JP2007309908A - Hydrogen sensor - Google Patents

Hydrogen sensor Download PDF

Info

Publication number
JP2007309908A
JP2007309908A JP2006142141A JP2006142141A JP2007309908A JP 2007309908 A JP2007309908 A JP 2007309908A JP 2006142141 A JP2006142141 A JP 2006142141A JP 2006142141 A JP2006142141 A JP 2006142141A JP 2007309908 A JP2007309908 A JP 2007309908A
Authority
JP
Japan
Prior art keywords
gas
detection
hydrogen sensor
storage space
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006142141A
Other languages
Japanese (ja)
Other versions
JP4910477B2 (en
Inventor
Masanobu Sakai
政信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006142141A priority Critical patent/JP4910477B2/en
Publication of JP2007309908A publication Critical patent/JP2007309908A/en
Application granted granted Critical
Publication of JP4910477B2 publication Critical patent/JP4910477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04462Concentration; Density of anode exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To improve the detection precision by reducing the amount of attachment of water to the hydrogen sensor to be used in the fuel cell system, etc. <P>SOLUTION: A detection head 13, with built in detection element 24 and the reference element 23 arranged in the detection gas flow flowing in the piping 2, is protruded into the piping from the wall part of the piping 2, while being supported by the support arm 12 which is made of a heat insulating material. The detection head 13 is provided with a gas guide in port 25 for guiding the detection gas to the detection element 24, in a direction reverse to the gas flow direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池システムなどで水素濃度の検知に用いる水素センサに関する。   The present invention relates to a hydrogen sensor used for detecting a hydrogen concentration in a fuel cell system or the like.

従来の水素センサとして、特許文献1に記載されているようなものがある。
これは、被検知ガスの水素濃度に応答する検知素子と基準素子(温度補償素子)との電気抵抗の差に基づいて被検知ガスの水素濃度を検知するものであり、被検知ガスが流れる配管の重力方向上側の壁部(天井部)に、ガス導入口を下向きにして取付けられている。
また、固体高分子膜型燃料電池等の燃料電池においては、固体高分子電解質膜のイオン導電性を保つために、燃料電池に供給する反応ガス(水素や空気)を積極的に加湿しており、さらに、燃料電池の発電時には電気化学反応により反応熱と共に水が生成される。したがって、前記反応ガスは高温高湿であり、燃料電池システムに用いる水素センサはこれらの高温高湿のガスに晒されることとなる。
As a conventional hydrogen sensor, there is one as described in Patent Document 1.
This is to detect the hydrogen concentration of the gas to be detected based on the difference in electrical resistance between the detection element that responds to the hydrogen concentration of the gas to be detected and the reference element (temperature compensation element), and the pipe through which the gas to be detected flows. Is installed with the gas inlet facing downward on the wall (ceiling) on the upper side in the gravity direction.
In addition, in a fuel cell such as a solid polymer membrane fuel cell, a reactive gas (hydrogen or air) supplied to the fuel cell is actively humidified in order to maintain the ionic conductivity of the solid polymer electrolyte membrane. Furthermore, water is generated together with heat of reaction by an electrochemical reaction during power generation of the fuel cell. Therefore, the reaction gas is hot and humid, and the hydrogen sensor used in the fuel cell system is exposed to these hot and humid gases.

しかし、水素センサの検知素子に加湿水や生成水等が付着すると、検知素子の表面に局所的な温度分布の不均一が発生し、感度低下や素子破壊等の虞がある。
そこで、特許文献1では、水素センサにヒータを内蔵させ、検知素子格納空間の温度を水素センサの上流側のガス温度より高く制御して、検知素子に導かれるガスの相対湿度を上流側のガスの相対湿度よりも確実に低下させている。
特開2003−294675号公報
However, when humidified water, generated water, or the like adheres to the detection element of the hydrogen sensor, local temperature distribution is uneven on the surface of the detection element, and there is a risk of sensitivity reduction or element destruction.
Therefore, in Patent Document 1, a heater is incorporated in the hydrogen sensor, the temperature of the sensing element storage space is controlled to be higher than the gas temperature on the upstream side of the hydrogen sensor, and the relative humidity of the gas guided to the sensing element is set to the upstream gas. The relative humidity is surely lowered.
JP 2003-294675 A

従来の水素センサは、被検知ガスが流れる配管の天井部に、ガス導入口を下向きにして取付けられているため、一度、高濃度の水素ガスが導入された場合には比重が軽いために検知素子格納空間に高濃度水素が滞留してしまい、被検知ガスの水素濃度が下がっても暫くは滞留した高濃度水素を現在流れている被検知ガスの水素濃度と誤って検知してしまうなど、応答性が悪いという問題点がある。   The conventional hydrogen sensor is installed on the ceiling of the pipe where the gas to be detected flows with the gas inlet facing downward, so once a high concentration of hydrogen gas is introduced, the specific gravity is low, so it is detected High concentration hydrogen stays in the element storage space, and even if the hydrogen concentration of the gas to be detected decreases, the high concentration hydrogen that has stayed for a while will be mistakenly detected as the hydrogen concentration of the gas to be detected. There is a problem of poor responsiveness.

また、ヒータを使用して検知素子周辺を露点温度か水の沸点以上に加温する構成を採っているため、消費電力が大きく、加えて起動時に検知素子が有効に動作するまでの暖機時間が長くなるので、これを制御に利用したシステムの起動が遅いという問題点がある。
本発明は、このような問題点に鑑み、検知素子への水の付着を最小限にしつつ、応答性や消費電力などを改善することを目的とする。
In addition, because the heater is used to heat the surroundings of the sensing element above the dew point temperature or the boiling point of water, the power consumption is large, and in addition, the warm-up time until the sensing element operates effectively at startup However, there is a problem that the system using this for control is slow to start.
In view of such a problem, the present invention aims to improve responsiveness, power consumption, and the like while minimizing the adhesion of water to the sensing element.

このため、本発明では、検知素子及び基準素子を内蔵させた検知部を、被検知ガスが流れる配管の壁部から配管内に突出させた断熱材からなる支持体により支持して、配管内の流れの中に配置し、前記検知部に前記検知素子に被検知ガスを導くガス導入口を被検知ガスの流れと逆方向に開口させる構成とする。   For this reason, in the present invention, the detection unit including the detection element and the reference element is supported by a support made of a heat insulating material protruding from the wall portion of the pipe through which the gas to be detected flows into the pipe, A gas introduction port that is arranged in the flow and guides the gas to be detected to the detection element is opened to the detection unit in a direction opposite to the flow of the gas to be detected.

本発明によれば、検知部を配管内壁から配管中心部方向へ離すと共に断熱して配置するので、配管温度が低い時の結露や、運転停止後に被検知ガスが冷えて凝縮が生じる場合でも、検知素子の結露が防止できることから、ヒータを使用することなく、検知精度を向上できる。
また、ガス導入口を被検知ガスの流れと逆方向に開口させたので、被検知ガスに液滴(飛沫水)が含まれていても検知素子に液滴が当たることがない。このため液滴付着による一時的な検知不良や、熱衝撃などによる検知素子の劣化・損傷も防止できる。
According to the present invention, the detection unit is separated from the inner wall of the pipe toward the center of the pipe and thermally insulated, so that condensation occurs when the pipe temperature is low, or even if the detected gas is cooled and condensed after the operation stops, Since the dew condensation of the detection element can be prevented, the detection accuracy can be improved without using a heater.
Further, since the gas introduction port is opened in the direction opposite to the flow of the gas to be detected, even if the gas to be detected contains liquid droplets (splash water), the liquid droplets do not hit the detection element. For this reason, it is possible to prevent temporary detection failure due to droplet adhesion and deterioration / damage of the detection element due to thermal shock.

また、被検知ガスの高流速空間に検知部を配置したので、検知素子格納空間のガスの置換が速やかになり、水素濃度検知の応答性を向上できる。   In addition, since the detection unit is arranged in the high flow velocity space of the gas to be detected, the gas in the detection element storage space can be quickly replaced, and the response of hydrogen concentration detection can be improved.

以下に本発明の実施の形態を図面に基づいて説明する。
先ず本発明の第1実施形態を図1により説明する。
本発明の水素センサ10は、被検知ガスが流れる配管2に取付けられて、被検知ガスの水素濃度を検知するものである。
水素センサ10は、配管2のセンサ取付孔を囲む外壁に取付けられるボディ11と、ボディ11から配管2のセンサ取付孔を貫通して配管2の中心部へ延びる支持アーム(支持体)12と、支持アーム12の先端部に支持される検知ヘッド(検知部)13とから構成される。
Embodiments of the present invention will be described below with reference to the drawings.
First, a first embodiment of the present invention will be described with reference to FIG.
The hydrogen sensor 10 of the present invention is attached to the pipe 2 through which the gas to be detected flows, and detects the hydrogen concentration of the gas to be detected.
The hydrogen sensor 10 includes a body 11 attached to an outer wall surrounding the sensor attachment hole of the pipe 2, a support arm (support) 12 extending from the body 11 through the sensor attachment hole of the pipe 2 to the center of the pipe 2, It comprises a detection head (detection unit) 13 supported at the tip of the support arm 12.

ボディ11は、信号調整回路14のケースをなすと共に、配管2外壁への固定フランジを有し、ボルト15により取付けられる。また、配管2とボディ11との接合面にはセンサ取付孔を囲んでOリング等のシール材16が介装され、ガス漏れが防止される。信号調整回路14からはボディ11外へ外部配線17が導出される。
支持アーム12は、検知ヘッド13を支持して、配管2内の被検知ガスの流れの中に配置するもの(支持体)であり、検知ヘッド13の熱がボディ11を介して配管2へ放熱されるのを低減するために工業用プラスチックなどの断熱材で製作されている。また、支持アーム12の内部にはボディ11内の信号調整回路14と検知ヘッド13内の検知素子等とをつなぐ配線18を通す貫通孔を設け、配線組立後にガス漏れの経路とならないように樹脂を充填してある。
The body 11 forms a case of the signal adjustment circuit 14, has a fixing flange to the outer wall of the pipe 2, and is attached by a bolt 15. Further, a sealing material 16 such as an O-ring is interposed on the joint surface between the pipe 2 and the body 11 so as to surround the sensor mounting hole, thereby preventing gas leakage. An external wiring 17 is led out of the body 11 from the signal adjustment circuit 14.
The support arm 12 supports the detection head 13 and is disposed in the flow of the gas to be detected in the pipe 2 (support), and heat of the detection head 13 is radiated to the pipe 2 through the body 11. In order to reduce this, it is made of heat insulating material such as industrial plastic. In addition, a through-hole through which the wiring 18 that connects the signal adjustment circuit 14 in the body 11 and the detection element in the detection head 13 and the like is provided is provided in the support arm 12 so that a gas leakage path is not formed after the wiring is assembled. Is filled.

検知ヘッド13は、検知素子と基準素子とを内蔵するもの(検知部)であり、ここでは、その外壁を、略半球状で、配管2内の被検知ガスの流れ方向上流側に向かって凸をなし、下流側ほど断面積が増大し、最大断面積A(配管の径方向Dでの断面積が最大)となる下流側端部が開放されている殻体19により構成してある。この殻体19は、被検ガスの温度に即座に平衡するように熱伝導率が高く、かつ被検知ガスで材料劣化しない材料(例えば、SUS316L)で製作してある。   The detection head 13 includes a detection element and a reference element (detection unit). Here, the outer wall of the detection head 13 is substantially hemispherical and protrudes toward the upstream side in the flow direction of the gas to be detected in the pipe 2. The cross-sectional area increases toward the downstream side, and is constituted by a shell body 19 having an open downstream end portion having a maximum cross-sectional area A (the cross-sectional area in the radial direction D of the pipe is maximum). The shell 19 is made of a material (for example, SUS316L) that has a high thermal conductivity so as to immediately equilibrate to the temperature of the test gas and that does not deteriorate with the detection gas.

そして、殻体19の内部を流れ方向中間部で隔壁20により仕切り、隔壁20の上流側に、殻体19の先端側外壁により密閉された基準素子格納空間21を形成し、隔壁20の下流側に、殻体19の後端部にて開放された検知素子格納空間22を形成してある。
そして、基準素子格納空間21に基準素子23を格納し、検知素子格納空間22に検知素子24を格納してある。
Then, the inside of the shell 19 is partitioned by a partition wall 20 at an intermediate portion in the flow direction, and a reference element storage space 21 sealed by a front end side outer wall of the shell body 19 is formed on the upstream side of the partition wall 20. In addition, a sensing element storage space 22 opened at the rear end of the shell 19 is formed.
A reference element 23 is stored in the reference element storage space 21, and a detection element 24 is stored in the detection element storage space 22.

基準素子23は主に温度補償(Cf温度による検知誤差低減)に用いることから、基準素子23と検知素子24は隔壁20を介して熱的に良好に結合する。このため、隔壁20の材料としては、例えばアルミナ系セラミックスやSUS316Lを使用する。
検知素子24及び基準素子23としては共に、例えば、気体熱伝導式のガス検知素子を用いる。気体熱伝導式のガス検知素子は、電気的特性が同一の素子を2つ用いて、一方を検知素子として被検知ガスに晒し、他方を基準素子として基準ガスに晒し、双方の素子に通電したときに、被検知ガスと基準ガスとの熱伝導率の差に比例した抵抗変化を生じることから、電気抵抗の差を検知することで、被検知ガスの水素濃度を検知することができるものである。
Since the reference element 23 is mainly used for temperature compensation (detection error reduction due to Cf temperature), the reference element 23 and the detection element 24 are thermally coupled to each other through the partition wall 20. For this reason, as a material of the partition 20, for example, alumina ceramics or SUS316L is used.
For example, a gas heat conduction type gas detection element is used as both the detection element 24 and the reference element 23. The gas heat conduction type gas detection element uses two elements having the same electrical characteristics, one is exposed to the gas to be detected as a detection element, the other is exposed to the reference gas as a reference element, and both elements are energized. Sometimes, a change in resistance proportional to the difference in thermal conductivity between the gas to be detected and the reference gas occurs, so that the hydrogen concentration of the gas to be detected can be detected by detecting the difference in electrical resistance. is there.

この原理を利用するため、基準素子格納空間21は、密閉空間とすると共に基準ガスを封入する。基準ガスとしては、安価には空気を用いることができるが、窒素ガスなどの不活性ガスを用いると安定性の点でより望ましい。
一方、検知素子格納空間22は、殻体19の後端部が、ガス導入口25として、被検知ガスの流れと逆方向に開口しており、常に被検知ガスに晒されるようになっている。
In order to use this principle, the reference element storage space 21 is a sealed space and encloses a reference gas. As the reference gas, air can be used at a low cost, but an inert gas such as nitrogen gas is more preferable in terms of stability.
On the other hand, in the detection element storage space 22, the rear end portion of the shell 19 is opened as a gas inlet 25 in the direction opposite to the flow of the gas to be detected, and is always exposed to the gas to be detected. .

また、殻体19の後端部の開口面(ガス導入口25)には、検知素子24に機械的な外力が加わらないように、保護用のメッシュ26を装着してある。このメッシュ26は、主に水素センサ10を着脱する際に誤って検知素子24を破損しないためのものであることから、粗いメッシュで良く、従って被検知ガスは検知素子格納空間22に抵抗無く自由に出入り可能である(図示B)。   A protective mesh 26 is attached to the opening surface (gas introduction port 25) at the rear end of the shell 19 so that mechanical external force is not applied to the detection element 24. Since the mesh 26 is mainly used to prevent the detection element 24 from being accidentally damaged when the hydrogen sensor 10 is attached / detached, the mesh 26 may be a coarse mesh, so that the gas to be detected is free in the detection element storage space 22 without resistance. Can enter and exit (B in the figure).

本実施形態によれば、検知素子24及び基準素子23を内蔵させた検知部(検知ヘッド13)を、被検知ガスが流れる配管2の壁部から管内に突出させた断熱材からなる支持体(支持アーム12)により支持して、配管2内の流れの中に配置し、検知部(検知ヘッド13)に検知素子24に被検知ガスを導くガス導入口25を被検知ガスの流れと逆方向に開口させたことにより、次のような効果が得られる。   According to the present embodiment, a support body made of a heat insulating material in which a detection unit (detection head 13) incorporating the detection element 24 and the reference element 23 is protruded into the pipe from the wall part of the pipe 2 through which the gas to be detected flows ( The gas introduction port 25 that is supported by the support arm 12) and arranged in the flow in the pipe 2 and leads the detection gas to the detection element 24 to the detection unit (detection head 13) is opposite to the flow of the detection gas. Due to the opening, the following effects can be obtained.

検知部(検知ヘッド13)を配管内壁から配管中心部方向へ離すと共に断熱して配置するので、配管温度が低い時の結露や、運転停止後に被検知ガスが冷えて凝縮が生じる場合でも、検知素子24の結露が防止できることから、ヒータを使用することなく、検知精度を向上できる。
また、ガス導入口25を被検知ガスの流れと逆方向に開口させたので、被検知ガスに液滴(飛沫水)が含まれていても検知素子24に液滴(飛沫水)が当たることがない。このため液滴付着による一時的な検知不良や、熱衝撃などによる検知素子24の劣化・損傷も防止できる。
Since the detector (detection head 13) is placed away from the inner wall of the pipe toward the center of the pipe and insulated, it is possible to detect dew condensation when the pipe temperature is low or even if the gas to be detected cools down after operation is stopped. Since dew condensation of the element 24 can be prevented, detection accuracy can be improved without using a heater.
Further, since the gas introduction port 25 is opened in the direction opposite to the flow of the gas to be detected, the liquid droplet (splash water) hits the detection element 24 even if the gas to be detected contains liquid droplets (splash water). There is no. For this reason, it is possible to prevent temporary detection failure due to droplet adhesion and deterioration / damage of the detection element 24 due to thermal shock or the like.

また、被検知ガスの高流速空間に検知部を配置したので、検知素子格納空間22のガスの置換が速やかになり、水素濃度検知の応答性を向上できる。
また、検知部の後流負圧によりガス流量に応じた検知素子格納空間22の吸出効果が得られるので、ガス置換が促進されると共に、低温起動時や被検知ガスの加圧に伴う露点上昇から検知素子格納空間22に液滴が生じても速やかに排水される。ゆえにガス流量に追従して応答性が向上できると共に、液滴による検知不良を防止できる。
In addition, since the detection unit is arranged in the high flow velocity space of the gas to be detected, the gas in the detection element storage space 22 can be replaced quickly, and the response of hydrogen concentration detection can be improved.
Moreover, since the suction effect of the detection element storage space 22 according to the gas flow rate can be obtained by the downstream negative pressure of the detection unit, the gas replacement is promoted and the dew point rises at the time of low temperature startup or pressurization of the gas to be detected. Even if droplets are generated in the sensing element storage space 22, they are quickly drained. Therefore, it is possible to improve the responsiveness following the gas flow rate, and to prevent a detection failure due to droplets.

また、副次的効果として水滴付着が無いので耐凍結性も向上できる。
更には、従来、結露が障害となって適用できなかった燃料電池アノード極や、改質による水素製造設備などの高湿度で、飛沫水混じりのガス配管においても、水素濃度検知が可能となる。
また、本実施形態によれば、検知部(検知ヘッド13)は、検知素子24の格納空間22と基準素子23の格納空間21とを隔壁20を介してそれぞれ備え、基準素子23の格納空間21は、検知部の外壁(殻体19)と隔壁(20)とで密閉し、内部に基準ガスを封入したことにより、次のような効果が得られる。
Moreover, since there is no adhesion of water droplets as a secondary effect, the freeze resistance can be improved.
Furthermore, it is possible to detect the hydrogen concentration even in gas pipes mixed with splashed water at high humidity, such as a fuel cell anode electrode, which could not be applied due to dew condensation, and a hydrogen production facility by reforming.
In addition, according to the present embodiment, the detection unit (detection head 13) includes the storage space 22 of the detection element 24 and the storage space 21 of the reference element 23 via the partition wall 20, and the storage space 21 of the reference element 23. Is sealed with the outer wall (shell 19) and the partition wall (20) of the detection unit, and the reference gas is sealed inside, thereby obtaining the following effects.

基準素子格納空間21の形成部材と検知部の外壁を兼用とすると共に隔壁20で基準素子格納空間21を密閉し、更に検知素子格納空間22とを分けたので、部品点数が少なく、熱容量が低減される。
更に被検知ガスの熱を検知部の外壁(殻体19)で受熱して基準素子23と検知素子24が被検ガス温度に温調されて、検知部を露点(沸点)以上に維持することが容易となることから、加熱用のヒータを不要または簡素化して省電力および低コストにできる。また熱容量が小さいため水素濃度出力の応答性も向上できる。
Since the reference element storage space 21 and the outer wall of the detection unit are combined, the reference element storage space 21 is sealed by the partition wall 20 and the detection element storage space 22 is further divided, so that the number of parts is reduced and the heat capacity is reduced. Is done.
Further, the heat of the gas to be detected is received by the outer wall (shell 19) of the detection unit, the reference element 23 and the detection element 24 are adjusted to the temperature of the detection gas, and the detection unit is maintained at the dew point (boiling point) or higher. Therefore, a heater for heating is unnecessary or simplified, and power saving and low cost can be achieved. Moreover, since the heat capacity is small, the response of hydrogen concentration output can be improved.

また、本実施形態によれば、配管2内の流れ方向で、上流側に、基準素子23の格納空間21を配置し、下流側に、検知素子24の格納空間22を配置したことにより、次のような効果が得られる。
被検知ガスに液滴(飛沫水)が含まれていても、基準素子格納空間21が衝立となり検知素子24に液滴(飛沫水)が吹付けられることがない。このため液滴付着による一時的な検知不良や、熱衝撃などによる劣化・損傷も防止できる。
Further, according to the present embodiment, the storage space 21 of the reference element 23 is arranged on the upstream side and the storage space 22 of the detection element 24 is arranged on the downstream side in the flow direction in the pipe 2. The following effects can be obtained.
Even if the gas to be detected includes liquid droplets (splash water), the reference element storage space 21 becomes a partition and the liquid droplets (splash water) are not sprayed on the detection element 24. For this reason, it is possible to prevent temporary detection failure due to droplet adhesion and deterioration / damage due to thermal shock.

また基準ガスの封入により熱容量が(検知素子格納空間22に対して)高くなった基準素子格納空間21を、被検知ガスにより積極的に温調させることができ、これにより特に被検知ガスの温度が急変した際に、熱容量の異なる基準素子格納空間21と検知素子格納空間22の温度差を速やかに平衡状態にすることができ、過渡応答性が向上する。
また、本実施形態によれば、検知部(検知ヘッド13)の外壁(殻体19)を配管2内の流れ方向の下流側ほど断面積が増大するように形成し、最大断面積となる下流側端部をガス導入口25としたことにより、次のような効果が得られる。
In addition, the reference element storage space 21 whose heat capacity has become higher (relative to the detection element storage space 22) due to the inclusion of the reference gas can be actively controlled by the detected gas, and in particular the temperature of the detected gas. When a sudden change occurs, the temperature difference between the reference element storage space 21 and the detection element storage space 22 having different heat capacities can be quickly brought into an equilibrium state, and the transient response is improved.
Further, according to the present embodiment, the outer wall (shell 19) of the detection unit (detection head 13) is formed so that the cross-sectional area increases toward the downstream side in the flow direction in the pipe 2, and the downstream having the maximum cross-sectional area is formed. By using the gas inlet 25 as the side end, the following effects can be obtained.

被検知ガスに液滴(飛沫水)が含まれていてもその液滴(飛沫水)が検知素子24に吹付けられることがない。これにより液滴付着による一時的な検知不良や、熱衝撃などによる劣化・損傷も防止できる。
また検知部外壁に沿って流れる被検知ガスの流速が最大になるので、その下流側で発生する渦(剥離)が低流量から発生し、この渦が検知素子格納空間22のガス置換を促進する。これにより広い流量範囲においてガス濃度の検知応答性が向上できる。
Even if the gas to be detected includes a droplet (splash water), the droplet (splash water) is not sprayed on the detection element 24. As a result, it is possible to prevent temporary detection failure due to droplet adhesion and deterioration / damage due to thermal shock.
In addition, since the flow velocity of the gas to be detected flowing along the outer wall of the detection unit is maximized, a vortex (separation) generated on the downstream side is generated from a low flow rate, and this vortex promotes gas replacement in the detection element storage space 22. . As a result, the gas concentration detection response can be improved over a wide flow range.

また、本実施形態によれば、ガス導入口25にメッシュ26を設けたことにより、検知素子24に機械的外力が加わらないように保護することができ、水素センサの配管脱着時などに検知素子24を破損することを防止できる。
次に本発明の第2実施形態を図2により説明する。尚、第2実施形態以降では、既に述べた実施形態と同じ部分については説明を省略し、異なる部分のみを説明する。
Further, according to the present embodiment, by providing the mesh 26 at the gas inlet 25, it is possible to protect the sensing element 24 from being applied with mechanical external force. 24 can be prevented from being damaged.
Next, a second embodiment of the present invention will be described with reference to FIG. In the second and subsequent embodiments, the description of the same parts as those already described will be omitted, and only different parts will be described.

本実施形態では、殻体19の後端部の開口面に装着されるメッシュ27は、被検知ガスの流れ方向で下流側に膨らませて、検知ヘッド13の外壁(殻体19)と共に全体で紡錘形状に成形してある。言い換えれば、検知ヘッド13の外壁を配管2の流れ方向に沿って紡錘形状に形成し、最大断面積部Aより下流側をメッシュ27により構成して、ガス導入口25としている。尚、殻体19とメッシュ27は、最大断面積部Aで段差なく接合してある。これによりメッシュ27部分で流速変化に伴う圧力傾斜から渦流れ(図示C)が生じる。   In the present embodiment, the mesh 27 attached to the opening surface of the rear end portion of the shell 19 swells downstream in the flow direction of the gas to be detected, and has a spindle shape as a whole together with the outer wall (shell 19) of the detection head 13. It is shaped into a shape. In other words, the outer wall of the detection head 13 is formed in a spindle shape along the flow direction of the pipe 2, and the downstream side of the maximum cross-sectional area A is configured by the mesh 27 to form the gas inlet 25. Note that the shell 19 and the mesh 27 are joined at the maximum cross-sectional area A without a step. As a result, a vortex flow (C in the drawing) is generated from the pressure gradient accompanying the flow velocity change at the mesh 27 portion.

また、本実施形態では、基準素子格納空間21内で基準素子23と隔壁20の間にヒータ28を設けてある。このヒータ28は、後述の利用例で説明するように低温起動時にのみ発熱させるもので、例えばセラミックヒータや白金抵抗線式ヒータなどを使用できる。この場合、基準素子格納空間21に封入する基準ガスは、窒素などの不活性ガスとすることが望ましい。   In the present embodiment, a heater 28 is provided between the reference element 23 and the partition wall 20 in the reference element storage space 21. The heater 28 generates heat only at a low temperature start-up as will be described later in the application example. For example, a ceramic heater or a platinum resistance wire heater can be used. In this case, it is desirable that the reference gas sealed in the reference element storage space 21 is an inert gas such as nitrogen.

特に本実施形態によれば、検知部(検知ヘッド13)の外壁を配管2内の流れ方向に沿って紡錘形状に形成し、最大断面積部Aより下流側の少なくとも一部をメッシュ27により構成して、ガス導入口25としたことにより、次のような効果が得られる。
紡錘形状とすることで、被検知ガスの流通抵抗の増加を抑制でき、水素センサの挿入圧損を低減することができる。
In particular, according to the present embodiment, the outer wall of the detection unit (detection head 13) is formed in a spindle shape along the flow direction in the pipe 2, and at least a part of the downstream side from the maximum cross-sectional area A is configured by the mesh 27. Thus, the gas inlet 25 provides the following effects.
By adopting the spindle shape, an increase in the flow resistance of the gas to be detected can be suppressed, and the insertion pressure loss of the hydrogen sensor can be reduced.

また検知部の外壁に沿って流れる被検知ガスが最大流速になる位置より下流側をメッシュ27で構成したために、被検知ガスに対しては整流作用を有し、ガス置換に対しては圧力差による渦により検知素子格納空間22のガス置換を促進することができる。
また、本実施形態によれば、検知部(検知ヘッド13)内、特に基準素子23の格納空間21内にヒータ28を設け、低温起動時のみ発熱させることにより、ヒータ28を使用するも、低温起動時のみ使用することで、省電力化ができ、またヒータ寿命が延ばせるため水素センサの耐久性も向上できる。
Further, since the downstream side of the position where the detected gas flowing along the outer wall of the detection unit reaches the maximum flow velocity is configured by the mesh 27, the detected gas has a rectifying action and the pressure difference for gas replacement. Due to the eddy, gas replacement in the sensing element storage space 22 can be promoted.
In addition, according to the present embodiment, the heater 28 is used in the detection unit (detection head 13), particularly in the storage space 21 of the reference element 23, and generates heat only at low temperature startup, so that the heater 28 is used at a low temperature. By using it only at the time of start-up, power saving can be achieved and the life of the heater can be extended, so that the durability of the hydrogen sensor can be improved.

また、本実施形態によれば、基準ガスとして不活性ガスを用いることにより、基準点補償としての安定性を向上させることができると共に、基準素子格納空間22に内蔵したヒータ28を含む各種電気部品の特性を長期にわたって安定させることができる。
次に本発明の第3実施形態を図3により説明する。
本実施形態では、信号調整回路29を半導体プロセスを用いてシリコン上に集積化して、基準素子23と隔壁20との間に設けている。このとき、信号調整回路29は、信号調整の機能を備えると共に、動作熱によるヒータ機能を兼ね備える。
Further, according to the present embodiment, by using an inert gas as a reference gas, stability as reference point compensation can be improved, and various electrical components including a heater 28 built in the reference element storage space 22 can be obtained. The characteristics can be stabilized over a long period of time.
Next, a third embodiment of the present invention will be described with reference to FIG.
In the present embodiment, the signal adjustment circuit 29 is integrated on silicon using a semiconductor process and provided between the reference element 23 and the partition wall 20. At this time, the signal adjustment circuit 29 has a signal adjustment function and also has a heater function by operating heat.

また、メッシュ27は、重力方向の下部Eを、粗いメッシュ又は開口として、液滴Fのための排水口30を形成してある。更にメッシュ27は、フッ素や4フッ化エチレン(テフロン)などで製作して、撥水性を持たせてある。尚、撥水性を持たせるための他の方法として、ステンレス基材にフッ素などをコーティングを施してもよい。
また、検知素子格納空間22で検知素子24と近接する部位(隔壁20の表面G)にガラスなどの親水性材料を貼り付けることにより、液滴の接触角を下げて、液滴が隔壁20と検知素子24に架橋することを防止している。尚、親水性を持たせるための他の方法として、酸化チタンなどの親水コーティングを施してもよい。
Further, the mesh 27 is formed with a drain port 30 for the droplet F by using the lower part E in the direction of gravity as a rough mesh or opening. Further, the mesh 27 is made of fluorine, tetrafluoroethylene (Teflon) or the like, and has water repellency. As another method for imparting water repellency, a stainless steel substrate may be coated with fluorine or the like.
In addition, by attaching a hydrophilic material such as glass to a portion (surface G of the partition wall 20) that is close to the detection element 24 in the detection element storage space 22, the contact angle of the droplet is lowered and the droplet is separated from the partition wall 20. Cross-linking to the sensing element 24 is prevented. As another method for imparting hydrophilicity, a hydrophilic coating such as titanium oxide may be applied.

特に本実施形態によれば、メッシュ27の重力方向の下部を粗いメッシュ又は開口として、排水口30を形成したことにより、低温起動時や被検知ガスの加圧に伴う露点上昇から検知素子格納空間22に液滴が生じても速やかに排水される。これにより液滴による検知不良を防止できる。
また、本実施形態によれば、メッシュ27を撥水性材料で製作するか、メッシュ基材に撥水コーティングを施して製作することで、メッシュ27に撥水性を持たせたことにより、検知素子格納空間22へ水蒸気を含む被検知ガスを通しつつ、検知の障害となる液滴の進入や水膜の形成を低減させることができる。これにより検知素子格納空間22に導かれる被検知ガスの組成が変化しないため、水素濃度の検知精度を高めることができる。
In particular, according to the present embodiment, the lower portion of the mesh 27 in the direction of gravity is a rough mesh or opening, and the drain port 30 is formed, so that the sensing element storage space can be prevented from dew point rise due to low temperature startup or gas pressurization. Even if a liquid droplet is generated in 22, it is quickly drained. Thereby, the detection failure by a droplet can be prevented.
Further, according to the present embodiment, the mesh 27 is made of a water repellent material, or is produced by applying a water repellent coating to the mesh base material, so that the mesh 27 has water repellency. While the gas to be detected including water vapor is passed through the space 22, it is possible to reduce the ingress of droplets and the formation of a water film that become obstacles to detection. Thereby, since the composition of the gas to be detected guided to the detection element storage space 22 does not change, the accuracy of detecting the hydrogen concentration can be increased.

また、本実施形態によれば、検知素子24の格納空間22内で検知素子24と近接する部位に親水性を持たせたことにより、具体的には、該当する部位を親水性材料で製作するか、該当する部位に親水コーティングを施すことにより、検知素子24とこれに近接する部位との間に液滴が滞留しない。このため液滴付着による一時的な検知不良や、熱衝撃などによる劣化・損傷も防止できる。   In addition, according to the present embodiment, the portion adjacent to the detection element 24 in the storage space 22 of the detection element 24 is made hydrophilic. Specifically, the corresponding portion is made of a hydrophilic material. Alternatively, by applying a hydrophilic coating to the corresponding part, the liquid droplet does not stay between the detection element 24 and the part adjacent to the detection element 24. For this reason, it is possible to prevent temporary detection failure due to droplet adhesion and deterioration / damage due to thermal shock.

次に本発明の第4実施形態を図4に基づいて説明する。
図4は図1〜図3のボディ11側から見たものである。
本実施形態では、断面が被検知ガスの流れ方向に紡錘形状をなす支持アーム12の先端部を検知ヘッド13’として、その内部を流れ方向に沿う隔壁20’で仕切ることにより、流れ方向に対し、並列に、基準素子格納空間21(基準素子23)と、検知素子格納空間22(検知素子24)とを配置してある。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a view from the body 11 side of FIGS.
In the present embodiment, the tip of the support arm 12 having a spindle shape in the flow direction of the gas to be detected is used as the detection head 13 ′, and the inside thereof is partitioned by the partition wall 20 ′ along the flow direction. In parallel, a reference element storage space 21 (reference element 23) and a detection element storage space 22 (detection element 24) are arranged.

そして、最大断面積部より下流側で、検知素子格納空間22に対応する部分をメッシュ27’により構成して、ガス導入口25としてある。
特に、本実施形態によれば、配管2内の流れ方向に対し、並列に、基準素子23の格納空間21と、検知素子24の格納空間22とを配置したことにより、被検知ガスの温度が基準素子格納空間21と検知素子格納空間22とに均一に伝達され、温度補償性能を向上させることができる。
A portion corresponding to the sensing element storage space 22 is formed on the downstream side of the maximum cross-sectional area portion with a mesh 27 ′, which serves as the gas inlet 25.
In particular, according to the present embodiment, the storage space 21 of the reference element 23 and the storage space 22 of the detection element 24 are arranged in parallel to the flow direction in the pipe 2, so that the temperature of the gas to be detected is increased. The temperature is uniformly transmitted to the reference element storage space 21 and the detection element storage space 22, and the temperature compensation performance can be improved.

尚、図示は省略したが、第1〜第4実施形態において、検知素子格納空間22に湿度検知素子(図示せず)を設け、この湿度検知素子により検知される被検知ガスの湿度に基づいて温度補償を行うとよい。
湿度検知素子としては、静電容量式の相対湿度検知素子などが利用でき、検知素子格納空間22内の検知素子24の近傍に、検知ヘッド13の外壁(殻体19)と熱的に良好に結合させて取付ける。
Although not shown, in the first to fourth embodiments, a humidity detection element (not shown) is provided in the detection element storage space 22, and based on the humidity of the gas to be detected detected by the humidity detection element. Temperature compensation should be performed.
As the humidity detection element, an electrostatic capacitance type relative humidity detection element or the like can be used. In the vicinity of the detection element 24 in the detection element storage space 22, the outer wall (shell 19) of the detection head 13 is thermally excellent. Install in combination.

湿度補償を行うことで、特に気体熱伝導式水素センサなど水蒸気に感度を有する水素センサを使用しても、水蒸気濃度補正できるため、水素濃度を精度よく検知できる。また水素センサと共に湿度センサ(湿度検出素子)の耐結露性も同様に確保されるため、湿度検知情報を被検知ガスの加湿制御に利用することもできる。
次に本発明に係る水素センサの利用例について説明する。
By performing humidity compensation, it is possible to accurately detect the hydrogen concentration because the water vapor concentration can be corrected even if a hydrogen sensor having sensitivity to water vapor, such as a gas heat conduction type hydrogen sensor, is used. Moreover, since the dew condensation resistance of the humidity sensor (humidity detection element) is ensured as well as the hydrogen sensor, the humidity detection information can be used for humidification control of the gas to be detected.
Next, usage examples of the hydrogen sensor according to the present invention will be described.

図5は燃料電池システムの構成図である。
燃料電池スタック1は、固体高分子電解質膜をアノード側電極とカソード側電極とで挟持した電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セルを多数組積層して構成されている。
アノード側電極には、水素供給源から水素供給弁3を介し、入口配管2aにより、水素ガス(燃料ガス)が供給され、電極上で水素がイオン化されて、固体高分子電解質膜を介してカソード側電極へと移動する。その間に生じた電子が外部回路に取出され、直流の電気エネルギーとして利用される。カソード側電極には、空気(酸化剤ガス)が入口配管2bにより供給されているために、水が生成される。アノード側の出口配管2cは、水素ガスを再利用するため、循環ポンプ(循環配管)4を介して、入口配管2aと接続されており、適宜、パージ弁(図示せず)を介してオフガスを系外に排出する。カソード側の出口配管2dは、オフガスを系外に排出する。
FIG. 5 is a configuration diagram of the fuel cell system.
The fuel cell stack 1 is configured by laminating a large number of fuel cell units in which an electrolyte electrode structure in which a solid polymer electrolyte membrane is sandwiched between an anode side electrode and a cathode side electrode is sandwiched between a pair of separators. Yes.
The anode side electrode is supplied with hydrogen gas (fuel gas) from the hydrogen supply source through the hydrogen supply valve 3 and through the inlet pipe 2a, and hydrogen is ionized on the electrode, and the cathode is passed through the solid polymer electrolyte membrane. Move to the side electrode. Electrons generated in the meantime are taken out to an external circuit and used as direct current electric energy. Since air (oxidant gas) is supplied to the cathode side electrode through the inlet pipe 2b, water is generated. The anode side outlet pipe 2c is connected to the inlet pipe 2a via a circulation pump (circulation pipe) 4 in order to reuse the hydrogen gas, and off-gas is appropriately supplied via a purge valve (not shown). Discharge out of the system. The cathode side outlet pipe 2d discharges off-gas outside the system.

運転制御モジュール5には、アノード側の入口配管2aに設けた温度センサ6及び圧力センサ7から信号が入力されている。また、アノード側の出口配管2cに設けた水素センサ10a(及び図示しない温度センサ)、及び/又は、カソード側の出口配管2dに設けた水素センサ10bから信号が入力されている。
ここにおいて、運転制御モジュール5は、図6及び図7のフローチャートに従って、運転制御を行い、水素供給弁3、循環ポンプ4などの作動を制御する。尚、図5において、8は各種情報を記憶するメモリ、9は警報装置である。
Signals are input to the operation control module 5 from a temperature sensor 6 and a pressure sensor 7 provided on the inlet pipe 2a on the anode side. In addition, a signal is input from the hydrogen sensor 10a (and a temperature sensor (not shown)) provided in the anode side outlet pipe 2c and / or the hydrogen sensor 10b provided in the cathode side outlet pipe 2d.
Here, the operation control module 5 performs operation control according to the flowcharts of FIGS. 6 and 7 and controls the operations of the hydrogen supply valve 3 and the circulation pump 4. In FIG. 5, 8 is a memory for storing various information, and 9 is an alarm device.

図6は、燃料電池のアノード側の出口配管2cに水素センサ10aを設置した場合の運転制御のフローチャートである。
燃料電池の運転開始スイッチが押されると(S100)、運転制御モジュールは先ずアノード出口配管内のガス温度Tgを読込み、予め記憶しておいたシステム起動時の検知ヘッド結露温度Thと比較して(S110)、結露温度Th以下であった場合には、基準素子格納空間に設けたヒータに通電して発熱させる(S111)。これにより冷えた検知ヘッドの暖機時間を短縮化させるが、暖機が終わるまでは水素センサの出力が安定しないために水素濃度制御のための判定が一定時間待たされる(S112)。
FIG. 6 is a flowchart of operation control when the hydrogen sensor 10a is installed in the outlet pipe 2c on the anode side of the fuel cell.
When the operation start switch of the fuel cell is pressed (S100), the operation control module first reads the gas temperature Tg in the anode outlet pipe and compares it with the pre-stored detection head dew condensation temperature Th at system startup ( S110) If the temperature is equal to or lower than the dew condensation temperature Th, the heater provided in the reference element storage space is energized to generate heat (S111). As a result, the warm-up time of the cooled detection head is shortened, but since the output of the hydrogen sensor is not stable until the warm-up is completed, the determination for hydrogen concentration control is waited for a certain time (S112).

暖機が終わると水素センサの出力(検知濃度)Cgが読込まれ、水素濃度制御幅の低値Chmと比較する(S113)。このとき、低値Chmより低い場合は水素濃度不足となることから、水素供給弁を開くように指令を出す(S114)。一方、低値Chm以上なら次に水素濃度制御幅の高値ChLと比較する(S115)。このとき、高値ChLより高い場合は水素濃度過多となることから、水素供給弁を閉じるように指令を出す(S116)。この繰り返し処理の結果、アノード出口の水素濃度は所定濃度に維持される。この所定濃度は燃料電池が効率良く運転でき、かつ劣化を起こさないような条件に予め設定しておくことで、燃料電池が最適に運転制御されることになる。   When the warm-up is finished, the output (detected concentration) Cg of the hydrogen sensor is read and compared with the low value Chm of the hydrogen concentration control width (S113). At this time, if the value is lower than the low value Chm, the hydrogen concentration is insufficient, so a command is issued to open the hydrogen supply valve (S114). On the other hand, if it is equal to or higher than the low value Chm, then it is compared with the high value ChL of the hydrogen concentration control width (S115). At this time, if the value is higher than the high value ChL, the hydrogen concentration is excessive, so a command is issued to close the hydrogen supply valve (S116). As a result of this repeated treatment, the hydrogen concentration at the anode outlet is maintained at a predetermined concentration. The predetermined concentration is set in advance so that the fuel cell can be operated efficiently and does not deteriorate, so that the fuel cell is optimally controlled.

また、図5のシステムではアノード出口水素を再利用するために循環ポンプを備えているが、燃料電池スタックのカソード極からの窒素リークにより循環系に窒素が蓄積されて水素濃度を所定の濃度に維持できなくなるため、所定の窒素濃度に達したタイミングにてアノード出口ガスを外部へ排出させる必要がある。このタイミングを判定するために、水素センサで検知した水素濃度Cgが、前記の水素濃度制御の結果において、予め記憶しておいたパージ実施濃度Cpより所定の期間連続して下回るか否かを比較判定する(S117)。この結果、連続して下回る場合、窒素濃度が所定濃度に達したことになるので、パージ弁を開いてアノード出口ガスを排出するようパージ弁に指令を出す(S118)。   In addition, the system shown in FIG. 5 includes a circulation pump for reusing the anode outlet hydrogen. However, nitrogen is accumulated in the circulation system due to nitrogen leakage from the cathode electrode of the fuel cell stack, and the hydrogen concentration is adjusted to a predetermined concentration. Since it cannot be maintained, it is necessary to discharge the anode outlet gas to the outside when the predetermined nitrogen concentration is reached. In order to determine this timing, it is compared whether or not the hydrogen concentration Cg detected by the hydrogen sensor is continuously lower than the purge concentration Cp stored in advance for a predetermined period in the result of the hydrogen concentration control. Determination is made (S117). As a result, if it is continuously lower, the nitrogen concentration has reached a predetermined concentration, so a command is issued to the purge valve to open the purge valve and discharge the anode outlet gas (S118).

次に、水素濃度Cgを予め記憶しておいた故障時に相当するような異常濃度Cfと比較する(S119)。この結果、異常値(Cg>Cf)である場合は、警報を発する指令を警報装置に出力し、運転者へ警告する(S910)と共に、故障が拡大しないように所定の処理を実行し停止させる(S911、S912)。
一方、異常でない場合はその他の運転制御ルーチン(S130)が実行され、運転制御が一巡する。引き続き次の運転制御に入るが、このときガス温度Tgが検知ヘッドの結露温度Th以上であるか否かを判定し(S120)、結露温度Th以上の場合はヒータへの通電を切る。もし未だ結露温度Th以下の場合はヒータへの通電を続行させる。
Next, the hydrogen concentration Cg is compared with an abnormal concentration Cf corresponding to the time of failure stored in advance (S119). If the result is an abnormal value (Cg> Cf), a command to issue an alarm is output to the alarm device to alert the driver (S910), and a predetermined process is executed and stopped so that the failure does not expand. (S911, S912).
On the other hand, when it is not abnormal, another operation control routine (S130) is executed, and the operation control is completed. Subsequently, the next operation control is started. At this time, it is determined whether or not the gas temperature Tg is equal to or higher than the dew condensation temperature Th of the detection head (S120). If the dew condensation temperature Th is still below, the energization of the heater is continued.

上記のように、燃料電池システムのアノード側の配管(出口配管2cの他、入口配管2aや循環配管4でも可)に水素センサ10aを設置して、検知した水素濃度に応じて、燃料電池スタック1へのガス供給の制御、不純物パージの制御、燃料電池システムの運転停止、警報のうち、少なくとも1つを実施することにより、次のような効果が得られる。
ガス供給の制御、不純物パージの制御を実施することにより、燃料電池システムの運転が最適化され、燃料電池システムの燃費向上、スタック耐久性向上、信頼性向上を達成できる。
As described above, the hydrogen sensor 10a is installed in the anode side pipe (in addition to the outlet pipe 2c, the inlet pipe 2a or the circulation pipe 4) of the fuel cell system, and according to the detected hydrogen concentration, the fuel cell stack By implementing at least one of control of gas supply to 1, control of impurity purge, operation stop of the fuel cell system, and alarm, the following effects can be obtained.
By performing gas supply control and impurity purge control, the operation of the fuel cell system is optimized, and the fuel cell system can be improved in fuel consumption, stack durability, and reliability.

また所定の濃度範囲を外れた場合に、システム異常と判断し、警報を出力すると共に燃料電池システムの運転を停止することで、燃料電池システムの異常を速やかに検知して、故障箇所の拡大を防止することができる。
図7は、燃料電池のカソード側の出口配管2dに水素センサ10bを設置した場合のガス漏れ監視ルーチンのフローチャートである。
In addition, when the concentration is out of the specified concentration range, it is determined that the system is abnormal, and an alarm is output and the operation of the fuel cell system is stopped. Can be prevented.
FIG. 7 is a flowchart of a gas leak monitoring routine when the hydrogen sensor 10b is installed in the outlet pipe 2d on the cathode side of the fuel cell.

前記の運転制御モジュールの制御の中で、燃料電池スタックの故障診断ルーチンが実行されると(S200)、水素センサの出力(検知濃度)Cgが読込まれ、予め記憶させたガス漏れ判定濃度Ceと比較判定する(S210)。
このとき、ガス漏れ判定濃度Ce以上であった場合、故障によりアノード極の水素ガスがカソード極に漏れ出したことになるので、警報を発する指令を警報装置に出力し、運転者へ警告する(S920)と共に、故障が拡大しないように所定の処理を実行し停止させる(S921、S922)。
When the fuel cell stack failure diagnosis routine is executed in the control of the operation control module (S200), the output (detection concentration) Cg of the hydrogen sensor is read, and the gas leak determination concentration Ce stored in advance is stored. A comparison is made (S210).
At this time, if the gas leakage determination concentration Ce is equal to or higher than that, hydrogen gas at the anode electrode has leaked to the cathode electrode due to a failure, so an instruction to issue an alarm is output to the alarm device to warn the driver ( Along with S920), predetermined processing is executed and stopped so that the failure does not expand (S921, S922).

一方、ガス漏れ判定濃度Ce以下の場合は、その他の運転制御ルーチンへ処理が移される(S211)。
上記のように、燃料電池システムのカソード側の出口配管2dに水素センサ10bを設置して、所定値以上の水素濃度が検知された場合に、燃料電池システムの運転停止、警報のうち、少なくとも1つを実施することにより、燃料電池スタックの異常を速やかに検知して、故障箇所の拡大を防止することができる。
On the other hand, if the gas leakage determination concentration Ce is equal to or lower than the threshold value, the process proceeds to another operation control routine (S211).
As described above, when the hydrogen sensor 10b is installed in the outlet pipe 2d on the cathode side of the fuel cell system and a hydrogen concentration of a predetermined value or more is detected, at least one of the shutdown and alarm of the fuel cell system is detected. By implementing one, abnormality of the fuel cell stack can be detected quickly, and the expansion of the failure location can be prevented.

本発明の第1実施形態を示す図The figure which shows 1st Embodiment of this invention 本発明の第2実施形態を示す図The figure which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す図The figure which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す図The figure which shows 4th Embodiment of this invention. 燃料電池システムでの設置例を示す図Diagram showing an installation example in a fuel cell system 燃料電池システムでの制御例1のフローチャートFlow chart of control example 1 in fuel cell system 燃料電池システムでの制御例2のフローチャートFlow chart of control example 2 in fuel cell system

符号の説明Explanation of symbols

1 燃料電池スタック
2 配管
2a アノード側の入口配管
2b カソード側の入口配管
2c アノード側の出口配管
2d カソード側の出口配管
3 水素供給弁
4 循環ポンプ
5 運転制御モジュール
10(10a、10b) 水素センサ
11 ボディ
12 支持アーム(支持体)
13 検知ヘッド(検知部)
14 信号調整回路
15 ボルト
16 シール材
17 外部配線
18 配線
19 外殻
20 隔壁
21 基準素子格納空間
22 検知素子格納空間
23 基準素子
24 検知素子
25 ガス導入口
26 メッシュ
27 メッシュ
28 ヒータ
29 ヒータを兼ねる集積型の信号調整回路
30 排水口
DESCRIPTION OF SYMBOLS 1 Fuel cell stack 2 Piping 2a Inlet piping on the anode side 2b Inlet piping on the cathode side 2c Outlet piping on the anode side 2d Outlet piping on the cathode side 3 Hydrogen supply valve 4 Circulation pump 5 Operation control module 10 (10a, 10b) Hydrogen sensor 11 Body 12 Support arm (support)
13 Detection head (detection unit)
14 Signal Conditioning Circuit 15 Bolt 16 Sealing Material 17 External Wiring 18 Wiring 19 Outer Shell 20 Bulkhead 21 Reference Element Storage Space 22 Detection Element Storage Space 23 Reference Element 24 Detection Element 25 Gas Inlet 26 Mesh 27 Mesh 28 Heater 29 Integrated as a Heater Mold signal conditioning circuit 30 Drain port

Claims (15)

被検知ガスの水素濃度に応答する検知素子と基準素子との電気抵抗の差に基づいて被検知ガスの水素濃度を検知する水素センサであって、
前記検知素子及び基準素子を内蔵させた検知部を、被検知ガスが流れる配管の壁部から管内に突出させた断熱材からなる支持体により支持して、配管内の流れの中に配置し、
前記検知部に前記検知素子に被検知ガスを導くガス導入口を被検知ガスの流れと逆方向に開口させたことを特徴とする水素センサ。
A hydrogen sensor that detects a hydrogen concentration of a gas to be detected based on a difference in electrical resistance between a detection element that responds to the hydrogen concentration of the gas to be detected and a reference element,
The detection unit incorporating the detection element and the reference element is supported by a support made of a heat insulating material protruding into the pipe from the pipe wall through which the gas to be detected flows, and is arranged in the flow in the pipe.
A hydrogen sensor, wherein a gas introduction port for introducing a gas to be detected to the detection element is opened in the detection unit in a direction opposite to the flow of the gas to be detected.
前記検知部は、検知素子の格納空間と基準素子の格納空間とを隔壁を介してそれぞれ備え、基準素子の格納空間は、検知部の外壁と前記隔壁とで密閉し、内部に基準ガスを封入したことを特徴とする請求項1記載の水素センサ。   The detection unit includes a storage space for the detection element and a storage space for the reference element via a partition wall. The storage space for the reference element is sealed by the outer wall of the detection unit and the partition wall, and the reference gas is sealed inside. The hydrogen sensor according to claim 1. 配管内の流れ方向で、上流側に、基準素子の格納空間を配置し、下流側に、検知素子の格納空間を配置したことを特徴とする請求項2記載の水素センサ。   3. The hydrogen sensor according to claim 2, wherein a storage space for the reference element is disposed upstream and a storage space for the detection element is disposed downstream of the flow direction in the pipe. 配管内の流れ方向に対し、並列に、基準素子の格納空間と、検知素子の格納空間とを配置したことを特徴とする請求項2記載の水素センサ。   The hydrogen sensor according to claim 2, wherein a storage space for the reference element and a storage space for the detection element are arranged in parallel to the flow direction in the pipe. 前記基準ガスに不活性ガスを用いたことを特徴とする請求項2〜請求項4のいずれか1つに記載の水素センサ。   The hydrogen sensor according to any one of claims 2 to 4, wherein an inert gas is used as the reference gas. 前記検知部の外壁を配管内の流れ方向の下流側ほど断面積が増大するように形成し、最大断面積となる下流側端部を前記ガス導入口としたことを特徴とする請求項1〜請求項5のいずれか1つに記載の水素センサ。   The outer wall of the detection part is formed so that the cross-sectional area increases toward the downstream side in the flow direction in the pipe, and the downstream end part having the maximum cross-sectional area is used as the gas introduction port. The hydrogen sensor according to claim 5. 前記ガス導入口にメッシュを設けたことを特徴とする請求項1〜請求項6のいずれか1つに記載の水素センサ。   The hydrogen sensor according to any one of claims 1 to 6, wherein a mesh is provided at the gas inlet. 前記検知部の外壁を配管内の流れ方向に沿って紡錘形状に形成し、最大断面積部より下流側の少なくとも一部をメッシュにより構成して、前記ガス導入口としたことを特徴とする請求項1〜請求項5のいずれか1つに記載の水素センサ。   The outer wall of the detection part is formed in a spindle shape along the flow direction in the pipe, and at least a part of the downstream side from the maximum cross-sectional area part is constituted by a mesh to serve as the gas inlet. The hydrogen sensor according to any one of claims 1 to 5. 前記メッシュの重力方向の下部を粗いメッシュ又は開口として、排水口を形成したことを特徴とする請求項7又は請求項8記載の水素センサ。   The hydrogen sensor according to claim 7 or 8, wherein a drain port is formed by using a lower part of the mesh in a gravitational direction as a rough mesh or an opening. 前記メッシュに撥水性を持たせたことを特徴とする請求項7〜請求項9のいずれか1つに記載の水素センサ。   The hydrogen sensor according to claim 7, wherein the mesh has water repellency. 前記検知素子の格納空間内で検知素子と近接する部位に親水性を持たせたことを特徴とする請求項1〜請求項10のいずれか1つに記載の水素センサ。   The hydrogen sensor according to any one of claims 1 to 10, wherein a portion that is close to the detection element in the storage space of the detection element is made hydrophilic. 前記検知部内にヒータを設け、低温起動時のみ発熱させることを特徴とする請求項1〜請求項11のいずれか1つに記載の水素センサ。   The hydrogen sensor according to any one of claims 1 to 11, wherein a heater is provided in the detection unit to generate heat only at low temperature startup. 前記検知素子の格納空間に湿度検知素子を設け、湿度検知素子により検知される湿度に基づいて湿度補償することを特徴とする請求項1〜請求項12のいずれか1つに記載の水素センサ。   The hydrogen sensor according to claim 1, wherein a humidity detection element is provided in a storage space of the detection element, and humidity compensation is performed based on humidity detected by the humidity detection element. 燃料電池システムのアノード側の配管に設置して、検知した水素濃度に応じて、燃料電池スタックへのガス供給の制御、不純物パージの制御、燃料電池システムの運転停止、警報のうち、少なくとも1つを実施することを特徴とする請求項1〜請求項13のいずれか1つに記載の水素センサ。   At least one of control of gas supply to the fuel cell stack, control of impurity purging, shutdown of the fuel cell system, and alarm according to the detected hydrogen concentration, installed in the anode side pipe of the fuel cell system The hydrogen sensor according to claim 1, wherein the hydrogen sensor is implemented. 燃料電池システムのカソード側の出口配管に設置して、所定値以上の水素濃度が検知された場合に、燃料電池システムの運転停止、警報のうち、少なくとも1つを実施するようにしたことを特徴とする請求項1〜請求項13のいずれか1つに記載の水素センサ。   It is installed in the outlet pipe on the cathode side of the fuel cell system, and when a hydrogen concentration of a predetermined value or more is detected, at least one of operation stop and alarm of the fuel cell system is performed. The hydrogen sensor according to any one of claims 1 to 13.
JP2006142141A 2006-05-22 2006-05-22 Hydrogen sensor Expired - Fee Related JP4910477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142141A JP4910477B2 (en) 2006-05-22 2006-05-22 Hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142141A JP4910477B2 (en) 2006-05-22 2006-05-22 Hydrogen sensor

Publications (2)

Publication Number Publication Date
JP2007309908A true JP2007309908A (en) 2007-11-29
JP4910477B2 JP4910477B2 (en) 2012-04-04

Family

ID=38842883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142141A Expired - Fee Related JP4910477B2 (en) 2006-05-22 2006-05-22 Hydrogen sensor

Country Status (1)

Country Link
JP (1) JP4910477B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002193A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Gas sensor
JP2010019733A (en) * 2008-07-11 2010-01-28 Honda Motor Co Ltd Gas sensor
JP2010223816A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Element and sensor for detecting hydrogen
DE102009052473A1 (en) 2009-11-09 2011-05-12 Daimler Ag Device for detecting hydrogen concentration in gas mixture in exhaust pipe of fuel cell system in vehicle, has partial elements running parallel to given flow length, where one of partial elements forms volumes with hydrogen sensor
WO2018020848A1 (en) * 2016-07-29 2018-02-01 日産自動車株式会社 Gas detection device
CN116593075A (en) * 2023-07-19 2023-08-15 浙江朗德电子科技有限公司 Hydrogen sensor detection unit, preparation method and detection method
KR102600398B1 (en) * 2023-06-23 2023-11-10 김세민 One Chip Gas Sensitive Device using Thermal Conductivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796918B1 (en) * 2017-06-07 2017-12-12 (주)소하테크 Integral filter carbon dioxide analyzer and temperature humidity measuring devices

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624563A (en) * 1979-08-08 1981-03-09 Nippon Steel Corp Determination of hydrogen released from metallic material
JPH02195238A (en) * 1989-01-24 1990-08-01 Meito Sci Kk Apparatus for measuring maximum relative humidity ratio
JPH10153567A (en) * 1996-11-25 1998-06-09 Mitsubishi Heavy Ind Ltd Gas detector
JP2001141682A (en) * 1999-11-09 2001-05-25 New Cosmos Electric Corp Thermal conduction gas-detecting apparatus and compensating element for detecting low molecular weight gas
JP2004020330A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Gas detection method
JP2004184145A (en) * 2002-12-02 2004-07-02 Ngk Spark Plug Co Ltd Gas and temperature detector, and method of manufacturing gas and temperature detector
JP2004191164A (en) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Gas sensor, fuel cell system using the same, and automobile using the same
JP2005069742A (en) * 2003-08-21 2005-03-17 Tokai Denshi Kk Alcoholic sensing system characterized by having structure which can carry out data transfer of the result of measurement to personal computer of marketing of structure which displays examinee's alcoholic smoke density in digital indication, and data of the authors etc., and a measures to print examinee id cords (personnel no. etc.), measuring time, temperature, humidity, number of measurements total, result of measurement smoke density, etc. (transmission), with sensor unit which senses expiration alcoholic smoke density using alcoholic sensing system alcoholic gas sensor
JP2005189151A (en) * 2003-12-26 2005-07-14 Figaro Eng Inc Method and apparatus for detecting fluorocarbon gas
JP2005241540A (en) * 2004-02-27 2005-09-08 Ngk Spark Plug Co Ltd Gas concentration measuring apparatus
JP2006010622A (en) * 2004-06-29 2006-01-12 Honda Motor Co Ltd Gas detection system and fuel cell vehicle
JP2006010546A (en) * 2004-06-28 2006-01-12 Honda Motor Co Ltd Gas detector and fuel cell system equipped therewith

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624563A (en) * 1979-08-08 1981-03-09 Nippon Steel Corp Determination of hydrogen released from metallic material
JPH02195238A (en) * 1989-01-24 1990-08-01 Meito Sci Kk Apparatus for measuring maximum relative humidity ratio
JPH10153567A (en) * 1996-11-25 1998-06-09 Mitsubishi Heavy Ind Ltd Gas detector
JP2001141682A (en) * 1999-11-09 2001-05-25 New Cosmos Electric Corp Thermal conduction gas-detecting apparatus and compensating element for detecting low molecular weight gas
JP2004020330A (en) * 2002-06-14 2004-01-22 Honda Motor Co Ltd Gas detection method
JP2004184145A (en) * 2002-12-02 2004-07-02 Ngk Spark Plug Co Ltd Gas and temperature detector, and method of manufacturing gas and temperature detector
JP2004191164A (en) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Gas sensor, fuel cell system using the same, and automobile using the same
JP2005069742A (en) * 2003-08-21 2005-03-17 Tokai Denshi Kk Alcoholic sensing system characterized by having structure which can carry out data transfer of the result of measurement to personal computer of marketing of structure which displays examinee's alcoholic smoke density in digital indication, and data of the authors etc., and a measures to print examinee id cords (personnel no. etc.), measuring time, temperature, humidity, number of measurements total, result of measurement smoke density, etc. (transmission), with sensor unit which senses expiration alcoholic smoke density using alcoholic sensing system alcoholic gas sensor
JP2005189151A (en) * 2003-12-26 2005-07-14 Figaro Eng Inc Method and apparatus for detecting fluorocarbon gas
JP2005241540A (en) * 2004-02-27 2005-09-08 Ngk Spark Plug Co Ltd Gas concentration measuring apparatus
JP2006010546A (en) * 2004-06-28 2006-01-12 Honda Motor Co Ltd Gas detector and fuel cell system equipped therewith
JP2006010622A (en) * 2004-06-29 2006-01-12 Honda Motor Co Ltd Gas detection system and fuel cell vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002193A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Gas sensor
JP2010019733A (en) * 2008-07-11 2010-01-28 Honda Motor Co Ltd Gas sensor
JP2010223816A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Element and sensor for detecting hydrogen
DE102009052473A1 (en) 2009-11-09 2011-05-12 Daimler Ag Device for detecting hydrogen concentration in gas mixture in exhaust pipe of fuel cell system in vehicle, has partial elements running parallel to given flow length, where one of partial elements forms volumes with hydrogen sensor
WO2018020848A1 (en) * 2016-07-29 2018-02-01 日産自動車株式会社 Gas detection device
KR102600398B1 (en) * 2023-06-23 2023-11-10 김세민 One Chip Gas Sensitive Device using Thermal Conductivity
CN116593075A (en) * 2023-07-19 2023-08-15 浙江朗德电子科技有限公司 Hydrogen sensor detection unit, preparation method and detection method
CN116593075B (en) * 2023-07-19 2023-10-13 浙江朗德电子科技有限公司 Hydrogen sensor detection unit, preparation method and detection method

Also Published As

Publication number Publication date
JP4910477B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4910477B2 (en) Hydrogen sensor
CA2485605C (en) Method of starting, stopping and operating gas sensor with built-in heater
JP4386099B2 (en) Humidifier and fuel cell system
JP2004191164A (en) Gas sensor, fuel cell system using the same, and automobile using the same
US9722265B2 (en) Pressure-based liquid level detection and control for a fuel cell stack assembly
JP5239112B2 (en) Fuel cell system
US20120204623A1 (en) Gas detector
JP2006331821A (en) Fuel cell system
JP2005091324A (en) Control device of gas sensor
JP2003294675A (en) Control device for gas sensor with built-in heater
JP2019086490A (en) Humidity sensing device and fuel cell system
JP5102172B2 (en) Gas detector
US20120021309A1 (en) Fuel cell system
JP2005091321A (en) Control device of gas sensor
JP3836403B2 (en) Gas detection method
JP5332089B2 (en) FUEL CELL SYSTEM AND METHOD FOR STOPPING FUEL CELL SYSTEM
JP3844723B2 (en) Condensation prevention structure for gas sensor
JP2011133426A (en) Capacitance type level meter
JP2007220527A (en) Fuel cell system
US8597847B2 (en) Fuel cell system and transportation equipment including the same
JP2004039398A (en) Fuel cell system
JP4981753B2 (en) Gas sensor
JP3987016B2 (en) Gas sensor control device
JP2008097860A (en) Fuel cell evaluation device
JP2006010622A (en) Gas detection system and fuel cell vehicle

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees