JP2007309683A - Method for assembling physical quantity measuring device of rotary machine - Google Patents

Method for assembling physical quantity measuring device of rotary machine Download PDF

Info

Publication number
JP2007309683A
JP2007309683A JP2006136597A JP2006136597A JP2007309683A JP 2007309683 A JP2007309683 A JP 2007309683A JP 2006136597 A JP2006136597 A JP 2006136597A JP 2006136597 A JP2006136597 A JP 2006136597A JP 2007309683 A JP2007309683 A JP 2007309683A
Authority
JP
Japan
Prior art keywords
axial direction
encoder
fitted
outer ring
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006136597A
Other languages
Japanese (ja)
Inventor
Takeshi Takizawa
岳史 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006136597A priority Critical patent/JP2007309683A/en
Publication of JP2007309683A publication Critical patent/JP2007309683A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an assembly method capable of accurately assembling an encoder 4a and a cover 5 holding a pair of sensors 6a and 6b to achieve a precise positional relationship in axial directions. <P>SOLUTION: The encoder 4a is fitted and fixed over the inner end part of a hub 2 by a first jig 16 with reference to the inside surface in the axial direction of a coupling flange 20 provided for the outer peripheral surface of an outer ring 1. The cover 5 is fitted and fixed over an inner end part of the outer ring 1 by a second jig 22 with reference to the same surface. As a result of this, it is possible to achieve an appropriate positional relationship in axial directions between the encoder 4 and both sensors 6a and 6b and accurately determine axial loads exerted between the outer ring 1 and the hub 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明の組立方法の対象となる回転機械の物理量測定装置は、転がり軸受ユニット等の回転機械を構成する静止部材と回転部材との相対変位量や、これら両部材同士の間に加わる荷重を測定する為に利用する。更に、この求めた荷重を、自動車等の車両の走行安定性確保を図る為に利用する。本発明は、この様な回転機械の物理両側定装置を構成するエンコーダとセンサ装置とを、正しい位置関係で容易且つ正確に組み立てられる組立方法を実現するものである。   The physical quantity measuring device for a rotating machine that is an object of the assembling method of the present invention measures a relative displacement amount between a stationary member and a rotating member constituting a rotating machine such as a rolling bearing unit and a load applied between these two members. Use to do. Further, the obtained load is used for ensuring the running stability of a vehicle such as an automobile. The present invention realizes an assembling method in which an encoder and a sensor device constituting such a physical both-side fixing device of a rotating machine can be easily and accurately assembled in a correct positional relationship.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えば非特許文献1に記載されている様な、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, automobile wheels are rotatably supported by a suspension device by a double-row angular type rolling bearing unit. In order to ensure the running stability of the automobile, for example, as described in Non-Patent Document 1, an antilock brake system (ABS), a traction control system (TCS), and an electronically controlled vehicle stability A vehicle travel stabilization device such as a control system (ESC) is used. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、複列アンギュラ型の玉軸受ユニットである転がり軸受ユニットを構成する1対の列の玉の公転速度に基づいて、この転がり軸受ユニットに加わるラジアル荷重又はアキシアル荷重を測定する、荷重測定装置付転がり軸受ユニットに関する発明が記載されている。この様な特許文献1に記載された荷重測定装置付転がり軸受ユニットは、上記両列の玉の公転速度を、これら各玉を保持した1対の保持器の回転速度として求め、これら両列の玉の公転速度に基づいて、上記ラジアル荷重又はアキシアル荷重を算出する。この様な従来構造の場合、上記各玉の転動面と上記両保持器のポケットの内面との間に不可避的に存在する隙間に起因して、上記両列の玉の公転速度と上記両保持器の回転速度との間に、微妙なずれが生じる場合がある。この為、上記ラジアル荷重又はアキシアル荷重を精度良く求める為には、改良の余地がある。   In view of such circumstances, Patent Document 1 discloses a radial applied to a rolling bearing unit based on the revolution speed of a pair of balls constituting a rolling bearing unit which is a double-row angular ball bearing unit. An invention relating to a rolling bearing unit with a load measuring device for measuring a load or an axial load is described. Such a rolling bearing unit with a load measuring device described in Patent Document 1 obtains the revolution speed of the balls in both rows as the rotation speed of a pair of cages holding these balls, Based on the revolution speed of the ball, the radial load or the axial load is calculated. In the case of such a conventional structure, due to a gap inevitably existing between the rolling surface of each ball and the inner surfaces of the pockets of both cages, the revolution speed of the balls in both rows and the both There may be a slight deviation between the rotational speed of the cage. For this reason, in order to obtain | require the said radial load or axial load accurately, there is room for improvement.

これに対して、未公開ではあるが、上述の様な不可避的なずれに基づく測定精度の悪化を防止できる構造として、特殊なエンコーダを使用した荷重測定装置付転がり軸受ユニットが発明(例えば、特願2005−147642号)され、その開発が進められている。図4〜6は、この様な特殊なエンコーダを使用した荷重測定装置付転がり軸受ユニットの1例を示している。この先発明の荷重測定装置付転がり軸受ユニットは、使用時にも回転しない静止側軌道輪である外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転する、回転側軌道輪であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。これら各転動体3、3には、互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。尚、図示の例では、上記転動体3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   On the other hand, although not disclosed, a rolling bearing unit with a load measuring device using a special encoder has been invented (for example, as a special feature) as a structure capable of preventing the deterioration of measurement accuracy based on the inevitable deviation as described above. No. 2005-147642) and its development is underway. 4 to 6 show an example of a rolling bearing unit with a load measuring device using such a special encoder. The rolling bearing unit with a load measuring device according to the present invention is a rotating side bearing ring that rotates together with the wheel while supporting and fixing the wheel at the inner diameter side of the outer ring 1 that is a stationary side bearing ring that does not rotate during use. A certain hub 2 is rotatably supported via a plurality of rolling elements 3 and 3. A preload is applied to each of the rolling elements 3 and 3 together with contact angles that are opposite to each other (in the illustrated case, a rear combination type). In the illustrated example, a ball is used as the rolling element 3, but in the case of an automobile bearing unit that is heavy, a tapered roller may be used instead of the ball.

又、上記ハブ2の内端部(軸方向に関して「内」とは、自動車への組み付け状態で車両の幅方向中央側を言い、図1〜3の上側、図4の右側。反対に、自動車への組み付け状態で車両の幅方向外側となる図1〜3の下側、図4の左側を、軸方向に関して「外」と言う。本明細書及び特許請求の範囲全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の内端開口を塞ぐ、保持部材である有底円筒状のカバー5の内側に、1対のセンサ6a、6bを支持すると共に、これら両センサ6a、6bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。   Also, the inner end of the hub 2 ("inner" with respect to the axial direction means the center in the width direction of the vehicle when assembled to the automobile, the upper side in FIGS. 1 to 3 and the right side in FIG. 1-3, which is the outer side in the width direction of the vehicle when assembled to the vehicle, and the left side of FIG. 4 are referred to as “outside” with respect to the axial direction (the same applies to the entire specification and claims). The cylindrical encoder 4 is supported and fixed concentrically with the hub 2. A pair of sensors 6a and 6b are supported on the inner side of the bottomed cylindrical cover 5 as a holding member that closes the inner end opening of the outer ring 1, and the detection portions of both the sensors 6a and 6b are provided. The encoder 4 is placed in close proximity to the outer peripheral surface, which is the detected surface.

このうちのエンコーダ4は、磁性金属板製である。被検出面である、このエンコーダ4の外周面の先半部(軸方向内半部)には、透孔7、7(第一特性部)と柱部8、8(第二特性部)とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔7、7と各柱部8、8との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、上記エンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記各透孔7、7と上記各柱部8、8とは、軸方向中間部が円周方向に関して最も突出した「へ」字形(又は「く」字形)となっている。そして、上記境界の傾斜方向が互いに異なる、上記被検出面の軸方向外半部と軸方向内半部とのうち、軸方向外半部を第一の特性変化部9とし、軸方向内半部を第二の特性変化部10としている。尚、これら両特性変化部9、10を構成する各透孔は、図示の様に互いに連続した状態で形成しても良いし、或いは互いに独立させて形成しても良い。又、検出精度は劣るが、上記両特性変化部9、10のうちの何れか一方の特性変化部の境界のみを軸方向に対し傾斜させ、他方の特性変化部の境界を軸方向と平行にする事もできる。   Of these, the encoder 4 is made of a magnetic metal plate. In the first half (axially inner half) of the outer peripheral surface of the encoder 4, which is a detected surface, through holes 7 and 7 (first characteristic part) and column parts 8 and 8 (second characteristic part) Are arranged alternately and at equal intervals in the circumferential direction. The boundaries between the through holes 7 and 7 and the pillars 8 and 8 are inclined at the same angle with respect to the axial direction of the encoder 4, and the inclined direction with respect to the axial direction is set to the intermediate portion in the axial direction of the encoder 4. The directions are opposite to each other. Accordingly, each of the through holes 7 and 7 and each of the column portions 8 and 8 has a “h” shape (or “k” shape) in which an intermediate portion in the axial direction protrudes most in the circumferential direction. And among the axially outer half part and the axially inner half part of the detected surface, the inclination directions of the boundaries are different from each other, the axially outer half part is defined as the first characteristic changing part 9, and the axially inner half part is formed. This portion is the second characteristic changing portion 10. In addition, each through-hole which comprises both these characteristic change parts 9 and 10 may be formed in a mutually continuous state like illustration, or may be formed mutually independently. Further, although the detection accuracy is inferior, only the boundary of one of the characteristic change parts 9 and 10 is inclined with respect to the axial direction, and the boundary of the other characteristic change part is parallel to the axial direction. You can also do it.

又、上記1対のセンサ6a、6bはそれぞれ、永久磁石と、検出部を構成するホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子とから成る。これら両センサ6a、6bは、上記カバー5の内側に支持固定した状態で、一方のセンサ6aの検出部を上記第一の特性変化部9に、他方のセンサ6bの検出部を上記第二の特性変化部10に、それぞれ近接対向させている。これら両センサ6a、6bの検出部が上記両特性変化部9、10に対向する位置は、上記エンコーダ4の円周方向に関して同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、上記各透孔7、7及び柱部8、8の軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。   Each of the pair of sensors 6a and 6b includes a permanent magnet and a magnetic detection element such as a Hall IC, a Hall element, an MR element, and a GMR element that constitute a detection unit. The two sensors 6a and 6b are supported and fixed inside the cover 5, with the detection part of one sensor 6a serving as the first characteristic changing part 9 and the detection part of the other sensor 6b serving as the second sensor. The characteristic changing portions 10 are respectively close to and opposed to each other. The positions where the detection parts of both the sensors 6 a and 6 b face both the characteristic change parts 9 and 10 are the same position in the circumferential direction of the encoder 4. Further, in the state where an axial load does not act between the outer ring 1 and the hub 2, the portion that protrudes most in the circumferential direction in the axial direction intermediate portion of each of the through holes 7 and 7 and the column portions 8 and 8 (boundary boundary). The position where each member is installed is regulated so that the portion in which the inclination direction changes) is just at the center position between the detection parts of the sensors 6a and 6b.

上述の様に構成する荷重測定装置付転がり軸受ユニットの場合、上記外輪1とハブ2との間にアキシアル荷重が作用(これら外輪1とハブ2とがアキシアル方向に相対変位)すると、上記両センサ6a、6bの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用していない、中立状態では、上記両センサ6a、6bの検出部は、図6の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ6a、6bの出力信号の位相は、同図の(C)に示す様に一致する。   In the case of a rolling bearing unit with a load measuring device configured as described above, when an axial load is applied between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), both the sensors The phase at which the output signals 6a and 6b change is shifted. That is, in the neutral state where an axial load is not applied between the outer ring 1 and the hub 2, the detecting portions of the sensors 6a and 6b are shown as solid lines A and B in FIG. It faces a portion that is shifted by the same amount in the axial direction from the most protruding portion. Therefore, the phases of the output signals of the sensors 6a and 6b coincide as shown in FIG.

これに対して、上記エンコーダ4を固定したハブ2に、図6の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図6の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図6の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図6の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 6A, the detecting portions of the sensors 6a and 6b are shown in FIG. , Opposite to the portions where the deviations in the axial direction from the most protruding portion are different from each other. In this state, the phases of the output signals of the sensors 6a and 6b are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 6A, the detecting portions of both the sensors 6a and 6b are connected to the chain line hub shown in FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 6a and 6b are shifted as shown in FIG.

上述の様に、先発明の構造の場合には、上記両センサ6a、6bの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ6a、6bの出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って、上記両センサ6a、6bの出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪1とハブ2との間に作用しているアキシアル荷重の方向及び大きさを求められる。尚、上記両センサ6a、6bの出力信号の位相差に基づいて上記アキシアル荷重を算出する処理は、図示しない演算器により行なう。この為、この演算器には、予め理論計算や実験により調べておいた上記位相差と上記アキシアル荷重との関係を、計算式やマップ等の形式で組み込んでおく。   As described above, in the case of the structure of the prior invention, the phases of the output signals of the sensors 6a and 6b are shifted in a direction corresponding to the direction of the axial load applied between the outer ring 1 and the hub 2. Further, the degree to which the phase of the output signals of both the sensors 6a and 6b is shifted by this axial load (displacement amount) increases as the axial load increases. Accordingly, the presence or absence of a phase shift between the output signals of the sensors 6a and 6b, and if there is a shift, the axial load acting between the outer ring 1 and the hub 2 based on the direction and magnitude thereof. The direction and size are required. The processing for calculating the axial load based on the phase difference between the output signals of the two sensors 6a and 6b is performed by a calculator (not shown). For this reason, in this computing unit, the relationship between the phase difference and the axial load, which have been examined in advance by theoretical calculation or experiment, is incorporated in the form of a calculation formula or a map.

尚、上述した先発明の構造の1例の場合には、エンコーダを磁性金属板製とすると共に、このエンコーダの被検出面に設ける第一特性部を透孔とし、第二特性部を柱部とする構成を採用している。これに対し、次述する図7に示す様に、エンコーダを永久磁石製とすると共に、このエンコーダの被検出面に設ける第一特性部をN極に着磁した部分とし、第二特性部をS極に着磁した部分とする構成を採用する事もできる。この様な構成を採用する場合には、上記エンコーダを永久磁石製としている為、1対のセンサ側には永久磁石を組み込む必要はない。更に、特願2006−51605号には、それぞれの検出部を第一、第二特性部に対向させた1対のセンサから成るセンサ組を複数組設ける事で、多方向の変位、或いは荷重及び力を求められる構造が開示されている。   In the case of one example of the structure of the above-described prior invention, the encoder is made of a magnetic metal plate, the first characteristic part provided on the detection surface of the encoder is a through hole, and the second characteristic part is a column part. The configuration is adopted. On the other hand, as shown in FIG. 7 described below, the encoder is made of a permanent magnet, the first characteristic portion provided on the detected surface of the encoder is a portion magnetized in the N pole, and the second characteristic portion is It is also possible to adopt a configuration in which the portion is magnetized on the S pole. When such a configuration is adopted, since the encoder is made of a permanent magnet, it is not necessary to incorporate a permanent magnet on the pair of sensors. Furthermore, in Japanese Patent Application No. 2006-51605, by providing a plurality of sensor sets each consisting of a pair of sensors with the respective detection portions facing the first and second characteristic portions, displacement in multiple directions, or load and A structure that requires force is disclosed.

何れにしても、上述の様な先発明に係る荷重測定装置により、外輪1とハブ2との間の軸方向に関する相対変位、或いはこれら外輪1とハブ2との間に加わるアキシアル荷重を正確に求める為には、エンコーダ4と1対のセンサ6a、6bとの、軸方向に関する位置関係が正確である必要がある。即ち、上記外輪1と上記ハブ2との間にアキシアル荷重が作用せず、これら外輪1とハブ2とが軸方向に相対変位していない中立状態では、1対のセンサが被検出面を走査する位置が、図7の(A)−(a)に鎖線で示す様に、特性変化の境界が最も突出した部分に対し対称位置に存在し、図7の(A)−(b)に示す様に、1対のセンサの出力信号の位相が互いに一致する事が好ましい。各部品の製造誤差或いは組み付け誤差により、上記エンコーダ4と1対のセンサ6a、6bとの軸方向に関する位置関係がずれると、上記外輪1と上記ハブ2との間にアキシアル荷重が作用していないにも拘らず、上記両センサが被検出面を走査する位置が、図7の(B)−(a)に鎖線で示す様に、特性変化の境界が最も突出した部分に対し非対称位置に存在し、図7の(B)−(b)に示す様に、1対のセンサの出力信号が互いに不一致になる。   In any case, the load measuring device according to the above-described invention can accurately calculate the relative displacement in the axial direction between the outer ring 1 and the hub 2 or the axial load applied between the outer ring 1 and the hub 2. In order to obtain it, the positional relationship in the axial direction between the encoder 4 and the pair of sensors 6a and 6b needs to be accurate. That is, in a neutral state where an axial load does not act between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are not relatively displaced in the axial direction, a pair of sensors scan the surface to be detected. As shown by the chain lines in FIGS. 7A to 7A, the positions to be located are in symmetrical positions with respect to the portion where the boundary of the characteristic change protrudes the most, and are shown in FIGS. 7A to 7B. Similarly, it is preferable that the phases of the output signals of the pair of sensors coincide with each other. If the positional relationship in the axial direction between the encoder 4 and the pair of sensors 6a and 6b shifts due to manufacturing errors or assembly errors of each part, no axial load acts between the outer ring 1 and the hub 2. Nevertheless, the position at which both sensors scan the surface to be detected is at an asymmetrical position with respect to the part where the boundary of the characteristic change protrudes the most as shown by the chain line in FIG. 7 (B)-(a). However, as shown in FIGS. 7B to 7B, the output signals of the pair of sensors do not match each other.

この様な状態は、上記外輪1と上記ハブ2との間に作用するアキシアル荷重を精度良く求める面からは不利である。即ち、上記図7の(B)に示す様なずれが生じても、別途アキシアル荷重が作用していない事(例えば車体に組み込んだ加速度センサや操舵装置に組み込んだセンサにより、自動車が平坦路を直進している状態)を検知して、その時点での1対のセンサの信号同士の位相差を、アキシアル荷重がゼロであって、上記外輪1と上記ハブ2とが軸方向に相対変位していない状態であるとする(零点として設定する)事もできる。但し、この場合には、初めから1対のセンサの走査位置の中央位置が被検出面の中央位置に対しずれている分、測定可能な荷重の大きさが限定される可能性がある。又、図7の(A)(B)−(a)に示す様に、被検出面から出入りする磁束の密度が、この被検出面の幅方向(同図の上下方向)位置によって異なり、更には上記磁束の向きが、被検出面の幅方向端部で幅方向中央部とは異なる為、荷重の測定誤差を生じる可能性もある。これらの事を考慮すれば、上記エンコーダ4と1対のセンサ6a、6bとを、軸方向に関する位置関係を精度良く組み立てる事が望ましい。   Such a state is disadvantageous from the viewpoint of accurately obtaining an axial load acting between the outer ring 1 and the hub 2. That is, even if a deviation as shown in FIG. 7B occurs, the axial load is not separately applied (for example, the acceleration sensor incorporated in the vehicle body or the sensor incorporated in the steering device causes the automobile to move on a flat road. The phase difference between the signals of the pair of sensors at that time, the axial load is zero, and the outer ring 1 and the hub 2 are relatively displaced in the axial direction. It can also be assumed that it is not in the state (set as zero point). However, in this case, there is a possibility that the magnitude of the load that can be measured is limited because the center position of the scanning position of the pair of sensors is deviated from the center position of the detection surface. Further, as shown in FIGS. 7A, 7B, and 7A, the density of the magnetic flux entering and exiting the detected surface varies depending on the position of the detected surface in the width direction (vertical direction in the figure). Since the direction of the magnetic flux is different from the central portion in the width direction at the end in the width direction of the surface to be detected, a load measurement error may occur. Considering these, it is desirable to assemble the encoder 4 and the pair of sensors 6a and 6b with high accuracy in the positional relationship in the axial direction.

特開2005−31063号公報JP 2005-31063 A 青山元男著、「レッドバッジスーパー図解シリーズ/クルマの最新メカがわかる本」、p.138−139、p.146−149、株式会社三推社/株式会社講談社、平成13年12月20日Motoo Aoyama, “Red Badge Super Illustrated Series / A book that shows the latest mechanics of cars”, p. 138-139, p. 146-149, Sangensha Co., Ltd./Kodansha Co., Ltd., December 20, 2001

本発明の回転機械の物理量測定装置は、上述の様な事情に鑑み、エンコーダと1対のセンサを保持した保持部材とを、軸方向に関する位置関係を精度良く組み立てられる組立方法を実現すべく発明したものである。   In view of the circumstances as described above, the physical quantity measuring apparatus for a rotary machine according to the present invention is an invention for realizing an assembling method in which an encoder and a holding member holding a pair of sensors can be assembled with high accuracy in the positional relationship in the axial direction. It is a thing.

本発明の組立方法の対象となる回転機械の物理量測定装置は、回転機械と物理量測定装置とを備える。
このうちの回転機械は、使用状態でも回転しない静止部材と、この静止部材に対して回転自在に支持された回転部材とを備える。
又、上記物理量測定装置は、上記回転部材の一部に、この回転部材と同心に設けられたエンコーダと、上記静止部材に対し保持部材を介して支持固定されたセンサ装置と、演算器とを備える。
又、このうちのエンコーダは、上記回転部材に対し、軸方向から嵌合固定された状態で支持固定されたもので、周面に被検出面を備えると共に、この被検出面のうち互いに軸方向に離れた2個所位置に第一、第二の特性変化部を備えたもので、これら両特性変化部の特性が円周方向に関して交互に且つ互いに同じピッチで変化しており、少なくとも上記第一の特性変化部の特性変化の位相が軸方向に関し、上記第二の特性変化部と異なる状態で漸次変化している。
又、上記センサ装置は、1対のセンサから成るセンサ組を少なくとも1組設けて成る。そして、このセンサ組を構成する1対のセンサのうちの一方のセンサの検出部を上記第一の特性変化部に、同じく他方のセンサの検出部を上記第二の特性変化部に、それぞれ対向させた状態で、上記保持部材を上記静止部材に対し、軸方向に嵌合固定する事で支持されている。
更に、上記演算器は、上記センサ組を構成する1対のセンサの出力信号同士の間に存在する位相差に基づいて、上記回転部材と上記静止部材との間の物理量を求める。この物理量としては、これら回転部材と静止部材との相対変位量、或いは、これら回転部材と静止部材との間に作用する荷重或いは力等が考えられる。
この様な回転機械の物理量測定装置を組み立てる為の、本発明の組立方法は、上記エンコーダを上記回転部材に対し、上記回転機械を構成する何れかの部材の一部に存在する、軸方向に向いた面である基準面を基準として嵌合固定する。又、上記保持部材を上記静止部材に対し、この基準面を基準として嵌合固定する。
A physical quantity measuring device for a rotating machine that is an object of the assembling method of the present invention includes a rotating machine and a physical quantity measuring device.
Among these, the rotating machine includes a stationary member that does not rotate even when in use, and a rotating member that is rotatably supported by the stationary member.
In addition, the physical quantity measuring device includes an encoder provided concentrically with the rotating member, a sensor device supported and fixed to the stationary member via a holding member, and a computing unit. Prepare.
Of these, the encoder is supported and fixed in a state of being fitted and fixed to the rotating member from the axial direction. The encoder has a detected surface on the peripheral surface, and the detected surface is axially connected to each other. The first and second characteristic changing portions are provided at two positions apart from each other, and the characteristics of both the characteristic changing portions are alternately changed in the circumferential direction at the same pitch, and at least the first characteristic changing portion is provided. The characteristic change phase of the characteristic change portion gradually changes in a state different from the second characteristic change portion with respect to the axial direction.
The sensor device includes at least one sensor set including a pair of sensors. The detection unit of one of the pair of sensors constituting the sensor set is opposed to the first characteristic change unit, and the detection unit of the other sensor is opposed to the second characteristic change unit. In this state, the holding member is supported by being fitted and fixed to the stationary member in the axial direction.
Furthermore, the computing unit obtains a physical quantity between the rotating member and the stationary member based on a phase difference existing between output signals of a pair of sensors constituting the sensor set. As the physical quantity, a relative displacement amount between the rotating member and the stationary member or a load or force acting between the rotating member and the stationary member can be considered.
The assembling method of the present invention for assembling such a physical quantity measuring device for a rotating machine is such that the encoder is located in a part of any member constituting the rotating machine with respect to the rotating member in the axial direction. The reference surface which is the facing surface is fitted and fixed with reference to the reference surface. The holding member is fitted and fixed to the stationary member with reference to the reference surface.

上述の様な本発明の回転機械の物理量測定装置の組立方法を実施する場合に、例えば請求項2に記載した様に、上記エンコーダの何れかの部分に、このエンコーダを回転部材に嵌合する際に第一の治具の軸方向端面を突き当てる為の、軸方向に向いた第一の被押圧面を設けておく。そして、上記第一の治具に設けた第一の押圧面をこの第一の被押圧面に突き当てた状態で、この第一の治具のうちでこの第一の押圧面と径方向に関して異なる位置に設けた第一の突き当て面を上記基準面に突き当てる迄、上記エンコーダを上記回転部材に嵌合する。
又、上記保持部材の何れかの部分に、この保持部材を静止部材に嵌合する際に第二の治具の軸方向端面を突き当てる為の、軸方向に向いた第二の被押圧面を設けておく。そして、上記第二の治具に設けた第二の押圧面をこの第二の被押圧面に突き当てた状態で、この第二の治具のうちでこの第二の押圧面と径方向に関して異なる位置に設けた第二の突き当て面を上記基準面に突き当てる迄、上記保持部材を上記静止部材に嵌合する。
When implementing the method for assembling the physical quantity measuring device for a rotary machine according to the present invention as described above, for example, as described in claim 2, the encoder is fitted to the rotary member at any part of the encoder. At this time, a first pressed surface facing in the axial direction for abutting the axial end surface of the first jig is provided. And in a state where the first pressing surface provided on the first jig is abutted against the first pressed surface, the first pressing surface and the radial direction in the first jig. The encoder is fitted to the rotating member until a first abutting surface provided at a different position is abutted against the reference surface.
Also, a second pressed surface facing in the axial direction for abutting the axial end surface of the second jig when the holding member is fitted to the stationary member to any part of the holding member. Is provided. And, in a state where the second pressing surface provided on the second jig is abutted against the second pressed surface, the second pressing surface and the radial direction in the second jig. The holding member is fitted to the stationary member until a second abutting surface provided at a different position is abutted against the reference surface.

又、本発明を実施する場合に、具体的には、例えば請求項3に記載した様に、上記回転機械を、静止部材である静止側軌道輪と、回転部材である回転側軌道輪と、これら静止側軌道輪と回転側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えた転がり軸受ユニットとする。
より具体的には、請求項4に記載した様に、この転がり軸受ユニットを、自動車の車輪を懸架装置に回転自在に支持する為の車輪支持用転がり軸受ユニットとする。この場合に上記静止側軌道輪を、外周面に設けた結合フランジの軸方向内側面を自動車の懸架装置の一部に突き合わせる事によりこの懸架装置に支持される、外輪とする。又、上記回転側軌道輪を、外周面に設けた取付フランジに車輪を結合固定するハブとする。そして、上記エンコーダをこのハブの軸方向内端部に外嵌固定し、上記保持部材を上記外輪の軸方向内端部に外嵌固定する。
上述の請求項4に記載した発明を実施する場合に、例えば請求項5に記載した様に、上記基準面を、上記結合フランジの軸方向内側面とする。
或いは、請求項6に記載した様に、上記基準面を、外輪の軸方向内端面とする。
この様な請求項5、6に記載した発明を実施する場合に、好ましくは、請求項7に記載した様に、上記外輪の軸方向内端部で結合フランジの軸方向内側面よりも突出した部分の外周面を、懸架装置の取付孔にがたつきなく内嵌できる円筒面とする。そして、第一、第二の治具によりエンコーダ或いは保持部材を軸方向外方に押圧する際に、これら第一、第二の治具の先端部内周面をこの円筒面により案内する事で、これら第一、第二の治具の中心軸と上記外輪の中心軸とを一致させる。
Further, when carrying out the present invention, specifically, as described in claim 3, for example, the rotating machine includes a stationary bearing ring that is a stationary member, a rotating bearing ring that is a rotating member, A rolling bearing unit is provided that includes a plurality of rolling elements provided between a stationary side raceway and a rotational side raceway that exist on the circumferential surfaces of the stationary side raceway and the rotary side raceway that face each other.
More specifically, as described in claim 4, the rolling bearing unit is a wheel bearing rolling bearing unit for rotatably supporting a vehicle wheel on a suspension device. In this case, the stationary raceway is an outer ring that is supported by the suspension device by abutting the axially inner surface of the coupling flange provided on the outer peripheral surface with a part of the suspension device of the automobile. Further, the rotating raceway is a hub for coupling and fixing the wheel to a mounting flange provided on the outer peripheral surface. The encoder is fitted and fixed to the inner end of the hub in the axial direction, and the holding member is fitted and fixed to the inner end of the outer ring in the axial direction.
When the invention described in claim 4 is carried out, as described in claim 5, for example, the reference surface is an inner surface in the axial direction of the coupling flange.
Alternatively, as described in claim 6, the reference surface is an inner end surface in the axial direction of the outer ring.
When carrying out the invention described in claims 5 and 6, preferably, as described in claim 7, the axially inner end portion of the outer ring protrudes from the axially inner side surface of the coupling flange. The outer peripheral surface of the part is a cylindrical surface that can be fitted in the mounting hole of the suspension device without rattling. And when the encoder or the holding member is pressed outward in the axial direction by the first and second jigs, by guiding the inner peripheral surface of the tip part of the first and second jigs by this cylindrical surface, The central axes of the first and second jigs are aligned with the central axis of the outer ring.

上述の様に構成する本発明の回転機械の物理量測定装置の組立方法によれば、エンコーダと1対のセンサを保持した保持部材とを、軸方向に関する位置関係を精度良く組み立てられる。この為、演算器で面倒な処理を行なわなくても、回転機械の静止部材と回転部材との間の物理量を正確に求められる。或は、物理量を測定可能な範囲を広くできる。又、例えば前述の図7に示した様な永久磁石製のエンコーダを使用する場合に、1対のセンサの走査位置の中央位置を、被検出面の幅方向中央位置に対して実質的に一致させる事ができる為、上記1対のセンサ同士で検出する磁束密度が互いにほぼ等しくなり、結果として物理量の測定誤差を十分に抑えられる。   According to the method of assembling the physical quantity measuring device for a rotary machine of the present invention configured as described above, the positional relationship in the axial direction can be assembled with high accuracy between the encoder and the holding member holding the pair of sensors. For this reason, the physical quantity between the stationary member and the rotating member of the rotating machine can be accurately obtained without performing troublesome processing by the calculator. Or the range which can measure a physical quantity can be widened. For example, when a permanent magnet encoder as shown in FIG. 7 is used, the center position of the scanning position of a pair of sensors substantially coincides with the center position of the detected surface in the width direction. Therefore, the magnetic flux densities detected by the pair of sensors are substantially equal to each other, and as a result, the measurement error of the physical quantity can be sufficiently suppressed.

[実施の形態の第1例]
図1は、請求項1〜5、7に対応する、本発明の実施の形態の第1例を示している。尚、本例を含め、本発明の実施の形態の各例の特徴は、物理量測定装置を構成するエンコーダ4aと、1対のセンサ6a、6bをその内面に保持した、保持部材であるカバー5との、外輪1及びハブ2の軸方向に関する位置関係を正確に規制して組み立てる点にある。上記物理量測定装置を組み込んだ車輪支持用転がり軸受ユニットの構造及び作用に就いては、前述の図4〜6で説明した先発明の場合と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本発明の特徴である組立方法を中心に説明する。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 to 5 and 7. The feature of each example of the embodiment of the present invention including this example is that the encoder 4a and the pair of sensors 6a and 6b constituting the physical quantity measuring device are held on the inner surface of the cover 5 which is a holding member. The positional relationship in the axial direction of the outer ring 1 and the hub 2 is precisely regulated and assembled. Since the structure and operation of the wheel-supporting rolling bearing unit incorporating the physical quantity measuring device is the same as in the case of the prior invention described with reference to FIGS. 4 to 6 described above, illustration and description regarding equivalent parts are omitted. Alternatively, the following description will be focused on the assembly method that is a feature of the present invention.

本例の場合には、上記エンコーダ4aとして、中間部乃至先端寄り(軸方向内端寄り)の大径部11と、基端寄り(軸方向外端寄り)の小径部12とを段差部13により連続させた、断面形状がクランク形で全体が段付円筒状のものを使用している。又、このうちの大径部11の外周面に、その外周面に第一、第二の特性変化部であるS極とN極とを交互に配置した、ゴム磁石製のエンコーダ本体14を、全周に亙って添設している。この様なエンコーダ4aは、上記小径部12を、上記ハブ2を構成する内輪15の軸方向内端部に締り嵌めで外嵌する事により、このハブ2に対し、このハブ2に対する軸方向位置を規制した状態で、このハブ2と同心に支持固定する。   In the case of this example, as the encoder 4a, a step part 13 includes a large-diameter part 11 near the middle part or the distal end (near the inner end in the axial direction) and a small-diameter part 12 near the base end (near the outer end in the axial direction). The cross-sectional shape is a crank shape and the whole is a stepped cylindrical shape. Also, an encoder body 14 made of a rubber magnet in which S poles and N poles, which are first and second characteristic change portions, are alternately arranged on the outer peripheral surface of the large diameter portion 11 among these, It is attached all around. In such an encoder 4a, the small-diameter portion 12 is externally fitted to the inner end 15 of the inner ring 15 constituting the hub 2 by an interference fit, whereby the axial position of the hub 2 with respect to the hub 2 is determined. In a state in which is controlled, the hub 2 is supported and fixed concentrically.

この為に本例の場合には、図1の(A)に示す様に、第一の治具16により、上記エンコーダ4aの小径部12を、上記内輪15の軸方向内端部に圧入する様にしている。上記第一の治具16は、ステンレス鋼、アルミニウム系合金、銅系合金等の耐蝕性を有する金属材料、高機能樹脂等の様に、長期間に亙り寸法精度を確保でき(腐蝕等により寸法精度に関する信頼性が損なわれる事がなく)、且つ、十分な強度及び剛性を有する材料により、一体に造られている。尚、上記第一の治具16は、磁性材製としても良いが、上記エンコーダ本体14がゴム磁石製なので、このエンコーダ本体14の外周面の磁気特性に影響を及ぼさない様にする観点より、非磁性材とする方が好ましい。又、上記第一の治具16は、一体品ではなく、複数の部品から成る組立品とする事もできる。但し、この場合には、組み立て後に精度出しの為の加工を施す必要がある。これらの点に就いては、後述する第二の治具22に関しても同様である。何れにしても、本例の場合、上記第一の治具16は、円輪状の基部17と、この基部17の内外両周縁から軸方向外方に直角に折れ曲がった、互いに同心の外径側円筒部18及び内径側円筒部19とを備える。   Therefore, in the case of this example, as shown in FIG. 1A, the small diameter portion 12 of the encoder 4a is press-fitted into the axial inner end portion of the inner ring 15 by the first jig 16. Like. The first jig 16 can ensure dimensional accuracy over a long period of time, such as a corrosion-resistant metal material such as stainless steel, aluminum-based alloy, copper-based alloy, and high-performance resin (the size can be reduced by corrosion or the like). The reliability of accuracy is not impaired), and it is integrally made of a material having sufficient strength and rigidity. The first jig 16 may be made of a magnetic material, but since the encoder body 14 is made of a rubber magnet, from the viewpoint of not affecting the magnetic characteristics of the outer peripheral surface of the encoder body 14, A nonmagnetic material is preferred. Further, the first jig 16 may be an assembly made up of a plurality of parts instead of an integral product. However, in this case, it is necessary to perform processing for increasing accuracy after assembly. The same applies to the second jig 22 described later. In any case, in the case of this example, the first jig 16 includes an annular base 17 and outer diameter sides concentric with each other that are bent at right angles outward in the axial direction from both inner and outer peripheral edges of the base 17. A cylindrical portion 18 and an inner diameter side cylindrical portion 19 are provided.

これら両円筒部18、19のうち、外径側円筒部18の内径は、前記外輪1の軸方向内端部にがたつきなく外嵌できる大きさとしている。即ち、この外輪1の軸方向内端部で、この外輪1を懸架装置(ナックル)に結合固定する為の結合フランジ20よりも軸方向内方に突出した部分のうちの軸方向外半部の外周面は、この懸架装置の取付孔にがたつきなく内嵌する為の円筒面21としている。上記外径側円筒部18の内径は、この円筒面21の外径と同じか、この外径よりも僅かに(数μm〜数十μm程度)大きい程度としている。従って、この外径側円筒部18をこの円筒面21に外嵌した状態で、上記第一の治具16の中心軸と上記外輪1の中心軸とが一致する。又、上記内径側円筒部19の外径は、上記エンコーダ4aの大径部11の内径と同じか、この内径よりも僅かに小さい程度としている。従って、上記内径側円筒部19をこの大径部11に内嵌した状態で、上記第一の治具16の中心軸と上記エンコーダ11の中心軸とが一致する。   Among these cylindrical portions 18 and 19, the inner diameter of the outer-diameter side cylindrical portion 18 is set to a size that allows the outer ring 1 to be fitted externally without rattling. That is, the axially outer half of the axially inner end portion of the outer ring 1 that protrudes inward in the axial direction from the coupling flange 20 for coupling and fixing the outer ring 1 to a suspension device (knuckle). The outer peripheral surface is a cylindrical surface 21 for fitting inside the mounting hole of the suspension device without rattling. The inner diameter of the outer diameter side cylindrical portion 18 is the same as or slightly larger than the outer diameter of the cylindrical surface 21 (several μm to several tens of μm). Therefore, the center axis of the first jig 16 coincides with the center axis of the outer ring 1 in a state where the outer diameter side cylindrical portion 18 is fitted on the cylindrical surface 21. The outer diameter of the inner diameter side cylindrical portion 19 is the same as or slightly smaller than the inner diameter of the large diameter portion 11 of the encoder 4a. Therefore, the center axis of the first jig 16 and the center axis of the encoder 11 coincide with each other with the inner diameter side cylindrical portion 19 fitted in the large diameter portion 11.

上述の様な第一の治具16により上記エンコーダ4aを前記ハブ2(を構成する内輪15)の軸方向内端部に外嵌固定する際には、先ず、このエンコーダ4aの大径部11を、上記第一の治具16の内径側円筒部19に外嵌する事で、このエンコーダ4aをこの第一の治具16に、同心に保持する。次いで、この第一の治具16の外径側円筒部18を上記外輪1の軸方向内端寄り部分の円筒面21に外嵌する。更に、この第一の治具16を、この外径側円筒部18の先端面が、上記外輪1の外周面の結合フランジ20の軸方向内側面に突き当たる迄、この外輪1に向け押し付ける。この押し付けに伴って、特許請求の範囲に記載した第一の押圧面に対応する、上記内径側円筒部19の先端面が、特許請求の範囲に記載した第一の被押圧面である、上記段差部13の軸方向内側面を、軸方向外方に押圧する。この結果、上記エンコーダ4aの小径部12が、上記ハブ2の軸方向内端部に、軸方向に関して適正寸法だけ、外嵌固定される。そして、この状態で、上記エンコーダ4aの段差部13の軸方向内側面と上記結合フランジ20の軸方向内側面との軸方向距離L1 が、上記第一の治具16の外径側、内径側両円筒部18、19の先端面同士の軸方向距離に一致する。 When the encoder 4a is externally fitted and fixed to the inner end in the axial direction of the hub 2 (the inner ring 15 constituting the hub 2) by the first jig 16 as described above, first, the large-diameter portion 11 of the encoder 4a. Is fitted on the inner diameter side cylindrical portion 19 of the first jig 16 to hold the encoder 4 a concentrically with the first jig 16. Next, the outer diameter side cylindrical portion 18 of the first jig 16 is externally fitted to the cylindrical surface 21 near the inner end in the axial direction of the outer ring 1. Further, the first jig 16 is pressed toward the outer ring 1 until the distal end surface of the outer diameter side cylindrical portion 18 abuts against the inner surface in the axial direction of the coupling flange 20 on the outer peripheral surface of the outer ring 1. With this pressing, the tip surface of the inner diameter side cylindrical portion 19 corresponding to the first pressing surface described in the claims is the first pressed surface described in the claims. The inner side surface in the axial direction of the step portion 13 is pressed outward in the axial direction. As a result, the small-diameter portion 12 of the encoder 4a is fitted and fixed to the inner end portion in the axial direction of the hub 2 by an appropriate dimension in the axial direction. In this state, the axial distance L 1 between the axial inner surface of the step portion 13 of the encoder 4a and the axial inner surface of the coupling flange 20 is the outer diameter side and inner diameter of the first jig 16. This coincides with the axial distance between the front end surfaces of the side cylindrical portions 18 and 19.

上述の様にして、上記エンコーダ4aを上記ハブ2の軸方向内端部に外嵌固定した後、前記1対のセンサ6a、6bをその内面に保持した前記カバー5を、第二の治具22により、上記外輪1の軸方向内端部に外嵌固定する。このカバー5は、ステンレス鋼板、アルミニウム合金板、亜鉛メッキ鋼板等の金属板に絞り加工を施して有底円筒状としたもので、円筒状の周壁部23と、この周壁部23の軸方向内端開口部を塞いだ底板部24とを備える。又、この周壁部23の先端(軸方向外端)開口近傍部分は大径部25とし、この大径部25とこの周壁部23の残り部分とを、段差部26により連続させている。上記カバー5は、上記大径部25を上記外輪1の内端部に、締り嵌めで外嵌する事により、この外輪1に支持固定する。この為に、この外輪1の軸方向内端部で、上記結合フランジ20よりも軸方向内方に突出した部分のうちの軸方向内半部を、上記円筒面21よりも小径の嵌合面27としている。これら円筒面21と嵌合面27との段差(半径差)は、上記カバー5を構成する金属板の厚さよりも大きくしている。   As described above, after the encoder 4a is fitted and fixed to the inner end of the hub 2 in the axial direction, the cover 5 holding the pair of sensors 6a and 6b on its inner surface is attached to the second jig. The outer ring 1 is fitted and fixed to the inner end of the outer ring 1 in the axial direction. The cover 5 is formed by drawing a metal plate such as a stainless steel plate, an aluminum alloy plate, a galvanized steel plate or the like into a bottomed cylindrical shape, and includes a cylindrical peripheral wall portion 23 and an inner side in the axial direction of the peripheral wall portion 23. And a bottom plate portion 24 that closes the end opening. Further, the peripheral portion of the peripheral wall portion 23 in the vicinity of the opening (outer end in the axial direction) is a large-diameter portion 25, and the large-diameter portion 25 and the remaining portion of the peripheral wall portion 23 are made continuous by a step portion 26. The cover 5 is supported and fixed to the outer ring 1 by fitting the large-diameter portion 25 to the inner end of the outer ring 1 with an interference fit. For this purpose, the axially inner half of the portion protruding inward in the axial direction from the coupling flange 20 at the axially inner end of the outer ring 1 is a fitting surface having a smaller diameter than the cylindrical surface 21. 27. The step (radius difference) between the cylindrical surface 21 and the fitting surface 27 is larger than the thickness of the metal plate constituting the cover 5.

上述の様なカバー5は、上記大径部25を上記嵌合面27に、締り嵌めで外嵌する事により、上記外輪1に対し、この外輪1に対する軸方向位置を規制した状態で、この外輪1と同心に支持固定する。従って、上記カバー5をこの外輪1に支持固定した状態で、この外輪1の内端面と上記段差部26の軸方向外側面との間には隙間が残る。この為に本例の場合には、図1の(B)に示す様に、上記第二の治具22により、上記カバー5の大径部25を、上記外輪1の軸方向内端部の嵌合面27に圧入する様にしている。   The cover 5 as described above is formed in a state where the axial position of the outer ring 1 with respect to the outer ring 1 is restricted by fitting the large-diameter portion 25 to the fitting surface 27 with an interference fit. Support and fix concentrically with the outer ring 1. Accordingly, a gap remains between the inner end surface of the outer ring 1 and the axially outer surface of the stepped portion 26 in a state where the cover 5 is supported and fixed to the outer ring 1. For this reason, in the case of this example, as shown in FIG. 1B, the large diameter portion 25 of the cover 5 is moved to the axially inner end portion of the outer ring 1 by the second jig 22. The fitting surface 27 is press-fitted.

上記第二の治具22は、全体を略円筒状に形成している。この第二の治具22の内外両周面のうち、外周面は単なる円筒面としているのに対して、内周面は、軸方向内半部の小径部28と外半部の大径部29とを段差面30により連続させた、段付円筒面としている。このうちの小径部28の内径は、上記カバー5の周壁部23の軸方向中間部乃至内端部の外径と同じか、この外径よりも僅かに大きい程度としている。従って、上記小径部28を上記周壁部23に外嵌した状態で、上記第二の治具22の中心軸と上記カバー5の中心軸とが一致する。又、上記大径部29の外径は、上記外輪1の外周面内端寄り部分に形成した前記円筒面21の外径と同じか、この外径よりも僅かに大きい程度としている。従って、上記大径部29を上記円筒面21に外嵌した状態で、上記第二の治具22の中心軸と上記外輪1の中心軸とが一致する。   The second jig 22 is formed in a substantially cylindrical shape as a whole. Of the inner and outer peripheral surfaces of the second jig 22, the outer peripheral surface is a simple cylindrical surface, whereas the inner peripheral surface is a small-diameter portion 28 in the axial inner half and a large-diameter portion in the outer half. 29 is a stepped cylindrical surface made continuous by a stepped surface 30. Of these, the inner diameter of the small-diameter portion 28 is the same as or slightly larger than the outer diameter of the axially intermediate portion or inner end portion of the peripheral wall portion 23 of the cover 5. Accordingly, the center axis of the second jig 22 and the center axis of the cover 5 coincide with each other with the small-diameter portion 28 fitted on the peripheral wall portion 23. The outer diameter of the large-diameter portion 29 is the same as or slightly larger than the outer diameter of the cylindrical surface 21 formed near the inner end of the outer peripheral surface of the outer ring 1. Therefore, the center axis of the second jig 22 and the center axis of the outer ring 1 coincide with each other with the large-diameter portion 29 fitted on the cylindrical surface 21.

上述の様な第二の治具22により上記カバー5を上記外輪1の軸方向内端部に外嵌固定する際には、先ず、このカバー5の周壁部23を、上記第二の治具22の小径部28に内嵌する事で、このカバー5をこの第二の治具22に、同心に保持する。次いで、この第二の治具22の大径部29を上記外輪1の軸方向内端寄り部分の円筒面21に外嵌する。更に、この第二の治具22を、この第二の治具22の先端面が、上記外輪1の外周面の結合フランジ20の軸方向内側面に突き当たる迄、この外輪1に向け押し付ける。この押し付けに伴って、特許請求の範囲に記載した第二の押圧面に対応する、上記段差面30が、特許請求の範囲に記載した第二の被押圧面である、上記段差部26の軸方向内側面を、軸方向外方に押圧する。この結果、上記カバー5の大径部25が、上記外輪1の軸方向内端部に、軸方向に関して適正寸法だけ、外嵌固定される。そして、この状態で、上記カバー5の段差部26の軸方向内側面と上記結合フランジ20の軸方向内側面との軸方向距離L2 が、上記第二の治具22の先端面と段差面30との軸方向距離に一致する。 When the cover 5 is fitted and fixed to the inner end in the axial direction of the outer ring 1 by the second jig 22 as described above, first, the peripheral wall 23 of the cover 5 is attached to the second jig. The cover 5 is concentrically held by the second jig 22 by being fitted into the small-diameter portion 28 of 22. Next, the large-diameter portion 29 of the second jig 22 is externally fitted to the cylindrical surface 21 near the inner end in the axial direction of the outer ring 1. Further, the second jig 22 is pressed toward the outer ring 1 until the tip surface of the second jig 22 abuts against the inner surface in the axial direction of the coupling flange 20 on the outer peripheral surface of the outer ring 1. With this pressing, the stepped surface 30 corresponding to the second pressing surface described in the claims is the second pressed surface described in the claims. The inner side surface is pressed outward in the axial direction. As a result, the large-diameter portion 25 of the cover 5 is externally fitted and fixed to the inner end portion in the axial direction of the outer ring 1 by an appropriate dimension in the axial direction. In this state, the axial distance L 2 between the axial inner surface of the stepped portion 26 of the cover 5 and the axial inner surface of the coupling flange 20 is the tip surface of the second jig 22 and the stepped surface. This corresponds to the axial distance from 30.

上述の説明から明らかな通り、上記カバー5の段差部26の軸方向内側面と上記結合フランジ20の軸方向内側面との軸方向距離L2 は、上記第二の治具22の先端面と段差面30との軸方向距離を規制する事により正確に規制できる。又、前述の説明から明らかな通り、前記エンコーダ4aの段差部13の軸方向内側面と上記結合フランジ20の軸方向内側面との軸方向距離L1 は、前記第一の治具16の外径側、内径側両円筒部18、19の先端面同士の軸方向距離を規制する事により正確に規制できる。そして、上記両軸方向距離L2 、L1 同士の差(L2 −L1 )を適正にすれば、上記外輪1と前記ハブ2との位置関係が中立状態として、前記エンコーダ本体14の外周面に設けた第一、第二の特性変化部の境界位置を、上記カバー5に保持された1対のセンサ6a、6bの丁度中央に位置させる事ができる。この為、演算器で面倒な処理を行なわなくても、上記外輪1と上記ハブ2との間に作用するアキシアル荷重を正確に求められる。 As is clear from the above description, the axial distance L 2 between the axial inner surface of the stepped portion 26 of the cover 5 and the axial inner surface of the coupling flange 20 is equal to the tip surface of the second jig 22. By regulating the axial distance from the stepped surface 30, it can be accurately regulated. Further, as is apparent from the above description, the axial distance L 1 between the axial inner surface of the stepped portion 13 of the encoder 4 a and the axial inner surface of the coupling flange 20 is determined by the outside of the first jig 16. By restricting the axial distance between the tip surfaces of both the radial and inner cylindrical portions 18 and 19, it can be accurately regulated. If the difference (L 2 −L 1 ) between the two axial distances L 2 and L 1 is made appropriate, the positional relationship between the outer ring 1 and the hub 2 becomes neutral, and the outer circumference of the encoder body 14 The boundary position between the first and second characteristic changing portions provided on the surface can be positioned at the exact center of the pair of sensors 6 a and 6 b held by the cover 5. For this reason, the axial load acting between the outer ring 1 and the hub 2 can be accurately obtained without performing troublesome processing by a calculator.

[実施の形態の第2例]
図2は、請求項1〜4、6、7に対応する、本発明の実施の形態の第2例を示している。本例の場合には、基準面を、外輪1の軸方向内端面としている。即ち、ハブ2に対しエンコーダ4aを、軸方向に関する位置決めを図った状態で外嵌固定する際、第一の治具16aの径方向中間部に形成した突き当て面31を、上記外輪1の軸方向内端面に突き当てている。上記エンコーダ4aの外嵌固定作業時に、上記第一の治具16aを構成する外径側円筒部18aの先端面が、結合フランジ20の軸方向内側面に突き当たる事はない。又、上記外輪1に対しカバー5を、段差部26の軸方向外側面がこの外輪1の軸方向内端面に突き当たる迄押し込む。このカバー5の外嵌固定作業時に、第二の治具22の先端が、結合フランジ20の軸方向内側面に突き当たる事はない。この様な本例の場合には、上記第一の治具16aの突き当て面31と内径側円筒部19の先端面との軸方向距離を適正に規制する事により、中立状態で、第一、第二の特性変化部の境界位置を1対のセンサ6a、6bの丁度中央に位置させる事ができる。その他の構成及び作用は、上述した実施の形態の第1例の場合と同様である。
[Second Example of Embodiment]
FIG. 2 shows a second example of an embodiment of the present invention corresponding to claims 1 to 4, 6 and 7. In the case of this example, the reference surface is the axial inner end surface of the outer ring 1. That is, when the encoder 4a is externally fitted and fixed to the hub 2 in a state where positioning in the axial direction is achieved, the abutting surface 31 formed at the intermediate portion in the radial direction of the first jig 16a is used as the shaft of the outer ring 1. It abuts against the inner edge of the direction. During the external fitting fixing operation of the encoder 4a, the distal end surface of the outer diameter side cylindrical portion 18a constituting the first jig 16a does not hit the inner side surface of the coupling flange 20 in the axial direction. Further, the cover 5 is pushed into the outer ring 1 until the axially outer side surface of the stepped portion 26 abuts against the axially inner end surface of the outer ring 1. When the cover 5 is fitted and fixed, the tip of the second jig 22 does not hit the inner side surface of the coupling flange 20 in the axial direction. In the case of this example, by properly regulating the axial distance between the abutting surface 31 of the first jig 16a and the distal end surface of the inner diameter side cylindrical portion 19, The boundary position of the second characteristic change portion can be positioned exactly in the center of the pair of sensors 6a and 6b. Other configurations and operations are the same as those in the first example of the embodiment described above.

[実施の形態の第3例]
図3は、請求項1〜5、7に対応する、本発明の実施の形態の第3例を示している。上述した実施の形態の第1〜2例が、従動輪(FR車の前輪、FF車の後輪)用の車輪支持用転がり軸受ユニットを対象としていたのに対して、本例は、駆動輪(FR車の後輪、FF車の前輪、4WD車の全輪)用の車輪支持用転がり軸受ユニットを対象としている。この為に本例の場合には、ハブ2aの中心部にスプライン孔32を設けている。又、このハブ2aを構成する内輪15の軸方向内端部外周面と外輪1aの内周面軸方向内端寄り部分との間に、組み合わせシールリング33を設けて、転動体3、3を設置した空間34の軸方向内端開口部を塞いでいる。
[Third example of embodiment]
FIG. 3 shows a third example of the embodiment of the invention corresponding to claims 1 to 5 and 7. Whereas the first and second examples of the above-described embodiment are intended for wheel support rolling bearing units for driven wheels (front wheels of FR vehicles, rear wheels of FF vehicles), It is intended for a wheel bearing rolling bearing unit for (rear wheels of FR vehicles, front wheels of FF vehicles, all wheels of 4WD vehicles). For this reason, in the case of this example, a spline hole 32 is provided in the center of the hub 2a. Also, a combination seal ring 33 is provided between the outer peripheral surface of the inner end 15 of the inner ring 15 constituting the hub 2a and the inner peripheral surface of the outer ring 1a closer to the inner end of the axial direction. The axially inner end opening of the installed space 34 is closed.

本例は、この様な構造を対象としている為、物理量測定装置設置部分の軸方向寸法を短縮する為等の必要上、エンコーダ4aは、上記組み合わせシールリング33を構成するスリンガ35と一体に設けている。このスリンガ35の内径側半部は、上記エンコーダ4aの内周面よりも径方向内方に位置している。この様なスリンガ35の内径側半部の軸方向内側面が、第一の被押圧面となる。そして、上記エンコーダ4aを上記ハブ2aを構成する上記内輪15の軸方向内端部に外嵌固定する際には、上記スリンガ35の内径側半部の軸方向内側面に、第一の押圧面である、第一の治具16bの内径側円筒部19aの先端面を突き当てる。又、1対のセンサを保持する為の保持部材である、カバー5aは、金属板を曲げ形成する事により、断面L字形で全体を円環状に形成している。そして、この様なカバー5aを上記外輪1aの軸方向内端部に外嵌固定した状態で、このカバー5aに保持された1対のセンサ6a、6bが、上記外輪1aの内端部内径側部分に位置する様にしている。   Since this example is intended for such a structure, the encoder 4a is provided integrally with the slinger 35 constituting the combination seal ring 33 in order to shorten the axial dimension of the physical quantity measuring device installation portion. ing. The inner half of the slinger 35 is located radially inward from the inner peripheral surface of the encoder 4a. The axial inner side surface of the inner diameter side half of the slinger 35 is the first pressed surface. When the encoder 4a is externally fitted and fixed to the axially inner end of the inner ring 15 constituting the hub 2a, the first pressing surface is formed on the axially inner surface of the inner diameter side half of the slinger 35. The front end surface of the inner diameter side cylindrical portion 19a of the first jig 16b is abutted. The cover 5a, which is a holding member for holding a pair of sensors, is formed in an annular shape with an L-shaped cross section by bending a metal plate. Then, in a state where such a cover 5a is fitted and fixed to the inner end of the outer ring 1a in the axial direction, the pair of sensors 6a and 6b held by the cover 5a is connected to the inner diameter of the inner end of the outer ring 1a. It is supposed to be located in the part.

この様な構造を組み立てる本例の場合、上記第一の治具16bの外径側円筒部18を上記外輪1aの円筒面21に外嵌した状態で、上記内径側円筒部19aの先端面により上記スリンガ35の内径側半部の軸方向内側面を押圧しつつ、上記外径側円筒面部18の先端面を結合フランジ20の軸方向内側面に突き当てる。又、第二の治具22bの大径部29を上記外輪1aの円筒面21に外嵌した状態で、この第二の治具22bの段差面30aにより上記カバー5aの軸方向内側面を押圧しつつ、この第二の治具22bの先端面を結合フランジ20の軸方向内側面に突き当てる。この様な本例の構成は、車輪支持用転がり軸受ユニットが従動輪用から駆動輪用に変わった事に伴って、上記エンコーダ4a及び上記カバー5aの形状が変わり、上記第一、第二の治具16b、22bの形状が変わった点以外、前述の実施の形態の第1例の場合と同様である。   In the case of this example for assembling such a structure, the outer diameter side cylindrical portion 18 of the first jig 16b is externally fitted to the cylindrical surface 21 of the outer ring 1a, and the distal end surface of the inner diameter side cylindrical portion 19a is used. The front end surface of the outer diameter side cylindrical surface portion 18 is abutted against the inner surface in the axial direction of the coupling flange 20 while pressing the inner surface in the axial direction of the inner half of the slinger 35. Further, the axially inner side surface of the cover 5a is pressed by the step surface 30a of the second jig 22b with the large-diameter portion 29 of the second jig 22b fitted on the cylindrical surface 21 of the outer ring 1a. However, the front end surface of the second jig 22b is abutted against the inner side surface of the coupling flange 20 in the axial direction. In such a configuration of the present example, the shape of the encoder 4a and the cover 5a is changed in accordance with the change of the wheel bearing rolling bearing unit from the driven wheel to the driving wheel, and the first and second Except for the fact that the shapes of the jigs 16b and 22b have changed, this is the same as the case of the first example of the above-described embodiment.

本発明を実施する場合に、エンコーダの被検出面に設ける第一、第二の特性変化部の性状は特に問わない。図示の様な、磁性金属板に形成した透孔と柱部との繰り返しや、永久磁石(ゴム磁石、プラスチック磁石、焼結磁石等)製でS極とN極との繰り返しの他、傘歯車状の凹凸の繰り返しとする事もできる。又、エンコーダとセンサとの組み合わせにしても、磁気式に限らず、渦電流式、光学式、静電容量式等、他の型式も採用できる。又、上述した各実施の形態では、ハブ(外輪)に対してエンコーダ(保持部材であるカバー)を嵌合する際の、これらハブ(外輪)とエンコーダ(カバー)との心合わせの方法として、このエンコーダ(カバー)を第一の治具(第二の治具)に嵌合する手段を採用した。但し、本発明を実施する場合、上記心合わせの方法としては、上記エンコーダ(カバー)を第一の治具(第二の治具)に嵌合させず(径方向の隙間を形成し)、別途設けた案内部材により上記心合わせを行なう方法を採用しても良い。   In carrying out the present invention, the properties of the first and second characteristic changing portions provided on the detection surface of the encoder are not particularly limited. As shown in the figure, in addition to repetition of through holes and pillars formed in a magnetic metal plate, repetition of S poles and N poles made of permanent magnets (rubber magnets, plastic magnets, sintered magnets, etc.), bevel gears It is also possible to repeat the uneven shape. Further, the combination of the encoder and the sensor is not limited to the magnetic type, and other types such as an eddy current type, an optical type, and a capacitance type can be adopted. In each of the embodiments described above, as a method of aligning the hub (outer ring) and the encoder (cover) when the encoder (cover that is a holding member) is fitted to the hub (outer ring), A means for fitting the encoder (cover) to the first jig (second jig) was adopted. However, when carrying out the present invention, as a method of the alignment, the encoder (cover) is not fitted into the first jig (second jig) (a radial gap is formed), You may employ | adopt the method of performing the said center alignment with the guide member provided separately.

本発明の実施の形態の第1例を示しており、(A)はハブの軸方向内端部にエンコーダを外嵌固定する状態を、(B)は外輪の軸方向内端部にセンサを保持したカバーを外嵌固定する状態を、それぞれ示す部分断面図。FIG. 2 shows a first example of an embodiment of the present invention, in which (A) shows a state in which an encoder is fitted and fixed to the inner end of the hub in the axial direction, and (B) shows a sensor at the inner end in the axial direction of the outer ring. The fragmentary sectional view which shows the state which carries out external fitting fixation of the hold | maintained cover, respectively. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example. 先発明に係る荷重測定装置付転がり軸受ユニットの1例を示す断面図。Sectional drawing which shows one example of the rolling bearing unit with a load measuring device which concerns on a prior invention. エンコーダの被検出面の一部を径方向外方から見た図。The figure which looked at a part of the to-be-detected surface of an encoder from the radial direction outer side. アキシアル荷重に基づいて1対のセンサの出力信号が変化する状態を説明する為の線図。The diagram for demonstrating the state from which the output signal of a pair of sensor changes based on an axial load. エンコーダとセンサ装置との組み付け位置関係が不正である場合の問題を説明する為の模式図。The schematic diagram for demonstrating the problem when the assembly | attachment positional relationship of an encoder and a sensor apparatus is improper.

符号の説明Explanation of symbols

1、1a 外輪
2、2a ハブ
3 転動体
4、4a エンコーダ
5、5a カバー
6a、6b センサ
7 透孔
8 柱部
9 第一の特性変化部
10 第二の特性変化部
11 大径部
12 小径部
13 段差部
14 エンコーダ本体
15 内輪
16、16a、16b 第一の治具
17 基部
18、18a 外径側円筒部
19、19a 内径側円筒部
20 結合フランジ
21 円筒面
22、22a、22b 第二の治具
23 周壁部
24 底板部
25 大径部
26 段差部
27 嵌合面
28 小径部
29 大径部
30、30a 段差面
31 突き当て面
32 スプライン孔
33 組み合わせシールリング
34 空間
35 スリンガ
DESCRIPTION OF SYMBOLS 1, 1a Outer ring 2, 2a Hub 3 Rolling element 4, 4a Encoder 5, 5a Cover 6a, 6b Sensor 7 Through-hole 8 Column 9 First characteristic change part 10 Second characteristic change part 11 Large diameter part 12 Small diameter part 13 Stepped portion 14 Encoder body 15 Inner ring 16, 16a, 16b First jig 17 Base portion 18, 18a Outer diameter side cylindrical portion 19, 19a Inner diameter side cylindrical portion 20 Coupling flange 21 Cylindrical surface 22, 22a, 22b Second jig Tool 23 Peripheral wall portion 24 Bottom plate portion 25 Large diameter portion 26 Step portion 27 Fitting surface 28 Small diameter portion 29 Large diameter portion 30, 30a Step surface 31 Abutting surface 32 Spline hole 33 Combination seal ring 34 Space 35 Slinger

Claims (7)

回転機械と、物理量測定装置とを備え、
このうちの回転機械は、使用状態でも回転しない静止部材と、この静止部材に対して回転自在に支持された回転部材とを備えたものであり、
上記物理量測定装置は、上記回転部材の一部に、この回転部材と同心に設けられたエンコーダと、上記静止部材に対し保持部材を介して支持固定されたセンサ装置と、演算器とを備えたものであり、
このうちのエンコーダは、上記回転部材に対し、軸方向から嵌合固定された状態で支持固定されたもので、周面に被検出面を備えると共に、この被検出面のうち互いに軸方向に離れた2個所位置に第一、第二の特性変化部を備えたもので、これら両特性変化部の特性が円周方向に関して交互に且つ互いに同じピッチで変化しており、少なくとも上記第一の特性変化部の特性変化の位相が軸方向に関し、上記第二の特性変化部と異なる状態で漸次変化しており、
上記センサ装置は、1対のセンサから成るセンサ組を少なくとも1組設けて成り、このセンサ組を構成する1対のセンサのうちの一方のセンサの検出部を上記第一の特性変化部に、同じく他方のセンサの検出部を上記第二の特性変化部に、それぞれ対向させた状態で、上記保持部材を上記静止部材に対し、軸方向に嵌合固定する事で支持されており、
上記演算器は、上記センサ組を構成する1対のセンサの出力信号同士の間に存在する位相差に基づいて、上記回転部材と上記静止部材との間の物理量を求める回転機械の物理量測定装置の組立方法であって、
上記エンコーダを上記回転部材に対し、上記回転機械を構成する何れかの部材の一部に存在する、軸方向に向いた面である基準面を基準として嵌合固定すると共に、上記保持部材を上記静止部材に対し、この基準面を基準として嵌合固定する回転機械の物理量測定装置の組立方法。
A rotating machine and a physical quantity measuring device,
Among these, the rotating machine includes a stationary member that does not rotate even in use, and a rotating member that is rotatably supported with respect to the stationary member.
The physical quantity measuring device includes, on a part of the rotating member, an encoder provided concentrically with the rotating member, a sensor device supported and fixed to the stationary member via a holding member, and an arithmetic unit. Is,
Of these, the encoder is supported and fixed to the rotating member in a state of being fitted and fixed in the axial direction. The encoder has a detected surface on the peripheral surface, and is separated from the detected surface in the axial direction. The first and second characteristic changing portions are provided at two positions, and the characteristics of both the characteristic changing portions are alternately changed at the same pitch with respect to the circumferential direction, and at least the first characteristic is changed. The phase of the characteristic change of the changing part is gradually changed in a state different from the second characteristic changing part with respect to the axial direction,
The sensor device includes at least one sensor set including a pair of sensors, and the detection unit of one of the pair of sensors constituting the sensor set is used as the first characteristic change unit. Similarly, with the detection part of the other sensor facing the second characteristic change part, the holding member is supported by fitting and fixing to the stationary member in the axial direction.
The arithmetic unit is a physical quantity measuring device for a rotating machine that obtains a physical quantity between the rotating member and the stationary member based on a phase difference existing between output signals of a pair of sensors constituting the sensor set. The assembly method of
The encoder is fitted and fixed to the rotating member with reference to a reference surface, which is a surface facing the axial direction, existing in a part of any member constituting the rotating machine, and the holding member is fixed to the rotating member. A method for assembling a physical quantity measuring device for a rotating machine, wherein the stationary member is fitted and fixed to the stationary member with reference to the reference surface.
エンコーダの何れかの部分に、このエンコーダを回転部材に嵌合する際に第一の治具の軸方向端面を突き当てる為の、軸方向に向いた第一の被押圧面が設けられていて、この第一の治具に設けた第一の押圧面をこの第一の被押圧面に突き当てた状態で、この第一の治具のうちでこの第一の押圧面と径方向に関して異なる位置に設けた第一の突き当て面を基準面に突き当てる迄上記エンコーダを上記回転部材に嵌合し、保持部材の何れかの部分に、この保持部材を静止部材に嵌合する際に第二の治具の軸方向端面を突き当てる為の、軸方向に向いた第二の被押圧面が設けられていて、この第二の治具に設けた第二の押圧面をこの第二の被押圧面に突き当てた状態で、この第二の治具のうちでこの第二の押圧面と径方向に関して異なる位置に設けた第二の突き当て面を上記基準面に突き当てる迄上記保持部材を上記静止部材に嵌合する、請求項1に記載した回転部材の物理量測定装置の組立方法。   Any part of the encoder is provided with a first pressed surface facing in the axial direction for abutting the axial end surface of the first jig when the encoder is fitted to the rotating member. The first pressing surface of the first jig is different from the first pressing surface in the radial direction in a state where the first pressing surface is abutted against the first pressed surface. The encoder is fitted to the rotating member until the first abutting surface provided at the position abuts on the reference surface, and when the holding member is fitted to any part of the holding member, A second pressed surface facing in the axial direction for abutting the axial end surface of the second jig is provided, and the second pressing surface provided on the second jig is connected to the second pressed surface. Provided at a position different from the second pressing surface in the radial direction in the second jig in a state of abutting against the pressed surface. A second abutting surface for engaging said holding member until abutted to the reference plane to the stationary member, the assembly method of the physical quantity measuring device for a rotary member according to claim 1. 回転機械が転がり軸受ユニットであり、この転がり軸受ユニットは、静止部材である静止側軌道輪と、回転部材である回転側軌道輪と、これら静止側軌道輪と回転側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えたものである、請求項1〜2のうちの何れか1項に記載した回転機械の物理量測定装置の組立方法。   The rotating machine is a rolling bearing unit. The rolling bearing unit is a stationary member that is a stationary member, a rotating member that is a rotating member, and the stationary member and the rotating member that face each other. The rotating machine according to any one of claims 1 to 2, comprising a plurality of rolling elements provided between a stationary-side track and a rotating-side track existing on a peripheral surface. Assembly method of physical quantity measuring device. 転がり軸受ユニットが自動車の車輪を懸架装置に回転自在に支持する為の車輪支持用転がり軸受ユニットであり、静止側軌道輪が、外周面に設けた結合フランジの軸方向内側面を自動車の懸架装置の一部に突き合わせる事によりこの懸架装置に支持される外輪であり、回転側軌道輪が、外周面に設けた取付フランジに車輪が結合固定されるハブであり、エンコーダをこのハブの軸方向内端部に外嵌固定し、保持部材を上記外輪の軸方向内端部に外嵌固定する、請求項3に記載した回転機械の物理量測定装置の組立方法。   A rolling bearing unit is a rolling bearing unit for supporting a wheel of an automobile so that the automobile wheel can be freely rotated by a suspension device. The stationary bearing ring has an inner surface in the axial direction of a coupling flange provided on an outer peripheral surface. The outer ring is supported by this suspension device by abutting a part of the wheel, and the rotating side race is a hub in which the wheel is coupled and fixed to a mounting flange provided on the outer peripheral surface. 4. The method of assembling a physical quantity measuring device for a rotary machine according to claim 3, wherein the outer end is fitted and fixed to the inner end, and the holding member is fitted and fixed to the inner end in the axial direction of the outer ring. 基準面を、結合フランジの軸方向内側面とする、請求項4に記載した回転機械の物理量測定装置の組立方法。   The method for assembling the physical quantity measuring device for a rotary machine according to claim 4, wherein the reference surface is an inner surface in the axial direction of the coupling flange. 基準面を、外輪の軸方向内端面とする、請求項4に記載した回転機械の物理量測定装置の組立方法。   The method of assembling the physical quantity measuring device for a rotary machine according to claim 4, wherein the reference surface is an inner end surface in the axial direction of the outer ring. 外輪の軸方向内端部で結合フランジの軸方向内側面よりも突出した部分の外周面が、懸架装置の取付孔にがたつきなく内嵌できる円筒面であり、第一、第二の治具によりエンコーダ或いは保持部材を軸方向外方に押圧する際に、これら第一、第二の治具の先端部内周面をこの円筒面により案内する事で、これら第一、第二の治具の中心軸と上記外輪の中心軸とを一致させる、請求項5〜6のうちの何れか1項に記載した回転機械の物理量測定装置の組立方法。   The outer peripheral surface of the portion protruding from the axial inner surface of the coupling flange at the inner end in the axial direction of the outer ring is a cylindrical surface that can be fitted into the mounting hole of the suspension device without rattling. When the encoder or the holding member is pressed outward in the axial direction by the tool, the first and second jigs are guided by guiding the inner peripheral surfaces of the tips of the first and second jigs by the cylindrical surface. The method for assembling the physical quantity measuring device for a rotary machine according to any one of claims 5 to 6, wherein the center axis of the outer ring matches the center axis of the outer ring.
JP2006136597A 2006-05-16 2006-05-16 Method for assembling physical quantity measuring device of rotary machine Pending JP2007309683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136597A JP2007309683A (en) 2006-05-16 2006-05-16 Method for assembling physical quantity measuring device of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006136597A JP2007309683A (en) 2006-05-16 2006-05-16 Method for assembling physical quantity measuring device of rotary machine

Publications (1)

Publication Number Publication Date
JP2007309683A true JP2007309683A (en) 2007-11-29

Family

ID=38842685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136597A Pending JP2007309683A (en) 2006-05-16 2006-05-16 Method for assembling physical quantity measuring device of rotary machine

Country Status (1)

Country Link
JP (1) JP2007309683A (en)

Similar Documents

Publication Publication Date Title
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2008026041A (en) Ball bearing unit with load measuring apparatus
JP4957412B2 (en) Inspection method for state quantity measuring device of rolling bearing unit
JP4899722B2 (en) Rolling bearing unit with state quantity measuring device
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2007171104A (en) Roller bearing unit with load-measuring device
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP5007616B2 (en) State quantity measuring device for rolling bearing units
JP2007085742A (en) Rolling bearing unit with load measuring device
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP2007309683A (en) Method for assembling physical quantity measuring device of rotary machine
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP2008082483A (en) Rolling bearing unit with state quantity measuring device
JP2005164253A (en) Load measuring instrument for rolling bearing unit
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP5200898B2 (en) Inspection method and inspection device for state quantity measuring device of rolling bearing unit
JP2008224397A (en) Load measuring device for roller bearing unit
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP4735526B2 (en) State quantity measuring device for rolling bearing units
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP2008089392A (en) Magnetizing method for encoder
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit