JP2007309710A - Microperiodic groove observation method and observation device thereof, microperiodic groove machining observation method and machining observation device thereof - Google Patents

Microperiodic groove observation method and observation device thereof, microperiodic groove machining observation method and machining observation device thereof Download PDF

Info

Publication number
JP2007309710A
JP2007309710A JP2006137157A JP2006137157A JP2007309710A JP 2007309710 A JP2007309710 A JP 2007309710A JP 2006137157 A JP2006137157 A JP 2006137157A JP 2006137157 A JP2006137157 A JP 2006137157A JP 2007309710 A JP2007309710 A JP 2007309710A
Authority
JP
Japan
Prior art keywords
laser
groove
order
measurement
fine periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006137157A
Other languages
Japanese (ja)
Inventor
Sadao Nakai
貞雄 中井
Masanori Yamanaka
正宣 山中
Masaru Sugiyama
優 杉山
Manabu Butani
学 部谷
Shinichiro Okihara
伸一朗 沖原
Nobuyuki Abe
信行 阿部
Masahiro Tsukamoto
雅裕 塚本
Takayuki Kato
貴行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Graduate School for the Creation of New Photonics Industries
Enshu Ltd
Original Assignee
Osaka University NUC
Graduate School for the Creation of New Photonics Industries
Enshu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Graduate School for the Creation of New Photonics Industries, Enshu Ltd filed Critical Osaka University NUC
Priority to JP2006137157A priority Critical patent/JP2007309710A/en
Publication of JP2007309710A publication Critical patent/JP2007309710A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microperiodic groove observation method and a device and a machining observation method and a device, capable of accurately measuring and machining-measuring a groove gap between microperiodic grooves. <P>SOLUTION: When the groove gap in microperiodic groove M1 is observed with a surface machined by a femtosecond laser machining apparatus, the microperiodic groove observation method observes, in terms of vision or data, the wavelength λ of a measurement laser incident on the micro periodic groove M1 in the vertical surface direction or an arbitrary oblique direction; a diffraction angle β of the diffracted light L2 of the measurement laser, a measurement order m of a light receiver 20 catching the diffracted light at the diffraction angle; and the groove gap d by arranging the light receiver 20 at the measurement order m, obtained by a theoretical expression d(sinα±sinβ)=mλ related to the groove gap d of the microperiodic groove M1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばフェムト秒レーザ加工機で表面加工された微細周期性溝(ナノ周期構造の連続した周期性溝、不連続のディンプル加工溝)の観測方法と観測装置ならびに加工観測方法とその加工観測装置に係り、特に、微細周期性溝の溝間隔を高精度に観測及び加工観測できるようにしたものに関する。   The present invention relates to an observation method and apparatus for fine periodic grooves (continuous periodic grooves having nano-periodic structure, discontinuous dimple processing grooves) surface-processed by, for example, a femtosecond laser processing machine, a processing observation method, and the processing thereof The present invention relates to an observation apparatus, and in particular, relates to an observation apparatus capable of observing and processing a groove interval of fine periodic grooves with high accuracy.

近年、地球温暖化防止策の最も重要課題として大気汚染の低減を図ることが掲げられている。特に、大気汚染を起している主原因に自動車が出す排気ガスにあることが知られており、国際的な協定が結ばれる中で自動車メーカは競って低公害車を開発している。その行き着くところは、ハイブリッド車、電気自動車、燃料電池車等の開発と実用化による世界的普及が期待されている。このような状況の中で、自動車の燃費改善対策とエンジンの性能・耐久性の向上対策として、エンジンにおけるピストンとシリンダ間の摩擦低減、ベアリングの回転摩擦低減、ギアの噛合い摩擦の低減等の摩擦抵抗を極限まで減らすことが望まれている。上記エンジンの摺動部(摩擦面)又は回転部(転がり面)の表面の摩擦抵抗を極限まで減らす加工方法には、刃具の機械的な外力により表面に微細な凹凸筋の溝加工を施したり、フェムト秒レーザ加工機で微細周期性溝(ナノ周期構造の連続した周期性溝、不連続のディンプル加工溝)を施す技術が注目を集め旺盛に開発されている。上記微細周期性溝が正しく生成されているか・否か・を観測判定するには、走査型電子顕微鏡で観測するか、特別な観測装置が必要になるものの、現状において革新的な観測装置が提供されていない。他方、半導体製造分野においても、フェムト秒レーザを備えた半導体製造装置にて表面処理される半導体表面は、微細な凹凸状態に生成・加工される。このような微細な凹凸状態を測定する観測装置も必要になっている。   In recent years, reduction of air pollution has been raised as the most important issue of global warming prevention measures. In particular, it is known that the main cause of air pollution is exhaust gas emitted from automobiles, and automakers are competing to develop low-emission vehicles in an international agreement. The destination is expected to spread worldwide through the development and commercialization of hybrid vehicles, electric vehicles, fuel cell vehicles, and the like. Under such circumstances, measures to improve automobile fuel efficiency and engine performance / durability include friction reduction between pistons and cylinders in the engine, reduction in bearing rotation friction, reduction in gear meshing friction, etc. It is desired to reduce the frictional resistance to the limit. For the processing method to reduce the frictional resistance of the sliding part (friction surface) or rotating part (rolling surface) of the engine to the limit, the surface of the surface is subjected to grooving of fine uneven stripes by the mechanical external force of the blade. A technique for forming fine periodic grooves (continuous periodic grooves with nano-periodic structures, discontinuous dimple processing grooves) with a femtosecond laser processing machine has been attracting attention and has been actively developed. In order to determine whether or not the fine periodic grooves are correctly generated, observation with a scanning electron microscope or a special observation device is required, but an innovative observation device is provided at present. It has not been. On the other hand, also in the semiconductor manufacturing field, a semiconductor surface that is surface-treated by a semiconductor manufacturing apparatus equipped with a femtosecond laser is generated and processed into a fine uneven state. There is also a need for an observation apparatus that measures such a fine uneven state.

上記フェムト秒レーザ加工機で加工した微細周期性溝の周期間隔(以下、溝間隔と言う)を走査型電子顕微鏡により観測するには、被写体の周期間隔を認識するための処理を行って計測、認識している。また、上記半導体表面の検査装置の一例を紹介すれば、実装回路基板等の被検査物表面を光走査し、その反射光に基づいて部品の形状不良等を検査するものである。その詳細構成は、複数の半導体レーザ素子1、2、3を時間差を設けてパルス発振させ、その光軸をわずかにずらしたレーザL1、L2、L3をポリゴンミラー5に入射し、光走査用fθレンズ系6を通して被検査物10の表面11に所定ピッチAで光走査する。被検査物10を光走査方向に対して直角方向に移動させながら、被検査物表面11から反射するレーザL1r、L2r、L3rを光検出器16a、16bにより検出し、光検出器16a、16bが出力する電気信号を演算装置17、18で高さ信号に変換するものである(例えば、特許文献1を参照。)。   To observe the periodic interval (hereinafter referred to as the groove interval) of fine periodic grooves processed by the femtosecond laser processing machine with a scanning electron microscope, measurement is performed by recognizing the periodic interval of the subject. It has recognized. In addition, when an example of the semiconductor surface inspection apparatus is introduced, the surface of an object to be inspected such as a mounted circuit board is optically scanned, and a shape defect of a component is inspected based on the reflected light. The detailed configuration is such that a plurality of semiconductor laser elements 1, 2, and 3 are pulse-oscillated with a time difference, and lasers L1, L2, and L3 having their optical axes slightly shifted are incident on a polygon mirror 5 and optical scanning fθ. Optical scanning is performed at a predetermined pitch A on the surface 11 of the inspection object 10 through the lens system 6. While moving the inspection object 10 in a direction perpendicular to the optical scanning direction, the lasers L1r, L2r, and L3r reflected from the surface 11 of the inspection object are detected by the photodetectors 16a and 16b, and the photodetectors 16a and 16b are detected. The output electric signal is converted into a height signal by the arithmetic devices 17 and 18 (see, for example, Patent Document 1).

特開2005−77158号公報JP 2005-77158 A

上記走査型電子顕微鏡により微細周期性溝の周期間隔を観測するには、非常に高価な走査型電子顕微鏡を検査装置として設備しなければならないし、被写体の周期間隔を認識するための前処理を行って計測、認識しているから、実験室レベルでは良いにしても生産現場では最適な観測装置とは言えない。また、半導体表面の表面検査装置では、被検査対象物の形状は平板状の回路基板に限定されたものであるから、エンジンにおけるシリンダ内周面のような凹周面の表面検査、ピストンの外周表面検査には転用できない。その理由は、本願発明のように、フェムト秒レーザ加工機で表面加工された微細周期性溝(ナノ周期構造の連続した周期性溝、不連続のディンプル加工溝)の極小溝幅寸法(数百nm)の観測には適用できないという問題点のある技術である。   In order to observe the periodic interval of the fine periodic grooves with the scanning electron microscope, a very expensive scanning electron microscope must be installed as an inspection device, and pre-processing for recognizing the periodic interval of the subject is required. Since it is measured and recognized, it is not an optimal observation device at the production site even though it is good at the laboratory level. Further, in the semiconductor surface inspection apparatus, since the shape of the object to be inspected is limited to a flat circuit board, surface inspection of a concave peripheral surface such as an inner peripheral surface of a cylinder in an engine, the outer periphery of a piston It cannot be diverted to surface inspection. The reason for this is that, as in the present invention, the minimum groove width dimension (several hundreds of fine periodic grooves (continuous periodic grooves of nano-periodic structure, discontinuous dimple processing grooves)) processed by a femtosecond laser processing machine is used. This technique has a problem that it cannot be applied to (nm) observation.

本発明の課題は、上記従来の走査型電子顕微鏡等が持つ問題点を解決するものである。そして、その目的は、特に、微細周期性溝(ナノ周期構造の連続した周期性溝、不連続のディンプル加工溝)の溝間隔を高精度に観測及び加工観測できるようにした新規な微細周期性溝の観測方法とその観測装置及び加工観測方法とその加工観測装置を提供するものである。更に付け加えるならば、本発明が目指す大目的は、各種産業機械類が持つ摺動摩擦抵抗の低減を図ることでエネルギロスの低減による省エネ効果や耐寿命効果に寄与する部品加工の技術開発を促進させることで、地球温暖化防止対策に大きく貢献するものである。   An object of the present invention is to solve the problems of the conventional scanning electron microscope and the like. The purpose of the new micro-periodicity is to enable high-precision observation and processing observation of the groove spacing of micro-periodic grooves (continuous periodic grooves with nano-periodic structure, discontinuous dimple processing grooves). The present invention provides a groove observation method, an observation apparatus, a machining observation method, and a machining observation apparatus. In addition, the major objective of the present invention is to promote the technological development of parts processing that contributes to the energy-saving effect and life-span-proof effect by reducing the energy loss by reducing the sliding friction resistance of various industrial machines. This will greatly contribute to measures to prevent global warming.

本発明の請求項1の微細周期性溝の観測方法は、フェムト秒レーザ加工機等で表面加工された微細周期性溝の観測に際して、上記微細周期性溝に対して垂直面方向又は任意な斜め方向から入射される測定用レーザの入射角度αおよびその波長λと、上記測定用レーザの回折光の回折角度βと、上記回折角度の回折光をキャッチする受光器の測定次数mと、上記微細周期性溝の溝間隔dとの理論式d(sinα±sinβ)=mλから求めた測定次数mに、受光器を配置して溝間隔dを実測確認することを特徴とするものである。   According to a first aspect of the present invention, when observing a fine periodic groove whose surface has been processed by a femtosecond laser processing machine or the like, a direction perpendicular to the fine periodic groove or an arbitrary oblique direction is provided. The incident angle α and the wavelength λ of the measuring laser incident from the direction, the diffraction angle β of the diffracted light of the measuring laser, the measurement order m of the receiver that catches the diffracted light of the diffraction angle, and the fine A light receiving device is arranged at a measurement order m obtained from a theoretical formula d (sin α ± sin β) = mλ with a groove interval d of the periodic groove, and the groove interval d is measured and confirmed.

本発明の請求項2の微細周期性溝の観測装置は、フェムト秒レーザ加工機等で表面加工された微細周期性溝の観測に際して、上記微細周期性溝に対して垂直面方向又は任意な斜め方向の入射角度αで照射するとともに特定の波長λの測定用レーザを発振する発振器と、上記測定用レーザ発振器から微細周期性溝に照射した測定用レーザの回折光の回折角度βの測定次数mに配置したレーザ受光器と、上記レーザ受光器からの受光情報を表示するモニタ機器または上記理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dを演算する演算処理器と、を具備したことを特徴とするものである。   According to a second aspect of the present invention, when observing a fine periodic groove whose surface is processed by a femtosecond laser beam machine or the like, the observation device of the fine periodic groove is perpendicular to the fine periodic groove or is arbitrarily inclined. A measurement order m of the diffraction angle β of the diffracted light of the measurement laser emitted from the measurement laser oscillator to the fine periodic groove while irradiating with the incident angle α in the direction and oscillating the measurement laser with a specific wavelength λ A laser receiver disposed on the monitor, a monitor device that displays received light information from the laser receiver, or an arithmetic processor that calculates the groove interval d of the fine periodic grooves by the theoretical formula d (sin α ± sin β) = mλ, It is characterized by comprising.

本発明の請求項3の微細周期性溝の観測方法は、請求項1に記載の微細周期性溝の観測方法において、上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とするものである。   The fine periodic groove observing method according to claim 3 of the present invention is the fine periodic groove observing method according to claim 1, wherein the measurement laser is a He-Ne laser, a GaN semiconductor laser, a femtosecond laser, or the like. The measurement order m of the photoreceiver corresponding to the diffraction angle β is characterized by a measurement order such as 0th order, 1st order, 2nd order, 3rd order or the like.

本発明の請求項4の微細周期性溝の観測装置は、請求項2に記載の微細周期性溝の観測装置において、上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とするものである。   The fine periodic groove observation device according to claim 4 of the present invention is the fine periodic groove observation device according to claim 2, wherein the measurement laser is a He-Ne laser, a GaN semiconductor laser, a femtosecond laser, or the like. The measurement order m of the photoreceiver corresponding to the diffraction angle β is characterized by a measurement order such as 0th order, 1st order, 2nd order, 3rd order or the like.

本発明の請求項5の微細周期性溝の加工観測方法は、被加工ワークの表面にフェムト秒レーザ等を垂直照射又は任意な斜め方向から照射して微細周期性溝を加工すると同時に、上記フェムト秒レーザ等にハーフミラーで重ね合わせて上記微細周期性溝に対して垂直面方向又は任意な斜め方向から入射される測定用レーザの入射角度αおよびその波長λと、上記測定用レーザの回折光の回折角度βと、上記回折角度の回折光をキャッチする受光器の測定次数mと、上記微細周期性溝の溝間隔dとの理論式d(sinα±sinβ)=mλから求めた測定次数mに、受光器を配置して溝間隔dを実測確認することを特徴とするものである。   According to a fifth aspect of the present invention, there is provided a method for observing the processing of a fine periodic groove, wherein the surface of a workpiece is irradiated with a femtosecond laser or the like from a vertical or arbitrary oblique direction to process the fine periodic groove, and at the same time, The incident angle α and its wavelength λ of the measurement laser incident on the fine periodic groove with a half mirror and incident on the fine periodic groove from a vertical plane direction or an arbitrary oblique direction, and the diffracted light of the measurement laser The measurement order m obtained from the theoretical formula d (sinα ± sinβ) = mλ of the diffraction angle β of the above, the measurement order m of the light receiver that catches the diffracted light of the diffraction angle, and the groove interval d of the fine periodic groove Further, a light receiver is arranged and the groove interval d is confirmed by actual measurement.

本発明の請求項6の微細周期性溝の加工観測装置は、被加工ワークの表面にフェムト秒レーザ等を垂直照射又は任意な斜め方向から照射して微細周期性溝を加工するレーザ発振器と、上記フェムト秒レーザ等にハーフミラーで重ね合わせて上記微細周期性溝に対して垂直面方向又は任意な斜め方向の入射角度αで照射されるとともに特定の波長λの測定用レーザを発振する測定用レーザ発振器と、上記測定用レーザが微細周期性溝に照射されて反射する回折光の回折角度βの測定次数mに配置した受光用のファイバースコープと、上記ファイバースコープからの受光情報をモニタ機器乃至は理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dを演算する演算処理器と、を具備したことを特徴とするものである。   A fine periodic groove processing observation apparatus according to claim 6 of the present invention is a laser oscillator that processes a fine periodic groove by irradiating a surface of a workpiece with a femtosecond laser or the like from a vertical or arbitrary oblique direction; A measurement laser that irradiates a measurement laser having a specific wavelength λ while being irradiated with an incident angle α in a vertical plane direction or an arbitrary oblique direction with respect to the fine periodic groove by being superimposed on the femtosecond laser by a half mirror. A laser oscillator, a fiberscope for light reception disposed at a measurement order m of a diffraction angle β of diffracted light reflected by the measurement periodic laser irradiated on the fine periodic groove, and information received from the fiberscope is monitored Is characterized by comprising an arithmetic processing unit for calculating the groove interval d of the fine periodic grooves by the theoretical formula d (sin α ± sin β) = mλ.

本発明の請求項7の微細周期性溝の加工観測方法は、請求項5記載の微細周期性溝の加工観測方法において、上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とするものである。   According to a seventh aspect of the present invention, there is provided the fine periodic groove processing observation method according to the fifth aspect, wherein the measurement laser is a He-Ne laser, a GaN semiconductor laser, or a femtosecond laser. The measurement order m of the light receiver corresponding to the diffraction angle β is set to be a measurement order such as 0th order, 1st order, 2nd order, 3rd order or the like.

本発明の請求項8の微細周期性溝の加工観測装置は、請求項6記載の微細周期性溝の加工観測装置において、上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とするものである。   The fine periodic groove processing observation apparatus according to an eighth aspect of the present invention is the fine periodic groove processing observation apparatus according to the sixth aspect, wherein the measurement laser is a He-Ne laser, a GaN semiconductor laser, or a femtosecond laser. The measurement order m of the light receiver corresponding to the diffraction angle β is set to be a measurement order such as 0th order, 1st order, 2nd order, 3rd order or the like.

本発明の微細周期性溝の観測方法とその装置及び微細周期性溝の加工観測方法とその装置は上記構成要件からなり、以下のように作用する。第1に、上記微細周期性溝の観測方法によれば、フェムト秒レーザ加工機等で被加工ワークの表面に施された微細周期性溝の観測に際し、上記微細周期性溝に対して、垂直面方向又は任意な斜め方向の入射角度αから入射される測定用レーザの波長λと、上記測定用レーザの回折光の回折角度βと、上記回折角度の回折光をキャッチする受光器の測定次数mとの数値データを理論式d(sinα±sinβ)=mλに代入すれば、上記微細周期性溝の溝間隔dが計算される。この理論式の計算どおりの溝間隔dであるかは、測定次数mに配置した受光器の出力により容易に確認される。即ち、上記微細周期性溝の溝間隔が正しく生成されていれば、受光器から回折光の出力が得られるからである。これにより、例えば、自動車の燃費改善対策として、エンジンにおいて、シリンダ内周面やピストンリングの外周面に、上記微細周期性溝を加工してピストンとリンダ間の摩擦低減を図ったり、ベアリングの回転摩擦低減、ギアの噛合い摩擦の低減等の摩擦抵抗を極限まで減らすために施された微細周期性溝の溝間隔が正確に観測される。   The observation method and apparatus for fine periodic grooves and the method and apparatus for processing and processing fine periodic grooves according to the present invention are composed of the above-described components and operate as follows. First, according to the method for observing the fine periodic groove, when observing the fine periodic groove formed on the surface of the workpiece by a femtosecond laser processing machine or the like, the fine periodic groove is perpendicular to the fine periodic groove. The wavelength λ of the measurement laser incident from the incident angle α in the surface direction or an arbitrary oblique direction, the diffraction angle β of the diffracted light of the measurement laser, and the measurement order of the receiver that catches the diffracted light of the diffraction angle By substituting the numerical data with m into the theoretical formula d (sin α ± sin β) = mλ, the groove interval d of the fine periodic groove is calculated. Whether the groove interval d is the same as the calculation of this theoretical formula can be easily confirmed by the output of the light receiver arranged at the measurement order m. That is, if the groove interval of the fine periodic groove is correctly generated, an output of diffracted light can be obtained from the light receiver. As a result, for example, as a measure for improving the fuel efficiency of automobiles, in the engine, the above-mentioned fine periodic grooves are machined on the inner peripheral surface of the cylinder and the outer peripheral surface of the piston ring to reduce the friction between the piston and the cylinder, and the rotation of the bearing The groove interval of the fine periodic grooves provided to reduce the frictional resistance such as friction reduction and gear meshing friction reduction to the utmost limit is accurately observed.

第2に、上記微細周期性溝の観測装置によれば、フェムト秒レーザ加工機等で被加工ワークの表面に施された微細周期性溝の観測に際し、上記微細周期性溝に対して波長λの測定用レーザが発振器から垂直面方向又は任意な斜め方向の入射角度αから入射される。上記測定用レーザ発振器から微細周期性溝に照射した測定用レーザの回折光の回折角度βの測定次数mにはレーザ受光器が配置されており、上記レーザ受光器からの受光情報は、モニタ機器により視覚的に確認される。また、上記レーザ受光器からの受光情報は、演算処理器に収められた理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dが演算処理され、その処理内容が表示される。これにより、上記微細周期性溝の溝間隔が正しく生成されているか・否か・が的確に確認される。これにより、例えば、自動車の燃費改善対策として、エンジンにおいて、シリンダ内周面やピストンリングの外周面に、上記微細周期性溝を加工してピストンとリンダ間の摩擦低減を図ったり、ベアリングの回転摩擦低減、ギアの噛合い摩擦の低減等の摩擦抵抗を極限まで減らすために施された微細周期性溝の溝間隔が正確に観測される。   Secondly, according to the observation device of the fine periodic groove, when observing the fine periodic groove formed on the surface of the workpiece by a femtosecond laser processing machine or the like, the wavelength λ The measurement laser is incident from the oscillator at an incident angle α in the vertical plane direction or in an arbitrary oblique direction. A laser receiver is arranged at the measurement order m of the diffraction angle β of the diffracted light of the measurement laser irradiated to the fine periodic groove from the measurement laser oscillator, and the received light information from the laser receiver is monitored equipment. Is visually confirmed. Further, the received light information from the laser receiver is calculated by processing the groove interval d of the fine periodic groove by the theoretical formula d (sin α ± sin β) = mλ stored in the processor, and the processing content is displayed. . Thereby, it is confirmed accurately whether or not the groove interval of the fine periodic groove is correctly generated. As a result, for example, as a measure for improving the fuel efficiency of automobiles, in the engine, the above-mentioned fine periodic grooves are machined on the inner peripheral surface of the cylinder and the outer peripheral surface of the piston ring to reduce the friction between the piston and the cylinder, and the rotation of the bearing The groove interval of the fine periodic grooves provided to reduce the frictional resistance such as friction reduction and gear meshing friction reduction to the utmost limit is accurately observed.

第3に、上記微細周期性溝の加工観測方法とその装置によれば、先ず、フェムト秒レーザを発振するレーザ発振器により、被加工ワークの表面にフェムト秒レーザが垂直面方向又は任意な斜め方向から照射して微細周期性溝が加工される。これと同時に、上記フェムト秒レーザに、測定用レーザ発振器から波長λの測定用レーザが発振されてハーフミラーで重ね合わされて微細周期性溝に垂直面方向又は任意な斜め方向の入射角度αで入射される。そして、上記測定用レーザは、上記微細周期性溝に照射されて反射し、この回折光が回折角度βの測定次数mに配置した受光用のファイバースコープにより受光される。上記ファイバースコープからの受光情報は、演算処理器に収められた理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dが演算処理され、その処理内容が表示される。これにより、上記被加工ワークの表面にフェムト秒レーザによる微細周期性溝を加工しながら微細周期性溝の溝間隔が正しく生成されているか・否か・が、同時に的確に確認される。これにより、微細周期性溝の溝間隔を監視しながらその監視情報により精密な加工寸法で生成されるようにフェムト秒レーザの出力をフィードバック制御することができ、予め希望したとおりの微細周期性溝が加工できるとともに観測・検査できる。しかして、例えば、自動車の燃費改善対策として、エンジンにおいて、シリンダ内周面やピストンリングの外周面に、上記微細周期性溝を加工してピストンとリンダ間の摩擦低減を図ったり、ベアリングの回転摩擦低減、ギアの噛合い摩擦の低減等の摩擦抵抗を極限まで減らすために施された微細周期性溝が超精密に生成される。   Thirdly, according to the above-described fine periodic groove processing observation method and apparatus, first, the femtosecond laser is directed to the surface of the workpiece by a laser oscillator that oscillates the femtosecond laser. The fine periodic groove is processed by irradiating from. At the same time, a measurement laser with a wavelength λ is oscillated from the measurement laser oscillator and is superimposed on a half-mirror to the femtosecond laser and incident on the fine periodic groove at an incident angle α in the vertical plane direction or an arbitrary oblique direction. Is done. Then, the measurement laser is irradiated and reflected on the fine periodic groove, and the diffracted light is received by a light receiving fiberscope arranged at the measurement order m of the diffraction angle β. The received light information from the fiberscope is subjected to calculation processing of the groove interval d of the fine periodic groove by the theoretical formula d (sin α ± sin β) = mλ stored in the calculation processor, and the processing content is displayed. Accordingly, whether or not the groove interval of the fine periodic groove is correctly generated while processing the fine periodic groove by the femtosecond laser on the surface of the workpiece is accurately confirmed simultaneously. This enables feedback control of the output of the femtosecond laser so that it is generated with precise machining dimensions based on the monitoring information while monitoring the groove interval of the fine periodic groove, and the fine periodic groove as desired in advance. Can be processed and observed and inspected. Thus, for example, in order to improve the fuel efficiency of automobiles, in the engine, the above-mentioned fine periodic grooves are machined on the inner circumferential surface of the cylinder and the outer circumferential surface of the piston ring to reduce the friction between the piston and the cylinder, and the rotation of the bearing The fine periodic grooves provided to reduce frictional resistance such as friction reduction and gear meshing friction reduction to the utmost limit are generated with high precision.

第4に、上記微細周期性溝の観測方法とその装置及び微細周期性溝の加工観測方法とその装置において、上記測定用レーザの波長λが0.6328μmで可視光線のHe−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等を採用したものであるから、加工用のフェムト秒レーザ等の波長によって定まる被加工ワーク表面の微細周期性溝の溝間隔d(例えば、0.8μm〜1.6μm内の適宜波長)に対して、最適な観測が可能である。即ち、微細周期性溝の溝間隔d(例えば、0.8μm〜1.6μm)に対して、極端に波長の短いレーザや波長の長いレーザでは、溝間隔の的確で鮮明な観測が不可能なことがある。また、He−NeレーザやGaN半導体レーザ等は、可視光線であることから、被加工ワーク表面の微細周期性溝への照射や回折光の状態を、測定者の視覚により直に観察できて観測装置の操作性が良いことから選択的に使用される。更に、測定用レーザの回折角度βに対応する受光器の測定次数mは、0次(垂直位置)、1次(垂直近い位置)、2次(垂直から僅か斜め位置)、3次(垂直から次第に大きな斜め位置)…等の適宜測定次数を採用することで、測定用レーザの回折光が的確に効率良く受光させられる。   Fourth, in the observation method and apparatus for the fine periodic groove and the processing observation method and apparatus for the fine periodic groove, the measurement laser has a wavelength λ of 0.6328 μm and a visible He-Ne laser or GaN. Since a semiconductor laser or femtosecond laser is employed, the groove interval d of the fine periodic grooves on the workpiece surface determined by the wavelength of the processing femtosecond laser or the like (for example, within 0.8 μm to 1.6 μm) (Appropriate wavelength) can be observed optimally. That is, the groove interval d of the fine periodic groove (for example, 0.8 μm to 1.6 μm) cannot be accurately and clearly observed with an extremely short wavelength laser or a long wavelength laser. Sometimes. In addition, since He-Ne lasers and GaN semiconductor lasers are visible light, it is possible to observe the state of the irradiation of the fine periodic grooves on the workpiece surface and the state of diffracted light directly by the observer's vision. It is used selectively because of its good operability. Furthermore, the measurement order m of the light receiver corresponding to the diffraction angle β of the measurement laser is 0th order (vertical position), 1st order (position close to vertical), 2nd order (position slightly inclined from vertical), 3rd order (from vertical). By adopting an appropriate measurement order such as a gradually increasing oblique position), the diffracted light of the measurement laser can be received accurately and efficiently.

本発明の微細周期性溝の観測方法によれば、上記微細周期性溝に対して、垂直面方向又は任意な斜め方向の入射角度αで入射される測定用レーザの波長λ及び回折光の回折角度βと回折光をキャッチする受光器の測定次数mとの数値データを、理論式d(sinα±sinβ)=mλに代入することにより、上記微細周期性溝の溝間隔dが計算できる。また、測定次数mに配置した受光器の出力により微細周期性溝の生成状態が容易に確認できる。しかして、例えば、エンジンにおけるピストンとシリンダ間の摩擦低減、ベアリングの回転摩擦低減、ギア間の噛合い摩擦の低減等の摩擦抵抗を極限まで減らすために施された微細周期性溝の溝間隔が正確に観測できる。   According to the method for observing a fine periodic groove of the present invention, the wavelength λ of the measuring laser and the diffraction of the diffracted light incident on the fine periodic groove at an incident angle α in the vertical plane direction or in an arbitrary oblique direction. By substituting numerical data of the angle β and the measurement order m of the light receiving device that catches the diffracted light into the theoretical formula d (sin α ± sin β) = mλ, the groove interval d of the fine periodic groove can be calculated. Moreover, the production | generation state of a fine periodic groove | channel can be easily confirmed with the output of the light receiver arrange | positioned at the measurement order m. Therefore, for example, the groove interval of the fine periodic grooves provided to reduce the frictional resistance such as the friction reduction between the piston and the cylinder in the engine, the reduction of the rotational friction of the bearing, the reduction of the meshing friction between the gears, etc. It can be observed accurately.

本発明の微細周期性溝の観測装置によれば、微細周期性溝の寸法観測に際し、上記微細周期性溝に垂直面方向又は任意な斜め方向の入射角度αで照射される波長λの測定用レーザ発振器と、上記測定用レーザの回折光の回折角度βの測定次数mに配置したレーザ受光器と、上記レーザ受光器の受光情報を表示するモニタ機器と、受光情報を理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dを演算処理する演算処理器と、を備えたから、上記微細周期性溝の溝間隔が正しく生成されているか・否か・の観測方法が的確に実施できる。しかして、例えば、エンジンにおけるピストンとシリンダ間の摩擦低減、ベアリングの回転摩擦低減、ギアの噛合い摩擦の低減等の摩擦抵抗を極限まで減らすために施された微細周期性溝の溝間隔が正確に観測できる。   According to the fine periodic groove observation apparatus of the present invention, when observing the size of the fine periodic groove, for measuring the wavelength λ irradiated to the fine periodic groove at an incident angle α in a vertical plane direction or an arbitrary oblique direction. A laser oscillator, a laser receiver arranged at the measurement order m of the diffraction angle β of the diffracted light of the measurement laser, a monitor device for displaying the received light information of the laser receiver, and the received light information by the theoretical formula d (sin α ± and an arithmetic processing unit for calculating the groove interval d of the fine periodic groove by sin β) = mλ, so that an observation method for accurately determining whether the groove interval of the fine periodic groove is correctly generated or not is provided. Can be implemented. Therefore, for example, the groove spacing of the fine periodic grooves provided to reduce the frictional resistance such as friction reduction between piston and cylinder in the engine, reduction of rotational friction of the bearing, reduction of meshing friction of the gear, etc. is accurate. Observable.

更に、上記微細周期性溝の加工観測方法とその装置は、加工用のフェムト秒レーザ等のレーザ発振器を備えたから、上記微細周期性溝の観測装置100と同様な作用・効果が得られるほか、被加工ワークに微細周期性溝を加工しながら溝間隔の良・不良を同時に監視した監視情報によりフェムト秒レーザ等の出力がフィードバック制御でき、予め希望したとおりの微細周期性溝が加工できる。しかして、例えば、エンジン各部に施す微細周期性溝の加工工程とその微細周期性溝の良・不良を見極める検査工程とが同時に効率良く実施でき、生産性を飛躍的に向上できる。   Furthermore, since the fine periodic groove processing observation method and apparatus include a laser oscillator such as a femtosecond laser for processing, the same operation and effect as the fine periodic groove observation device 100 can be obtained. The output of a femtosecond laser or the like can be feedback controlled by monitoring information obtained by simultaneously monitoring whether the groove interval is good or bad while processing a fine periodic groove on a workpiece, and a fine periodic groove as desired can be processed in advance. Therefore, for example, the process of processing the fine periodic groove applied to each part of the engine and the inspection process for determining whether the fine periodic groove is good or defective can be performed efficiently at the same time, and the productivity can be dramatically improved.

更に、上記微細周期性溝の観測方法とその装置及び微細周期性溝の加工観測方法とその装置において、上記測定用レーザは、加工用のフェムト秒レーザの波長で定まる被加工ワーク表面の微細周期性溝の溝間隔dに対応して、最適波長(0.6328μm)のHe−Neレーザやこの波長に近いGaN半導体レーザまたはフェムト秒レーザ等が選択的に使用される。これは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等が可視光線であることから、被加工ワーク表面の微細周期性溝への照射や回折光の状態を、測定者の視覚により直に観察でき観測装置の操作性が一段と向上できる。また、微細周期性溝の溝間隔dとの整合性も良好で鮮明な観測ができる。   Further, in the fine periodic groove observation method and apparatus, and the fine periodic groove processing observation method and apparatus, the measurement laser has a fine period on the workpiece surface determined by the wavelength of the femtosecond laser for processing. A He—Ne laser having an optimum wavelength (0.6328 μm), a GaN semiconductor laser close to this wavelength, a femtosecond laser, or the like is selectively used in accordance with the groove interval d of the active grooves. This is because a He—Ne laser, a GaN semiconductor laser, a femtosecond laser, or the like is visible light, so that irradiation of fine periodic grooves on the workpiece surface and the state of diffracted light can be directly observed by the operator's vision. Observation and the operability of the observation device can be further improved. In addition, the consistency with the groove interval d of the fine periodic groove is good and clear observation can be performed.

以下、本発明による微細周期性溝の観測方法とその装置について、図面に示す第1の実施の形態により説明する。図1は微細周期性溝の観測方法を実施する構成図、図2は微細周期性溝の回折光拡大図、図3はCDの回折パターン図、図4〜図6は測定用レーザの回折光特性図と特性図表、図7は回折光のモニタ写真である。   Hereinafter, a method and apparatus for observing a fine periodic groove according to the present invention will be described with reference to a first embodiment shown in the drawings. FIG. 1 is a configuration diagram for performing a method for observing a fine periodic groove, FIG. 2 is an enlarged view of diffracted light of the fine periodic groove, FIG. 3 is a diffraction pattern of a CD, and FIGS. FIG. 7 is a monitor photograph of diffracted light.

はじめに、図1の構成図により、本発明の観測方法を実施するための微細周期性溝の観測装置100を説明する。まず、被加工ワークWの表面には、フェムト秒レーザによって加工された微細周期性溝(連続溝であり、溝間隔=数百nm)M1…が予め施されている。勿論、ディンプル加工された凹状溝であっても良いし、他型式の加工用のレーザ発振器を使用して金属表面等に微細周期性溝M1を生成させる加工手段でも良い。上記微細周期性溝M1の表面には、測定用レーザ発振器10からの測定用レーザL1(微細周期性溝M1の溝間隔dに合う最適波長λ=0.6328μmのHe−Neレーザで、光束径=数mm)が複数枚の反射ミラー1,2や集光レンズ3を経由して垂直面方向(入射角度α=0°)に入射される。上記測定用レーザL1の回折光は、特定の回折角度βの方向に集光レンズ4を経由して受光器(例えばCCDカメラ他)20により受光される。上記受光器20の配置位置となる測定次数mは、図2に示すように、大きな回折光量が得られる0次(垂直位置)m=0、1次(垂直近い位置)m=1、2次(垂直から僅か斜め位置)m=2、3次(垂直から次第に大きな斜め位置)m=3の適宜な測定次数に選択される。上記受光器20の出力は、モニタ装置1とビデオカード12を介して演算処理部となるコンピュータPCとに入力されている。上記基本構成により、微細周期性溝M1に照射する測定用レーザL1の回折光L2は、適正な測定次数mに配置した白紙22に投影される。この回折光を受光器20により効率良く受光し、微細周期性溝の生成状態がモニタ装置11または演算処理部となるコンピュータPCにより確認される。勿論、上記モニタ装置11と演算処理部となるコンピュータPCとは、両方を併設しても良いし、何れかの一方だけの設置としても良い。そして、白紙22(図8に示す)は省略しても良いし、受光器20(図8に示す受光器20A)は、任意な型式が使用できる。更に、上記He−Neレーザに替えて、このHe−Neレーザに特性の似ているGaN半導体レーザ、またはフェムト秒レーザ等を使用することも可能である。   First, the fine periodic groove observation device 100 for carrying out the observation method of the present invention will be described with reference to the block diagram of FIG. First, fine periodic grooves (continuous grooves, groove interval = several hundred nm) M1... Processed by a femtosecond laser are provided in advance on the surface of the workpiece W. Of course, it may be a dimple-processed concave groove, or a processing means for generating a fine periodic groove M1 on a metal surface or the like using a laser oscillator for other types of processing. On the surface of the fine periodic groove M1, a measuring laser L1 from the measuring laser oscillator 10 (He—Ne laser having an optimum wavelength λ = 0.6328 μm matching the groove interval d of the fine periodic groove M1 is used. = Several mm) is incident in the vertical plane direction (incident angle α = 0 °) via a plurality of reflecting mirrors 1 and 2 and the condenser lens 3. The diffracted light of the measurement laser L1 is received by a light receiver (for example, a CCD camera or the like) 20 via the condenser lens 4 in the direction of a specific diffraction angle β. As shown in FIG. 2, the measurement order m at which the light receiver 20 is arranged is 0th order (vertical position) m = 0, 1st order (close vertical position) m = 1, 2nd order that provides a large amount of diffracted light. (Slightly oblique position from vertical) m = 2, 3rd order (gradually gradually inclined position from vertical) m = 3 is selected as an appropriate measurement order. The output of the light receiver 20 is input to the computer PC serving as an arithmetic processing unit via the monitor device 1 and the video card 12. With the above basic configuration, the diffracted light L2 of the measurement laser L1 that irradiates the fine periodic groove M1 is projected onto the white paper 22 that is arranged at an appropriate measurement order m. The diffracted light is efficiently received by the light receiver 20, and the generation state of the fine periodic grooves is confirmed by the monitor device 11 or the computer PC serving as the arithmetic processing unit. Of course, both the monitor device 11 and the computer PC as the arithmetic processing unit may be provided side by side, or only one of them may be installed. The blank paper 22 (shown in FIG. 8) may be omitted, and any type of the light receiver 20 (light receiver 20A shown in FIG. 8) can be used. Furthermore, instead of the He—Ne laser, a GaN semiconductor laser or a femtosecond laser having similar characteristics to the He—Ne laser may be used.

続いて、本発明の微細周期性溝の観測方法を説明する。上記微細周期性溝の観測装置100において、被加工ワークWの表面にフェムト秒レーザ加工機等で加工された微細周期性溝M1の溝間隔dの観測に際して、上記微細周期性溝M1に対して垂直面方向又は任意な斜め方向の入射角度αで照射される測定用レーザL1の波長λと、上記測定用レーザL1の回折光の回折角度βと、上記回折角度の回折光をキャッチする受光器20の測定次数mと、上記微細周期性溝M1の溝間隔dとの理論式は、d(sinα±sinβ)=mλであることが知られている。上記理論式とこれを自動計算するソフトウエアは、観測装置100内にインストールされている。本発明の微細周期性溝の観測方法は、上記理論式から溝間隔dに対する回折角度βと測定次数m等を算出し、合理的な測定次数mに受光器20を配置し、実際の溝間隔dを実測・確認する。以下、具体的に試験した実施例を説明する。   Then, the observation method of the fine periodic groove | channel of this invention is demonstrated. In the observation device 100 of the fine periodic groove M1, when observing the groove interval d of the fine periodic groove M1 processed on the surface of the workpiece W by a femtosecond laser processing machine or the like, A wavelength λ of the measurement laser L1 irradiated at an incident angle α in the vertical plane direction or an arbitrary oblique direction, a diffraction angle β of the diffracted light of the measurement laser L1, and a light receiver that catches the diffracted light of the diffraction angle. It is known that the theoretical formula between the measurement order m of 20 and the groove interval d of the fine periodic groove M1 is d (sin α ± sin β) = mλ. The theoretical formula and software for automatically calculating the theoretical formula are installed in the observation apparatus 100. The observation method of the fine periodic groove of the present invention calculates the diffraction angle β with respect to the groove interval d and the measurement order m from the above theoretical formula, arranges the light receiver 20 at a reasonable measurement order m, and the actual groove interval. Measure and confirm d. Hereinafter, the specifically tested examples will be described.

図4と図5において、被加工ワークは、金属材料SCM415、S45Cであって、この表面に、微細周期性溝M1が予め加工されている。上記微細周期性溝M1には、測定用(観測用)のHe−Neレーザが垂直面方向(入射角度α=0°)に入射される。この測定用レーザL1の波長λ=0.6328μmとした時、図4の回折光特性図と、図5の特性図表が得られる。即ち、入射角度α=0°における被加工ワークに予め表面処理された微細周期性溝M1の溝間隔dを、d=0.6μm、d=0.6328μm、d=0.7μm、d=0.8μm、d=1.0μm、d=1.6μm、d=10μmとした時の回折光の回折角度βと、回折光をキャッチする受光器20の測定次数mとの関係は、上記理論式d(sinα±sinβ)=mλから、下記のように算出される。
d=0.6μmにおいて、回折角度β=解無し。
d=0.6328μmにおいて、回折角度β=0°(測定次数m=0)、回折角度β=90°(測定 次数m=1)。
d=0.7μmにおいて、回折角度β=±64.7°(測定次数m=1)。
d=0.8μmにおいて、回折角度β=±52.2°(測定次数m=1)。
d=1.0μmにおいて、回折角度β=±39.3°(測定次数m=1)。
d=10μmにおいて、回折角度β=±3.6°(測定次数m=1)。
d=1.6μmにおいて、回折角度β=±23.3°(測定次数m=1)。のようになる。
上記計算結果(理論値)に基づき、各微細周期性溝M1の溝間隔dの形状確認は、各測定次数mに受光器20を配置して観測を試みた。その観測の結果、各回折角度βに配置した受光器20で回折光L2を受光することができた。この観測結果から、理論値と観測値とがほぼ一致することが明らかとなり、周期性溝の観測装置とその観測方法として十分に使用できる機能・性能を発揮することが証明された。
4 and 5, the workpieces are metal materials SCM415 and S45C, and fine periodic grooves M1 are processed in advance on these surfaces. A measurement (observation) He—Ne laser is incident on the fine periodic groove M1 in the vertical plane direction (incident angle α = 0 °). When the wavelength λ of this measurement laser L1 is 0.6328 μm, the diffracted light characteristic chart of FIG. 4 and the characteristic chart of FIG. 5 are obtained. That is, the groove interval d of the fine periodic groove M1 surface-treated in advance on the workpiece to be processed at the incident angle α = 0 ° is d = 0.6 μm, d = 0.6328 μm, d = 0.7 μm, d = 0. The relationship between the diffraction angle β of the diffracted light and the measurement order m of the photoreceiver 20 that catches the diffracted light when .8 μm, d = 1.0 μm, d = 1.6 μm, and d = 10 μm From d (sin α ± sin β) = mλ, it is calculated as follows.
At d = 0.6 μm, diffraction angle β = no solution.
At d = 0.6328 μm, the diffraction angle β = 0 ° (measurement order m = 0) and the diffraction angle β = 90 ° (measurement order m = 1).
At d = 0.7 μm, the diffraction angle β = ± 64.7 ° (measurement order m = 1).
At d = 0.8 μm, the diffraction angle β = ± 52.2 ° (measurement order m = 1).
At d = 1.0 μm, the diffraction angle β = ± 39.3 ° (measurement order m = 1).
At d = 10 μm, the diffraction angle β = ± 3.6 ° (measurement order m = 1).
At d = 1.6 μm, the diffraction angle β = ± 23.3 ° (measurement order m = 1). become that way.
Based on the calculation result (theoretical value), the shape of the groove interval d of each fine periodic groove M1 was confirmed by placing the light receiver 20 in each measurement order m and attempting observation. As a result of the observation, the diffracted light L2 could be received by the light receiver 20 arranged at each diffraction angle β. From this observation result, it was clarified that the theoretical value and the observed value almost coincided with each other, and it was proved that the periodic groove observation device and the function and performance that can be sufficiently used as the observation method were exhibited.

上記実施例1において、被加工ワークを音楽用CDディスクとした場合について、観測した回折パターンを図3に説明する。
図3(a)は、CDディスクの微細周期性溝M1を施した表面を示している。図3(b)は、円で囲んだ特定場所における回折パターンの拡大図であり、測定次数として、m=0、m=1、m=2と、m=−1、m=−2の五箇所ある。この回折光は、図3(c)に示すように、白紙Pに投影させられる。従って、五箇所の内の何れかに、受光器20を配置すれば回折光を感知・観察することができる。上記音楽用CDディスクの記録媒体となる表面は、完全な微細周期性溝M1ではなく、平坦面に不規則なディンプルが多数加工されて複列に刻まれた渦巻状を成し、あたかも、擬似的な周期性溝を形成しているかのように見える。この渦巻状の擬似的な周期性溝に測定用レーザL1を照射すると、回折光L2が得られる。上記回折光L2は、図7に示すように写真撮影された。この写真からも分かるように、測定次数m=1で、ひときわ明るい回折光を観測した。写真の中央部に見られる光の強い部分が、測定次数m=1次の回折光である。周りに見られるのは散乱光であり、照射される被加工ワークの形状によるノイズである。上記写真に映る中央付近の強い回折光を、その位置情報として抽出すれば、回折角度の情報が得られる。この回折角度の情報から周期性溝の間隔情報が得られる。以上のように、本発明の微細周期性溝の観測方法とその装置によれば、真直な微細周期性溝M1の観測は勿論のこと、例えば音楽用CDディスクに見るように、渦巻状の擬似的な微細周期性溝(ディンプル溝)においても正確な観測が可能であることが立証された。
FIG. 3 illustrates an observed diffraction pattern in the case where the work piece is a music CD disk in the first embodiment.
FIG. 3A shows the surface of the CD disc provided with the fine periodic grooves M1. FIG. 3B is an enlarged view of a diffraction pattern at a specific place surrounded by a circle. As measurement orders, m = 0, m = 1, m = 2, m = -1, and m = -2. There are places. This diffracted light is projected onto the white paper P as shown in FIG. Therefore, diffracted light can be sensed and observed by arranging the light receiver 20 at any of the five locations. The surface to be a recording medium of the music CD disk is not a complete fine periodic groove M1, but has a spiral shape in which a large number of irregular dimples are processed on a flat surface and carved in a double row. It appears as if a periodic groove is formed. When this spiral pseudo periodic groove is irradiated with the measurement laser L1, diffracted light L2 is obtained. The diffracted light L2 was photographed as shown in FIG. As can be seen from this photograph, extremely bright diffracted light was observed at the measurement order m = 1. The intense portion of light seen in the center of the photograph is the diffracted light of the measurement order m = 1. Seen around is scattered light, which is noise due to the shape of the workpiece to be irradiated. If strong diffracted light near the center shown in the photograph is extracted as position information, information on the diffraction angle can be obtained. Periodic groove interval information can be obtained from this diffraction angle information. As described above, according to the method and apparatus for observing a fine periodic groove of the present invention, not only the observation of a straight fine periodic groove M1, but also a spiral-like pseudo signal as seen on a music CD disc, for example. It was proved that accurate observation was possible even in a typical fine periodic groove (dimple groove).

図6に示す実施例2において、この実施例2の被加工ワークは、金属材料S45Cであって、この表面に、微細周期性溝M1が予め加工されている。微細周期性溝M1に対して照射される測定用He−NeレーザL1は、例えば入射角度α=45°とし、波長λ=0.5435μmとした時の理論値となる回折光特性図と回折光特性図表が、上記理論式d(sinα±sinβ)=mλから得られる。即ち、上記理論式において、被加工ワークに予め表面処理された微細周期性溝M1の溝間隔dを、d=0.3μm〜0.9μmとした時の回折光の回折角度βと、回折光をキャッチする受光器20の測定次数mとの関係を列記する。
d=0.3μmにおいて、回折角度β=45°(測定次数m=0)、解なし(測定次数m=1)。
d=0.4μmにおいて、回折角度β=45°(測定次数m=0)、回折角度β=−40.7°(測定次数m=1)。
d=0.5μmにおいて、回折角度β=45°(測定次数m=0)、回折角度β=−22.3°(測定次数m=1)。
d=0.6μmにおいて、回折角度β=45°(測定次数m=0)、回折角度β=−11.5°(測定次数m=1)。
d=0.7μmにおいて、回折角度β=45°(測定次数m=0)、回折度β=−4.0°(測定次数m=1)、回折角度β=−57.8°(測定次数m=2)。
d=0.8μmにおいて、回折角度β=45°(測定次数m=0)、回折角度β=1.6°(測定次数m=1)、回折角度β=−40.7°(測定次数m=2)。
d=0.9μmにおいて、回折角度β=45°(測定次数m=0)、回折角度β=5.9°(測定次数m=1)、回折角度β=−30.1°(測定次数m=2)。のようになった。
上記計算結果(理論値)に基づき、各微細周期性溝M1の溝間隔dの形状確認は、各測定次数mに受光器20を配置して観測を試みた。その観測の結果、各回折角度βに配置した受光器20で回折光L2を受光することができた。この観測結果から、理論値と観測値とがほぼ一致することが明らかとなり、周期性溝の観測装置とその観測方法として十分に使用できる機能・性能を発揮することが証明された。また、上記観測装置は、その構成に必要とする部品が少なく、生産現場で使用される実用装置として考察するに、走査型電子顕微鏡に比べて低廉である上に高い観測性能が得られる価値を有する。
In the second embodiment shown in FIG. 6, the workpiece to be processed in the second embodiment is a metal material S45C, and the fine periodic groove M1 is processed in advance on this surface. The measurement He-Ne laser L1 irradiated to the fine periodic groove M1 has, for example, a diffracted light characteristic diagram and a diffracted light, which are theoretical values when the incident angle α is 45 ° and the wavelength λ is 0.5435 μm. A characteristic chart is obtained from the theoretical formula d (sin α ± sin β) = mλ. That is, in the above theoretical formula, the diffraction angle β of the diffracted light when the groove interval d of the fine periodic groove M1 surface-treated in advance on the workpiece is d = 0.3 μm to 0.9 μm, and the diffracted light The relationship with the measurement order m of the light receiver 20 that catches the above is listed.
At d = 0.3 μm, diffraction angle β = 45 ° (measurement order m = 0), no solution (measurement order m = 1).
At d = 0.4 μm, diffraction angle β = 45 ° (measurement order m = 0), diffraction angle β = −40.7 ° (measurement order m = 1).
At d = 0.5 μm, diffraction angle β = 45 ° (measurement order m = 0), diffraction angle β = −22.3 ° (measurement order m = 1).
At d = 0.6 μm, diffraction angle β = 45 ° (measurement order m = 0) and diffraction angle β = −11.5 ° (measurement order m = 1).
At d = 0.7 μm, diffraction angle β = 45 ° (measurement order m = 0), diffraction degree β = −4.0 ° (measurement order m = 1), diffraction angle β = −57.8 ° (measurement order) m = 2).
At d = 0.8 μm, diffraction angle β = 45 ° (measurement order m = 0), diffraction angle β = 1.6 ° (measurement order m = 1), diffraction angle β = -40.7 ° (measurement order m = 2).
At d = 0.9 μm, diffraction angle β = 45 ° (measurement order m = 0), diffraction angle β = 5.9 ° (measurement order m = 1), diffraction angle β = -30.1 ° (measurement order m = 2). It became like this.
Based on the calculation result (theoretical value), the shape of the groove interval d of each fine periodic groove M1 was confirmed by placing the light receiver 20 in each measurement order m and attempting observation. As a result of the observation, the diffracted light L2 could be received by the light receiver 20 arranged at each diffraction angle β. From this observation result, it was clarified that the theoretical value and the observed value almost coincided with each other, and it was proved that the periodic groove observation device and the function and performance that can be sufficiently used as the observation method were exhibited. In addition, the above observation apparatus requires few components and is considered to be a practical apparatus used at the production site. Have.

以上のように、本発明の第1の実施の形態となる微細周期性溝の観測方法とその装置によれば、下記のような効果が発揮される。まず、微細周期性溝M1の観測方法によれば、上記微細周期性溝に所定の入射角度αで入射される測定用レーザの波長λと、この回折光の回折角度βと、回折光をキャッチする受光器の測定次数mと、微細周期性溝の溝間隔dとは、理論式d(sinα±sinβ)=mλにより各々の関係が明確化されるから、予め予測される測定次数に配置した受光器で微細周期性溝の生成状態が確実に確認できる。これにより、例えば、エンジンのシリンダやピストンリング、ベアリング等の各部に施された微細周期性溝の良・不良判定は、ダイレクトに微細周期性溝からの回折光を観測して判定できる。   As described above, according to the fine periodic groove observation method and apparatus according to the first embodiment of the present invention, the following effects are exhibited. First, according to the observation method of the fine periodic groove M1, the wavelength λ of the measurement laser incident on the fine periodic groove at a predetermined incident angle α, the diffraction angle β of the diffracted light, and the diffracted light are caught. Since the relationship between the measurement order m of the photoreceiver and the groove interval d of the fine periodic groove is clarified by the theoretical formula d (sin α ± sin β) = mλ, the measurement order is arranged in a predicted order. The generation state of the fine periodic groove can be reliably confirmed by the photoreceiver. Thereby, for example, the good / bad determination of the fine periodic groove formed in each part of the engine cylinder, piston ring, bearing, etc. can be made by directly observing the diffracted light from the fine periodic groove.

また、微細周期性溝の観測装置100によれば、微細周期性溝の溝観測に際し、上記微細周期性溝に入射角度αで照射する波長λの測定用レーザ発振器10と、上記測定用レーザL1の回折光の回折角度βの測定次数mに配置したレーザ受光器20と、上記レーザ受光器の受光情報を表示するモニタ機器11と、受光情報を理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dを演算処理する演算処理器PCと、を備えたから、上記微細周期性溝の良・不良を見極める観測方法が的確に実施できる。しかして、本観測装置100によれば理論値と観測値とがほぼ一致することから、生産現場での実用装置としての価値が発揮できる。   In addition, according to the observation device 100 for the fine periodic groove, when observing the groove of the fine periodic groove, the laser oscillator 10 for measuring the wavelength λ that irradiates the fine periodic groove with the incident angle α, and the measurement laser L1. The laser receiver 20 arranged at the measurement order m of the diffraction angle β of the diffracted light, the monitor device 11 for displaying the light reception information of the laser receiver, and the light reception information are finely expressed by the theoretical formula d (sinα ± sinβ) = mλ. Since an arithmetic processor PC for calculating the groove interval d of the periodic grooves is provided, an observation method for determining whether the fine periodic grooves are good or defective can be accurately implemented. Therefore, according to the present observation apparatus 100, the theoretical value and the observation value almost coincide with each other, so that the value as a practical apparatus at the production site can be exhibited.

更に、上記測定用レーザL1は、加工用のフェムト秒レーザLOの波長で定まる微細周期性溝の溝間隔dに対応したHe−Neレーザを選択的に使用し、この回折角度βに対応する受光器は、その測定次数mを0次(垂直位置)、1次(垂直近い位置)、2次(垂直から僅か斜め位置)、3次(垂直から次第に大きな斜め位置)の中から選択した測定位置に配置することで、測定用レーザの回折光を的確に効率良く受光でき、微細周期性溝の生成状態や良・不良が容易に確認できる。更に、詳述すれば、上記測定用レーザは、例えば、波長λ=0.6328μmの可視光線のHe−Neレーザを採用すれば、加工用のフェムト秒レーザの波長によって定まる被加工ワーク表面の微細周期性溝の溝間隔d(例えば、0.6μm〜1.6μm内の適宜波長)に対して、最適な観測が鮮明にダイレクトにできる。即ち、上記以外のレーザでは、微細周期性溝の溝間隔d(例えば、0.6μm〜1.6μm)に対して、極端に波長が短いか・長くなり、溝間隔の鮮明な観測が不可能となる。   Further, the measurement laser L1 selectively uses a He—Ne laser corresponding to the groove interval d of the fine periodic groove determined by the wavelength of the processing femtosecond laser LO, and receives light corresponding to the diffraction angle β. The measuring position is selected from 0th order (vertical position), 1st order (position close to vertical), 2nd order (slightly oblique position from vertical), and 3rd order (slightly oblique position from vertical). By disposing in this manner, the diffracted light of the measuring laser can be received accurately and efficiently, and the generation state of the fine periodic grooves and the good / bad condition can be easily confirmed. More specifically, if the measurement laser employs, for example, a visible light He-Ne laser having a wavelength λ = 0.6328 μm, the fineness of the workpiece surface determined by the wavelength of the femtosecond laser for processing is used. Optimal observation can be made clearly and directly with respect to the groove interval d of the periodic grooves (for example, an appropriate wavelength within the range of 0.6 μm to 1.6 μm). That is, with lasers other than those described above, the wavelength is extremely short or long with respect to the groove interval d (for example, 0.6 μm to 1.6 μm) of the fine periodic groove, making it impossible to clearly observe the groove interval. It becomes.

本発明は、上記第1の実施の形態の微細周期性溝の観測装置100に限定されない。図8に示す第2の実施の形態の微細周期性溝の加工観測装置200とこの装置による加工観測方法は、上記微細周期性溝の観測装置100において、測定用レーザ発振器10の他、加工用のフェムト秒レーザの発振器30とを併設したものである。勿論、他の型式の加工用のレーザ発振器を使用しても良い。これら二つの発振器10,30からのレーザLO,L1を導き入れ、測定用レーザL1の回折光L2を感知する受光器を一つの観測ヘッド40内に設け、加工と観測とを同時に行うようにしたものである。その観測ヘッド40の構成は、被加工ワーク(例えば、エンジンのシリンダ)Wの表面にフェムト秒レーザLOを垂直照射(入射角度α=0°)して微細周期性溝M1を加工するレーザ発振器30と、上記フェムト秒レーザにハーフミラー21で重ね合わせて上記微細周期性溝に垂直入射(入射角度α=0°)させる波長λの測定用レーザL1を発振する測定用レーザ発振器10と、上記測定用レーザL1が微細周期性溝M1に照射され、この跳ね返る回折光L2の回折角度βの測定次数mに白板(白紙)22を配置している。この白板22に投影される回折光を検出する受光用のファイバースコープ20Aとからなる。勿論、回折光L2を直接的に受光用のファイバースコープ20Aで感知するような構成としても良い。上記ファイバースコープ20Aからの受光情報は、モニタ機器11または理論式d(sinα±sinβ)=mλにより微細周期性溝M1の溝間隔d他を演算処理する演算処理器を備えたコンピュータPCに繋がれている。尚、上記第2の実施の形態において、白板(白紙)22は、観測ヘッド40の先端内に一体構成として配置されている。また、被加工ワークWの表面に対して、フェムト秒レーザLOを任意な斜め方向に照射させる構成を採っても良く、この回析光L2を効率良く映し出すために白板22とファイバースコープ20Aとの配置が適宜に変更される。   The present invention is not limited to the observation device 100 for a fine periodic groove according to the first embodiment. The fine periodic groove processing observation apparatus 200 and the processing observation method using this apparatus according to the second embodiment shown in FIG. 8 are not limited to the measurement laser oscillator 10 in the fine periodic groove observation apparatus 100 described above. And a femtosecond laser oscillator 30. Of course, other types of laser oscillators for processing may be used. The lasers LO and L1 from these two oscillators 10 and 30 are introduced, and a light receiver for sensing the diffracted light L2 of the measurement laser L1 is provided in one observation head 40 so that processing and observation are performed simultaneously. Is. The configuration of the observation head 40 is that a laser oscillator 30 that processes the fine periodic groove M1 by vertically irradiating the surface of a workpiece (for example, engine cylinder) W with a femtosecond laser LO (incident angle α = 0 °). A measurement laser oscillator 10 that oscillates a measurement laser L1 having a wavelength λ that is superimposed on the femtosecond laser by a half mirror 21 and is vertically incident on the fine periodic groove (incident angle α = 0 °), and the measurement A white plate (white paper) 22 is arranged at the measurement order m of the diffraction angle β of the diffracted light L2 that bounces off the fine periodic groove M1. It comprises a fiberscope 20A for receiving light that detects the diffracted light projected on the white plate 22. Of course, the diffracted light L2 may be directly detected by the light receiving fiberscope 20A. The received light information from the fiberscope 20A is connected to the monitor device 11 or a computer PC having an arithmetic processing unit for calculating the groove interval d and the like of the fine periodic groove M1 by the theoretical formula d (sin α ± sin β) = mλ. ing. In the second embodiment, the white plate (blank paper) 22 is disposed as an integral configuration within the tip of the observation head 40. Further, the surface of the workpiece W may be irradiated with a femtosecond laser LO in an arbitrary oblique direction. In order to efficiently display the diffraction light L2, the white plate 22 and the fiber scope 20A The arrangement is changed as appropriate.

上記構成からなる微細周期性溝の加工観測装置200とこの方法によると、まず、被加工ワークWの表面にフェムト秒レーザLOを垂直照射して微細周期性溝M1が加工される。これと同時に、上記フェムト秒レーザLOに、測定用レーザ発振器10から波長λの測定用レーザL1が発振されてハーフミラー21で重ね合わされて微細周期性溝M1に垂直入射(入射角度α=0°)される。これにより、上記測定用レーザL1は、上記微細周期性溝に照射すると反射し、この回折光L2が回折角度βの測定次数mに配置した白板22に回折光として投影される。この回折光は受光用のファイバースコープ20Aに受光される。上記ファイバースコープ20Aに受光した受光情報は、モニタ機器11で直接的に回折光として観測することができる。また、上記ファイバースコープ20Aからの受光情報は、演算処理器の機能を持つコンピュータPCに収められた理論式d(sinα±sinβ)=mλにより、微細周期性溝の溝間隔dが演算処理され、その処理内容が表示される。これにより、上記被加工ワークWのシリンダ表面にフェムト秒レーザによる微細周期性溝を加工しながらこの微細周期性溝の溝間隔が正しく生成されているか・否かが、同時に確認される。即ち、微細周期性溝は、その溝間隔を監視されながらの監視情報により精密な加工寸法で生成されるようにフェムト秒レーザの出力がフィードバック制御される。これにより、予め希望したとおりの微細周期性溝が加工できるとともに観測・検査できる。   According to the fine periodic groove processing observation apparatus 200 having this configuration and this method, the fine periodic groove M1 is first processed by vertically irradiating the surface of the workpiece W with the femtosecond laser LO. At the same time, a measurement laser L1 having a wavelength λ is oscillated from the measurement laser oscillator 10 on the femtosecond laser LO and is superimposed on the half mirror 21 so as to be perpendicularly incident on the fine periodic groove M1 (incident angle α = 0 °). ) Accordingly, the measurement laser L1 is reflected when irradiated to the fine periodic groove, and the diffracted light L2 is projected as diffracted light onto the white plate 22 arranged at the measurement order m of the diffraction angle β. This diffracted light is received by the receiving fiberscope 20A. The received light information received by the fiberscope 20A can be directly observed as diffracted light by the monitor device 11. Further, the light reception information from the fiberscope 20A is subjected to calculation processing of the groove interval d of the fine periodic groove by the theoretical formula d (sin α ± sin β) = mλ stored in the computer PC having the function of an arithmetic processor. The processing contents are displayed. Thereby, it is simultaneously confirmed whether or not the groove intervals of the fine periodic grooves are correctly generated while machining the fine periodic grooves by the femtosecond laser on the cylinder surface of the workpiece W. That is, the output of the femtosecond laser is feedback-controlled so that the fine periodic groove is generated with a precise processing dimension based on the monitoring information while monitoring the groove interval. Thereby, the fine periodic groove as desired in advance can be processed and observed and inspected.

上記微細周期性溝M1の加工用として、フェムト秒レーザLOを採用した有効性を列記する。まず、フェムト秒レーザによる加工は、アブレーション効果によりバリ等の少ない綺麗な形状の微細加工が可能なこと。透明材料も加工できること。ナノサイズの周期性のある微細な溝やディンプルが加工できること。この溝は、レーザのスポット径に依存するものではなく、レーザ波長やフルーエンスによること。上記溝の深さは、200nm程度、溝間隔はレーザ波長と同程度から約半分程度の幅が加工される。このような周期性溝やディンプルの摩擦低減を使い様々な部品加工への応用が可能である。しかして、例えば、自動車の燃費改善対策として、エンジンにおけるシリンダとピストンリング及びベアリング、ギア等に微細周期性溝M1を生成しながら観測することで、ピストンとシリンダ間の摩擦低減、ベアリングの回転摩擦低減、ギアの噛合い摩擦の低減等の摩擦抵抗を極限まで減らすために施される微細周期性溝の加工とその観測がリアルタイムに正確に行われる。   The effectiveness of adopting the femtosecond laser LO for processing the fine periodic groove M1 will be listed. First, femtosecond laser processing enables fine processing of fine shapes with few burrs due to the ablation effect. Transparent materials can also be processed. Able to process nano-sized periodic grooves and dimples. This groove does not depend on the spot diameter of the laser, but depends on the laser wavelength and fluence. The groove has a depth of about 200 nm, and the groove interval is processed to have a width that is about the same as the laser wavelength to about half. Such periodic grooves and dimple friction reduction can be used for various parts processing. Thus, for example, as a measure for improving the fuel efficiency of automobiles, the friction between the piston and the cylinder is reduced by observing while generating the fine periodic groove M1 in the cylinder, piston ring, bearing, and gear in the engine. The processing and observation of the fine periodic grooves that are performed to reduce the frictional resistance such as reduction and reduction of gear meshing friction to the limit are performed in real time.

上記第2の実施の形態の微細周期性溝の加工観測装置200とこの方法による効果は、上記微細周期性溝の観測装置100にフェムト秒レーザ等のレーザ発振器30を備えたから、上記微細周期性溝の観測装置100と同様な作用・効果が得られるほか、被加工ワークに微細周期性溝を加工しながら溝間隔の良・不良を同時に監視した監視情報によりフェムト秒レーザの出力等がフィードバック制御でき、予め希望したとおりの微細周期性溝が加工できる。しかして、例えば、エンジン各部に施す微細周期性溝の加工工程と、その微細周期性溝の良・不良を見極める検査工程とが同時に効率良く実施でき、生産性を飛躍的に向上させることができる。   The fine periodic groove processing and observation apparatus 200 of the second embodiment and the effect of this method are that the fine periodic groove observation apparatus 100 includes a laser oscillator 30 such as a femtosecond laser. In addition to the same operation and effect as the groove observation device 100, feedback control of the output of the femtosecond laser and the like is performed by monitoring information that simultaneously monitors the goodness and badness of the groove interval while processing a fine periodic groove on the workpiece. It is possible to process fine periodic grooves as desired in advance. Thus, for example, the process of machining the fine periodic grooves applied to each part of the engine and the inspection process for determining whether the fine periodic grooves are good or defective can be performed efficiently at the same time, and the productivity can be dramatically improved. .

本発明の微細周期性溝の観測方法とその装置、微細周期性溝の加工観測方法とその加工観測装置は、上記各実施例に示す、自動車エンジンにおけるシリンダとピストンリング及びベアリング、ギア等の被検査物を対象とするエンジン内部のトライボロジー効果に限定されない。従って、表面に微細周期性溝が生成される全ての産業分野の被加工ワークが幅広くその対象になり得る。従って、本発明が目指す大目的は、各種産業機械類が持つ摺動摩擦抵抗の低減を図ることでエネルギロスの低減による省エネ効果や耐寿命効果に寄与する部品加工の技術開発を促進させることで、地球温暖化防止対策に大きく貢献するものである。更に、本発明を構成する微細周期性溝の観測方法とその装置及び微細周期性溝の加工観測方法とその加工観測装置において、発明の要旨内での各構成部材の設計変更や構成部材を他部材との変更や置換も自由に行え得るものである。   The fine periodic groove observation method and apparatus, the fine periodic groove processing observation method and the processing observation apparatus thereof according to the present invention are the cylinder and piston rings, bearings, gears, etc. It is not limited to the tribological effect inside the engine for the inspection object. Accordingly, a wide range of workpieces in all industrial fields in which fine periodic grooves are generated on the surface can be used. Therefore, the main purpose of the present invention is to promote the technological development of parts processing that contributes to the energy-saving effect and life-proof effect by reducing the energy loss by reducing the sliding friction resistance of various industrial machines, It greatly contributes to global warming prevention measures. Further, in the fine periodic groove observation method and apparatus, and the fine periodic groove processing observation method and processing observation apparatus constituting the present invention, the design change of each constituent member and the constituent members within the gist of the invention It is possible to freely change or replace the member.

本発明の第1の実施の形態を示し、微細周期性溝の観測方法を実施する構成図である。It is a block diagram which shows the 1st Embodiment of this invention and implements the observation method of a fine periodic groove | channel. 本発明の第1の実施の形態を示し、微細周期性溝の回折光拡大図である。FIG. 2 is a magnified view of diffracted light of a fine periodic groove in the first embodiment of the present invention. 本発明の第1の実施の形態を示し、CDの回折パターン図である。FIG. 2 shows a first embodiment of the present invention and is a diffraction pattern diagram of a CD. 本発明の第1の実施の形態を示し、微細周期性溝に照射した測定用レーザの回折光特性図である。FIG. 5 is a diffracted light characteristic diagram of the measurement laser irradiated to the fine periodic groove in the first embodiment of the present invention. 本発明の第1の実施の形態を示し、微細周期性溝に照射した測定用レーザの特性図表である。It is a characteristic chart of the laser for measurement which showed the 1st Embodiment of this invention and irradiated to the fine periodic groove | channel. 本発明の第1の実施の形態を示し、微細周期性溝に照射した測定用レーザの回折光特性図表である。It is a diffracted light characteristic chart of a measurement laser which showed a 1st embodiment of the present invention and irradiated to a fine periodic slot. 本発明の第1の実施の形態を示し、微細周期性溝に照射した回折光のモニタ写真である。It is a monitor photograph of the diffracted light which showed the 1st Embodiment of this invention and was irradiated to the fine periodic groove | channel. 本発明の第2の実施の形態を示し、微細周期性溝の加工観測装置の構成図である。It is a block diagram of the processing observation apparatus of the fine periodic groove | channel which shows the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,2 反射ミラー
3,4 集光レンズ
10 測定用レーザ発振器
11 モニタ装置
12 ビデオカード
20 受光器
20A ファイバースコープ
21 ハーフミラー
22 白板(白紙)
30 フェムト秒レーザの発振器
40 観測ヘッド
100 微細周期性溝の観測装置
200 微細周期性溝の加工観測装置
d 溝間隔
LO フェムト秒レーザ
L1 測定用レーザ
L2 回折光
M1 微細周期性溝
m 測定次数
PC コンピュータ(演算処理部)
α 入射角度
β 回折角度
W 被加工ワーク(シリンダ)
λ 測定用レーザの波長
1, 2 Reflection mirror
3,4 Condensing lens 10 Laser oscillator for measurement 11 Monitor device 12 Video card
20 Receiver 20A Fiberscope 21 Half mirror 22 White board (blank paper)
30 Femtosecond laser oscillator 40 Observation head 100 Fine periodic groove observation device 200 Fine periodic groove processing observation device d Groove interval LO Femtosecond laser L1 Measurement laser L2 Diffracted light M1 Fine periodic groove m Measurement order PC Computer (Calculation processing part)
α Incident angle β Diffraction angle W Workpiece (cylinder)
λ Measurement laser wavelength

Claims (8)

フェムト秒レーザ加工機等で表面加工された微細周期性溝の観測に際して、上記微細周期性溝に対して垂直面方向又は任意な斜め方向から入射される測定用レーザの入射角度αおよびその波長λと、上記測定用レーザの回折光の回折角度βと、上記回折角度の回折光をキャッチする受光器の測定次数mと、上記微細周期性溝の溝間隔dとの理論式d(sinα±sinβ)=mλから求めた測定次数mに、受光器を配置して溝間隔dを実測確認することを特徴とする微細周期性溝の観測方法。   When observing a fine periodic groove whose surface is processed by a femtosecond laser processing machine or the like, an incident angle α and a wavelength λ of the measurement laser incident on the fine periodic groove from a vertical plane direction or an arbitrary oblique direction And a theoretical expression d (sin α ± sin β) of the diffraction angle β of the diffracted light of the measurement laser, the measurement order m of the light receiver that catches the diffracted light of the diffraction angle, and the groove interval d of the fine periodic groove ) = A method for observing a fine periodic groove, wherein a light receiver is arranged at a measurement order m obtained from mλ, and a groove interval d is measured and confirmed. フェムト秒レーザ加工機等で表面加工された微細周期性溝の観測に際して、上記微細周期性溝に対して垂直面方向又は任意な斜め方向の入射角度αで照射するとともに特定の波長λの測定用レーザを発振する発振器と、上記測定用レーザ発振器から微細周期性溝に照射した測定用レーザの回折光の回折角度βの測定次数mに配置したレーザ受光器と、上記レーザ受光器からの受光情報を表示するモニタ機器または上記理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dを演算する演算処理器と、を具備したことを特徴とする微細周期性溝の観測装置。   When observing a micro periodic groove whose surface is processed by a femtosecond laser processing machine or the like, the micro periodic groove is irradiated at an incident angle α in a vertical plane direction or an arbitrary oblique direction and for measuring a specific wavelength λ. An oscillator that oscillates a laser; a laser receiver disposed at a measurement order m of the diffraction angle β of the diffracted light of the measurement laser irradiated to the fine periodic groove from the measurement laser oscillator; and light reception information from the laser receiver And a processing unit for calculating the groove interval d of the fine periodic groove according to the theoretical formula d (sin α ± sin β) = mλ. 上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とする請求項1に記載の微細周期性溝の観測方法。   The measurement laser is a He—Ne laser, a GaN semiconductor laser, a femtosecond laser, or the like, and the measurement order m of the light receiver corresponding to the diffraction angle β is a measurement order such as 0th order, first order, second order, third order, and the like. The method for observing a fine periodic groove according to claim 1, wherein: 上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とする請求項2に記載の微細周期性溝の観測装置。   The measurement laser is a He—Ne laser, a GaN semiconductor laser, a femtosecond laser, or the like, and the measurement order m of the light receiver corresponding to the diffraction angle β is a measurement order such as 0th order, first order, second order, third order, and the like. The observation device for fine periodic grooves according to claim 2, wherein 被加工ワークの表面にフェムト秒レーザ等を垂直照射又は任意な斜め方向から照射して微細周期性溝を加工すると同時に、上記フェムト秒レーザ等にハーフミラーで重ね合わせて上記微細周期性溝に対して垂直面方向又は任意な斜め方向から入射される測定用レーザの入射角度αおよびその波長λと、上記測定用レーザの回折光の回折角度βと、上記回折角度の回折光をキャッチする受光器の測定次数mと、上記微細周期性溝の溝間隔dとの理論式d(sinα±sinβ)=mλから求めた測定次数mに、受光器を配置して溝間隔dを実測確認することを特徴とする微細周期性溝の加工観測方法。   The surface of the workpiece is irradiated with a femtosecond laser vertically or from an arbitrary oblique direction to process the fine periodic groove, and at the same time, the femtosecond laser is overlapped with a half mirror to the fine periodic groove. The incident angle α and its wavelength λ of the measuring laser incident from the vertical plane direction or an arbitrary oblique direction, the diffraction angle β of the diffracted light of the measuring laser, and the light receiver that catches the diffracted light of the diffracted angle And measuring and confirming the groove interval d by placing a photoreceiver at the measurement order m obtained from the theoretical formula d (sin α ± sin β) = mλ between the measurement order m of the above and the groove interval d of the fine periodic groove. A processing method for processing fine periodic grooves. 被加工ワークの表面にフェムト秒レーザ等を垂直照射又は任意な斜め方向から照射して微細周期性溝を加工するレーザ発振器と、上記フェムト秒レーザ等にハーフミラーで重ね合わせて上記微細周期性溝に対して垂直面方向又は任意な斜め方向の入射角度αで照射されるとともに特定の波長λの測定用レーザを発振する測定用レーザ発振器と、上記測定用レーザが微細周期性溝に照射されて反射する回折光の回折角度βの測定次数mに配置した受光用のファイバースコープと、上記ファイバースコープからの受光情報を表示するモニタ機器または上記理論式d(sinα±sinβ)=mλにより微細周期性溝の溝間隔dを演算する演算処理器と、を具備したことを特徴とする微細周期性溝の加工観測装置。   A laser oscillator that processes a fine periodic groove by irradiating a surface of a workpiece with a femtosecond laser or the like from an oblique direction or an arbitrary oblique direction, and the fine periodic groove superimposed on the femtosecond laser or the like with a half mirror. A measurement laser oscillator that irradiates a measurement laser having a specific wavelength λ while being irradiated with an incident angle α in a vertical plane direction or an arbitrary oblique direction with respect to the above, and the fine periodic groove is irradiated with the measurement laser Receiving fiberscope arranged at the measurement order m of the diffraction angle β of the reflected diffracted light and a monitor device for displaying light receiving information from the fiberscope or the above-mentioned theoretical formula d (sinα ± sinβ) = mλ A processing observation apparatus for fine periodic grooves, comprising: an arithmetic processing unit that calculates the groove interval d of the grooves. 上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とする請求項5に記載の微細周期性溝の加工観測方法。   The measurement laser is a He—Ne laser, a GaN semiconductor laser, a femtosecond laser, or the like, and the measurement order m of the light receiver corresponding to the diffraction angle β is a measurement order such as 0th order, first order, second order, third order, and the like. The method for observing the processing of a fine periodic groove according to claim 5, wherein: 上記測定用レーザは、He−NeレーザまたはGaN半導体レーザまたはフェムト秒レーザ等とし、回折角度βに対応する受光器の測定次数mは0次、1次、2次、3次等の測定次数としたことを特徴とする請求項6に記載の微細周期性溝の加工観測装置。   The measurement laser is a He—Ne laser, a GaN semiconductor laser, a femtosecond laser, or the like, and the measurement order m of the light receiver corresponding to the diffraction angle β is a measurement order such as 0th order, first order, second order, third order, and the like. The processing observation apparatus for fine periodic grooves according to claim 6, wherein:
JP2006137157A 2006-05-17 2006-05-17 Microperiodic groove observation method and observation device thereof, microperiodic groove machining observation method and machining observation device thereof Pending JP2007309710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137157A JP2007309710A (en) 2006-05-17 2006-05-17 Microperiodic groove observation method and observation device thereof, microperiodic groove machining observation method and machining observation device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137157A JP2007309710A (en) 2006-05-17 2006-05-17 Microperiodic groove observation method and observation device thereof, microperiodic groove machining observation method and machining observation device thereof

Publications (1)

Publication Number Publication Date
JP2007309710A true JP2007309710A (en) 2007-11-29

Family

ID=38842708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137157A Pending JP2007309710A (en) 2006-05-17 2006-05-17 Microperiodic groove observation method and observation device thereof, microperiodic groove machining observation method and machining observation device thereof

Country Status (1)

Country Link
JP (1) JP2007309710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943569A (en) * 2010-08-04 2011-01-12 马军 Method and device thereof for testing deformation of steel wire in wire rope strand
JP2014232065A (en) * 2013-05-30 2014-12-11 株式会社ミツトヨ Measuring instrument
JP2016065719A (en) * 2014-09-22 2016-04-28 国立大学法人東北大学 Device and method for measuring absolute angle
JP2020173140A (en) * 2019-04-09 2020-10-22 株式会社東京精密 Pattern measurement method and device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160726A (en) * 1986-01-09 1987-07-16 Mitsubishi Electric Corp Laser trimming apparatus for optical device
JPS6483390A (en) * 1987-09-24 1989-03-29 Nec Corp Laser beam machine
JPH03254113A (en) * 1990-03-05 1991-11-13 Nikon Corp Thin-film elimination device
JPH09145326A (en) * 1995-11-24 1997-06-06 Ricoh Co Ltd Method and apparatus for measuring groove parameters of stamper for optical disc, production method and method and apparatus for development
JP2001208517A (en) * 2000-01-28 2001-08-03 Victor Co Of Japan Ltd Optical disc inspecting instrument
JP2004037863A (en) * 2002-07-03 2004-02-05 Nippon Sheet Glass Co Ltd Positioning method for diffraction grating and positioning device for diffraction grating
JP2004101325A (en) * 2002-09-09 2004-04-02 National Institute For Materials Science High-accuracy determination method for mean particle diameter of sub-micron particle and device for implementing the method
JP2004513355A (en) * 2000-11-13 2004-04-30 ミクマクモ アンパーツゼルスカブ Laser ablation
JP2005070490A (en) * 2003-08-26 2005-03-17 Toppan Printing Co Ltd Photomask substrate with identification tag, photomask, and identification method therefor
JP2005197544A (en) * 2004-01-09 2005-07-21 Japan Steel Works Ltd:The Evaluating method of crystallized film, and evaluating apparatus thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160726A (en) * 1986-01-09 1987-07-16 Mitsubishi Electric Corp Laser trimming apparatus for optical device
JPS6483390A (en) * 1987-09-24 1989-03-29 Nec Corp Laser beam machine
JPH03254113A (en) * 1990-03-05 1991-11-13 Nikon Corp Thin-film elimination device
JPH09145326A (en) * 1995-11-24 1997-06-06 Ricoh Co Ltd Method and apparatus for measuring groove parameters of stamper for optical disc, production method and method and apparatus for development
JP2001208517A (en) * 2000-01-28 2001-08-03 Victor Co Of Japan Ltd Optical disc inspecting instrument
JP2004513355A (en) * 2000-11-13 2004-04-30 ミクマクモ アンパーツゼルスカブ Laser ablation
JP2004037863A (en) * 2002-07-03 2004-02-05 Nippon Sheet Glass Co Ltd Positioning method for diffraction grating and positioning device for diffraction grating
JP2004101325A (en) * 2002-09-09 2004-04-02 National Institute For Materials Science High-accuracy determination method for mean particle diameter of sub-micron particle and device for implementing the method
JP2005070490A (en) * 2003-08-26 2005-03-17 Toppan Printing Co Ltd Photomask substrate with identification tag, photomask, and identification method therefor
JP2005197544A (en) * 2004-01-09 2005-07-21 Japan Steel Works Ltd:The Evaluating method of crystallized film, and evaluating apparatus thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943569A (en) * 2010-08-04 2011-01-12 马军 Method and device thereof for testing deformation of steel wire in wire rope strand
CN101943569B (en) * 2010-08-04 2012-06-13 徐州师范大学 Method and device thereof for testing deformation of steel wire in wire rope strand
JP2014232065A (en) * 2013-05-30 2014-12-11 株式会社ミツトヨ Measuring instrument
JP2016065719A (en) * 2014-09-22 2016-04-28 国立大学法人東北大学 Device and method for measuring absolute angle
JP2020173140A (en) * 2019-04-09 2020-10-22 株式会社東京精密 Pattern measurement method and device
JP7319524B2 (en) 2019-04-09 2023-08-02 株式会社東京精密 Pattern measuring method and apparatus

Similar Documents

Publication Publication Date Title
JP2008012539A5 (en)
JP2013036981A (en) Optical measuring device monitoring connection joint, and connection head and laser welding head provided with measuring device
TW202111457A (en) Machining module and machine tool with a tool profile detection unit, and tool profile detection method
EP2233883A1 (en) Method and apparatus of measuring positional variation of rotation center line
EP3730234A1 (en) Systems and methods for multi-laser head alignment in additive manufacturing systems
CN112839765B (en) Method and processing machine for determining a characteristic variable of a processing operation
JP2007309710A (en) Microperiodic groove observation method and observation device thereof, microperiodic groove machining observation method and machining observation device thereof
US10807196B2 (en) Method for manufacturing laser processed product
JP5592108B2 (en) Interference confocal microscope and light source imaging method
Mikulewitsch et al. Geometry measurement of submerged metallic micro-parts using confocal fluorescence microscopy
Sun et al. A vision-based method for dimensional in situ measurement of cooling holes in aero-engines during laser beam drilling process
Denkena et al. Direct part marking by vibration assisted face milling
JP6480979B2 (en) Measuring device
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
KR20090019930A (en) Device and method for measuring the inner diameter of ring gear in the noncontact mode
JP4427632B2 (en) High-precision 3D shape measuring device
JP2005014026A (en) Weld zone inspection method, and welding support system
JP5716459B2 (en) Cam surface observation method
JP2017062159A (en) Defect inspection device and defect inspection method
Ko et al. Development of an effective measurement system for burr geometry
JP6592547B2 (en) Laser beam centering method and laser processing apparatus
JP2002525211A (en) How to monitor tool status
JP2002365027A (en) Surface observation apparatus
JP2007017276A (en) Method and device for inspecting cutting edge
JP2018151353A (en) Measurement device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090506

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090511

A521 Written amendment

Effective date: 20090506

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Effective date: 20090601

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111014