JP2007309767A - 分光測定用フローセル - Google Patents

分光測定用フローセル Download PDF

Info

Publication number
JP2007309767A
JP2007309767A JP2006138584A JP2006138584A JP2007309767A JP 2007309767 A JP2007309767 A JP 2007309767A JP 2006138584 A JP2006138584 A JP 2006138584A JP 2006138584 A JP2006138584 A JP 2006138584A JP 2007309767 A JP2007309767 A JP 2007309767A
Authority
JP
Japan
Prior art keywords
channel
flow cell
flow
spectroscopic measurement
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006138584A
Other languages
English (en)
Inventor
Etsuo Shinohara
悦夫 篠原
Yasushi Hoshijima
康 星島
Kinsou Dan
金宗 檀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Medica Co Ltd
Original Assignee
Techno Medica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Medica Co Ltd filed Critical Techno Medica Co Ltd
Priority to JP2006138584A priority Critical patent/JP2007309767A/ja
Publication of JP2007309767A publication Critical patent/JP2007309767A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

【課題】 超音波により血球を溶血しなくても、血球による流路の詰まりが生じにくい分光測定用フローセルを提供すること。
【解決手段】 本発明に係る分光測定用フローセルは、試料液を流す過程で試料液中の成分を分光測定するために用いられる分光測定用フローセルであって、ハウジング中に試料液を流す流路を備え、前記流路における分光測定部を、流路高の低い微小流路と、少なくとも前記微小流路の一側に位置し、前記微小流路より流路高が高く、かつ、その上部において微小流路と繋がっている予備流路とで構成したことを特徴とする。
【選択図】 図2

Description

本発明は、分光測定に用いられるフローセルに関し、特に、採血後に全血を希釈せずに直接分光測定する時に用いるのに好適なフローセルに関する。
採血した全血を希釈せずに、そのまま測定する方法としては、血液中のヘモグロビン誘導体の含有量を分光学的に測定する方法がある。
ヘモグロビン誘導体の種類としてはオキシヘモグロビン(0Hb)、デオキシヘモグロビン(HHb)、カルボキシヘモグロビン(COHb)、メトヘモグロビン(MetHb)等があり、これらのヘモグロビン誘導体に特有の吸光度の総和が測定される吸光度となるので、少なくともヘモグロビン誘導体の数以上の波長で測定を行い連立方程式を解くことにより、ヘモグロビン誘導体の含量を求めることが出来る。
そして、上記したヘモグロビン誘導体の含有量を分光学的に測定する測定装置は、CO−オキシメータとして既に市場で販売されており、具体的には、ラジオメータ社製のOSM3(製品名)等がある。
全血中のヘモグロビン濃度は一般的に非常に濃いため通常の測定セル(光路長10mm)では光を透過することができない。このため、従来の測定装置では、光路長を0.1mm以下にして測定することが行われている。
前記した測定装置における光路長は、全血を流すフローセルの流路高に相当するものであるが、このように流路高を非常に低くすると、血球や凝集片が流路の詰まりの原因になるという問題がある。
この問題を解決するために、全血中の血球を超音波等により破壊して溶血して流路の詰まりの原因を除去する測定装置が提案されており、具体的には、ラジオメータ社製のABL800FLEX(製品名)、バイエル社製のRapidlab(登録商標)、及びロシュ社製のOMNI(製品名)等がある。これらの装置は、血液ガス分析装置にCO−オキシメータを付属させた装置であり、全血中の血球を超音波などで破壊して溶血したのち複数の波長でヘモグロビン誘導体の含有量の測定を行う。
しかし、上記したように超音波を使って血球を溶血させる構造は、装置構造が複雑になるという問題がある。装置構造が複雑化であると、製造が困難になるばかりでなく、製造コストが高くなるので装置本体の価格も高くなり、また、故障の原因にも繋がる。
特に、上記した従来の血液ガス分析装置にCO−オキシメータを付属させた装置は、血液ガス分析用フローラインと、超音波溶血機構を備えたオキシ分析用フローラインとを分けているので、フロー測定方式も複雑になっている。
本発明は上記した従来の問題点を解決し、超音波により血球を溶血しなくても、血球による流路の詰まりが生じにくい分光測定用フローセルを提供することを目的としている。
本発明に係る分光測定用フローセルは、試料液を流す過程で試料液中の成分を分光測定するために用いられる分光測定用フローセルであって、ハウジング中に試料液を流す流路を備え、前記流路における分光測定部を、流路高の低い微小流路と、少なくとも前記微小流路の一側に位置し、前記微小流路より流路高が高く、かつ、その上部において微小流路と繋がっている予備流路とで構成したことを特徴とする。
好ましくは、前記流路における前記微小流路を構成する面が親水性を有する。微小流路を構成する材料に親水性を有する材料を用いてもよいが、微小流路を構成する材料が親水性を有しない材料であっても、前記微小流路を構成する面に親水性ポリマー又は酸化チタンの膜を形成すれよい。
微小流路を構成する面に親水性ポリマー膜を形成する場合、親水性ポリマーとしてポリエチレングリコール又はポリビニルピロリドンを用いることができる。また、微小流路を構成する面に酸化チタンの膜を形成する場合には、測定前、測定中及び/又は測定後に酸化チタンを活性化させる波長を有する光を酸化チタン膜に照射することにより酸化チタンの触媒作用により流路の清浄化が保たれる。
前記フローセルを構成するハウジングは、透明ガラス又は透明プラスチックで形成され得る。前記透明ガラスとしては、例えば、パイレックス(登録商標)又は石英を用いることができる。前記透明プラスチックとしては、例えば、アクリル、ポリカーボネート、ポリプロピレン、ポリスチレン、ポリオレフィン又は透明ABSを用いることができる。
好ましくは、前記微小流路の流路高は、0.05mmから0.2mmであり得る。
本発明に係る分光測定用フローセルは、試料液を流す過程で試料液中の成分を分光測定するために用いられる分光測定用フローセルであって、ハウジング中に試料液を流す流路を備え、前記流路における分光測定部を、流路高の低い微小流路と、少なくとも前記微小流路の一側に位置し、前記微小流路より流路高が高く、かつ、その上部において微小流路と繋がっている予備流路とで構成しているので、測定に供される微小流路には毛管現象により必要な量の試料が流れ込むが、他の試料は予備流路を流れるので、微小流路中に必要量以上の無駄な詰まりの原因となる試料が流れ込むことがなく、微量流路の詰まりを抑制することができる。
また、たとえ長時間の使用により微小流路が詰まってしまったとしても、予備流路が試料液を流すことができるため装置全体の試料の流れを止めることがなく、その結果、微小通路の詰まりにより装置全体の測定が止まってしまうことがない。
そして、このように構成することにより、血球を超音波で溶血させる必要がなくなるので、複雑な超音波溶血機構を必要とせず、また、血液ガス分析装置にCO−オキシメータを付属させる場合に血液ガス測定用フローラインとオキシ分析用フローラインとを別々に構成する必要がなくなり、結果として、装置構造が非常に簡単化できるという効果を奏する。
また、前記流路における前記微小流路を構成する面が親水性を有すると、微小流路への毛管現象による試料液の流入が促進され、よりスムーズに微小流路に試料液を流し込むことが可能になる。
さらに、微小流路を構成する面に親水性を持たせるために、同面に酸化チタン膜を形成した場合には、紫外線等で酸化チタンを活性化させることにより、酸化チタンが触媒作用を示して流路の清浄化が保て、より一層、微小流路が詰まり難くなるという効果を奏する。
以下、添付図面に示した一実施例を参照して本発明に係る分光測定用フローセルの実施の形態について説明していく。
図1は、本発明に係る分光測定用フローセルの下側プレートの概略上面図であり、
図2は下側プレートにスペーサ及び上蓋を装着した状態での図1における概略A−A断面図であり、
図3は下側プレートにスペーサ及び上蓋を装着した状態での図1における概略B−B断面図である。
図面に示すように、下側プレート1には、試料液導入路2、メイン流路3、及び試料液排出路4が形成されており、これらの流路で試料液流路が構成されている。
また、メイン流路3における分光測定に供される分光測定部5は、幅広に形成されており、突起部6により流路高の低い微小流路3aと、前記微小流路3aより流路高が高い予備流路3bが画定されている。予備流路3bは、図3に示すように、微小流路3aの両側に位置し、その上部において微小流路と繋がっている。
最終的な光学検出のための光路長(即ち、微小流路3aの流路高)の設定はスペーサ7により行われる。即ち、スペーサ7の厚みで厚さで光路長を規定し、その上に上蓋8をかぶせることにより、流路が形成される。
測定は光学検出部として機能する突起部6の上面と上蓋8で挟まれた部分(即ち、微笑流路3a)で行われる。
本実施例ではフローセルの下側プレート1と上蓋8とは透明アクリルで製作した。
また、本実施例では、スペーサ7は厚さ100μmのテフロン(登録商標)フィルムをくりぬいて作成した。
本実施例では、試料液導入路2及び試料液排出路4の直径は0.7mmとし、メイン流路3の流路高は0.5mmとした。この実施例ではメイン流路3と予備流路3bの流路高は同じである。
そして、本実施例では、微小流路3aの流路高はスペーサの厚さ100μmで規定される。
また、試料液流路の内面には日本曹達株式会社製の酸化チタン層形成剤であるビストレイターL(登録商標)を用いて酸化チタン膜を形成した。この酸化チタンコーティング剤は淡黄色であるため塗布に際して膜厚にバラツキが生じると測定誤差の要因となるため均一にコーティングすることが望ましい。
フローセルに全血を流して分光測定を行う際、試料液流路の表面に酸化チタン膜を形成して親水化することにより、流路高の低い微小流路3aにも全血の充填、排出がきちんと行われ、かつ気泡の滞留も生じない。
以下、上記したように構成されたフローセルを用いて分光測定を行う時の測定方法について簡単に説明する。
測定を行う場合、図2に示すように光源10を光学検出部として機能する突起部6の下方に配置し、検出装置11を突起部6の上方に配置する。そして、突起部6の側面からの反射がノイズとなって検出装置11に入光することを防止するために、検出装置11と上蓋8との間にはピンホール12が配置される。
この状態で、試料液供給路に試料液としての全血を流しながら、光源2から光を照射し、検出装置11において受光した光に基づいて血液中のヘモグロビン誘導体の含有量が分光学的に測定される。
尚、全血の場合、試料液の液流が停止すると血球成分の沈殿が起こり、スペクトルが変化する。このため試料液を流しながら測定すると安定した形状のスペクトルが得られる。試料液を流す流速については、あまり遅いと沈殿が生じやすくなり、早すぎると試料量が大量に必要となるので、望ましくは、0.1mm/sec〜10mm/secが適当である。
また、試料液を流す方向も一方向だけでは凝固物が混入していると詰まりが生じてそのままになってしまうが、逆方向の流れを併用することにより、凝固物をより大きなスペースを有する流路、即ち、予備流路3aやメイン流路3の分光測定部5以外の部分に移動させ、詰まりを回避することができる。このような目的で試料液を逆流させる場合には、逆流の時間は、例えば、5秒以内で短くても良いが、順方向と逆方向の流れを繰り返すとより効果的である。
前記光源2は、ヘモグロビン誘導体の含有量を分光学的に測定可能な光を照射できる光源であれば任意の光源でよいが、例えば、紫LEDと蛍光体とを組み合わせて白色を作り出す白色光源を用いてもよい。このような光源は、380nmの光を含んでいるため、試料液流路に形成した酸化チタン膜が、紫外線により触媒活性を示し、可視光の分光測定と酸化チタンの触媒活性の両方に用いることが可能になる。
上記したように、メイン流路3において実際に測定に供される微小流路3aの流路高より、予備流路3bの流路高が充分に高いため、微小流路3aの流路高が低くても、測定中に試料液の流れは充分に確保できる。特に、全血の場合には、凝固物が混入することもあるが、このような凝固物は微小流路3aに入ることがなく、予備流路3bを介して試料液排出路4から排出される。
メイン流路における予備流路3bの流路高は、少なくとも微小流路3aの流路高より高い必要があるが、あまり大きすぎるとサンプル量が大量に必要になるため現実的ではない。従って、微小流路3aの流路高が0.05〜0.2mmが望ましいことを考慮すると、予備流路3bの流路高は、0.1mm〜1mm程度が望ましい。
本発明に係るフローセルの形状は、上記した実施例に限定されることはなく、光学検出部として機能できる流路高を有する微小流路と、該微小流路より高い流路高を有する予備流路で形成されれば任意の形状でよい。したがって、本実施例では、突起部6は円形の上面を有しているが、突起部6の形状は円形でなくてもよい。また、本実施例では、微小流路3aの両側に微小流路3aを囲むように予備流路3bが形成されているが、予備流路3bは必ずしも微小流路3aを囲む必要はなく、例えば、微小流路3aの一側にのみ形成されていてもよい。
さらに、本実施例ではフローセルの下側プレート1と上蓋8に透明アクリルを用いたが、これらの部材の材料は本実施例に限定されることなく、透明ポリーカーネート、ポリカーボネート、ポリプロピレン、ポリスチレン、ポリオレフィン、透明ABSなどの可視光に対して透明なプラスチックであれば良い。さらにはパイレックス(登録商標)や石英などの透明なガラスを用いても良い。
また、本実施例では、試料液流路の内面に、日本曹達株式会社製の酸化チタン層形成剤であるビストレイターL(登録商標)を用いて酸化チタン膜を形成しているが、試料液流路の内面の親水化方法は本実施例に限定されることなく、ポリエチレングリコールやポリビニルピロリドン等の親水性ポリマーを用いてコーティングしてもよく、気相反応で表面にアミノ基やカルボキシル基を導入することにより親水化処理を行ってもよい。
本発明に係る分光測定用フローセルの下側プレートの概略上面図である。 下側プレートにスペーサ及び上蓋を装着した状態での図1における概略A−A断面図である。 下側プレートにスペーサ及び上蓋を装着した状態での図1における概略B−B断面図である。
符号の説明
1 下側プレート
2 試料液導入路
3 メイン流路
3a 微小流路
3b 予備流路
4 試料液排出路
5 分光測定部
6 突起部
7 スペーサ
8 上蓋
10 光源
11 検出部

Claims (8)

  1. 試料液を流す過程で試料液中の成分を分光測定するために用いられる分光測定用フローセルであって、
    ハウジング中に試料液を流す流路を備え、
    前記流路における分光測定部を、
    流路高の低い微小流路と、
    少なくとも前記微小流路の一側に位置し、前記微小流路より流路高が高く、かつ、その上部において微小流路と繋がっている予備流路と
    で構成した
    ことを特徴とする分光測定用フローセル。
  2. 少なくとも、前記流路における前記微小流路を構成する面が親水性を有する
    ことを特徴とする請求項1に記載の分光測定用フローセル。
  3. 少なくとも、前記流路における前記微小流路を構成する面に親水性ポリマー又は酸化チタンの膜が形成されている
    ことを特徴とする請求項2に記載の分光測定用フローセル。
  4. 前記親水性ポリマーが、ポリエチレングリコール又はポリビニルピロリドンである
    ことを特徴とする請求項3に記載の分光測定用フローセル。
  5. 前記フローセルを構成するハウジングが、透明ガラス又は透明プラスチックで構成されている
    ことを特徴とする請求項1に記載の分光測定用フローセル。
  6. 前記透明ガラスが、パイレックス(登録商標)又は石英である
    ことを特徴とする請求項5に記載の分光測定用フローセル。
  7. 前記透明プラスチックが、アクリル、ポリカーボネート、ポリプロピレン、ポリスチレン、ポリオレフィン又は透明ABSである
    ことを特徴とする請求項5に記載の分光測定用フローセル。
  8. 前記微小流路の流路高が0.05mmから0.2mmである
    ことを特徴とする請求項1に記載の分光測定用フローセル。

JP2006138584A 2006-05-18 2006-05-18 分光測定用フローセル Pending JP2007309767A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138584A JP2007309767A (ja) 2006-05-18 2006-05-18 分光測定用フローセル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138584A JP2007309767A (ja) 2006-05-18 2006-05-18 分光測定用フローセル

Publications (1)

Publication Number Publication Date
JP2007309767A true JP2007309767A (ja) 2007-11-29

Family

ID=38842756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138584A Pending JP2007309767A (ja) 2006-05-18 2006-05-18 分光測定用フローセル

Country Status (1)

Country Link
JP (1) JP2007309767A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175407A (ja) * 2009-01-29 2010-08-12 Kurabo Ind Ltd 流体物性測定計
JP2011510312A (ja) * 2008-01-25 2011-03-31 ニルラス・エンジニアリング・アクチエンゲゼルシャフト 媒質の温度を非侵襲的にかつ光学的に特定するための方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510312A (ja) * 2008-01-25 2011-03-31 ニルラス・エンジニアリング・アクチエンゲゼルシャフト 媒質の温度を非侵襲的にかつ光学的に特定するための方法
JP2010175407A (ja) * 2009-01-29 2010-08-12 Kurabo Ind Ltd 流体物性測定計

Similar Documents

Publication Publication Date Title
US7625760B2 (en) Analyzing cartridge and liquid feed control device
EP3775845B1 (en) Porous membrane sensor element
JP4700004B2 (ja) マイクロ流体装置のパッケージング
JP4660662B2 (ja) カートリッジ
JP3418174B2 (ja) 毛管路を備える分析試験要素
US20080138890A1 (en) Blood Analysis Apparatus
US9976963B2 (en) Microcuvette cartridge
BRPI0619273A2 (pt) Métodos e sistemas para o fornecimento de amostras fluidas para grupos sensores
CA2507323A1 (en) Diagnostic whole blood and plasma apparatus
EP0725928A1 (en) Disposable optical cuvette
WO2015010709A1 (en) Sensor for detection of gas and method for detection of gas
JP5209057B2 (ja) キュベット及びキュベットの使用方法
EP1618939A1 (en) Liquid filtering instrument and dry type analysis device
US20240027423A1 (en) Sensor assembly and porous membrane sensor element
JP2004109099A (ja) 血液分析方法、血液分析装置および血液分析装置の製造方法
JP5255629B2 (ja) 液滴注入槽、および分析用具
CA3134919C (en) Methods and apparatus for performing sample measurements using visible light on samples manipulated with acoustic waves
JP2005265685A (ja) 血漿成分分析装置
KR20150039051A (ko) 혈액으로부터 혈장 또는 혈청을 분리하는 혈액 필터 장치 및 그의 용도
JP2007309767A (ja) 分光測定用フローセル
US11331661B2 (en) Fluid analysis cartridge, and fluid analysis apparatus including same
JP5188767B2 (ja) 細胞分離器
JP2004117178A (ja) 分析用具
EP4103927A1 (en) Precision optical chamber device, system, and method of manufacturing same
EP4078153A1 (en) Porous membrane sensor assembly