JP2007309855A - High-speed gas leakage detector - Google Patents

High-speed gas leakage detector Download PDF

Info

Publication number
JP2007309855A
JP2007309855A JP2006140849A JP2006140849A JP2007309855A JP 2007309855 A JP2007309855 A JP 2007309855A JP 2006140849 A JP2006140849 A JP 2006140849A JP 2006140849 A JP2006140849 A JP 2006140849A JP 2007309855 A JP2007309855 A JP 2007309855A
Authority
JP
Japan
Prior art keywords
gas
ultrasonic
hydrogen
leakage
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006140849A
Other languages
Japanese (ja)
Other versions
JP4734670B2 (en
Inventor
Tatsu Kobayakawa
達 小早川
Hideki Toda
英樹 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006140849A priority Critical patent/JP4734670B2/en
Publication of JP2007309855A publication Critical patent/JP2007309855A/en
Application granted granted Critical
Publication of JP4734670B2 publication Critical patent/JP4734670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect leakage at a high speed, when hydrogen gas or the like is leaked, since monitoring can be performed at high time resolution using ultrasonic waves. <P>SOLUTION: A high-speed gas leakage detector for detecting the leakage of a second gas, by containing at least a first gas between an ultrasonic transmission element and an ultrasonic receiving element, propagating the ultrasonic wave through a detected gas having the possibility of being contained in the second gas to detect the leakage and measuring the propagated ultrasonic intensity by the ultrasonic-receiving element comprises measuring 100% of the first gas by the ultrasonic-receiving element; and detecting the leakage of the second gas by the difference between the measured value and a measured value of the detected gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガスの漏洩を高速に検知する高速ガス漏洩検知器に関し、特に、燃料電池等の水素利用装置から漏洩する水素等の気体を高時間分解能で計測を行うことができる高速水素ガス漏洩検知器に関するものである。   The present invention relates to a high-speed gas leak detector that detects a gas leak at high speed, and in particular, a high-speed hydrogen gas leak that can measure a gas such as hydrogen leaked from a hydrogen utilization device such as a fuel cell with high time resolution. It relates to detectors.

従来利用されている水素の計測を行うために次のような手段がある。
(1)水素を吸蔵する際の合金の電気特性を利用した水素吸蔵合金水素計測(引用文献1参照)。
(2)一部の水素吸蔵合金が水素の有無で光の吸収率が異なることを利用した水素吸蔵金属表面反射光量計測(引用文献2参照)。
(3)水素感応膜の弾性表面波の音響特性を図ることで環境の変化を捉える音響特性計測(引用文献3参照)。
特開2004−327675号公報 特開平04−8936号公報 特開2004−108236号公報
There are the following means for measuring hydrogen which are conventionally used.
(1) Hydrogen storage alloy hydrogen measurement using the electrical characteristics of the alloy when storing hydrogen (see cited document 1).
(2) Measurement of the amount of light reflected on the surface of the hydrogen storage metal using the fact that some of the hydrogen storage alloys have different light absorption rates depending on the presence or absence of hydrogen (see cited document 2).
(3) Acoustic characteristic measurement that captures changes in the environment by measuring the acoustic characteristics of the surface acoustic waves of the hydrogen-sensitive membrane (see cited document 3).
JP 2004-327675 A Japanese Patent Laid-Open No. 04-8936 JP 2004-108236 A

ところで、水素ガスを充填したタンクは、近い将来、燃料電池、水素ガス自動車等に搭載して大いに利用されることが予想されるが、タンクの腐蝕や破壊によって、水素がタンクから大気中に漏洩すると、その火炎の拡散速度はきわめて高速であり、安全性が近い将来大きな問題となる。   By the way, tanks filled with hydrogen gas are expected to be used in fuel cells, hydrogen gas vehicles, etc. in the near future, but hydrogen leaks from the tank into the atmosphere due to tank corrosion and destruction. Then, the diffusion speed of the flame is extremely high, and safety will become a big problem in the near future.

例えば、燃料電池では、水素ガスは75Mパスカル(約750気圧)の高圧でタンクに保存されている。もしそれらの土中埋蔵による腐食や、自動車に搭載する場合の事故などによってそのタンクが破壊し、水素ガスが大気中に漏洩を起こした場合、その火炎の拡散速度はきわめて高速で、安全上きわめて問題である。   For example, in a fuel cell, hydrogen gas is stored in a tank at a high pressure of 75 M Pascal (about 750 atm). If the tank breaks down due to corrosion caused by such underground deposits or an accident when it is mounted on a car, and hydrogen gas leaks into the atmosphere, the diffusion rate of the flame is extremely high, which is extremely important for safety. It is a problem.

このような事故を防止するために、漏洩する水素を超高速で検知することが必要である。しかしながら、上記従来の水素計測手段は、いずれも、ミリ秒で水素濃度の検知は不可能である。その他、このような漏洩の検知を事故が起こる前に検知、対策の必要があるが現存する水素センサは応答性においてそれに適したものは現存しない。   In order to prevent such an accident, it is necessary to detect leaking hydrogen at an extremely high speed. However, none of the conventional hydrogen measuring means can detect the hydrogen concentration in milliseconds. In addition, it is necessary to detect and take measures against such leaks before an accident occurs, but there is no existing hydrogen sensor suitable for the response.

本発明は、水素ガスが漏洩した場合に、高時間分解能でモニタリング(つまり1ミリ秒以下の高速で水素漏洩を検知すること)を可能とする高速ガス漏洩検知器を実現することを課題とする。   An object of the present invention is to realize a high-speed gas leak detector that enables monitoring with high time resolution (that is, to detect hydrogen leak at a high speed of 1 millisecond or less) when hydrogen gas leaks. .

本発明は上記課題を解決するために、超音波送信素子と超音波受信素子の間に、少なくとも第1の気体を含むとともに漏洩を検知すべき第2の気体も含まれる可能性のある検出気体を通して超音波を伝搬させ、該伝搬された超音波の大きさを前記超音波受信素子で測定することで、第2の気体の漏洩を検知する高速ガス漏洩検知器であって、前記第1の気体100%を前記超音波受信素子で測定し、該測定値と前記検出気体の測定値の相違により前記第2の気体の漏洩を検知することを特徴とする高速ガス漏洩検知器を提供する。   In order to solve the above-described problems, the present invention provides a detection gas that includes at least a first gas and a second gas that should be detected for leakage between the ultrasonic transmission element and the ultrasonic reception element. A high-speed gas leak detector for detecting a leak of a second gas by propagating an ultrasonic wave through and measuring the magnitude of the propagated ultrasonic wave with the ultrasonic wave receiving element, A high-speed gas leak detector is provided, wherein 100% gas is measured by the ultrasonic receiving element, and leakage of the second gas is detected based on a difference between the measured value and the measured value of the detected gas.

前記超音波発振素子と超音波受信素子を有するセンサに供給管が取り付けられ、該供給管に、第1の弁を介して前記検出気体を通す第1の供給管を接続されているとともに、第2の弁を介して前記検出気体を通す第2の供給管が接続されていることを特徴とする高速ガス漏洩検知器。   A supply pipe is attached to the sensor having the ultrasonic oscillation element and the ultrasonic reception element, and a first supply pipe for passing the detection gas is connected to the supply pipe via a first valve, and A high-speed gas leak detector, wherein a second supply pipe through which the detection gas is passed is connected through a valve (2).

本発明に係る高速ガス漏洩検知器によれば、高時間分解能でモニタリングすることができるから、水素ガス等が漏洩した場合にその漏洩を高速で検知することができる。   According to the high-speed gas leak detector according to the present invention, it is possible to monitor with high time resolution. Therefore, when hydrogen gas or the like leaks, the leak can be detected at high speed.

本発明に係る高速ガス漏洩検知器を実施するための最良の形態を実施例に基づいて図面を参照して、以下に説明する。   The best mode for carrying out the high-speed gas leak detector according to the present invention will be described below with reference to the drawings based on the embodiments.

(超音波気体濃度計)
本発明に係る高速ガス漏洩検知器は、水素等の気体の濃度変化を高速で計測しそれらの気体の漏洩を高速で検知するものであり、その原理として、超音波気体濃度計を利用する。よって、まず、超音波気体濃度計について説明する。
(Ultrasonic gas concentration meter)
The high-speed gas leak detector according to the present invention measures a change in the concentration of a gas such as hydrogen at a high speed and detects the leak of the gas at a high speed, and uses an ultrasonic gas concentration meter as its principle. Therefore, first, the ultrasonic gas concentration meter will be described.

図1は、チヤンバー内のガスの分子濃度を測定することに適用した超音波気体濃度計1の構成を示す図である。超音波気体濃度計1の本体をなすセンサ2は、チャンバー12を有する。ガス流10はチヤンバー12内で矢印14の方向に流れる。ガス流10の流れに対してチヤンバー12の左右両側壁の一方に超音波送信素子16が設けられ、また他方の測壁に超音波送信素子16に対向するように超音波受信素子18が設けられている。   FIG. 1 is a diagram showing a configuration of an ultrasonic gas concentration meter 1 applied to measuring the molecular concentration of gas in a chamber. The sensor 2 forming the main body of the ultrasonic gas concentration meter 1 has a chamber 12. The gas flow 10 flows in the direction of the arrow 14 in the chamber 12. An ultrasonic transmission element 16 is provided on one of the left and right side walls of the chamber 12 with respect to the flow of the gas flow 10, and an ultrasonic reception element 18 is provided on the other measurement wall so as to face the ultrasonic transmission element 16. ing.

超音波送信素子16と超音波受信素子18の距離は一定に保たれている。超音波送信素子16から送信された超音波は、ガス流10の中を矢印20が示す方向に伝搬又は通過して、超音波受信素子18で受信される。ガス流10の中を伝搬する超音波は、超音波送信素子16と超音波受信素子18の間を伝搬する。超音波の一部は、超音波受信素子18に受信信号として現れ、一部は超音波受信素子18の表面で反射して超音波送信素子16の方向へと戻る。   The distance between the ultrasonic transmission element 16 and the ultrasonic reception element 18 is kept constant. The ultrasonic wave transmitted from the ultrasonic transmission element 16 propagates or passes through the gas flow 10 in the direction indicated by the arrow 20 and is received by the ultrasonic reception element 18. The ultrasonic wave propagating through the gas flow 10 propagates between the ultrasonic transmitting element 16 and the ultrasonic receiving element 18. A part of the ultrasonic wave appears as a reception signal on the ultrasonic receiving element 18, and a part of the ultrasonic wave is reflected on the surface of the ultrasonic receiving element 18 and returns toward the ultrasonic transmitting element 16.

このとき超音波送信素子16表面でもまた超音波は反射され、この反射を繰り返すことにより、超音波送信素子16と受信素子18の間には、超音波の定常状態が生まれる。この定常状態において、超音波送信素子16と超音波受信素子18の間には多重波干渉パターンと呼ばれる超音波の腹と節が繰り返される現象が現れる。   At this time, the ultrasonic wave is also reflected on the surface of the ultrasonic transmission element 16, and by repeating this reflection, a steady state of ultrasonic waves is generated between the ultrasonic transmission element 16 and the reception element 18. In this steady state, a phenomenon in which the antinodes and nodes of the ultrasonic wave are called a multi-wave interference pattern appears between the ultrasonic transmission element 16 and the ultrasonic reception element 18.

この超音波気体濃度計では、ガス流10を構成しているガスの分子構成比(構成気体の混合気体濃度など、たとえば空気なら約80%が窒素で、残りの酸素や希ガスなどが20%を占めるといったもの)に依存して、この多重波干渉パターンの形状が変化するという現象を利用している。この多重波干渉パターンのガスの分子構成比に対する影響は、超音波の減衰と位相差として現れるが、本発明ではその効果がより大きい位相差のずれに注目している。   In this ultrasonic gas concentration meter, the molecular composition ratio of the gas composing the gas flow 10 (concentration of mixed gas of constituent gases, for example, about 80% is nitrogen for air, and 20% is for the remaining oxygen and rare gases. This phenomenon utilizes the phenomenon that the shape of the multi-wave interference pattern changes. The influence of the multi-wave interference pattern on the molecular composition ratio of the gas appears as attenuation of the ultrasonic wave and phase difference. In the present invention, however, attention is paid to the phase difference shift which is more effective.

従って、いろいろの既知の分子濃度の窒素ガスを含むガス流10を用いて、超音波受信素子18により受信された超音波の大きさを予め測定し、当該測定された超音波の大きさと窒素ガスの分子濃度との間の関係(又は変換)を較正しておけば、未知のガスが混じった窒素ガスの分子濃度を含むガス流10について、超音波受信素子18により受信された超音波の大きさを測定し、上記較正を用いて、未知のガスが混じった窒素ガスの分子濃度を求めることができる。   Accordingly, the magnitude of the ultrasonic wave received by the ultrasonic receiving element 18 is measured in advance using the gas flow 10 containing nitrogen gas having various known molecular concentrations, and the measured ultrasonic magnitude and the nitrogen gas are measured. If the relationship (or conversion) between the molecular concentration of the gas and the gas flow 10 including the molecular concentration of the nitrogen gas mixed with the unknown gas is calibrated, the magnitude of the ultrasonic wave received by the ultrasonic receiving element 18 will be described. Then, the molecular concentration of the nitrogen gas mixed with the unknown gas can be determined using the calibration.

また、予め較正しなくても、超音波受信素子18により受信された超音波の大きさの時間的変化を測定すれば、窒素ガスの分子濃度の変化を得ることができる。   Further, the change in the molecular concentration of the nitrogen gas can be obtained by measuring the temporal change in the magnitude of the ultrasonic wave received by the ultrasonic receiving element 18 without being calibrated in advance.

図1の超音波発振素子16の具体的な構成を、図2において、超音波気体濃度計1の超音波発生回路30として示す。超音波発生回路30は、電気信号発振部32及び超音波発振部34を含む。   A specific configuration of the ultrasonic oscillator 16 of FIG. 1 is shown as an ultrasonic generation circuit 30 of the ultrasonic gas concentration meter 1 in FIG. The ultrasonic generation circuit 30 includes an electric signal oscillation unit 32 and an ultrasonic oscillation unit 34.

電気信号発振部32は、発振及び分周機能を有する発振・分周回路36、抵抗群38、及び抵抗群38のうちの抵抗を選択して分周比を指定するスイッチ群40を含む。超音波発振部34は超音波振動子42を含む。   The electric signal oscillating unit 32 includes an oscillation / frequency dividing circuit 36 having an oscillation and frequency dividing function, a resistance group 38, and a switch group 40 that selects a resistance of the resistance group 38 and designates a frequency division ratio. The ultrasonic oscillator 34 includes an ultrasonic transducer 42.

図3は、超音波受信及び分子濃度出力回路50の構成を示す。図4は、図2の超音波発生回路30から送出される超音波、及び図3の超音波受信及び分子濃度出力回路50の主要部における信号の状態を表す。   FIG. 3 shows the configuration of the ultrasonic wave reception and molecular concentration output circuit 50. FIG. 4 shows the states of the ultrasonic waves transmitted from the ultrasonic wave generation circuit 30 of FIG. 2 and signals in the main part of the ultrasonic wave reception and molecular concentration output circuit 50 of FIG.

図3に示す回路については、図4とともに、必要に応じてその作用を中心にして説明する。図4の(A)及び(B)は、超音波を示しているが、電気信号に変換した形、即ち、その振幅を電圧で標記してある。   The circuit shown in FIG. 3 will be described with a focus on the operation as needed, together with FIG. 4A and 4B show ultrasonic waves, the form converted into an electric signal, that is, its amplitude is indicated by voltage.

超音波発生回路30における超音波発信部34の超音波振動子42からは、図4の(A)に示す、極めて雑音成分が少ない正弦波状の超音波70が送信される。超音波70は、図1に示すガス流10の中を伝搬するとき、ガス流10により減衰させられて、超音波70より大きさが小さい受信波72が、超音波受信及び分子濃度出力回路50における超音波受信部52の超音波振動子64で受信される。   From the ultrasonic transducer 42 of the ultrasonic transmission unit 34 in the ultrasonic generation circuit 30, a sinusoidal ultrasonic wave 70 with very little noise component, as shown in FIG. 4A, is transmitted. When the ultrasonic wave 70 propagates through the gas flow 10 shown in FIG. 1, a received wave 72 having a smaller magnitude than the ultrasonic wave 70 is attenuated by the gas flow 10, and the ultrasonic wave reception and molecular concentration output circuit 50. Is received by the ultrasonic transducer 64 of the ultrasonic receiver 52.

ガス流10の分子量は時間的に揺らいでいるので、受信波72の波形は、図4(B)に示されるように揺らぎ成分が重畳されている。   Since the molecular weight of the gas flow 10 fluctuates with time, the fluctuation component is superimposed on the waveform of the received wave 72 as shown in FIG.

超音波受信52の超音波振動子64で受信された超音波の受信波72は、超音波受信部52で電気信号に変換され、ハイパスフィルタ54で揺らぎ成分が除去され、次いで、増幅部56で増幅される。増増された電気信号は、整流部58のダイオードにより半波整流され、図4の(C)に示されるような波形が得られる。   The ultrasonic reception wave 72 received by the ultrasonic transducer 64 of the ultrasonic reception 52 is converted into an electric signal by the ultrasonic reception unit 52, the fluctuation component is removed by the high pass filter 54, and then the amplification unit 56. Amplified. The increased electrical signal is half-wave rectified by the diode of the rectifier 58, and a waveform as shown in FIG. 4C is obtained.

半波整流された電気信号は、ピーク・ホール部60でピーク・ホールドされて、ピーク・ホール部60の出力(図3に示すA点)に図4(D)に示すような波形76が得られる。波形76のピーク電圧は、受信された超音波72の振幅の大きさを表し、従って、ガス流10の中の測定対象ガスの濃度(又は平均分子量)を表すことになる。   The half-wave rectified electrical signal is peak-held at the peak hole portion 60, and a waveform 76 as shown in FIG. 4D is obtained at the output (point A shown in FIG. 3) of the peak hole portion 60. It is done. The peak voltage of the waveform 76 represents the magnitude of the amplitude of the received ultrasonic wave 72 and thus represents the concentration (or average molecular weight) of the gas to be measured in the gas stream 10.

なお、図3に示す判定部62は、波形76のピーク電圧値が所定のスレッショルド電圧 (ガス流10に含まれる測定対象ガスの所定のスレッショルド濃度に対応)を越えたとき、ガス流10中の測定対象ガスが所定のスレッショルド濃度より多く存在することを知らせる情報をオン/オフで出すもので、判定部62は、用途に応じて任意に設け得るものである。   3 determines when the peak voltage value of the waveform 76 exceeds a predetermined threshold voltage (corresponding to a predetermined threshold concentration of the measurement target gas included in the gas flow 10). Information that informs that the gas to be measured is present more than a predetermined threshold concentration is output on / off, and the determination unit 62 can be arbitrarily provided depending on the application.

図5は、本発明に係る高速ガス漏洩検知器の基本的な構成を説明する図である。図1に示す超音波気体濃度計1を利用し、この超音波気体濃度計1におけるセンサ2の超音波送信素子16と超音波受信素子18の間隔に向けて気体を流入させる流入管80、及びこの間隔から排出する流出管81が、それぞれチャンバー12(図1参照)に取り付けられている。   FIG. 5 is a diagram for explaining the basic configuration of the high-speed gas leak detector according to the present invention. An inflow pipe 80 that uses the ultrasonic gas concentration meter 1 shown in FIG. 1 and flows gas toward the interval between the ultrasonic transmission element 16 and the ultrasonic reception element 18 of the sensor 2 in the ultrasonic gas concentration meter 1, and Outflow pipes 81 discharging from this interval are respectively attached to the chambers 12 (see FIG. 1).

流入管80には、参照ガスとして窒素100%含有ガスを供給する供給管83が弁85を介して取り付けられているとともに、H2ガス含有窒素ガスを供給する供給管84が弁86を介して取り付けられている。一方、排出管81には、吸引ポンプ87及び流量計89が設けられている。   A supply pipe 83 that supplies 100% nitrogen-containing gas as a reference gas is attached to the inflow pipe 80 via a valve 85, and a supply pipe 84 that supplies nitrogen gas containing H 2 gas is attached via a valve 86. It has been. On the other hand, the discharge pipe 81 is provided with a suction pump 87 and a flow meter 89.

一定流量で気体を吸引するポンプ87で、窒素100%含有ガスを吸引し、途中から、水素を含有した窒素ガスに切り替えた際に、超音波の減衰を計測した。図6の曲線イは、参照ガスである窒素100%含有ガスを吸引し、途中から、4%の水素を含有した窒素ガスに切り替えた際の超音波の減衰を計測した結果を示す。そして、図6の曲線ロは、窒素100%含有ガスを吸引し、途中から、1%の水素を含有した窒素ガスに切り替えた際の超音波の減衰を計測した結果を示す。   A pump 87 that sucks gas at a constant flow rate sucked 100% nitrogen-containing gas, and measured attenuation of ultrasonic waves when switching to nitrogen gas containing hydrogen from the middle. Curve a in FIG. 6 shows the result of measuring the attenuation of ultrasonic waves when a gas containing 100% nitrogen as a reference gas is sucked and switched to nitrogen gas containing 4% hydrogen. 6 shows the result of measuring the attenuation of the ultrasonic wave when the gas containing 100% nitrogen was sucked and switched to the nitrogen gas containing 1% hydrogen from the middle.

図6において、時間0のところで水素含有窒素への切り替えが始まり数秒の遅れの後、水素含有窒素ガスがセンサ前を通過し始めると超音波の減衰が認められ、窒素100%含有ガスから水素含有窒素ガスへの変化が起こるという知見が得られた。   In FIG. 6, switching to hydrogen-containing nitrogen starts at time 0, and after a delay of a few seconds, when hydrogen-containing nitrogen gas begins to pass in front of the sensor, attenuation of ultrasonic waves is recognized, and hydrogen containing from 100% nitrogen containing gas The knowledge that a change to nitrogen gas occurs was obtained.

図6において、4%水素含有窒素において、窒素のみの応答と比較した際、S/N比はおよそ55.4dBあり、1%含有水素に対してはS/N比は50.42dBが観測され、僅かな水素のリークを安定して計測できるという知見が得られた。   In FIG. 6, the S / N ratio is approximately 55.4 dB when compared with the response of nitrogen alone in the nitrogen containing 4%, and the S / N ratio of 50.42 dB is observed for the hydrogen containing 1%. The knowledge that a slight hydrogen leak can be measured stably was obtained.

このS/N比は、基本的にS/N =20*log(Signal/S.D.)で計算した。Signalは、1000msecにおける電圧と、各パーセンテージにおける5000msecにおける電圧差をSignalとした。1000msec付近における1000点のデータの標準偏差とした。およそ50dBということは、信号・雑音比が約100倍あり、1%水素の検出信号が100だとして、ノイズが1くらいしか無いことを意味している。   This S / N ratio was basically calculated by S / N = 20 * log (Signal / SD). For Signal, the voltage at 1000 msec and the voltage difference at 5000 msec in each percentage were defined as Signal. The standard deviation of 1000 points of data near 1000 msec was used. About 50 dB means that the signal / noise ratio is about 100 times and the detection signal of 1% hydrogen is 100, and there is only about 1 noise.

(適用例)
上記高速ガス漏洩検知器は、気体の漏洩の可能性がある箇所(例えば、燃料電池、タンクと管の接合部、もしくはバルブなど)の近傍に取り付けて使用するが、その適用に際しての基本的な構成として、次のような構成が考えられる。
(Application example)
The above high-speed gas leak detector is used in the vicinity of a place where there is a possibility of gas leakage (for example, a fuel cell, a junction between a tank and a pipe, or a valve). As the configuration, the following configuration is conceivable.

図5において、供給管84の先端は水素が漏洩しそうな領域に開口し、弁86は常時は開いた状態としておく。これにより、少なくとも窒素を含みさらに漏洩を検知すべき水素が含まれる可能性のある検出気体を真空ポンプによりセンサ2内に取り込めるような構成とする。   In FIG. 5, the tip of the supply pipe 84 opens to a region where hydrogen is likely to leak, and the valve 86 is normally kept open. Thereby, it is set as the structure which can take in into the sensor 2 the detection gas which may contain the hydrogen which should contain the hydrogen which should detect leakage further at least by nitrogen.

供給管83は、窒素100%含有ガスの供給源に必要に応じて接続可能とし、弁85は常時は閉じておく。ここで、窒素100%含有ガスの供給源は、当該高速ガス漏洩検知器において、窒素100%含有ガスに対する検知出力(基準出力)を得る際に必要なものであり、必要に応じて装着(又は常時装着)できる窒素100%含有ガスを貯蔵したタンク等である。   The supply pipe 83 can be connected to a supply source of a gas containing 100% nitrogen as necessary, and the valve 85 is always closed. Here, the supply source of the 100% nitrogen-containing gas is necessary for obtaining the detection output (reference output) for the 100% nitrogen-containing gas in the high-speed gas leak detector, and is mounted (or attached as necessary) It is a tank that stores a gas containing 100% nitrogen that can be always mounted).

超音波受信素子は、図3において説明した分子濃度出力回路50中に示された受信部52、バイパスフィルタ54、増幅部56及び整流部58等を具備する出力手段を有している。そして、窒素100%含有ガスの供給源に接続された場合に得られる出力を記憶する記憶装置に接続されている。   The ultrasonic receiving element has output means including the receiving unit 52, the bypass filter 54, the amplifying unit 56, the rectifying unit 58 and the like shown in the molecular concentration output circuit 50 described in FIG. And it connects to the memory | storage device which memorize | stores the output obtained when connected to the supply source of 100% nitrogen containing gas.

さらに、この記憶装置に記憶された窒素100%含有ガスを検知した場合の出力と、検知対象である気体の検知出力を比較し、水素漏洩の有無を判定する比較器が設けられている。この比較器に、判定結果を報知する報知信号発生手段が接続されている。   Furthermore, a comparator is provided for comparing the output when the gas containing 100% nitrogen stored in the storage device is detected with the detection output of the gas to be detected, and determining whether there is hydrogen leakage. The comparator is connected to notification signal generating means for notifying the determination result.

図7は、本発明の高速ガス漏洩検知器の具体的な適用例を示す図であり、本発明の高速ガス漏洩検知器を、気体の漏洩の可能性がある箇所として、タンク89と配管90の接合部に適用した構成である。   FIG. 7 is a diagram showing a specific application example of the high-speed gas leak detector according to the present invention. The high-speed gas leak detector according to the present invention is used as a place where there is a possibility of gas leakage. It is the structure applied to the junction part.

図7において、管91のサンプルの採取口は、弁92を介してタンク89と配管90の接合部に向け開口されている。他方、管91の参照ガス(例えば、空気)の取入口は、弁93を介して漏洩箇所とは反対側に開口する。   In FIG. 7, the sample collection port of the pipe 91 is opened toward the joint between the tank 89 and the pipe 90 via the valve 92. On the other hand, a reference gas (for example, air) inlet of the pipe 91 opens to the opposite side of the leaking point via the valve 93.

そして、弁92、93の間において配管90から分岐した流入管94にセンサ2が設けられており、弁92、93を交互に切り替え、真空吸引ポンプ95で吸引することで、センサ2に漏洩部位からのガス又は参照ガスを導入可能に構成する。このようにして導入した両方のガスの成分を比較することによって、タンク89と配管90の接合部から漏洩する気体を検出することができる。   The sensor 2 is provided in the inflow pipe 94 branched from the pipe 90 between the valves 92 and 93. By alternately switching the valves 92 and 93 and sucking them by the vacuum suction pump 95, the sensor 2 is leaked. Or a reference gas can be introduced. By comparing the components of both gases introduced in this way, the gas leaking from the joint between the tank 89 and the pipe 90 can be detected.

以上、本発明に係る高速ガス漏洩検知器を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   As described above, the best mode for carrying out the high-speed gas leak detector according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and is described in the claims. It goes without saying that there are various embodiments within the technical scope.

本発明は、以上のような構成であり、水素のリークを安定して計測できるので、燃料電池、水素自動車等、水素燃料を利用するエネルギー発生動力装置において、水素ガスの大気中に漏洩を的確に検出できるので、これらの装置にはきわめて有用である。   The present invention is configured as described above, and hydrogen leakage can be stably measured. Therefore, in an energy generation power device using hydrogen fuel, such as a fuel cell or a hydrogen automobile, leakage of hydrogen gas into the atmosphere can be accurately performed. Therefore, these devices are extremely useful.

特に、水素ガスは75Mパスカル(約750気圧)の高圧でタンクに保存されている。もしそれらの土中埋蔵による腐食や、自動車に搭載する場合の事故などによってそのタンクが破壊し、水素ガスが大気中に漏洩を起こした場合、その火炎の拡散速度はきわめて高速であり、安全性が近い将来大きな問題となる。   In particular, hydrogen gas is stored in a tank at a high pressure of 75 M Pascal (about 750 atm). If the tank breaks down due to corrosion caused by such underground deposits or accidents when installed in automobiles, and hydrogen gas leaks into the atmosphere, the flame diffusion rate is extremely high and safety Will be a big problem in the near future.

このような漏洩の検知を事故が起こる前に検知、対策の必要があるが現存する水素センサは応答性においてそれに適したものは現存しないが、本発明は、このような水素利用技術において、事故を未然に防止するための超高速な水素漏洩センサをとしてきわめて市場価値が高い。   Although it is necessary to detect and take measures against such leaks before an accident occurs, there is no existing hydrogen sensor that is suitable for responsiveness. The market value is extremely high as an ultra-high-speed hydrogen leak sensor for preventing the above-mentioned problem.

本発明に係る超音波気体濃度計測方法の最適化方法の対象となる超音波気体濃度計測方法本発明を説明する図である。It is a figure explaining the ultrasonic gas concentration measuring method this invention used as the object of the optimization method of the ultrasonic gas concentration measuring method which concerns on this invention. 超音波気体濃度計の超音波発生回路を示す図である。It is a figure which shows the ultrasonic wave generation circuit of an ultrasonic gas concentration meter. 超音波気体濃度計の分子濃度出力回路を示す図である。It is a figure which shows the molecular concentration output circuit of an ultrasonic gas concentration meter. 超音波発生回路の送信波、分子濃度出力回路における信号を示す図である。It is a figure which shows the signal in the transmission wave and molecular concentration output circuit of an ultrasonic wave generation circuit. 本発明に係る高速ガス漏洩検知器を示す図である。It is a figure which shows the high-speed gas leak detector based on this invention. 高速ガス漏洩検知器の計測結果を示す図である。It is a figure which shows the measurement result of a high-speed gas leak detector. 本発明の高速ガス漏洩検知器の具体的な適用例を示す図である。It is a figure which shows the specific example of application of the high-speed gas leak detector of this invention.

符号の説明Explanation of symbols

1 超音波気体濃度計
2 センサ
10 ガス流
12 チヤンバー
14 矢印
16 超音波送信素子
18 超音波受信素子
20 矢印
30 超音波発生回路
32 電気信号発振部
34 超音波発振部
36 発振・分周回路
38 抵抗群
42 超音波振動子
50 分子濃度出力回路
52 超音波受信部
54 ハイパスフィルタ
62 判定部
56 増幅部
58 整流部
60 ピーク・ホール部
64 超音波振動子
72 受信された超音波(受信波)
76 波形
80、94 流入管
81 流出管
83、84 供給管
85、86、92、93 弁
87、95 真空吸引ポンプ
88 流量計
89 タンク
90 配管
1 Ultrasonic gas concentration meter 2 Sensor 10 Gas flow
12 Chamber
14 arrows
16 Ultrasonic transmitter
18 Ultrasonic receiver
20 arrows
30 Ultrasonic generator
32 Electric signal oscillator
34 Ultrasonic oscillator
36 Oscillator / Divider Circuit
38 resistance group
42 Ultrasonic vibrator
50 Molecular concentration output circuit
52 Ultrasonic receiver
54 High-pass filter
62 Judgment part
56 Amplifier
58 Rectifier
60 Peak Hall
64 Ultrasonic transducer
72 Received ultrasound (received wave)
76 waveforms
80, 94 Inflow pipe
81 Outflow pipe
83, 84 Supply pipe
85, 86, 92, 93 valves
87, 95 Vacuum suction pump
88 Flow meter 89 Tank 90 Piping

Claims (2)

超音波送信素子と超音波受信素子の間に、少なくとも第1の気体を含むとともに漏洩を検知すべき第2の気体も含まれる可能性のある検出気体を通して超音波を伝搬させ、該伝搬された超音波の大きさを前記超音波受信素子で測定することで、第2の気体の漏洩を検知する高速ガス漏洩検知器であって、
前記第1の気体100%を前記超音波受信素子で測定し、該測定値と前記検出気体の測定値の相違により前記第2の気体の漏洩を検知することを特徴とする高速ガス漏洩検知器。
The ultrasonic wave is propagated between the ultrasonic transmitting element and the ultrasonic receiving element through a detection gas that includes at least the first gas and may also include the second gas to be detected for leakage. A high-speed gas leakage detector that detects leakage of the second gas by measuring the size of the ultrasonic wave with the ultrasonic receiving element,
A high-speed gas leak detector that measures 100% of the first gas with the ultrasonic receiving element and detects a leak of the second gas based on a difference between the measured value and the measured value of the detected gas. .
前記超音波発振素子と超音波受信素子を有するセンサに供給管が取り付けられ、該供給管に、第1の弁を介して前記検出気体を通す第1の供給管を接続されているとともに、第2の弁を介して前記検出気体を通す第2の供給管が接続されていることを特徴とする高速ガス漏洩検知器。   A supply pipe is attached to the sensor having the ultrasonic oscillation element and the ultrasonic reception element, and a first supply pipe for passing the detection gas is connected to the supply pipe via a first valve, and A high-speed gas leak detector, wherein a second supply pipe through which the detection gas is passed is connected through a valve (2).
JP2006140849A 2006-05-19 2006-05-19 High-speed gas leak detector Expired - Fee Related JP4734670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140849A JP4734670B2 (en) 2006-05-19 2006-05-19 High-speed gas leak detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140849A JP4734670B2 (en) 2006-05-19 2006-05-19 High-speed gas leak detector

Publications (2)

Publication Number Publication Date
JP2007309855A true JP2007309855A (en) 2007-11-29
JP4734670B2 JP4734670B2 (en) 2011-07-27

Family

ID=38842835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140849A Expired - Fee Related JP4734670B2 (en) 2006-05-19 2006-05-19 High-speed gas leak detector

Country Status (1)

Country Link
JP (1) JP4734670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114894393A (en) * 2022-03-28 2022-08-12 上海化工研究院有限公司 Portable high-pressure hydrogen leakage ultrasonic detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167980A1 (en) 2018-02-28 2019-09-06 株式会社ダイセル Foam fiber and production method therefor
CN109752139B (en) * 2018-12-14 2020-08-18 兰州空间技术物理研究所 Device and method for calibrating vacuum leak of nitrogen-hydrogen mixed gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310157A (en) * 1989-06-08 1991-01-17 Akita Univ Gas-concentration measuring apparatus
JPH10111209A (en) * 1996-08-13 1998-04-28 Daiwa Can Co Ltd Leak inspection equipment and method of hollow member
JP2003240670A (en) * 2002-02-20 2003-08-27 Denso Corp Air leakage test method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310157A (en) * 1989-06-08 1991-01-17 Akita Univ Gas-concentration measuring apparatus
JPH10111209A (en) * 1996-08-13 1998-04-28 Daiwa Can Co Ltd Leak inspection equipment and method of hollow member
JP2003240670A (en) * 2002-02-20 2003-08-27 Denso Corp Air leakage test method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114894393A (en) * 2022-03-28 2022-08-12 上海化工研究院有限公司 Portable high-pressure hydrogen leakage ultrasonic detector
CN114894393B (en) * 2022-03-28 2024-05-03 上海化工研究院有限公司 Portable high-pressure hydrogen leakage ultrasonic detector

Also Published As

Publication number Publication date
JP4734670B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
CN101305270B (en) Device for detecting the level of a fluid in a container
US6308572B1 (en) Gas concentration sensor
KR20060003022A (en) Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
CN103091266B (en) Gas telemetering method with alarm function
JP2009168688A (en) Fluid measuring device
JP4734670B2 (en) High-speed gas leak detector
CN103471784A (en) Method for judging size of non-contact type ultrasonic quantitative leakage hole of spacecraft on-orbit leakage
CN111323100A (en) Ultrasonic gas meter fault diagnosis system and method
JP2002340654A (en) Method and device for detecting liquid level by sound
US6886412B2 (en) Ultrasonic-wave propagation-time measuring method and gas concentration sensor
KR100784415B1 (en) flow meter using ultrasonic-sensor
CN112697875A (en) Method and device for detecting properties of a liquid medium
JP2533699B2 (en) Acoustic leak detector
JP2002296133A (en) Device and method for measuring pressure inside pipe
JP2000028404A (en) Fluid control device and flow-rate measuring device provided with the same
JP2004108809A (en) Ultrasonic flowmeter having leakage detection function
CN113188620A (en) Method and system for preventing external gas stealing for ultrasonic gas meter
KR100992617B1 (en) Pipe conduit block testing equipment using magnetostrictive effect and the method thereof
JP2004036937A (en) Gas safety device
JP2000258281A (en) Acoustic leakage monitoring apparatus
US20220268609A1 (en) Ultrasonic Flowmeter and Method for Determining the Velocity of a Flowing Medium
JP4635232B2 (en) Optimization method of ultrasonic gas concentration measurement method
KR100782601B1 (en) Measuring apparatus for arc&#39;s striking position using the velocity difference between metal and gas and measuring method thereof
JP2008002930A (en) Method of estimating flow rate of gas accumulated and flowing in upper part of conduit with liquid flowing therein
US6892566B2 (en) Gas concentration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees