JP2007310195A - Imaging optical system - Google Patents

Imaging optical system Download PDF

Info

Publication number
JP2007310195A
JP2007310195A JP2006139984A JP2006139984A JP2007310195A JP 2007310195 A JP2007310195 A JP 2007310195A JP 2006139984 A JP2006139984 A JP 2006139984A JP 2006139984 A JP2006139984 A JP 2006139984A JP 2007310195 A JP2007310195 A JP 2007310195A
Authority
JP
Japan
Prior art keywords
lens
optical system
imaging optical
imaging
convex surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006139984A
Other languages
Japanese (ja)
Other versions
JP5061501B2 (en
Inventor
Masafumi Isono
雅史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006139984A priority Critical patent/JP5061501B2/en
Publication of JP2007310195A publication Critical patent/JP2007310195A/en
Application granted granted Critical
Publication of JP5061501B2 publication Critical patent/JP5061501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging optical system which is compact and has satisfactorily corrected aberration. <P>SOLUTION: The imaging optical system has a first lens which has a convex surface facing an imaging object side and has positive refractive power, a second lens which has a convex surface facing the image surface side and has positive refractive power and a third lens which has a meniscus shape having a convex surface facing the image surface side and has negative refractive power, and the imaging optical system satisfies the following condition expression, 3.6<f23/f<50, wherein f23 is a composite focal distance of the second lens and the third lens and f is a focal distance of the whole system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、撮像素子に対して光を導くことのできる撮像光学系に関し、特にデジタルカメラや携帯電話に適した撮像光学系に関するものである。   The present invention relates to an image pickup optical system capable of guiding light to an image pickup device, and more particularly to an image pickup optical system suitable for a digital camera or a mobile phone.

近年、パーソナルコンピュータの普及に伴い、手軽に画像を取り込めるデジタルカメラが普及している。また、モバイルコンピュータ、携帯電話、情報携帯端末(PDA:Parsonal Digital Assistant)等の情報処理機器にデジタルカメラを組み込むことも一般化している。このような状況のもと、より小型のデジタルカメラが求められるようになっており、撮像光学系にもより一層の小型化が要望されている。   In recent years, with the spread of personal computers, digital cameras that can easily capture images have become widespread. In addition, it has become common to incorporate a digital camera into an information processing device such as a mobile computer, a mobile phone, or a personal digital assistant (PDA). Under such circumstances, a smaller digital camera has been demanded, and further downsizing of the imaging optical system has been demanded.

撮像光学系を小型にする方法として、撮像素子を小型にする方法がある。この方法は、撮像素子の個々の受光部を小さくすることが必要である。そのため、撮像光学系は、小さい受光部に光線を集光させなくてはならず、高性能の撮像光学系が要求されるようになっている。   As a method for reducing the size of the imaging optical system, there is a method for reducing the size of the imaging element. In this method, it is necessary to reduce the size of each light receiving portion of the image sensor. For this reason, the imaging optical system must focus the light beam on a small light receiving section, and a high-performance imaging optical system is required.

一方、撮像素子の大きさをそのままにして、撮像光学系を小型にする方法がある。この方法は、撮像光学系の全長を短くすることができるが、撮像光学系の射出瞳位置も像面に近づく。射出瞳位置が像面に近づくと、撮像光学系から射出された軸外光束が像面に対して斜めに入射する。すると、撮像素子の受光部の前面に設けられているマイクロレンズに、大きく傾斜した光線が入射することとなり、撮像素子の周辺部の光量が低下する。その結果、像面の光量が、像面の中央部と周辺部とで極端な差異があるという問題が生じる。小型であるともに、像面の光量を均一にした高性能の撮像光学系が要求されている。   On the other hand, there is a method of reducing the size of the imaging optical system while keeping the size of the imaging element as it is. This method can shorten the overall length of the imaging optical system, but the exit pupil position of the imaging optical system also approaches the image plane. When the exit pupil position approaches the image plane, the off-axis light beam emitted from the imaging optical system enters the image plane obliquely. Then, a greatly inclined light beam enters the microlens provided on the front surface of the light receiving unit of the image sensor, and the amount of light at the peripheral part of the image sensor is reduced. As a result, there arises a problem that the amount of light on the image plane is extremely different between the central portion and the peripheral portion of the image plane. There is a demand for a high-performance imaging optical system that is compact and has a uniform amount of light on the image plane.

以上のような問題や実情を鑑みて、コンパクトな3枚構成から成る撮像光学系が、特許文献1で提案されている。
特開2004−37960号公報
In view of the above problems and circumstances, Patent Document 1 proposes an imaging optical system having a compact three-lens configuration.
JP 2004-37960 A

しかし、特許文献1では、コンパクトな構成ではあるが、撮像光学系の全長に対して射出瞳位置が像面に近くなり、像面の中央部と周辺部の光量の差異があるという問題を有している。   However, although Patent Document 1 has a compact configuration, there is a problem that the exit pupil position is close to the image plane with respect to the entire length of the imaging optical system, and there is a difference in the amount of light between the central portion and the peripheral portion of the image plane. is doing.

本発明は、上記の問題点を解決するためになされたものであって、その目的は、小型でありながら、良好に収差補正された撮像光学系を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an imaging optical system in which aberrations are favorably corrected while being small in size.

上記の課題は、次の構成により解決される。
1.
複数のレンズを有し、撮像対象からの光を撮像素子上に結像させる撮像光学系において、
撮像対象から順に、第1レンズ、開口絞り、第2レンズ、第3レンズが備えられており、
前記第1レンズは、撮像対象側に凸面を向けるとともに、正の屈折力を有し、
前記第2レンズは、像面側に凸面を向けるとともに、正の屈折力を有し、
前記第3レンズは、像面側に凸面を向けるメニスカス形状であるとともに、負の屈折力を有し、
以下の条件式を満足することを特徴とする撮像光学系。
The above problem is solved by the following configuration.
1.
In an imaging optical system having a plurality of lenses and imaging light from an imaging target on an imaging device,
In order from the imaging target, a first lens, an aperture stop, a second lens, and a third lens are provided,
The first lens has a convex surface on the imaging target side and has a positive refractive power,
The second lens has a positive refractive power with a convex surface facing the image surface side,
The third lens has a meniscus shape with a convex surface facing the image surface side and has negative refractive power,
An imaging optical system characterized by satisfying the following conditional expression:

3.6<f23/f<50
但し、
f23:第2レンズと第3レンズの合成焦点距離
f:全系の焦点距離
2.
前記第1レンズは、撮像対象側に凸面を向けるメニスカス形状であることを特徴とする1に記載の撮像光学系。
3.
前記第2レンズは、像面側に凸面を向けるメニスカス形状であることを特徴とする1又は2に記載の撮像光学系。
4.
前記第1レンズ、前記第2レンズ、前記第3レンズは、それぞれ少なくとも1面の非球面を有することを特徴とする1乃至3の何れか1項に記載の撮像光学系。
5.
以下の条件式を満足することを特徴とする1乃至4の何れか1項に記載の撮像光学系。
3.6 <f23 / f <50
However,
f23: Composite focal length of the second lens and the third lens f: Focal length of the entire system
2. The imaging optical system according to 1, wherein the first lens has a meniscus shape with a convex surface facing the imaging target side.
3.
3. The imaging optical system according to 1 or 2, wherein the second lens has a meniscus shape with a convex surface facing the image surface side.
4).
The imaging optical system according to any one of claims 1 to 3, wherein each of the first lens, the second lens, and the third lens has at least one aspheric surface.
5).
The imaging optical system according to any one of 1 to 4, wherein the following conditional expression is satisfied.

−5<(r31+r32)/(r31−r32)<−1
但し、
r31:第3レンズの撮像対象側の曲率半径
r32:第3レンズの像面側の曲率半径
−5 <(r31 + r32) / (r31−r32) <− 1
However,
r31: radius of curvature of the third lens on the imaging target side r32: radius of curvature of the third lens on the image plane side

本発明は、撮像対象側から順に、第1の正屈折力レンズ、開口絞り、第2の正屈折力レンズ、第3の負屈折力レンズと配置し、第2の正屈折力レンズと第3の負屈折力レンズの合成焦点距離を適切な範囲に設定することにより、撮像光学系全長を短くすることができ、また、光学性能の劣化を抑制することができる。   In the present invention, a first positive refractive power lens, an aperture stop, a second positive refractive power lens, and a third negative refractive power lens are arranged in order from the imaging target side, and the second positive refractive power lens and the third positive refractive power lens are arranged. By setting the composite focal length of the negative refracting power lens to an appropriate range, the entire length of the imaging optical system can be shortened, and deterioration of the optical performance can be suppressed.

以下、図面を参照して、本発明の好適な実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1〜3は、本発明に係る撮像光学系CLの第1〜第3の実施形態のレンズ配置を表す断面図である。   1 to 3 are cross-sectional views showing lens arrangements of first to third embodiments of the imaging optical system CL according to the present invention.

図1〜図3において、撮像光学系CLは、撮像対象側から順に、撮像対象側に凸面を向けた正メニスカスレンズの第1レンズFL1、開口絞りA、像面側に凸面を向けた正メニスカスレンズの第2レンズFL2、像面側に凸面を向けた負メニスカスレンズの第3レンズFL3、ガラスフィルタGFから成る。   1 to 3, the imaging optical system CL includes, in order from the imaging target side, a first lens FL1 of a positive meniscus lens having a convex surface facing the imaging target side, an aperture stop A, and a positive meniscus having a convex surface facing the image plane side. The lens includes a second lens FL2 of the lens, a third lens FL3 of a negative meniscus lens having a convex surface facing the image surface side, and a glass filter GF.

次に、各実施形態の撮影光学系CLが満足すべき条件式を説明する。尚、各実施形態の撮影光学系CLは、以下に示す各条件式をすべて、同時に満足する必要はなく、個々の条件式をそれぞれ単独に満足することによって対応する作用効果を達成することが可能である。もちろん、複数の条件式を満足している方が光学性能、小型化あるいは組立の観点からより望ましいことはいうまでもない。   Next, conditional expressions to be satisfied by the photographing optical system CL of each embodiment will be described. The imaging optical system CL of each embodiment does not have to satisfy all of the following conditional expressions at the same time, and can achieve corresponding effects by satisfying each conditional expression independently. It is. Needless to say, satisfying a plurality of conditional expressions is more desirable from the viewpoint of optical performance, miniaturization, or assembly.

3.6<f23/f<50 (1)
ここで、f23:第2レンズと第3レンズの合成焦点距離、f:全系の焦点距離である。
3.6 <f23 / f <50 (1)
Here, f23 is a combined focal length of the second lens and the third lens, and f is a focal length of the entire system.

条件式(1)の上限を越えると、コマ収差が悪化し、更にペッツバール和が補正過剰になり、解像度が不足する。条件式(1)の下限を越えると、ペッツバール和が補正不足となり、像面湾曲を補正することが困難となる。   If the upper limit of conditional expression (1) is exceeded, coma will deteriorate, Petzval sum will be overcorrected, and resolution will be insufficient. If the lower limit of conditional expression (1) is exceeded, the Petzval sum becomes insufficiently corrected, making it difficult to correct field curvature.

以下の条件式(1A)、(1B)を満足することが更に望ましい。   It is further desirable to satisfy the following conditional expressions (1A) and (1B).

4<f23/f<30 (1A)
5<f23/f<25 (1B)
−5<(r31+r32)/(r31−r32)<−1 (2)
ここで、r31:第3レンズの撮像対象側の曲率半径、r32:第3レンズの像面側の曲率半径である。
4 <f23 / f <30 (1A)
5 <f23 / f <25 (1B)
−5 <(r31 + r32) / (r31−r32) <− 1 (2)
Here, r31: radius of curvature of the third lens on the imaging target side, r32: radius of curvature of the third lens on the image plane side.

条件式(2)の上限を越えると、コマ収差が悪化し、更にペッツバール和が補正過剰になり、解像度が不足する。条件式(2)の下限を越えると、ペッツバール和が補正不足となり、像面湾曲を補正することが困難となる。   If the upper limit of conditional expression (2) is exceeded, coma will deteriorate, Petzval sum will be overcorrected, and resolution will be insufficient. If the lower limit of conditional expression (2) is exceeded, the Petzval sum becomes insufficiently corrected, making it difficult to correct field curvature.

以下の条件式(2A)、(2B)を満足することが更に望ましい。   It is further desirable to satisfy the following conditional expressions (2A) and (2B).

−2<(r31+r32)/(r31−r32)<−1.06 (2A)
−1.5<(r31+r32)/(r31−r32)<−1.1 (2B)
−1.52<(r11+r12)/(r11−r12)<−1 (3)
ここで、r11:第1レンズの撮像対象側の曲率半径、r12:第1レンズの像面側の曲率半径である。
−2 <(r31 + r32) / (r31−r32) <− 1.06 (2A)
-1.5 <(r31 + r32) / (r31-r32) <-1.1 (2B)
-1.52 <(r11 + r12) / (r11-r12) <-1 (3)
Here, r11: the radius of curvature of the first lens on the imaging target side, r12: the radius of curvature of the first lens on the image plane side.

条件式(3)の上限を越えると、ペッツバール和が補正不足となり、像面湾曲を補正することが困難となる。条件式(3)の下限を越えると、コマ収差が悪化し、更にペッツバール和が補正過剰になり、解像度が不足する。   If the upper limit of conditional expression (3) is exceeded, the Petzval sum becomes insufficiently corrected, making it difficult to correct field curvature. If the lower limit of conditional expression (3) is exceeded, coma will deteriorate, Petzval sum will be overcorrected, and resolution will be insufficient.

以下の条件式(3A)、(3B)を満足することが更に望ましい。   It is further desirable to satisfy the following conditional expressions (3A) and (3B).

−1.51<(r11+r12)/(r11−r12)<−1 (3A)
−1.5<(r11+r12)/(r11−r12)<−1 (3B)
本発明の撮像光学系の前記第1レンズ、第2レンズ、第3レンズは、それぞれ少なくとも1面の非球面を有することが望ましい。これは、球面収差や、コマ収差、歪曲収差の補正に大きな効果がある。
-1.51 <(r11 + r12) / (r11-r12) <-1 (3A)
−1.5 <(r11 + r12) / (r11−r12) <− 1 (3B)
It is desirable that each of the first lens, the second lens, and the third lens of the imaging optical system according to the present invention has at least one aspheric surface. This has a great effect on correction of spherical aberration, coma aberration, and distortion aberration.

以下、本発明に係る実施例に関し、コンストラクションデータ、収差図等を挙げて、更に具体例を示す。   Specific examples of the present invention will be described below with reference to construction data, aberration diagrams, and the like.

以下に挙げる実施例1〜3は、前述した第1から第3の実施形態にそれぞれ対応しており、実施形態を表すレンズ配置図は、対応する実施例1〜3のレンズ構成を、それぞれ示している。   Examples 1 to 3 listed below correspond to the first to third embodiments described above, respectively, and the lens arrangement diagrams representing the embodiments show the lens configurations of the corresponding Examples 1 to 3, respectively. ing.

各実施例において、ri(i=1,2,3・・)は撮像対象側から数えてi番目の面の曲率半径、di(i=1,2,3,...)は撮像対象側から数えてi番目の軸上面間隔を示し、Ni(i=1,2,3・・)、νi(i=1,2,3・・)は、撮像対象側から数えてi番目のレンズのd線に対する屈折率、アッベ数を示す。また、fは全系の焦点距離、FNOはFナンバーを表す。   In each embodiment, ri (i = 1, 2, 3,...) Is the radius of curvature of the i-th surface counted from the imaging target side, and di (i = 1, 2, 3,...) Is the imaging target side. I (i = 1, 2, 3,...) And νi (i = 1, 2, 3,...) Are the i-th lens counts from the imaging target side. The refractive index and Abbe number for the d-line are shown. F represents the focal length of the entire system, and FNO represents the F number.

さらに、各実施例中、曲率半径riに*印を付した面は非球面形状の屈折光学面あるいは非球面と等価な屈折作用を有する面であることを示し、非球面の面形状を表す以下の式で定義するものとする。   Further, in each of the examples, the surface marked with * in the radius of curvature ri indicates an aspherical refractive optical surface or a surface having a refractive action equivalent to an aspherical surface, and represents the surface shape of the aspherical surface. It shall be defined by the formula of

X(H)=C・H2/{1+√(1−ε・C2・H2)}+ΣAi・Hi (AS)
ここで、Hは光軸に対して垂直な方向の高さ、X(H)は高さHの位置での光軸方向の変位量(面頂点基準)、Cは近軸曲率、εは2次曲面パラメータ、Aiはi次の非球面係数、HiはHのi乗である。
(実施例1)
撮像光学系CLの構成を図1に示す。f=4.37mm、FNO=4.0である。撮像光学系CLのコンストラクションデータを表1に示す。
X (H) = C · H 2 / {1 + √ (1−ε · C 2 · H 2 )} + ΣAi · Hi (AS)
Here, H is the height in the direction perpendicular to the optical axis, X (H) is the amount of displacement in the optical axis direction at the position of the height H (based on the surface vertex), C is the paraxial curvature, and ε is 2 The secondary curved surface parameter, Ai is the i-th order aspheric coefficient, and Hi is H to the power of i.
Example 1
The configuration of the imaging optical system CL is shown in FIG. f = 4.37 mm and FNO = 4.0. The construction data of the imaging optical system CL is shown in Table 1.

Figure 2007310195
Figure 2007310195

また、非球面面係数を以下に示す。   The aspheric surface coefficients are shown below.

第1面(r1)の非球面係数
ε=0.18518×10
A4=−0.61806×10-2
A6=−0.83936×10-2
A8=0.12016×10-1
A10=−0.86799×10-2
A12=0.17054×10-2
第2面(r2)の非球面係数
ε=−0.90000×10
A4=0.14467×10-3
A6=−0.40101×10-1
A8=0.13473
A10=−0.17543
第4面(r4)の非球面係数
ε=−0.14116
A4=−0.71999×10-1
A6=0.24417×10-2
A8=0.10224
A10=−0.44325×10-1
第5面(r5)の非球面係数
ε=−0.17379×10
A4=−0.15069
A6=0.82394×10-1
A8=−0.17004×10-1
A10=0.43581×10-2
A12=0.66133×10-3
第6面(r6)の非球面係数
ε=−0.40000×10
A4=0.47924×10-1
A6=−0.58460×10-2
A8=−0.29127×10-2
A10=0.75237×10-3
A12=−0.47556×10-4
第7面(r7)の非球面係数
ε=0.80000×10
A4=0.18840×10-1
A6=−0.49565×10-2
A8=0.16100×10-3
A10=−0.10249×10-4
A10=0.11536×10-5
(実施例2)
撮像光学系CLの構成を図2に示す。f=4.51mm、FNO=2.9である。撮像光学系CLのコンストラクションデータを表2に示す。
Aspherical coefficient of the first surface (r1) ε = 0.85518 × 10
A4 = −0.61806 × 10 −2
A6 = −0.83936 × 10 −2
A8 = 0.12016 × 10 −1
A10 = −0.86799 × 10 −2
A12 = 0.17054 × 10 −2
Aspheric coefficient of the second surface (r2) ε = −0.90000 × 10
A4 = 0.14467 × 10 −3
A6 = −0.40101 × 10 −1
A8 = 0.13473
A10 = −0.17543
Aspherical coefficient of the fourth surface (r4) ε = −0.14116
A4 = −0.71999 × 10 −1
A6 = 0.24417 × 10 −2
A8 = 0.10224
A10 = −0.44325 × 10 −1
Aspherical coefficient of the fifth surface (r5) ε = −0.17379 × 10
A4 = −0.15069
A6 = 0.82394 × 10 −1
A8 = −0.17004 × 10 −1
A10 = 0.35881 × 10 −2
A12 = 0.606133 × 10 −3
Aspherical coefficient of the sixth surface (r6) ε = −0.40000 × 10
A4 = 0.47924 × 10 −1
A6 = −0.58460 × 10 −2
A8 = −0.29127 × 10 −2
A10 = 0.75237 × 10 −3
A12 = −0.475556 × 10 −4
Aspherical coefficient of the seventh surface (r7) ε = 0.8000 × 10
A4 = 0.188840 × 10 −1
A6 = −0.49565 × 10 −2
A8 = 0.16100 × 10 −3
A10 = −0.10249 × 10 −4
A10 = 0.115536 × 10 −5
(Example 2)
The configuration of the imaging optical system CL is shown in FIG. f = 4.51 mm and FNO = 2.9. Table 2 shows construction data of the imaging optical system CL.

Figure 2007310195
Figure 2007310195

また、非球面面係数を以下に示す。   The aspheric surface coefficients are shown below.

第1面(r1)の非球面係数
ε=0.17389×10
A4=−0.96357×10-2
A6=−0.84693×10-2
A8=0.86320×10-2
A10=−0.36530×10-2
A12=−0.21348×10-3
第2面(r2)の非球面係数
ε=−0.69944×10
A4=−0.16766×10-2
A6=−0.28183×10-1
A8=0.89564×10-1
A10=−0.79855×10-1
第4面(r4)の非球面係数
ε=0.94304
A4=−0.10224
A6=−0.19790×10-1
A8=0.10404
A10=−0.18595×10-1
第5面(r5)の非球面係数
ε=−0.13968×10
A4=−0.17577
A6=0.71061×10-1
A8=−0.15956×10-1
A10=0.87997×10-2
A12=0.55219×10-3
第6面(r6)の非球面係数
ε=−0.40000×10
A4=0.60689×10-1
A6=−0.73649×10-2
A8=−0.32892×10-2
A10=0.69648×10-3
A12=−0.23032×10-4
第7面(r7)の非球面係数
ε=0.80000×10
A4=0.11548×10-1
A6=−0.21917×10-2
A8=−0.53916×10-4
A10=−0.10261×10-3
A12=0.13151×10-4
(実施例3)
撮像光学系CLの構成を図1に示す。f=5.15mm、FNO=3.0である。撮像光学系CLのコンストラクションデータを表3に示す。
Aspherical coefficient of the first surface (r1) ε = 0.17389 × 10
A4 = −0.96357 × 10 −2
A6 = −0.84693 × 10 −2
A8 = 0.863320 × 10 −2
A10 = −0.36530 × 10 −2
A12 = −0.21348 × 10 −3
Aspheric coefficient of the second surface (r2) ε = −0.69944 × 10
A4 = −0.16766 × 10 −2
A6 = −0.28183 × 10 −1
A8 = 0.895564 × 10 −1
A10 = −0.79855 × 10 −1
Aspherical coefficient of the fourth surface (r4) ε = 0.94304
A4 = −0.10224
A6 = −0.19790 × 10 −1
A8 = 0.10404
A10 = −0.18595 × 10 −1
Aspherical coefficient of the fifth surface (r5) ε = −0.13968 × 10
A4 = −0.17577
A6 = 0.71061 × 10 −1
A8 = −0.15956 × 10 −1
A10 = 0.87997 × 10 −2
A12 = 0.55219 × 10 −3
Aspherical coefficient of the sixth surface (r6) ε = −0.40000 × 10
A4 = 0.0.606889 × 10 −1
A6 = −0.73649 × 10 −2
A8 = −0.32892 × 10 −2
A10 = 0.696648 × 10 −3
A12 = −0.23032 × 10 −4
Aspherical coefficient of the seventh surface (r7) ε = 0.8000 × 10
A4 = 0.115548 × 10 −1
A6 = −0.21917 × 10 −2
A8 = −0.53916 × 10 −4
A10 = −0.10261 × 10 −3
A12 = 0.13151 × 10 −4
(Example 3)
The configuration of the imaging optical system CL is shown in FIG. f = 5.15 mm and FNO = 3.0. Table 3 shows construction data of the imaging optical system CL.

Figure 2007310195
Figure 2007310195

また、非球面面係数を以下に示す。   The aspheric surface coefficients are shown below.

第1面(r1)の非球面係数
ε=0.19167×10
A4=−0.31011×10-2
A6=−0.52787×10-2
A8=0.53224×10-2
A10=−0.22782×10-3
A12=−0.61464×10-3
第2面(r2)の非球面係数
ε=−0.90000×10
A4=0.13730×10-1
A6=−0.12404×10-1
A8=0.56050×10-1
A10=−0.41881×10-1
第4面(r4)の非球面係数
ε=0.14978×10
A4=−0.64390×10-1
A6=−0.36198×10-1
A8=0.48717×10-1
A10=−0.59089×10-2
第5面(r5)の非球面係数
ε=−0.13992×10
A4=−0.11340
A6=0.32472×10-1
A8=−0.88880×10-2
A10=0.17284×10-2
A12=0.84375×10-3
第6面(r6)の非球面係数
ε=−0.30948×10
A4=0.38243×10-1
A6=−0.34987×10-2
A8=−0.18222×10-2
A10=0.18528×10-3
A12=0.11897×10-4
第7面(r7)の非球面係数
ε=0.26375×10
A4=0.12418×10-1
A6=−0.30271×10-2
A8=0.40981×10-4
A10=−0.53462×10-6
A12=0.26078×10-6
また、各実施例の条件式(1)、(2)、(3)で規定されるパラメータに対応する値を併せて表4示す。
Aspheric coefficient of first surface (r1) ε = 0.19167 × 10
A4 = −0.31011 × 10 −2
A6 = −0.52787 × 10 −2
A8 = 0.532224 × 10 −2
A10 = −0.22782 × 10 −3
A12 = −0.61464 × 10 −3
Aspheric coefficient of the second surface (r2) ε = −0.90000 × 10
A4 = 0.13730 × 10 −1
A6 = −0.12404 × 10 −1
A8 = 0.56050 × 10 −1
A10 = −0.41881 × 10 −1
Aspherical coefficient of the fourth surface (r4) ε = 0.14978 × 10
A4 = −0.64390 × 10 −1
A6 = −0.36198 × 10 −1
A8 = 0.487717 × 10 −1
A10 = −0.59089 × 10 −2
Aspheric coefficient of the fifth surface (r5) ε = −0.13992 × 10
A4 = −0.11340
A6 = 0.243472 × 10 −1
A8 = −0.888880 × 10 −2
A10 = 0.17284 × 10 −2
A12 = 0.84375 × 10 −3
Aspherical coefficient of the sixth surface (r6) ε = −0.30948 × 10
A4 = 0.38243 × 10 −1
A6 = −0.34987 × 10 −2
A8 = −0.18222 × 10 −2
A10 = 0.85528 × 10 −3
A12 = 0.11897 × 10 −4
Aspherical coefficient of the seventh surface (r7) ε = 0.26375 × 10
A4 = 0.12418 × 10 −1
A6 = −0.30271 × 10 −2
A8 = 0.40981 × 10 −4
A10 = −0.53462 × 10 −6
A12 = 0.26078 × 10 −6
Table 4 also shows values corresponding to the parameters defined by the conditional expressions (1), (2), and (3) of each example.

Figure 2007310195
Figure 2007310195

図4〜図6は、実施例1〜実施例3に対応する収差図である。各収差図は、左側から順に、球面収差図、非点収差図、歪曲収差図を表している。   4 to 6 are aberration diagrams corresponding to Examples 1 to 3. FIG. Each aberration diagram shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram in order from the left side.

各球面収差図おいて、実線dはd線、一点鎖線gはg線、二点鎖線cはc線それぞれに対する球面収差量、SCは正弦条件不満足量を表す。また、各非点収差図において、実線DSはサジタル面、点線DMはメリディオナル面をそれぞれ表す。また、球面収差図の縦軸は光線のFナンバーを表し、非点収差図及び歪曲収差図の縦軸は、最大像高Y’を表す。   In each spherical aberration diagram, the solid line d represents the d line, the alternate long and short dash line g represents the g line, the alternate long and two short dashes line c represents the amount of spherical aberration for each of the c lines, and SC represents the unsatisfactory sine condition. In each astigmatism diagram, the solid line DS represents the sagittal plane, and the dotted line DM represents the meridional plane. Also, the vertical axis of the spherical aberration diagram represents the F number of the light beam, and the vertical axes of the astigmatism diagram and the distortion diagram represent the maximum image height Y ′.

以上のように、本発明の撮像光学系によれば、光学性能が良好でコンパクトな固体撮像素子用撮像光学系を提供することが可能である。   As described above, according to the imaging optical system of the present invention, it is possible to provide a compact imaging optical system for a solid-state imaging device with good optical performance.

したがって、本発明に係る撮像光学系を、デジタルカメラ等の撮像光学系に適用した場合、当該カメラの高機能化とコンパクト化に寄与することができる。   Therefore, when the imaging optical system according to the present invention is applied to an imaging optical system such as a digital camera, it can contribute to higher functionality and downsizing of the camera.

第1実施形態(実施例1)の撮像光学系のレンズ構成図。The lens block diagram of the imaging optical system of 1st Embodiment (Example 1). 第2実施形態(実施例2)の撮像光学系のレンズ構成図。The lens block diagram of the imaging optical system of 2nd Embodiment (Example 2). 第3実施形態(実施例3)の撮像光学系のレンズ構成図。FIG. 6 is a lens configuration diagram of an imaging optical system according to a third embodiment (Example 3). 実施例1の撮像光学系の収差図。FIG. 6 is an aberration diagram of the image pickup optical system according to the first embodiment. 実施例2の撮像光学系の収差図。FIG. 6 is an aberration diagram of the image pickup optical system according to the second embodiment. 実施例3の撮像光学系の収差図。FIG. 10 is an aberration diagram of the image pickup optical system according to the third embodiment.

符号の説明Explanation of symbols

CL 撮像光学系
FL1 第1レンズ
FL2 第2レンズ
FL3 第3レンズ
A 絞り
GF ガラスフィルター
r1〜r9 面
CL imaging optical system FL1 1st lens FL2 2nd lens FL3 3rd lens A Aperture GF Glass filter r1-r9 surface

Claims (5)

複数のレンズを有し、撮像対象からの光を撮像素子上に結像させる撮像光学系において、
撮像対象から順に、第1レンズ、開口絞り、第2レンズ、第3レンズが備えられており、
前記第1レンズは、撮像対象側に凸面を向けるとともに、正の屈折力を有し、
前記第2レンズは、像面側に凸面を向けるとともに、正の屈折力を有し、
前記第3レンズは、像面側に凸面を向けるメニスカス形状であるとともに、負の屈折力を有し、
以下の条件式を満足することを特徴とする撮像光学系。
3.6<f23/f<50
但し、
f23:第2レンズと第3レンズの合成焦点距離
f:全系の焦点距離
In an imaging optical system having a plurality of lenses and imaging light from an imaging target on an imaging device,
In order from the imaging target, a first lens, an aperture stop, a second lens, and a third lens are provided,
The first lens has a convex surface on the imaging target side and has a positive refractive power,
The second lens has a positive refractive power with a convex surface facing the image surface side,
The third lens has a meniscus shape with a convex surface facing the image surface side and has negative refractive power,
An imaging optical system characterized by satisfying the following conditional expression:
3.6 <f23 / f <50
However,
f23: Composite focal length of the second lens and the third lens f: Focal length of the entire system
前記第1レンズは、撮像対象側に凸面を向けるメニスカス形状であることを特徴とする請求項1に記載の撮像光学系。 The imaging optical system according to claim 1, wherein the first lens has a meniscus shape with a convex surface facing the imaging target side. 前記第2レンズは、像面側に凸面を向けるメニスカス形状であることを特徴とする請求項1又は2に記載の撮像光学系。 The imaging optical system according to claim 1, wherein the second lens has a meniscus shape with a convex surface facing the image surface side. 前記第1レンズ、前記第2レンズ、前記第3レンズは、それぞれ少なくとも1面の非球面を有することを特徴とする請求項1乃至3の何れか1項に記載の撮像光学系。 4. The imaging optical system according to claim 1, wherein each of the first lens, the second lens, and the third lens has at least one aspheric surface. 5. 以下の条件式を満足することを特徴とする請求項1乃至4の何れか1項に記載の撮像光学系。
−5<(r31+r32)/(r31−r32)<−1
但し、
r31:第3レンズの撮像対象側の曲率半径
r32:第3レンズの像面側の曲率半径
The imaging optical system according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
−5 <(r31 + r32) / (r31−r32) <− 1
However,
r31: radius of curvature of the third lens on the imaging target side r32: radius of curvature of the third lens on the image plane side
JP2006139984A 2006-05-19 2006-05-19 Imaging optical system Active JP5061501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006139984A JP5061501B2 (en) 2006-05-19 2006-05-19 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006139984A JP5061501B2 (en) 2006-05-19 2006-05-19 Imaging optical system

Publications (2)

Publication Number Publication Date
JP2007310195A true JP2007310195A (en) 2007-11-29
JP5061501B2 JP5061501B2 (en) 2012-10-31

Family

ID=38843099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139984A Active JP5061501B2 (en) 2006-05-19 2006-05-19 Imaging optical system

Country Status (1)

Country Link
JP (1) JP5061501B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047944A (en) * 2004-03-24 2006-02-16 Fuji Photo Film Co Ltd Photographing lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047944A (en) * 2004-03-24 2006-02-16 Fuji Photo Film Co Ltd Photographing lens

Also Published As

Publication number Publication date
JP5061501B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP3938143B2 (en) Super wide-angle optical system
JP4747645B2 (en) Wide angle lens and imaging device
JP4821121B2 (en) Wide-angle lens system
JP4628781B2 (en) Imaging device
JP2016114803A (en) Image capturing lens and image capturing device having the same
JP2005284153A (en) Imaging lens
KR101317505B1 (en) Imaging lens
JP2006350275A (en) Imaging lens
JP2020187181A (en) Imaging optical system and image capturing device
JP2004212467A (en) Photographic lens
JP2006201674A (en) Wide angle imaging lens
JP2007108531A (en) Zoom lens, camera, and personal digital assistant
JP2005292235A (en) Imaging lens
JP2005326816A (en) Imaging lens system
JP2007139861A (en) Imaging optical system
JP2007322839A (en) Imaging lens and personal digital assistant
JP2006098429A (en) Imaging lens
JP2004177628A (en) Wide-angle photographic lens
JP2006064839A (en) Zoom lens and imaging apparatus
JP2009042333A (en) Photographic lens
JP4722087B2 (en) Shooting lens
JP4857998B2 (en) Imaging lens
JP2006308789A (en) Imaging lens
JP5061501B2 (en) Imaging optical system
JP2005258180A (en) Wide-angle imaging lens and camera module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350