JP2007311143A5 - - Google Patents

Download PDF

Info

Publication number
JP2007311143A5
JP2007311143A5 JP2006138219A JP2006138219A JP2007311143A5 JP 2007311143 A5 JP2007311143 A5 JP 2007311143A5 JP 2006138219 A JP2006138219 A JP 2006138219A JP 2006138219 A JP2006138219 A JP 2006138219A JP 2007311143 A5 JP2007311143 A5 JP 2007311143A5
Authority
JP
Japan
Prior art keywords
adsorption
sext
vext
mesopores
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006138219A
Other languages
Japanese (ja)
Other versions
JP5148072B2 (en
JP2007311143A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006138219A priority Critical patent/JP5148072B2/en
Priority claimed from JP2006138219A external-priority patent/JP5148072B2/en
Publication of JP2007311143A publication Critical patent/JP2007311143A/en
Publication of JP2007311143A5 publication Critical patent/JP2007311143A5/ja
Application granted granted Critical
Publication of JP5148072B2 publication Critical patent/JP5148072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

また、灯油留分としてブレンドし調製した際に分子量213以上の有機硫黄化合物の含有量が本発明の所定の範囲となるよう、各ブレンド基材の蒸留性状を予め調整し、それらの基材をブレンドすることによって製造することもできる。
なお、各ブレンド基材並びに灯油留分中の分子量213以上の有機硫黄化合物の含有量は、原料となる原油の性状、脱硫装置の構成、脱硫装置の運転条件、生産量などにより変動するので、各ブレンド基材の蒸留性状を調整する場合は、分子量213以上の有機硫黄化合物の含有量により、それらの初留点及び/又は終点を適宜調節する。得られた各ブレンド基材の配合割合などを適宜調節することにより本発明の灯油留分とすることができる。要すれば、燃料電池用液体原燃料として、分子量213以上の有機硫黄化合物の含有量を硫黄分として0.3質量ppm以下とすることが重要である。
In addition, when blended and prepared as a kerosene fraction, the distillation properties of each blend base material are adjusted in advance so that the content of the organic sulfur compound having a molecular weight of 213 or more falls within the predetermined range of the present invention. It can also be produced by blending.
The content of the organic sulfur compound having a molecular weight of 213 or more in each blend base material and kerosene fraction varies depending on the properties of crude oil as a raw material, the configuration of the desulfurizer, the operating conditions of the desulfurizer, the production amount, etc. When adjusting the distillation property of each blend base material, the initial boiling point and / or end point thereof are appropriately adjusted depending on the content of the organic sulfur compound having a molecular weight of 213 or more. Obtained may be kerosene fraction of more invention and appropriately adjusted child ratio and compounding of each blend substrate. In short, as a liquid raw fuel for fuel cells, it is important that the content of an organic sulfur compound having a molecular weight of 213 or more is 0.3 mass ppm or less as a sulfur content.

以上のことをまとめると、炭素材料の吸着量V、マイクロポア外部比表面積Sext[m2/g]、マイクロポア比表面積Smicro[m2/g]、マイクロポア容積Vmicro[cm3/g]及びマイクロポア外部細孔容積Vext[cm3/g]は下記式(4)〜(8)で求められる。
V=αt+β (t>tB) ・・・ (4)
Sext=α×103×D ・・・ (5)
Vmicro=β×D ・・・ (6)
Smicro=Sa-Sext ・・・ (7)
Vext=Va-Vmicro ・・・ (8)
ここで、α[cm3(STP)/g/nm]は吸着層の厚さtが領域tBよりも大きい領域におけるtプロットの直線の傾き、β[cm3(STP)/g]は吸着層の厚さtが領域tBよりも大きい領域におけるtプロットの直線の縦軸との切片、Dは密度変換係数(ガスとして窒素使用時は0.001547)[cm3liq/cm3(STP)]、Saは全比表面積[m2/g]、Vaは全細孔容積[cm3/g]である。ただし、Saは先に述べたBET法などで求めた全比表面積である。Vaは、飽和蒸気圧に近い圧力における吸着ガス量を液体に換算した値と定義することが可能であり、例えば、相対圧0.95の時の吸着量[cm3(STP)/g]にDを掛けた値である。
In summary, the carbon material adsorption amount V, the micropore external specific surface area Sext [m 2 / g], the micropore specific surface area Smicro [m 2 / g], the micropore volume Vmicro [cm 3 / g] and The micropore external pore volume Vext [cm 3 / g] is obtained by the following formulas (4) to (8).
V = αt + β (t> t B ) (4)
Sext = α × 10 3 × D (5)
Vmicro = β × D (6)
Smicro = Sa-Sext (7)
Vext = Va-Vmicro (8)
Here, α [cm 3 (STP) / g / nm] is the slope of the straight line of the t plot in the region where the thickness t of the adsorption layer is larger than the region t B , and β [cm 3 (STP) / g] is the adsorption. The intercept of the straight line of the t plot in the region where the layer thickness t is larger than the region t B , D is the density conversion coefficient (0.001547 when using nitrogen as the gas) [cm 3 liq / cm 3 (STP )], Sa is the total specific surface area [m 2 / g], and Va is the total pore volume [cm 3 / g]. However, Sa is the total specific surface area as determined by etc. BET method described above. Va can be defined as a value obtained by converting the amount of adsorbed gas at a pressure close to the saturated vapor pressure into a liquid. For example, the adsorbed amount [cm 3 (STP) / g] when the relative pressure is 0.95. The value multiplied by D.

炭素材料の多くは、マイクロポアが大部分であり、マイクロポア外部のメソポアはほとんど存在しない。しかしながら、微量のメソポアが硫黄化合物の吸着に大きく影響することを見出した。本発明者は、メソポアの影響を表す指標として、2×Vext/Sextの値を用いることを見出した。2×Va/Saという値は細孔が円筒形であると仮定した場合の平均細孔半径(Da/2)を表す。つまり、2×Vext/Sextはメソポアの平均細孔半径(Dext/2)に近い値を表す指標である。硫黄化合物の吸着には、炭素材料のマイクロポア比表面積とメソポア平均細孔径が大きいほど良く、両者の積(Smicro×2×Vext/Sext)の値が大きいほど、好ましくは3.0cm3/g以上、さらに好ましくは5.0cm3/g以上である炭素材料の吸着性能が優れている。この原因は明らかではないが、単純にメソポアの量でなく、硫黄化合物の吸着により閉塞することのない十分な径のメソポアが必要であることを表しているものと考えられる。
Many of the carbon materials are mainly micropores, and there are almost no mesopores outside the micropores. However, it has been found that a small amount of mesopores greatly affects the adsorption of sulfur compounds. The inventor has found that a value of 2 × Vext / Sext is used as an index representing the influence of mesopores. A value of 2 × Va / Sa represents the average pore half diameter when the pores is assumed to be cylindrical (Da / 2). That is, 2 × Vext / Sext is an index representing a value close to the average pore radius (Dext / 2) of the mesopores. For the adsorption of sulfur compounds, the larger the micropore specific surface area and mesopore average pore diameter of the carbon material, the better, and the larger the product of both (Smicro × 2 × Vext / Sext), the more preferably 3.0 cm 3 / g. As described above, the carbon material adsorption performance of 5.0 cm 3 / g or more is more excellent. Although the cause of this is not clear, it is considered that it is not simply the amount of mesopores but represents that a mesopore having a sufficient diameter that does not become blocked by adsorption of sulfur compounds is necessary.

1 脱硫手段(脱硫器)
2 自己熱改質器
3 固体酸化物形燃料電池ハウジング
4 水蒸気改質器
5 燃料電池
6 貯湯槽
7 二次電池又はキャパシタ
1 Desulfurization means (desulfurizer)
2 autothermal reformer 3 solid oxide fuel cell housing 4 steam reformer 5 fuel cell 6 the hot water tank 7 rechargeable battery or capacitor over

JP2006138219A 2006-05-17 2006-05-17 Liquid raw fuel for fuel cell cogeneration system and fuel cell cogeneration system Expired - Fee Related JP5148072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138219A JP5148072B2 (en) 2006-05-17 2006-05-17 Liquid raw fuel for fuel cell cogeneration system and fuel cell cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138219A JP5148072B2 (en) 2006-05-17 2006-05-17 Liquid raw fuel for fuel cell cogeneration system and fuel cell cogeneration system

Publications (3)

Publication Number Publication Date
JP2007311143A JP2007311143A (en) 2007-11-29
JP2007311143A5 true JP2007311143A5 (en) 2009-05-28
JP5148072B2 JP5148072B2 (en) 2013-02-20

Family

ID=38843825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138219A Expired - Fee Related JP5148072B2 (en) 2006-05-17 2006-05-17 Liquid raw fuel for fuel cell cogeneration system and fuel cell cogeneration system

Country Status (1)

Country Link
JP (1) JP5148072B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202204A4 (en) * 2007-09-07 2013-11-27 Japan Energy Corp Solid acid, process for producing the solid acid, method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
JP2009209252A (en) * 2008-03-04 2009-09-17 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009266608A (en) * 2008-04-25 2009-11-12 Aisin Seiki Co Ltd Fuel cell system
JP5275771B2 (en) * 2008-12-10 2013-08-28 Jx日鉱日石エネルギー株式会社 Desulfurizer, and fuel cell cogeneration system and desulfurization system including the same
JP5334630B2 (en) * 2009-03-06 2013-11-06 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil desulfurization method and fuel cell system
JP5294927B2 (en) * 2009-03-06 2013-09-18 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil desulfurization method and fuel cell system
JP2012138265A (en) * 2010-12-27 2012-07-19 Jx Nippon Oil & Energy Corp Fuel cell system and desulfurizer
JP2012142125A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Fuel cell system
US20220314837A1 (en) * 2019-05-28 2022-10-06 Sanjay Gupta Temperature controlled battery pack bath tub (BPBT), and a Method of protecting a large battery pack from thermal stresses

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240268A (en) * 1993-02-19 1994-08-30 Ube Ind Ltd Fluidized bed reforming equipment
JP2001279257A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP2002029701A (en) * 2000-07-10 2002-01-29 Toyota Motor Corp Hydrogen supply device and fuel cell device provided with the same and hydrogen detecting method
JP3395765B2 (en) * 2000-07-24 2003-04-14 松下電器産業株式会社 Polymer electrolyte fuel cell cogeneration system
JP2002308604A (en) * 2001-04-10 2002-10-23 Toyota Motor Corp Fuel reformer
JP4424586B2 (en) * 2003-03-20 2010-03-03 株式会社ジャパンエナジー Method for desulfurization of liquid hydrocarbons containing organic sulfur compounds
JP4537666B2 (en) * 2003-04-18 2010-09-01 新日本石油株式会社 Fuel for fuel cell system and fuel cell system
CN1914298B (en) * 2004-02-02 2012-01-11 日本能源株式会社 Method of desulfurizing hydrocarbon oil
JP2006173045A (en) * 2004-12-20 2006-06-29 Idemitsu Kosan Co Ltd Liquid fuel for fuel cell, and desulfurizating method

Similar Documents

Publication Publication Date Title
JP2007311143A5 (en)
Zhang et al. Microbial targeted degradation pretreatment: a novel approach to preparation of activated carbon with specific hierarchical porous structures, high surface areas, and satisfactory toluene adsorption performance
Jiang et al. Hierarchically porous graphene/ZIF-8 hybrid aerogel: preparation, CO2 uptake capacity, and mechanical property
Deb Nath et al. Defective carbon nanosheets derived from syzygium cumini leaves for electrochemical energy‐storage
Masika et al. Hydrogen storage in high surface area carbons with identical surface areas but different pore sizes: direct demonstration of the effects of pore size
Wang et al. Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping
Huang et al. Efficient N-doped porous carbonaceous CO2 adsorbents derived from commercial urea-formaldehyde resin
Sun et al. Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S
Jeon et al. Controlling porosity in lignin‐derived nanoporous carbon for supercapacitor applications
Lu et al. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites
González et al. Activated olive mill waste-based hydrochars as selective adsorbents for CO2 capture under postcombustion conditions
Hu et al. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT)
Huang et al. Two-dimensional graphitic C 3 N 5 materials: Promising metal-free catalysts and CO 2 adsorbents
Wu et al. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture
Taer et al. Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application
Li et al. Production of highly microporous carbons with large CO 2 uptakes at atmospheric pressure by KOH activation of peanut shell char
Tam et al. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation
Ma et al. Highly nitrogen‐doped porous carbon derived from zeolitic imidazolate framework‐8 for CO2 capture
Shen et al. Activated carbons synthesized from unaltered and pelletized biomass wastes for bio-tar adsorption in different phases
Shao et al. Selectable microporous carbons derived from poplar wood by three preparation routes for CO2 capture
Lee et al. A study on optimal pore range for high pressure hydrogen storage behaviors by porous hard carbon materials prepared from a polymeric precursor
Anuar et al. Carbon nanoflake hybrid for biohydrogen CO2 capture: Breakthrough adsorption test
Li et al. Ultramicroporous covalent organic framework nanosheets with functionality pair for membrane C2H2/C2H4 separation
Bader et al. CO2 activation of olive bagasse for hydrogen storage
Feng et al. Hierarchical porous carbons derived from corncob: study on adsorption mechanism for gas and wastewater