にて同様に、カフ圧が拡張期血圧値であるときの空気注入容積信号を入力、カフ圧信号を出力とした場合の伝達関数を求める。ステップS503にて、カフ圧が収縮期血圧値のときの伝達関数を用いて、収縮期血圧ポイントより1拍前に検出された圧脈波から、収縮期血圧値から規定圧下がったカフ圧までに検出されている圧脈波と、収縮期血圧値から該規定圧下がったカフ圧より低いカフ圧にて最初に検出されている圧脈波の容積変化を計算する。ステップS504にて、カフ圧が拡張期血圧値のときの伝達関数を用いて、拡張期血圧より規定圧高いカフ圧より、拡張期血圧ポイントまでに検出されている圧脈波の容積変化を計算する。 FIG. 5 is a flowchart showing the entire volume change detection according to the embodiment of the present invention. When the cuff pressure is the systolic blood pressure value in step S501, the fluid injection volume signal (air injection volume signal) injected by the air injection means (air injection pump) 12 as the fluid injection means is input and generated Obtain the transfer function when the cuff pressure signal is output. Similarly, in step S502, the transfer function when the air injection volume signal when the cuff pressure is the diastolic blood pressure value is input and the cuff pressure signal is output is obtained. In step S503, using the transfer function when the cuff pressure is the systolic blood pressure value, from the pressure pulse wave detected one beat before the systolic blood pressure point to the cuff pressure that has fallen by the prescribed pressure from the systolic blood pressure value The volume change of the pressure pulse wave detected first at the cuff pressure lower than the cuff pressure lower than the specified pressure from the systolic blood pressure value is calculated. In step S504, using the transfer function when the cuff pressure is the diastolic blood pressure value, the volume change of the pressure pulse wave detected up to the diastolic blood pressure point is calculated from the cuff pressure higher than the diastolic blood pressure by the specified pressure. To do.

図6は図5に示した容積変化検出全体フロ−チャ−トのステップS501及びステップS502における伝達関数を求めるために行なう、規定の流体容積(空気容積)を、矩形波状に一定速で注入したときのカフ圧変化を測定する具体的な方法を示す。ステップS601にてバルブ6を閉じ、加圧ポンプ7をONする。カフ圧が目標カフ圧に到ったかをステップS602にてチェックする。カフ圧が目標カフ圧を超えたらステップS603にて加圧ポンプ7をOFFする。ステップS604でカフを含めた圧力系が落ち着くまで所定秒(例えば、10秒程度)間待機する。所定秒(例えば、10秒)経過したらステップS605にてカフ圧を所定秒(例えば10ms)毎にA/Dコンバ−タ11より読み込み容積デ−タベ−ス24に記憶を開始する。ステップS606にて空気注入手段12により、実際の人体の脈波の容積変化に近い規定量の空気を矩形波状に定速で注入する。ステップS607にて空気注入終了後、空気系が安定するまで所定秒(例えば、10秒程度)待つ。所定秒(例えば、10秒程度)経過したらステップS608にてカフ圧のデ−タ収集を終了する。ステップS609にてバルブ6を大気圧に開放する。 FIG. 6 shows a predetermined fluid volume (air volume) injected at a constant speed in the form of a rectangular wave to obtain the transfer function in steps S501 and S502 of the entire volume change detection flowchart shown in FIG. A specific method for measuring the change in cuff pressure is shown. In step S601, the valve 6 is closed and the pressure pump 7 is turned on. Whether the cuff pressure has reached the target cuff pressure is checked in step S602. When the cuff pressure exceeds the target cuff pressure, the pressurizing pump 7 is turned off in step S603. In step S604, the system waits for a predetermined time (for example, about 10 seconds) until the pressure system including the cuff settles. When a predetermined time (for example, 10 seconds) elapses, the cuff pressure is read from the A / D converter 11 every predetermined time (for example, 10 ms) in step S605 and is stored in the volume database 24. In step S606, the air injection means 12 injects a predetermined amount of air close to the actual volume change of the pulse wave of the human body in a rectangular wave shape at a constant speed. After completion of air injection in step S607, a predetermined second (for example, about 10 seconds) is waited until the air system is stabilized. When a predetermined time (for example, about 10 seconds) has elapsed, cuff pressure data collection is terminated in step S608. In step S609, the valve 6 is opened to atmospheric pressure.

図7は図5に示した容積変化検出全体フロ−チャ−トのステップS501,ステップS502のおける伝達関数の具体的な求め方を示す。ステップS701にて、入力した注入空気容積(注入流体容積)をQnとして、出力を注入した空気により変化するカフ圧変化Ynとし、カフ1の脈波検出用空気袋3の容積および生体のコンプライアンスがこの入出力間に並列に接続された状態と等価と考えられるので、入出力間に下記の漸化式(1)が成り立つ。
=A(Q+Qn−1)+BYn-1 (1)
計測した容積デ−タベ−ス24の注入した空気の容積デ−タとカフ圧変化のデ−タを用い最小二乗法にて係数A,Bを求める。ステップS702にて求めた漸化式の妥当性を評価するため、注入した空気の容積デ−タを用いて漸化式(1)を用いて計算した圧変化と、実際に測定し容積デ−タベ−ス24に記憶してあるカフ圧変化との相関係数を求める。ステップS703にて求めた相関係数が所定以上(例えば、0.95以上)かをチェックし、もし、所定未満(例えば、0.95未満)の場合には、体動等ア−チファクトの影響を含めて測定がうまくいかなかったものとして、ステップS705にてエラ−を表示部21に出力して測定を中断し終了する。相関係数が所定以上(例えば、0.95以上)の場合には、計算した伝達関数として漸化式(1)を記憶する。
FIG. 7 shows a specific method for obtaining the transfer function in steps S501 and S502 of the entire volume change detection flowchart shown in FIG. In step S701, the input infused air volume (injected fluid volume) is set as Qn, and the output is set as the cuff pressure change Yn that varies depending on the infused air. Since it is considered equivalent to a state in which the input and output are connected in parallel, the following recurrence formula (1) is established between the input and output.
Y n = A (Q n + Q n-1) + BY n-1 (1)
The coefficients A and B are obtained by the least square method using the volume data of the air injected into the measured volume database 24 and the cuff pressure change data. In order to evaluate the validity of the recurrence formula obtained in step S702, the pressure change calculated using the recurrence formula (1) using the volume data of the injected air, and the actual measured volume data. A correlation coefficient with the cuff pressure change stored in the table 24 is obtained. It is checked whether the correlation coefficient obtained in step S703 is greater than or equal to a predetermined value (for example, 0.95 or higher). In step S705, an error is output to the display unit 21 and the measurement is interrupted and terminated. When the correlation coefficient is not less than a predetermined value (for example, not less than 0.95), the recurrence formula (1) is stored as the calculated transfer function.

図8は本発明の実施例による血管容積変化率演算方法を示したフロ−チャ−トである。ステップS801にて、収縮期血圧より規定圧力低下したときの血管容積変化を演算することにより、カフ下の血管に規定の内外圧差を掛けた場合の血管容積変化を
求める。ステップS802にて、容積デ−タベ−ス24に記憶されている容積変化から最大の容積変化値を求める。ステップS803にて、カフ下の血管に規定の内外圧差を掛けた場合の血管容積変化をカフ下の最大容積で正規化するため、求めた血管容積変化を求めた最大の容積変化値で除算し、血管の開口割合を計算する。
FIG. 8 is a flowchart showing a blood vessel volume change rate calculation method according to the embodiment of the present invention. In step S801, the change in blood vessel volume when the prescribed pressure is reduced from the systolic blood pressure is calculated to obtain the change in blood vessel volume when the prescribed internal / external pressure difference is applied to the blood vessel under the cuff. In step S802, the maximum volume change value is obtained from the volume change stored in the volume database 24. In step S803, in order to normalize the vascular volume change when the specified internal / external pressure difference is applied to the blood vessel under the cuff by the maximum volume under the cuff, the obtained blood vessel volume change is divided by the obtained maximum volume change value. Calculate the vessel opening rate.

図10は、図8に示した血管容積変化率演算方法フロ−チャ−トのステップS801の具体的な好適実施形態を示す。ステップS1001にて、容積デ−タベ−ス24より、収縮期血圧値より規定圧力値低いカフ圧Pより低いカフ圧で最初に検出されている脈波の容積変化を検出してVn+1とする。ステップS1002にて、同様に、容積デ−タベ−ス24より、収縮期血圧値より規定圧力値低いカフ圧Pより高いカフ圧で最初に検出されている脈波の容積変化を検出してVn−1とする。ステップS1003にて、V=(Vn-1+Vn+1)/2を求める。ステップS1004にて、収縮期血圧より高いカフ圧にて、カフの中枢側からカフの圧閉部入り込んでくる血流により発生する容積変化ノイズを排除するため、収縮期血圧値より高いカフ圧値で最初に検出されている脈波の容積変化を容積デ−タベ−ス24から求めこれをノイズ分として、Vから減算した値を、規定の血管内外圧差を加えた場合の血管容積変化として記録する。 FIG. 10 shows a specific preferred embodiment of step S801 of the blood vessel volume change rate calculation method flowchart shown in FIG. In step S1001, the volume change of the pulse wave initially detected at the cuff pressure lower than the cuff pressure P lower than the systolic blood pressure value from the volume database 24 is detected to be Vn + 1 . . Similarly, in step S1002, the volume change of the pulse wave first detected by the cuff pressure higher than the cuff pressure P lower than the systolic blood pressure value by the specified cuff pressure P is detected from the volume database 24. Let n-1 . In step S1003, V n = (V n−1 + V n + 1 ) / 2 is obtained. In step S1004, a cuff pressure value higher than the systolic blood pressure value is removed in order to eliminate volume change noise caused by the blood flowing into the cuff pressure closure part from the central side of the cuff at a cuff pressure higher than the systolic blood pressure. first detected in which the pulse wave volume changes the volume data of in - eat - as noise component so determined from the scan 24, a value obtained by subtracting from the V n, as arterial volume change when added intravascular external pressure difference defined Record.

図11は、図8に示した血管開口割合演算方法フロ−チャ−トのステップS802の具体的な実施例を示す。ステップS1101にて、容積デ−タベ−ス24より、容積変化の最大値Vmaxを検出する。ステップS1102にて、血管が阻血されている状態にても、カフ1の阻血用空気袋2の中枢側からカフの圧閉部入り込んでくる血流により発生する容積変化ノイズを排除するため、収縮期血圧値より高いカフ圧値で最初に検出されている脈波の容積変化を容積デ−タベ−ス24から求めこれをノイズ分として、Vmaxから減算した値を、血管容積変化の最大値として記録する。なお、図9は、図5の容積変化検出方法フロ−チャ−トのステップS502、ステップS503の具体的な計算方法を示す。脈波の容積変化信号には高い周波数成分は含まれていないので、容積変化を求める漸化式は求める容積をデ−タ列をQ、代入する圧脈波であるカフ圧変化のデ−タ列Yとすると
=(Q+Qn−1)/2=(1/2)×((Y−BYn-1)/ A ) (2)
とする。
FIG. 11 shows a specific example of step S802 of the blood vessel opening ratio calculation method flowchart shown in FIG. In step S1101, the volume de - Eat - from scan 24, detects the maximum value V max of the volume change. In step S1102, even in a state where the blood vessel is ischemic, the contraction is performed in order to eliminate volume change noise generated by the blood flow entering the cuff closed portion from the central side of the air bag 2 of the cuff 1. The volume change of the pulse wave first detected with a cuff pressure value higher than the blood pressure value in the period is obtained from the volume database 24, and this is used as a noise component, and the value subtracted from Vmax is the maximum value of the blood vessel volume change. Record as. FIG. 9 shows a specific calculation method of steps S502 and S503 of the volume change detection method flowchart of FIG. Since the high frequency component is not included in the volume change signal of the pulse wave, the recurrence formula for determining the volume change is the data volume of the cuff pressure change which is the pressure pulse wave to be substituted with Q n for the data volume to be obtained. motor when the column Y n Q n = (Q n + Q n-1) / 2 = (1/2) × ((Y n -BY n-1) / a) (2)
And

本発明の実施例の動脈弾性測定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the arterial elasticity measuring system of the Example of this invention. 本発明の実施例の動脈弾性測定装置における全体処理フロ−を示すフロ−チャ−トである。It is a flowchart which shows the whole process flow in the arterial elasticity measuring apparatus of the Example of this invention. 本発明の実施例の血圧測定デ−タの検出フロ−を示したフロ−チャ−トである。2 is a flowchart showing a detection flow of blood pressure measurement data according to an embodiment of the present invention. 本発明の実施例の血圧値決定方法を示したフロ−チャ−トである。It is the flowchart which showed the blood-pressure value determination method of the Example of this invention. 本発明の実施例の容積変化検出全体を示したフロ−チャ−トである。1 is a flowchart showing the entire volume change detection of an embodiment of the present invention. 図5に示した容積変化検出全体フロ−チャ−トのステップS501及びステップS502における伝達関数を求めるために行なう、規定の空気容積を、矩形波状に一定速で注入したときのカフ圧変化を測定する具体的な方法を示す図である。Measures the change in cuff pressure when a prescribed air volume is injected at a constant speed in a rectangular wave shape to obtain the transfer function in steps S501 and S502 of the entire volume change detection flowchart shown in FIG. It is a figure which shows the specific method to do. 図5に示した容積変化検出全体フロ−チャ−トのステップS501,ステップS502のおける伝達関数の具体的な求め方を示す図である。FIG. 6 is a diagram showing a specific method for obtaining a transfer function in steps S501 and S502 of the entire volume change detection flowchart shown in FIG. 5; 本発明の実施例の血管容積変化率演算方法を示したフロ−チャ−トである。1 is a flowchart showing a blood vessel volume change rate calculation method according to an embodiment of the present invention. 図5の容積変化検出方法フロ−チャ−トのステップS502、ステップS503の具体的な計算方法を示す図である。FIG. 6 is a diagram showing a specific calculation method of steps S502 and S503 of the volume change detection method flowchart of FIG. 5; 図8に示した血管容積変化率演算方法フロ−チャ−トのステップS801の具体的な実施例を示す図である。It is a figure which shows the specific Example of step S801 of the vascular volume change rate calculation method flowchart shown in FIG. 図8に示した血管容積変化率演算方法フロ−チャ−トのステップS802の具体的な実施例を示す図である。It is a figure which shows the specific Example of step S802 of the vascular volume change rate calculation method flowchart shown in FIG.

符号の説明Explanation of symbols

1 カフ、2 阻血用空気袋、3 脈波検出用空気袋、8 圧力センサ12 空気注入手段、13 CPU、13a ROM、13b RAM、14 血圧測定データ検出部、15 血圧測定部、16 容積変化検出部(1)、17 容積変化検出部(2)、19 正規化部、20 データ記憶部、21 表示部、22 血圧測定データベース、23 血圧値データベース、24 容積データベース、30 動脈弾性測定装置
1 cuff, 2 air bag for ischemia, 3 air bag for pulse wave detection, 8 pressure sensor 12 air injection means, 13 CPU, 13a ROM, 13b RAM, 14 blood pressure measurement data detection unit, 15 blood pressure measurement unit, 16 volume change detection Unit (1), 17 volume change detection unit (2), 19 normalization unit, 20 data storage unit, 21 display unit, 22 blood pressure measurement database, 23 blood pressure value database, 24 volume database, 30 arterial elasticity measurement device

Claims (6)

阻血用空気袋と阻血用空気袋の概中央部の測定部位と阻血用空気袋の間に位置する脈波検出用空気袋を持ったカフと、該カフを加圧する加圧手段と、該カフから空気を漏らす排気兼減圧手段と、阻血用空気袋のカフ圧力と脈波検出用空気袋からの脈波を検出する圧力検出手段と、該圧力検出部からの信号からカフ圧と圧脈波信号を増幅分離しデジタル信号に変換する信号処理手段と、規定の空気容積を一定速度で脈波検出用空気袋に注入する空気注入手段と、収縮期血圧のときのカフ下の血管容積をゼロとして、収縮期血圧より規定圧力下がったときのカフ下血管容積変化を圧脈波信号から推定する容積推定手段と、カフ下の最大血管容積変化を圧脈波から推定する最大容積推定手段と、収縮期血圧より規定圧下がったときの該カフ下血管容積変化を該最大容積変化で正規化する容積正規化手段を有することを特徴とするカフ下血管弾性特性測定装置。   A cuff having a pulse wave detection air bag positioned between the measurement site in the central part of the air bag for ischemia and the air bag for ischemia and a blood bag for detecting a pulse wave located between the air bag for ischemia, a pressurizing means for pressurizing the cuff, and the cuff Exhaust and decompression means for leaking air, pressure detection means for detecting the cuff pressure of the air bag for ischemia and the pulse wave from the air bag for pulse wave detection, and cuff pressure and pressure pulse wave from the signal from the pressure detection unit Signal processing means for amplifying and separating signals and converting them into digital signals, air injecting means for injecting a prescribed air volume into the pulse wave detection bladder at a constant speed, and zero cuff blood vessel volume during systolic blood pressure A volume estimation means for estimating a cuff blood vessel volume change from a pressure pulse wave signal when a prescribed pressure falls below systolic blood pressure, a maximum volume estimation means for estimating a maximum blood vessel volume change under the cuff from a pressure pulse wave, The subcuff vascular volume when the specified pressure falls below the systolic blood pressure Cuff under blood vessel elasticity characteristic measuring apparatus characterized by having a volume normalization means for normalizing with said maximum volume change changes. 該規定圧力値が、20mmHg以下であることを特徴とする請求項1記載のカフ下血管弾性特性測定装置。 The apparatus according to claim 1, wherein the specified pressure value is 20 mmHg or less. 該空気注入手段が、定速、定容量を注入可能なシリンジポンプとシリンジよりなることを特徴とする請求項1記載のカフ下血管弾性特性測定装置 2. The subcuff blood vessel elastic characteristic measuring device according to claim 1, wherein the air injection means comprises a syringe pump and a syringe capable of injecting a constant speed and a constant volume. 該容積推定手段が、該収縮期血圧のカフ圧下において、該空気注入手段により注入した空気の注入容積波形を入力、カフ圧変化を出力した場合の、伝達関数を求めることを特徴とする請求項1記載のカフ下血管弾性特性測定装置。 The volume estimation means obtains a transfer function when an injection volume waveform of air injected by the air injection means is input and a change in cuff pressure is output under the cuff pressure of the systolic blood pressure. The sub-cuff blood vessel elastic characteristic measuring device according to claim 1. 該最大容積推定手段が、該拡張期血圧のカフ圧下において、該空気注入手段により注入した空気の注入容積波形を入力、カフ圧変化を出力した場合の、伝達関数を求めることを特徴とする請求項1記載のカフ下血管弾性特性測定装置。 The maximum volume estimation means obtains a transfer function when an injection volume waveform of air injected by the air injection means is input and a change in cuff pressure is output under the cuff pressure of the diastolic blood pressure. Item 2. The cuff vascular elasticity measurement apparatus according to Item 1. 該容積正規化手段は、該容積推定手段で求めた収縮期血圧より規定圧力低いときのカフ下血管容積をカフ下の最大容積変化で除することにより行うことを特徴とする請求項1記載のカフ下血管弾性特性測定装置。

2. The volume normalizing means is performed by dividing a subcuff blood vessel volume when a prescribed pressure is lower than a systolic blood pressure obtained by the volume estimating means by a maximum volume change under the cuff. Cuff vascular elasticity measurement device.

JP2006147646A 2006-05-29 2006-05-29 Vascular elasticity measurement device Active JP4873998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147646A JP4873998B2 (en) 2006-05-29 2006-05-29 Vascular elasticity measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147646A JP4873998B2 (en) 2006-05-29 2006-05-29 Vascular elasticity measurement device

Publications (2)

Publication Number Publication Date
JP2007313145A true JP2007313145A (en) 2007-12-06
JP4873998B2 JP4873998B2 (en) 2012-02-08

Family

ID=38847551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147646A Active JP4873998B2 (en) 2006-05-29 2006-05-29 Vascular elasticity measurement device

Country Status (1)

Country Link
JP (1) JP4873998B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008679A2 (en) * 2010-07-12 2012-01-19 조선대학교산학협력단 Apparatus and method for diagnosis of individual characteristics based on oscillometric arterial blood pressure measurement
KR101137402B1 (en) * 2010-02-22 2012-04-20 조선대학교산학협력단 Individual identification apparatus and method based on oscillometric arterial blood pressure measurement
KR20170082453A (en) * 2015-12-07 2017-07-14 산요 세이코 가부시키가이샤 Device for evaluating vascular elasticity
US11213212B2 (en) 2015-12-07 2022-01-04 Samsung Electronics Co., Ltd. Apparatus for measuring blood pressure, and method for measuring blood pressure by using same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139859A (en) * 1998-11-09 2000-05-23 Nippon Colin Co Ltd Artery hardness measuring instrument
JP2000287945A (en) * 1999-04-02 2000-10-17 Terumo Corp Sphygmomanometer
JP2001187033A (en) * 1999-12-28 2001-07-10 Terumo Corp Electronic hemodynamometer
JP3216029B2 (en) * 1993-05-17 2001-10-09 オムロン株式会社 Cardiovascular function measurement device
JP2003093357A (en) * 2001-09-27 2003-04-02 Terumo Corp Electronic tonometer
JP3429487B2 (en) * 2000-10-30 2003-07-22 日本コーリン株式会社 Atherosclerosis evaluation device
WO2003090617A1 (en) * 2002-04-24 2003-11-06 Colin Corporation Pulse wave analyzing method, pulse wave analyzing software, and so forth
JP2004313605A (en) * 2003-04-18 2004-11-11 A & D Co Ltd Vascular elasticity measuring apparatus
JP3601539B1 (en) * 2004-03-26 2004-12-15 松下電工株式会社 Cardiovascular function measurement device
JP3607292B2 (en) * 1993-12-17 2005-01-05 パルス・メトリック・インコーポレイテッド Method and apparatus for treating cardiovascular disorders
JP3638932B2 (en) * 2002-11-14 2005-04-13 コーリンメディカルテクノロジー株式会社 Double cuff for blood pressure measurement

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3216029B2 (en) * 1993-05-17 2001-10-09 オムロン株式会社 Cardiovascular function measurement device
JP3607292B2 (en) * 1993-12-17 2005-01-05 パルス・メトリック・インコーポレイテッド Method and apparatus for treating cardiovascular disorders
JP2000139859A (en) * 1998-11-09 2000-05-23 Nippon Colin Co Ltd Artery hardness measuring instrument
JP2000287945A (en) * 1999-04-02 2000-10-17 Terumo Corp Sphygmomanometer
JP2001187033A (en) * 1999-12-28 2001-07-10 Terumo Corp Electronic hemodynamometer
JP3429487B2 (en) * 2000-10-30 2003-07-22 日本コーリン株式会社 Atherosclerosis evaluation device
JP2003093357A (en) * 2001-09-27 2003-04-02 Terumo Corp Electronic tonometer
WO2003090617A1 (en) * 2002-04-24 2003-11-06 Colin Corporation Pulse wave analyzing method, pulse wave analyzing software, and so forth
JP3638932B2 (en) * 2002-11-14 2005-04-13 コーリンメディカルテクノロジー株式会社 Double cuff for blood pressure measurement
JP2004313605A (en) * 2003-04-18 2004-11-11 A & D Co Ltd Vascular elasticity measuring apparatus
JP3601539B1 (en) * 2004-03-26 2004-12-15 松下電工株式会社 Cardiovascular function measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137402B1 (en) * 2010-02-22 2012-04-20 조선대학교산학협력단 Individual identification apparatus and method based on oscillometric arterial blood pressure measurement
WO2012008679A2 (en) * 2010-07-12 2012-01-19 조선대학교산학협력단 Apparatus and method for diagnosis of individual characteristics based on oscillometric arterial blood pressure measurement
WO2012008679A3 (en) * 2010-07-12 2012-03-08 조선대학교산학협력단 Apparatus and method for diagnosis of individual characteristics based on oscillometric arterial blood pressure measurement
KR20170082453A (en) * 2015-12-07 2017-07-14 산요 세이코 가부시키가이샤 Device for evaluating vascular elasticity
KR101912215B1 (en) * 2015-12-07 2018-10-26 산요 세이코 가부시키가이샤 Device for evaluating vascular elasticity
US10687714B2 (en) 2015-12-07 2020-06-23 Sanyoseiko Co., Ltd. Vascular elasticity rate evaluation apparatus
US11213212B2 (en) 2015-12-07 2022-01-04 Samsung Electronics Co., Ltd. Apparatus for measuring blood pressure, and method for measuring blood pressure by using same

Also Published As

Publication number Publication date
JP4873998B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US6338719B1 (en) Method and system for detecting vascular conditions using an occlusive arm cuff plethysmograph
JP5689116B2 (en) Method and apparatus for detecting and evaluating reactive hyperemia using segmental plethysmography
JP3987099B2 (en) Vascular endothelial reaction measuring device and method for controlling vascular endothelial reaction measuring device
US20060224070A1 (en) System and method for non-invasive cardiovascular assessment from supra-systolic signals obtained with a wideband external pulse transducer in a blood pressure cuff
US20180360412A1 (en) System and Method for Non-Invasive Blood Pressure Measurement
JP5929759B2 (en) Blood pressure information measuring device and method for calculating an index of arteriosclerosis in the device
JP3842285B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
JP4289850B2 (en) Automatic indirect non-invasive device and method for determining diastolic blood pressure by calibrating vibration waveforms
JP5741087B2 (en) Blood pressure information measuring device
KR101264018B1 (en) Arterial wall hardness evaluation system
CN110840429A (en) Korotkoff sound-based blood pressure measurement method and blood pressure measurement and cardiovascular system evaluation system
JP4873998B2 (en) Vascular elasticity measurement device
US20070004982A1 (en) Apparatus and method for early detection of cardiovascular disease using vascular imaging
US20040171941A1 (en) Blood flow amount estimating apparatus
JP4253683B2 (en) Arterial wall hardness evaluation system
JP2005523064A (en) Blood vessel impedance measuring device
JP4117211B2 (en) Vascular elasticity measuring device
JP3216029B2 (en) Cardiovascular function measurement device
CN111134635B (en) Method and device for detecting elasticity of blood vessel, electronic equipment and storage medium
CN106456028B (en) Method and apparatus for detecting and assessing reactive hyperemia using segmental plethysmography
KR20060078207A (en) The system and method for a cardiovascular diagnosis monitoring
JP4606836B2 (en) Vascular sclerosis calculating device and vascular sclerosis calculating program
WO2020121377A1 (en) Biological information measurement device
Xu et al. Continuous and Noninvasive Measurement of Arterial Pulse Pressure and Pressure Waveform using an Image-free Ultrasound System
KR100648414B1 (en) Electric Blood Pressure Measurement System With A Compensation Device of Error Rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4873998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250