JP2007309737A - Microplate and insulating device therefor - Google Patents

Microplate and insulating device therefor Download PDF

Info

Publication number
JP2007309737A
JP2007309737A JP2006137725A JP2006137725A JP2007309737A JP 2007309737 A JP2007309737 A JP 2007309737A JP 2006137725 A JP2006137725 A JP 2006137725A JP 2006137725 A JP2006137725 A JP 2006137725A JP 2007309737 A JP2007309737 A JP 2007309737A
Authority
JP
Japan
Prior art keywords
microplate
heat
well
wall surface
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006137725A
Other languages
Japanese (ja)
Inventor
Tomohiko Takeuchi
知彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006137725A priority Critical patent/JP2007309737A/en
Priority to PCT/JP2007/060159 priority patent/WO2007132921A1/en
Publication of JP2007309737A publication Critical patent/JP2007309737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the analyzing capacity of a specimen and to shorten the time required in analysis. <P>SOLUTION: A device includes a microplate 1, which is constituted so that the inner and outer wall surfaces in the vicinity of the bottom part of a well has the almost same shape and has an almost uniform wall thickness in at least one vertical section among the vertical sections passing the center axes of the respective wells, a heater 23 being a heat producing means for producing the heat transmitted to the microplate 1 and an insulating plate 25 being a heat transmitting means having the shape capable of being fitted to the surface containing the outer wall surfaces of the bottom parts of the wells of the microplate 1 and becoming the same in the contact areas of the respective wells when the surfaces including the outer wall surfaces of the bottom parts of the wells are fitted and transmitting the heat produced by the heater 23 to the microplate 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、検体の成分を分析するための反応容器である複数のウェルがマトリックス状に配設されて成るマイクロプレートおよび当該マイクロプレートを一定の温度に保つマイクロプレート用保温装置に関する。   The present invention relates to a microplate in which a plurality of wells, which are reaction containers for analyzing a component of a specimen, are arranged in a matrix, and a heat retaining device for a microplate that keeps the microplate at a constant temperature.

血液や体液などの検体の成分を分析する際には、ウェルと呼ばれる複数の反応容器がマトリックス状に配列されて成るマイクロプレートが用いられる。マイクロプレートの各ウェルには、分析対象の物質を含む検体や分析対象の物質および抗原抗体反応を起こす物質を含む反応試薬などが分注される。検体の成分の分析は、この分注から所定時間経過した後、ウェル内で生じた反応をCCD(Charge Coupled Device)カメラ等の撮像手段によって撮像し、この撮像によって得た画像データを用いて行う。   When analyzing components of a specimen such as blood or body fluid, a microplate in which a plurality of reaction containers called wells are arranged in a matrix is used. In each well of the microplate, a sample containing a substance to be analyzed, a reaction reagent containing a substance to be analyzed and a substance that causes an antigen-antibody reaction are dispensed. The analysis of the components of the specimen is performed after a predetermined time has elapsed from this dispensing, by imaging the reaction occurring in the well with an imaging means such as a CCD (Charge Coupled Device) camera and using the image data obtained by this imaging. .

従来、このようなマイクロプレートを用いた分析において、ウェル内の反応を促進するためにマイクロプレートを一定の温度に保つ技術が開示されている(例えば、特許文献1を参照)。この技術は、平板状のヒートブロックを用いてマイクロプレート底面に熱を伝達し、そのマイクロプレートの温度を一定に保つものである。   Conventionally, in such analysis using a microplate, a technique for keeping the microplate at a constant temperature in order to promote the reaction in the well has been disclosed (see, for example, Patent Document 1). In this technique, heat is transmitted to the bottom surface of a microplate using a flat heat block, and the temperature of the microplate is kept constant.

特開平7−260648号公報JP 7-260648 A

しかしながら、上述した従来のマイクロプレートでは、分注される検体等の液溜め槽であるウェルの底部付近の内壁面が円錐状の斜面をなす一方、このウェル底部の外壁面に相当するマイクロプレートの表面が平面をなすため、その平面状の表面にヒートブロックが接することによってマイクロプレートに熱が加えられるとき、必ずしもウェル内部に均一に熱が伝達されるわけではなく、混合液の液温にばらつきが生じやすかった。この結果、ウェル内の反応の進行の度合いにもばらつきが生じやすく、分析の性能を向上させる上での妨げとなっていた。   However, in the conventional microplate described above, the inner wall surface in the vicinity of the bottom of the well, which is a reservoir for a sample to be dispensed, forms a conical slope, while the microplate corresponding to the outer wall surface of the well bottom is Since the surface is flat, when heat is applied to the microplate by the heat block coming into contact with the flat surface, the heat is not necessarily transferred uniformly to the inside of the well, and the liquid temperature of the liquid mixture varies. It was easy to occur. As a result, the degree of progress of the reaction in the well is likely to vary, which hinders improvement in analysis performance.

また、ウェル底部の内壁面の形状とその外壁面に相当するマイクロプレート表面の形状が異なることにより、マイクロプレートの温度レスポンスが悪く、ヒートブロックによって熱を加え始めてからウェル内の温度が所定値に達するまでに時間がかかり、分析作業を短時間で行うことが困難であった。   In addition, because the shape of the inner wall surface of the well bottom and the shape of the microplate surface corresponding to the outer wall surface are different, the temperature response of the microplate is poor, and the temperature inside the well becomes a predetermined value after heat is applied by the heat block. It took time to reach and it was difficult to perform analysis work in a short time.

本発明は、上記に鑑みてなされたものであって、検体の分析を行う性能を向上させるとともに、その分析に要する時間を短縮することができるマイクロプレートおよびマイクロプレート用保温装置を提供することを目的とする。   The present invention has been made in view of the above, and provides a microplate and a heat retaining device for a microplate capable of improving the performance of analyzing a sample and reducing the time required for the analysis. Objective.

上述した課題を解決し、目的を達成するために、請求項1記載の発明は、検体の成分を分析するための反応容器である略凹型形状の複数のウェルがマトリックス状に配設されて成るマイクロプレートにおいて、前記ウェルの底部付近の内壁面と外壁面とが略同一形状をなすとともに、各ウェルの中心軸を通過する縦断面のうちの少なくとも一つの縦断面において略均一な肉厚を有することを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the invention according to claim 1 comprises a plurality of substantially concave wells, which are reaction vessels for analyzing the components of the specimen, arranged in a matrix. In the microplate, the inner wall surface and the outer wall surface in the vicinity of the bottom of the well have substantially the same shape, and have a substantially uniform thickness in at least one of the longitudinal sections passing through the central axis of each well. It is characterized by that.

請求項2記載の発明は、検体の成分を分析するための反応容器である略凹型形状の複数のウェルがマトリックス状に配設されて成るマイクロプレートを一定の温度に保つマイクロプレート用保温装置であって、前記マイクロプレートに伝達する熱を発生する熱発生手段と、前記熱発生手段で発生した熱を前記マイクロプレートに伝達する熱伝達手段と、を備え、前記熱伝達手段は、前記ウェル底部の外壁面を含む表面に嵌合可能な形状をなすとともに、前記ウェル底部の外壁面を含む表面に嵌合したときの各ウェルとの接触面積が同一となる形状をなすことを特徴とする。   The invention according to claim 2 is a microplate heat retention device that maintains a constant temperature at a microplate in which a plurality of substantially concave wells, which are reaction vessels for analyzing the components of a sample, are arranged in a matrix. A heat generating means for generating heat to be transferred to the microplate; and a heat transferring means for transferring the heat generated by the heat generating means to the microplate. And a shape that can be fitted to the surface including the outer wall surface of the well, and a shape in which the contact area with each well is the same when fitted to the surface including the outer wall surface of the well bottom.

請求項3記載の発明は、請求項2記載の発明において、前記熱伝達手段は、前記熱発生手段に対して着脱自在であることを特徴とする。   According to a third aspect of the invention, in the second aspect of the invention, the heat transfer means is detachable from the heat generating means.

請求項4記載の発明は、請求項2または3記載の発明において、前記マイクロプレートは、少なくとも前記ウェルの底部付近の内壁面と外壁面とが略同一形状をなすとともに、各ウェルの中心軸を通過する縦断面のうちの少なくとも一つの縦断面において略均一な肉厚を有することを特徴とする。   According to a fourth aspect of the present invention, in the microplate according to the second or third aspect, at least the inner wall surface and the outer wall surface near the bottom of the well have substantially the same shape, and the central axis of each well is It has a substantially uniform thickness in at least one of the passing longitudinal sections.

本発明によれば、ウェル底部付近の内壁面と外壁面とが略同一形状をなすとともに、各ウェルの中心軸を通過する縦断面のうちの少なくとも一つの縦断面において略均一な肉厚を有するマイクロプレートと、このマイクロプレートのウェル底部の外壁面を含む表面の形状に嵌合可能な形状をなすとともに、ウェル底部の外壁面を含む表面に嵌合したときの各ウェルとの接触面積が同一となる形状をなす熱伝達手段を備えたマイクロプレート用保温装置とを提供することにより、検体の分析を行う性能を向上させるとともに、その分析に要する時間を短縮することができる。   According to the present invention, the inner wall surface and the outer wall surface in the vicinity of the well bottom portion have substantially the same shape, and have a substantially uniform thickness in at least one of the longitudinal sections passing through the central axis of each well. The microplate has a shape that can be fitted to the shape of the surface including the outer wall surface of the well bottom of the microplate, and the contact area between each well when fitted to the surface of the well bottom including the outer wall surface is the same. By providing the microplate heat retaining device having the heat transfer means having the shape as described above, it is possible to improve the performance of analyzing the specimen and reduce the time required for the analysis.

以下、添付図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施の形態に係るマイクロプレートの概略構成を示す斜視図である。また、図2は、図1の矢視X方向から見たマイクロプレートの正面図である。これらの図に示すマイクロプレート1は、円形の開口部を有し、検体や試薬を分注して反応を生じさせるための略凹型形状をなす反応容器である複数のウェル3がマトリックス状に配設されて成る。このマイクロプレート1は、アクリル等の合成樹脂を射出成形することによって形成され、主として血液や体液等の検体の成分を自動的に分析する際に使用される。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view showing a schematic configuration of a microplate according to an embodiment of the present invention. FIG. 2 is a front view of the microplate as seen from the direction of arrow X in FIG. The microplate 1 shown in these drawings has a circular opening, and a plurality of wells 3 that are reaction containers having a substantially concave shape for dispensing a sample or a reagent to cause a reaction are arranged in a matrix. It is set up. The microplate 1 is formed by injection molding a synthetic resin such as acrylic, and is mainly used for automatically analyzing components of a specimen such as blood and body fluid.

ウェル3は、開口面に平行な方向の任意の断面(横断面)が円であり、各横断面のなす円の径は、開口面から底部に行くにしたがって小さくなる。特に、分注時に液溜め槽となる底部31は略円錐形状をなしており、この底部31の傾斜部分は、表面積を拡大して抗原抗体反応を生じて凝集した反応物を沈殿しやすくするため、階段状に微小に径が変化する形状を有する。図3は、この階段状に横断面の径が変化するウェル3の底部31の形状を模式的に示す説明図である。   The well 3 has an arbitrary cross section (cross section) in a direction parallel to the opening surface, and the diameter of the circle formed by each cross section decreases from the opening surface to the bottom. In particular, the bottom 31 serving as a liquid storage tank at the time of dispensing has a substantially conical shape, and the inclined portion of the bottom 31 enlarges the surface area to cause an antigen-antibody reaction and easily precipitate the aggregated reaction product. It has a shape whose diameter changes minutely in a staircase pattern. FIG. 3 is an explanatory view schematically showing the shape of the bottom 31 of the well 3 in which the diameter of the cross section changes in a stepped manner.

図4は、マイクロプレート1の表面で隣接するウェル3の開口部の中心点を通過する図2のA−A線断面(縦断面)のうち、ウェル3の最下点を通過する領域の一部を示す拡大部分断面図である。この図4に示す縦断面において、マイクロプレート1は、ウェル3の開口部側に突出する上方突出部11を周期的に有する。また、この断面におけるマイクロプレート1の底面部13は、ウェル3の底部31の形状(略円錐状の斜面)に略同一な形状をなし、その部分の肉厚は略均一である。上方突出部11の底面は、隣り合うウェル3間の境界領域に位置し、開口面を含むマイクロプレート1の正面側の表面と略平行である。   4 shows one of the regions passing through the lowest point of the well 3 in the cross section (vertical cross section) taken along the line AA of FIG. 2 passing through the center point of the opening of the adjacent well 3 on the surface of the microplate 1. It is an expanded partial sectional view which shows a part. In the longitudinal cross section shown in FIG. 4, the microplate 1 periodically has an upper protrusion 11 that protrudes toward the opening of the well 3. In addition, the bottom surface portion 13 of the microplate 1 in this cross section has substantially the same shape as the shape of the bottom portion 31 of the well 3 (substantially conical slope), and the thickness of the portion is substantially uniform. The bottom surface of the upper protrusion 11 is located in a boundary region between adjacent wells 3 and is substantially parallel to the front surface of the microplate 1 including the opening surface.

なお、このA−A線断面に平行で、ウェル3の最下点を通過する縦断面は、全て図4と同一の形状をなす。また、図2のD−D線断面およびこのD−D線断面に平行でウェル3の最下点を通過する縦断面におけるウェル3付近の形状も、図4に示す部分拡大断面図と同じである。   Note that the longitudinal section parallel to the AA line section and passing through the lowest point of the well 3 has the same shape as FIG. Further, the shape of the vicinity of the well 3 in the cross section taken along the line D-D in FIG. 2 and the vertical cross section parallel to the cross section taken along the line D-D and passing through the lowest point of the well 3 is the same as the partially enlarged cross-sectional view shown in FIG. is there.

図5は、前述したA−A線断面と平行であるが、ウェル3を通過しないマイクロプレート1の縦断面である図2のB−B線断面のうち、マイクロプレート1の表面において、隣接するウェル3の開口部の中間領域を通過する拡大部分断面図である。この図5に示す縦断面において、マイクロプレート1は、ウェル3の底部側に突出する下方突出部15を周期的に有する。この下方突出部15の端面は、上方突出部11の底面に対応する。   5 is parallel to the AA line cross section described above, but is adjacent on the surface of the microplate 1 in the cross section along the BB line in FIG. 2 which is a vertical cross section of the microplate 1 that does not pass through the well 3. 3 is an enlarged partial cross-sectional view passing through an intermediate region of an opening of a well 3. FIG. In the vertical cross section shown in FIG. 5, the microplate 1 periodically has downward protrusions 15 that protrude toward the bottom of the well 3. The end surface of the lower protrusion 15 corresponds to the bottom surface of the upper protrusion 11.

なお、このB−B線断面に平行で、隣接するウェル3の中間の領域を通過する縦断面は、全て図5と同一の形状をなす。また、図2のE−E線断面およびこのE−E線断面に平行な縦断面のウェル3の中間領域付近も、図5に示す部分拡大断面図と同じ形状をなす。   In addition, all the longitudinal cross sections which pass through the intermediate | middle area | region of the adjacent well 3 parallel to this BB line cross section make the same shape as FIG. Further, the vicinity of the intermediate region of the well 3 having a cross section taken along the line EE in FIG. 2 and a vertical cross section parallel to the cross section taken along the line EE has the same shape as the partially enlarged cross sectional view shown in FIG.

図6は、マイクロプレート1の表面において開口部が斜め方向に隣接するウェル3の底部を通過するC−C線断面のうち、ウェル3を含む領域の一部を示す拡大部分断面図である。この図6に示す縦断面において、マイクロプレート1は、ウェル3の内壁面に沿って略同形状の外壁面17が形成され、この縦断面におけるマイクロプレート1の肉厚は略均一である。なお、このC−C線断面に平行で、ウェル3の最下点を通過する縦断面のウェル3を含む断面は、その断面におけるウェル3近傍で全て図6と同一の形状をなす。   FIG. 6 is an enlarged partial cross-sectional view showing a part of a region including the well 3 in the cross section taken along the line C-C where the opening passes through the bottom of the well 3 adjacent in the oblique direction on the surface of the microplate 1. In the longitudinal section shown in FIG. 6, the microplate 1 has an outer wall surface 17 having substantially the same shape along the inner wall surface of the well 3, and the thickness of the microplate 1 in the longitudinal section is substantially uniform. Note that the cross section including the well 3 having a vertical cross section parallel to the CC cross section and passing through the lowest point of the well 3 has the same shape as FIG. 6 in the vicinity of the well 3 in the cross section.

次に、以上説明したマイクロプレート1を一定の温度に保つマイクロプレート用保温装置(以後、単に保温装置と呼ぶ)について説明する。図7は、本発明の一実施の形態に係る保温装置の概略構成を示す説明図である。同図に示す保温装置2は、マイクロプレート1の温度を測定する温度センサ21、マイクロプレート1に伝達する熱を発生する熱発生手段であるヒータ23、このヒータ23で発生した熱をマイクロプレート1に伝達する熱伝達手段である保温プレート25、マイクロプレート1の温度を入力設定したり、温度センサ21によるマイクロプレート1の温度測定結果を出力表示したりする入出力部27、および保温装置2の動作制御を行う制御部29を備える。   Next, a microplate heat retention device (hereinafter simply referred to as a heat retention device) that maintains the above-described microplate 1 at a constant temperature will be described. FIG. 7 is an explanatory diagram showing a schematic configuration of a heat retention device according to an embodiment of the present invention. A heat retaining device 2 shown in FIG. 1 includes a temperature sensor 21 that measures the temperature of the microplate 1, a heater 23 that is a heat generation unit that generates heat to be transmitted to the microplate 1, and the heat generated by the heater 23 is transmitted to the microplate 1. The input / output unit 27 for inputting and setting the temperature of the heat retaining plate 25 and the microplate 1 which are heat transfer means for transmitting to the temperature, and outputting and displaying the temperature measurement result of the microplate 1 by the temperature sensor 21, and the heat retaining device 2 A control unit 29 that performs operation control is provided.

図8は、保温プレート25のマイクロプレート1を載置する側の面(上面)の構成を示す正面図である。この保温プレート25は、熱伝導性を有する素材、例えばアルミニウムによって実現され、マイクロプレート1を載置したときにウェル3の底部31を嵌合する凹部251と、この保温プレート25の表面で斜め方向に隣接する凹部251の間に突出して成る柱状の凸部253とを有する。   FIG. 8 is a front view showing the configuration of the surface (upper surface) of the heat retaining plate 25 on the side on which the microplate 1 is placed. The heat retaining plate 25 is realized by a material having thermal conductivity, for example, aluminum, and a concave portion 251 into which the bottom 31 of the well 3 is fitted when the microplate 1 is placed, and an oblique direction on the surface of the heat retaining plate 25. And a columnar convex portion 253 projecting between the concave portions 251 adjacent to each other.

図9は、図8のF−F線断面の部分拡大図である。この図9に示す拡大部分断面図は、マイクロプレート1を載置するときに、図4に示す断面(図9では一点鎖線で記載)を有する部分が載置される保温プレート25の縦断面である。したがって、この縦断面は、マイクロプレート1の底面部13表面と同一の円錐形状をなす凹部251と、上方突出部11の底面と同じ幅を有する水平部255とが交互に周期的なパターンをなす。   FIG. 9 is a partially enlarged view of a cross section taken along the line F-F in FIG. 8. The enlarged partial sectional view shown in FIG. 9 is a vertical cross section of the heat insulating plate 25 on which the portion having the cross section shown in FIG. 4 (shown by a one-dot chain line in FIG. 9) is placed when the microplate 1 is placed. is there. Therefore, in this longitudinal section, the concave portion 251 having the same conical shape as the surface of the bottom surface portion 13 of the microplate 1 and the horizontal portion 255 having the same width as the bottom surface of the upper protruding portion 11 alternately form a periodic pattern. .

なお、このF−F線断面に平行で、凹部251の最下点を通過する縦断面は、全て図8と同一の形状をなす。また、図8のI−I線断面およびこのI−I線断面に平行で、凹部251の最下点を通過する縦断面も、凹部251の最下点を通過する領域近傍で図9と同じ形状をなす。   In addition, all the longitudinal cross sections which pass through the lowest point of the recessed part 251 parallel to this FF line cross section have the same shape as FIG. Further, the cross section taken along the line II of FIG. 8 and the vertical cross section parallel to the cross section taken along the line II and passing through the lowest point of the recess 251 are the same as those in FIG. Make a shape.

図10は、図8のG−G線断面の部分拡大図である。この図10に示す拡大部分断面図は、マイクロプレート1を載置するときに、図5に示す断面(図10では一点鎖線で記載)を有する部分が載置される保温プレート25の縦断面である。したがって、この縦断面には、マイクロプレート1の下方突出部15と嵌合可能なように上方に突出する凸部253が設けられており、この凸部253が突出する高さは、下方突出部15が下方に突出する高さと同一である。   FIG. 10 is a partially enlarged view of a cross section taken along the line GG of FIG. The enlarged partial cross-sectional view shown in FIG. 10 is a vertical cross-section of the heat retaining plate 25 on which the portion having the cross-section shown in FIG. 5 (shown by a one-dot chain line in FIG. 10) is placed when the microplate 1 is placed. is there. Accordingly, the vertical cross section is provided with a convex portion 253 projecting upward so as to be able to be fitted with the downward projecting portion 15 of the microplate 1, and the height at which the convex portion 253 projects is the downward projecting portion. It is the same as the height which 15 protrudes below.

なお、このG−G線断面に平行で、凸部253を通過する縦断面は、全て図9と同一の形状をなす。また、図9のJ−J線断面およびこのJ−J線断面に平行で、凸部253を通過する縦断面も、その凸部253の近傍領域で図10と同じ形状をなす。   In addition, all the longitudinal cross sections which are parallel to this GG line cross section and pass the convex part 253 make the same shape as FIG. Further, the cross section taken along the line JJ in FIG. 9 and the vertical cross section passing through the convex portion 253 in parallel to the cross section along the line JJ have the same shape as that in FIG.

図11は、保温プレート25の表面において斜め方向に隣接する凹部251の最下点を通過する図8のH−H線断面の部分拡大図である。この図11に示す部分拡大断面図は、マイクロプレート1を載置するときに、図6に示す断面(図11では一点鎖線で記載)を有する部分が載置される保温プレート25の縦断面である。したがって、この縦断面の上部表面は、外壁面17と嵌合可能な形状をなす。なお、このH−H線断面に平行で、凸部253を通過する縦断面は、全て図9と同一の形状をなす。   11 is a partially enlarged view of the HH line cross section of FIG. 8 that passes through the lowest point of the concave portion 251 that is adjacent in the oblique direction on the surface of the heat retaining plate 25. 11 is a vertical cross-sectional view of the heat retaining plate 25 on which the portion having the cross section shown in FIG. 6 (shown by a one-dot chain line in FIG. 11) is placed when the microplate 1 is placed. is there. Therefore, the upper surface of the longitudinal section has a shape that can be fitted to the outer wall surface 17. In addition, all the longitudinal cross sections which are parallel to this HH line cross section and which pass the convex part 253 make the same shape as FIG.

このような形状をなす保温プレート25を用いることにより、マイクロプレート1を保温プレート25上に正確に載置したとき、マイクロプレート1の各ウェル3と保温プレート25表面との接触面積は全て同一となる。したがって、各ウェル3に均一に熱を伝達することが可能となり、ウェル3ごとの温度のばらつきが減少するとともに、ヒータ23からの伝熱効率を向上させることができる。   By using the heat retaining plate 25 having such a shape, when the microplate 1 is accurately placed on the heat retaining plate 25, the contact area between each well 3 of the microplate 1 and the surface of the heat retaining plate 25 is the same. Become. Therefore, heat can be uniformly transferred to each well 3, temperature variations among the wells 3 can be reduced, and heat transfer efficiency from the heater 23 can be improved.

以上詳細に説明した構成を有するマイクロプレート1および保温装置2を用いて行う検体の分析について説明する。マイクロプレート1のウェル3に血液や体液等の検体およびこの検体中の特定物質と特異的な反応を起こす物質を含む試薬を各々適量分注すると、ウェル3内部では、その両者が抗原抗体反応を起こす。例えば、血液中の赤血球を用いて血液型の判定を行う場合、その赤血球が試薬中に含まれる所定の抗原との間で抗原抗体反応を起こして赤血球同士が凝集すると、この凝集した赤血球は底部31の階段状の傾斜部分に沈殿する。この沈殿によって生じる凝集パターンは血液型に応じて異なるので、その凝集パターンを適当な撮像手段によって撮像して得た画像データを分析することにより、検体の血液型を判定する。   The analysis of the sample performed using the microplate 1 and the heat retaining device 2 having the configuration described in detail above will be described. If an appropriate amount of a reagent containing a specimen such as blood or body fluid and a substance that causes a specific reaction in the specimen is dispensed into the well 3 of the microplate 1, both of them undergo antigen-antibody reaction inside the well 3. Wake up. For example, when blood type determination is performed using red blood cells in blood, if the red blood cells cause an antigen-antibody reaction with a predetermined antigen contained in the reagent and the red blood cells aggregate with each other, the aggregated red blood cells It settles on 31 step-like inclined parts. Since the aggregation pattern produced by this precipitation varies depending on the blood type, the blood type of the specimen is determined by analyzing image data obtained by imaging the aggregation pattern with an appropriate imaging means.

このような抗原抗体反応を促進するためには、ウェル3内部が摂氏37度程度であることが好ましい。そこで、入出力部27から保温プレート25の温度を例えば摂氏37度と設定し、マイクロプレート1を保温プレート25に嵌合するようにして載置する。その後、温度センサ21がマイクロプレート1の温度を測定し、マイクロプレート1が設定温度に達していない場合には、制御部29の制御によってヒータ23が熱を発生し、この発生した熱を、保温プレート25を介してマイクロプレート1に伝達する。その後も温度センサ21がマイクロプレート1の温度を測定しつづけ、マイクロプレート1が設定温度に達した後は、制御部29がマイクロプレート1を恒温状態を保つ制御を行う。   In order to promote such antigen-antibody reaction, the inside of the well 3 is preferably about 37 degrees Celsius. Therefore, the temperature of the heat retaining plate 25 is set to 37 degrees Celsius, for example, from the input / output unit 27, and the microplate 1 is placed so as to be fitted to the heat retaining plate 25. Thereafter, the temperature sensor 21 measures the temperature of the microplate 1. When the microplate 1 has not reached the set temperature, the heater 23 generates heat under the control of the control unit 29, and the generated heat is retained. It transmits to the microplate 1 through the plate 25. Thereafter, the temperature sensor 21 continues to measure the temperature of the microplate 1, and after the microplate 1 reaches the set temperature, the control unit 29 performs control to keep the microplate 1 in a constant temperature state.

以上説明した本発明の一実施の形態によれば、マイクロプレートの底面の形状を保温装置が有する保温プレートのマイクロプレート載置面の形状と嵌合可能となるように両者の形状を構成することにより、マイクロプレート内の各ウェルに熱を均等に伝達することが可能となり、伝熱効率を向上するとともに、ウェルごとの温度のばらつきを削減することができる。この結果、ウェル内部で反応を促進する上で重要な温度管理を精度よく行うことが可能となり、検体の分析を行う性能を向上させるとともに、その分析に要する時間を短縮することが可能となる。   According to the embodiment of the present invention described above, both shapes are configured so that the shape of the bottom surface of the microplate can be fitted to the shape of the microplate mounting surface of the heat retaining plate of the heat retaining device. As a result, heat can be evenly transferred to each well in the microplate, heat transfer efficiency can be improved, and temperature variations from well to well can be reduced. As a result, it is possible to accurately perform temperature management, which is important for promoting the reaction inside the well, improving the performance of analyzing the specimen and reducing the time required for the analysis.

また、この実施の形態に係るマイクロプレートは、底面が平面である従来のマイクロプレートと比較して薄肉化されているので、成形するための材料も少なくて済む。したがって、一度だけ検体を分析した時点でマイクロプレートを破棄したい場合などにも好適である。   Further, since the microplate according to this embodiment is thinner than a conventional microplate having a flat bottom surface, less material is required for molding. Therefore, it is also suitable when the microplate is to be discarded when the sample is analyzed only once.

ここまで、本発明の好ましい一実施の形態を詳述してきたが、本発明はこの実施の形態によってのみ限定されるものではない。例えば、保温プレートの突出部の形状は、その周囲に位置する4つのウェルとの接触面積が同一であればどのような形状でもよく、その突出部の横断面が円や多角形をなしていてもよい。   The preferred embodiment of the present invention has been described in detail so far, but the present invention is not limited only to this embodiment. For example, the shape of the protrusion of the heat retaining plate may be any shape as long as the contact area with the four wells located around it is the same, and the cross section of the protrusion forms a circle or a polygon. Also good.

このように、本発明は、ここでは記載していないさまざまな実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的事項を逸脱しない範囲内において種々の設計変更等を施すことが可能である。   Thus, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical matters specified by the claims. It is possible to apply.

本発明の一実施の形態に係るマイクロプレートの構成を示す斜視図である。It is a perspective view which shows the structure of the microplate which concerns on one embodiment of this invention. 本発明の一実施の形態に係るマイクロプレートの構成を示す正面図である。It is a front view which shows the structure of the microplate which concerns on one embodiment of this invention. ウェル底部の構成を示す説明図である。It is explanatory drawing which shows the structure of a well bottom part. 図2のA−A線拡大部分断面図である。It is an AA line expanded partial sectional view of FIG. 図2のB−B線拡大部分断面図である。FIG. 3 is an enlarged partial sectional view taken along line B-B in FIG. 2. 図2のC−C線拡大部分断面図である。FIG. 3 is an enlarged partial cross-sectional view taken along the line CC of FIG. 2. 本発明の一実施の形態に係るマイクロプレート用保温装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the heat insulating apparatus for microplates which concerns on one embodiment of this invention. 保温プレート表面の構成を示す正面図である。It is a front view which shows the structure of the heat retention plate surface. 図8のF−F線拡大部分断面図である。It is the FF line enlarged partial sectional view of FIG. 図8のG−G線拡大部分断面図である。It is the GG line expanded partial sectional view of FIG. 図8のH−H線拡大部分断面図である。It is the HH line expanded partial sectional view of FIG.

符号の説明Explanation of symbols

1 マイクロプレート
2 保温装置
3 ウェル
11 上方突出部
13 底面部
15 下方突出部
17 外壁面
21 温度センサ
23 ヒータ
25 保温プレート
27 入出力部
29 制御部
31 底部
251 凹部
253 凸部
255 水平部
DESCRIPTION OF SYMBOLS 1 Microplate 2 Thermal insulation apparatus 3 Well 11 Upper protrusion part 13 Bottom part 15 Lower protrusion part 17 Outer wall surface 21 Temperature sensor 23 Heater 25 Thermal insulation plate 27 Input / output part 29 Control part 31 Bottom part 251 Concave part 253 Convex part 255 Horizontal part

Claims (4)

検体の成分を分析するための反応容器である略凹型形状の複数のウェルがマトリックス状に配設されて成るマイクロプレートにおいて、
前記ウェルの底部付近の内壁面と外壁面とが略同一形状をなすとともに、各ウェルの中心軸を通過する縦断面のうちの少なくとも一つの縦断面において略均一な肉厚を有することを特徴とするマイクロプレート。
In a microplate comprising a plurality of substantially concave wells arranged in a matrix, which is a reaction container for analyzing a component of a specimen.
The inner wall surface and the outer wall surface in the vicinity of the bottom of the well have substantially the same shape, and have a substantially uniform thickness in at least one of the longitudinal sections passing through the central axis of each well. A microplate.
検体の成分を分析するための反応容器である略凹型形状の複数のウェルがマトリックス状に配設されて成るマイクロプレートを一定の温度に保つマイクロプレート用保温装置であって、
前記マイクロプレートに伝達する熱を発生する熱発生手段と、
前記熱発生手段で発生した熱を前記マイクロプレートに伝達する熱伝達手段と、
を備え、
前記熱伝達手段は、前記ウェル底部の外壁面を含む表面に嵌合可能な形状をなすとともに、前記ウェル底部の外壁面を含む表面に嵌合したときの各ウェルとの接触面積が同一となる形状をなすことを特徴とするマイクロプレート用保温装置。
A microplate heat retention device that maintains a constant temperature at a microplate in which a plurality of wells having a substantially concave shape, which is a reaction container for analyzing a component of a specimen, are arranged in a matrix,
Heat generating means for generating heat transmitted to the microplate;
Heat transfer means for transferring heat generated by the heat generation means to the microplate;
With
The heat transfer means has a shape that can be fitted to the surface including the outer wall surface of the well bottom, and has the same contact area with each well when fitted to the surface including the outer wall surface of the well bottom. A heat insulating device for a microplate characterized by having a shape.
前記熱伝達手段は、
前記熱発生手段に対して着脱自在であることを特徴とする請求項2記載のマイクロプレート用保温装置。
The heat transfer means is
The microplate heat retaining device according to claim 2, wherein the heat generating device is detachable from the heat generating means.
前記マイクロプレートは、
少なくとも前記ウェルの底部付近の内壁面と外壁面とが略同一形状をなすとともに、各ウェルの中心軸を通過する縦断面のうちの少なくとも一つの縦断面において略均一な肉厚を有することを特徴とする請求項2または3記載のマイクロプレート用保温装置。
The microplate is
At least the inner wall surface and the outer wall surface in the vicinity of the bottom of the well have substantially the same shape, and have a substantially uniform thickness in at least one of the longitudinal sections passing through the central axis of each well. The heat retaining device for a microplate according to claim 2 or 3.
JP2006137725A 2006-05-17 2006-05-17 Microplate and insulating device therefor Pending JP2007309737A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006137725A JP2007309737A (en) 2006-05-17 2006-05-17 Microplate and insulating device therefor
PCT/JP2007/060159 WO2007132921A1 (en) 2006-05-17 2007-05-17 Microplate and heat insulation device for microplate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137725A JP2007309737A (en) 2006-05-17 2006-05-17 Microplate and insulating device therefor

Publications (1)

Publication Number Publication Date
JP2007309737A true JP2007309737A (en) 2007-11-29

Family

ID=38694007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137725A Pending JP2007309737A (en) 2006-05-17 2006-05-17 Microplate and insulating device therefor

Country Status (2)

Country Link
JP (1) JP2007309737A (en)
WO (1) WO2007132921A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061919A (en) * 2003-08-08 2005-03-10 Enplas Corp Plastic plate and plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045038A1 (en) * 1999-04-08 2000-10-18 Hans-Knöll-Institut Für Naturstoff-Forschung E.V. Rapid heat block thermocycler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061919A (en) * 2003-08-08 2005-03-10 Enplas Corp Plastic plate and plate

Also Published As

Publication number Publication date
WO2007132921A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
Hernandez-Perez et al. Evaporation-driven bioassays in suspended droplets
JP6442543B2 (en) Equipment for thermal convection polymerase chain reaction
US20100307617A1 (en) Flow cell
JP2010271315A (en) System and method for dispensing fluid
JP6462844B2 (en) Automatic analyzer
JP2006349638A (en) Method and apparatus for homogenizing trace quantity of liquid
Wiktor et al. Microreactor array device
JP2006349582A (en) Agitating container and chemical analysis apparatus using the same
EP3880364B1 (en) Analysis system for microfluidic devices
JP2012078115A (en) Inspection object acceptor
JP2015108601A (en) Liquid surface position detection method, device, liquid supply device, and analysis system
JP2007309737A (en) Microplate and insulating device therefor
JPWO2017082142A1 (en) Inspection system
JP4895676B2 (en) Microplate
JP2016165247A (en) Nucleic acid amplification inspection device, and nucleic acid amplification inspection method
JP2007278885A (en) Reaction container and analyzer
JP2011064702A (en) Specimen optical information recognizing device and method of recognizing the same
JP6718594B2 (en) Unsealed capillary tempering method and system
JP4279754B2 (en) Plate and inspection method using the plate
JP6585557B2 (en) Flow velocity measuring method and flow velocity measuring system
JP2009229194A (en) Reagent container and autoanalyzer equipped with it
JP7316943B2 (en) Combination of cartridge and temperature control stage
JP2007114022A (en) Stirring container, and analyzer using stirring container thereof
JP2014079194A (en) Reaction vessel and nucleic acid analysis apparatus using the same
JP6422068B1 (en) Reaction device, electric field stirring apparatus, and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111104