JP2007309281A - Vane rotary type compressor - Google Patents

Vane rotary type compressor Download PDF

Info

Publication number
JP2007309281A
JP2007309281A JP2006141181A JP2006141181A JP2007309281A JP 2007309281 A JP2007309281 A JP 2007309281A JP 2006141181 A JP2006141181 A JP 2006141181A JP 2006141181 A JP2006141181 A JP 2006141181A JP 2007309281 A JP2007309281 A JP 2007309281A
Authority
JP
Japan
Prior art keywords
vane
cylinder
back pressure
rotor
side plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006141181A
Other languages
Japanese (ja)
Inventor
Hiroaki Murakami
弘明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006141181A priority Critical patent/JP2007309281A/en
Publication of JP2007309281A publication Critical patent/JP2007309281A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent increase in vane back pressure in the vicinity of an axial seal point. <P>SOLUTION: This vane rotary type compressor is provided with a cylinder 1 having a cylindrical inner wall; a rotor 2 arranged inside the cylinder 1 and provided with outer periphery partially forming a small gap between the rotor 2 and the cylinder 1 inner wall; vanes 4 slidably inserted into a plurality of vane grooves 3 provided in the rotor 2 and slid on the cylinder 1 inner wall; and a front side plate 6 and a rear side plate 7 closing both ends of the cylinder 1 and constituting an operation chamber 5. In at least one of the front side plate 6 or the rear side plate 7, an approximately arcuate groove 10 communicated with the vane grooves 3 is provided, and a closing section 9 for preventing communication of one vane pack pressure chamber 8 with the other vane back pressure chamber 8 is provided on the approximately arcuate groove 10. By forming a pressure relief space 21 communicated with the vane grooves 3 in a section from the discharge port 14 to the axial seal point 12, pressure increase in the vane back pressure chambers 8 is prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車空調用などに用いられるベーンロータリ型圧縮機の好適なベーン背圧制御構造に関するものである。   The present invention relates to a vane back pressure control structure suitable for a vane rotary compressor used for automobile air conditioning.

従来、この種のベーンロータリ型圧縮機は、ロータの回転による遠心力を利用してベーン先端をシリンダの内周面に圧接しているが、それだけではベーン先端とシリンダ内周面とのシール性が不充分であるため、ベーンの背面に対し作動室内の圧力を作用させてベーンがロータから突出するように付勢している。また、特有の課題としてベーンのジャンピングによるベーン音が発生することが良く知られている。   Conventionally, this type of vane rotary type compressor uses the centrifugal force generated by the rotation of the rotor to press the vane tip against the inner circumferential surface of the cylinder, but that alone is the seal between the vane tip and the cylinder inner circumferential surface. Therefore, the pressure in the working chamber is applied to the back surface of the vane so that the vane protrudes from the rotor. Further, it is well known that a vane noise is generated due to vane jumping as a unique problem.

また、この種のベーンロータリ型圧縮機のベーン音が発生するという課題とは、圧縮によるシリンダ内の圧力上昇に伴い、ベーン先端に掛かる負荷がベーン背圧より高くなることにより、ベーンがシリンダ内壁から微小に遊離し、再びシリンダ内壁に衝突する(以降ベーンチャタリング現象と言う)時に生じる音のことである。前記ベーン音の課題は、ベーンの背面に対し作動室内の圧力を作用させない閉じ込み区間を設けることにより、シリンダとロータとの間隙の減少に伴ってベーン背部のベーン背圧室の体積が減少することを用いてベーン背圧室を高圧力にすることで、基本的には克服されてきた(例えば、特許文献1参照)。   In addition, the problem that this type of vane rotary compressor generates a vane noise is that the load applied to the tip of the vane becomes higher than the vane back pressure as the pressure in the cylinder rises due to compression, so that It is a sound that is generated when it is slightly disengaged from the cylinder and collides with the inner wall of the cylinder again (hereinafter referred to as vane chattering phenomenon). The problem of the vane noise is that the volume of the vane back pressure chamber at the back of the vane decreases as the gap between the cylinder and the rotor decreases by providing a closed section where the pressure in the working chamber does not act on the back surface of the vane. This has been basically overcome by setting the vane back pressure chamber to a high pressure (see, for example, Patent Document 1).

図4および図5は、特許文献1に記載された従来のベーンロータリ型圧縮機を示すものである。内部に筒状の中空部を有するシリンダ101と、外周部の少なくとも一部が前記シリンダ101の内壁面に近接して回転自在に配設される略円筒状のロータ102がある。前記ロータには略放射状に3つのベーン溝103があり、前記ベーン溝103中にはベーン104a、104b、104c、が出没自在になるように挿入し構成している。   4 and 5 show a conventional vane rotary compressor described in Patent Document 1. FIG. There are a cylinder 101 having a cylindrical hollow portion inside, and a substantially cylindrical rotor 102 in which at least a part of the outer peripheral portion is rotatably disposed close to the inner wall surface of the cylinder 101. The rotor has three vane grooves 103 substantially radially, and the vanes 104a, 104b, and 104c are inserted into the vane groove 103 so as to be freely protruded and configured.

そしてベーン背圧を高圧力にするために、略円弧状の溝106に高圧ケース108内の油溜り部109のオイルを導き、ベーン背圧室105a、105bの背圧を高圧力にし、シリンダ101の内壁に押接している。また圧縮工程の途中からアキシャルシール点107まで閉じ込み区間として、ベーン背圧室105cをベーン背圧室105a、105bよりさらに高圧力でベーン104cをシリンダ101の内壁に押接している
特開昭61−241481号公報
In order to increase the vane back pressure, the oil in the oil reservoir 109 in the high-pressure case 108 is guided to the substantially arc-shaped groove 106, the back pressure in the vane back pressure chambers 105a and 105b is increased, and the cylinder 101 It is pressed against the inner wall. Further, as a closed section from the middle of the compression process to the axial seal point 107, the vane back pressure chamber 105c is pressed against the inner wall of the cylinder 101 at a higher pressure than the vane back pressure chambers 105a and 105b.
Japanese Patent Laid-Open No. 61-241481

しかしながら、前記従来の構成では、吐出口からアキシャルシール点の区間が閉じ込み区間となっているので、ベーン背圧が高圧となり過ぎる。そのため、ベーンを過度にシリンダ内壁に押接させ、ベーン先端部およびシリンダ内壁の摩耗増と、圧縮機の動力損失を引き起こす結果となり、圧縮機の信頼性や効率が悪くなるという課題を有していた。   However, in the conventional configuration, since the section from the discharge port to the axial seal point is a closed section, the vane back pressure becomes too high. Therefore, the vane is excessively pressed against the inner wall of the cylinder, resulting in increased wear on the vane tip and the inner wall of the cylinder and power loss of the compressor, resulting in poor reliability and efficiency of the compressor. It was.

本発明は、前記従来の課題を解決するもので、吐出口からアキシャルシール点の区間で、ベーン背圧が高圧になり過ぎることを防ぐことにより、ベーン先端部およびシリンダ内壁の摩耗増と、圧縮機の動力損失を改善し、信頼性と性能を向上させたベーンロータリ型圧縮機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and prevents the vane back pressure from becoming excessively high in the section from the discharge port to the axial seal point, thereby increasing the wear of the vane tip and the cylinder inner wall, and compressing. An object of the present invention is to provide a vane rotary compressor that improves power loss and improves reliability and performance.

前記従来の課題を解決するために、本発明のベーンロータリ型圧縮機は、閉じ込み区間
でベーン背圧室またはベーン溝と連通する圧力逃がし空間を備えたものである。
In order to solve the conventional problem, the vane rotary compressor of the present invention includes a pressure relief space communicating with the vane back pressure chamber or the vane groove in the closed section.

これによって、閉じ込み区間にてベーン背圧室と圧力逃がし空間が連通することにより、ベーン背圧室内の圧力を圧力逃がし空間に逃がすことで、ベーン背圧が高圧になり過ぎることを防ぎ、ベーン先端部およびシリンダ内壁の摩耗増と、圧縮機の動力損失を改善し信頼性と性能を向上することとなる。   As a result, the vane back pressure chamber and the pressure relief space communicate with each other in the closed section, so that the pressure in the vane back pressure chamber is released to the pressure relief space, thereby preventing the vane back pressure from becoming too high. This increases the wear of the tip and the cylinder inner wall, improves the power loss of the compressor, and improves the reliability and performance.

また、本発明のベーンロータリ型圧縮機は、前記圧力逃がし空間を吐出口からアキシャルシール点までの区間でベーン溝と連通するようにしたものである。   In the vane rotary compressor according to the present invention, the pressure relief space communicates with the vane groove in the section from the discharge port to the axial seal point.

これによって、圧力逃がし空間によるベーン背圧の抑制をベーン背圧が高圧となる区間のみで行うことができる。また、圧力逃がし空間をベーン背圧室と直接連通させず、ベーン溝を通じて連通させることにより、ベーン背圧の急変を防止し、ベーンの挙動を安定させることとなる。   Thereby, suppression of the vane back pressure by the pressure relief space can be performed only in the section where the vane back pressure is high. Further, the pressure relief space is not directly communicated with the vane back pressure chamber, but is communicated through the vane groove, so that a sudden change in the vane back pressure is prevented and the behavior of the vane is stabilized.

また、本発明のベーンロータリ型圧縮機は、アキシャルシール点にベーンとベーン溝が到達するまで、略円弧状の溝とベーン溝が連通しないように形成したものである。   The vane rotary compressor of the present invention is formed so that the substantially arc-shaped groove and the vane groove do not communicate until the vane and the vane groove reach the axial seal point.

これによって、閉じ込み区間において、ベーン背圧室がベーン溝を通じて圧力逃がし空間と略円弧状の溝の両方に連通されることにより、ベーン背圧が必要以上に低下するのを防ぎ、ベーン背圧を安定させることとなる。   This prevents the vane back pressure from being lowered more than necessary by connecting the vane back pressure chamber through the vane groove to both the pressure relief space and the substantially arcuate groove in the closed section. Will be stabilized.

本発明のベーンロータリ型圧縮機は、吐出口からアキシャルシール点の区間で、ベーン背圧が高圧になり過ぎることを防ぐことにより、ベーン先端部およびシリンダ内壁の摩耗増と、圧縮機の動力損失を改善し、信頼性と性能を向上することができる。   The vane rotary compressor according to the present invention prevents the vane back pressure from becoming excessively high in the section from the discharge port to the axial seal point, thereby increasing the wear of the vane tip and the cylinder inner wall and the power loss of the compressor. Can improve reliability and performance.

第1の発明は、内部に筒状の中空部を有するシリンダと、外周部の少なくとも一部が前記シリンダの内壁面に近接して回転自在に配設される略円筒状のロータと、前記ロータには略放射状に複数のベーン溝を有し、前記ベーン溝内に摺動自在に挿入され先端が前記シリンダ内壁面に当接し前記シリンダと前記ロータ相互間に形成された圧縮空間を少なくとも吸入空間と吐出空間に仕切るベーンと、シリンダの両端を閉塞し作動室を構成する前部側板および後部側板と、ベーン溝とベーンと前部及び後部側板とで形成されたベーン背圧室と、前記前部側板あるいは前記後部側板の少なくとも一方に調圧された流体を前記ベーン背圧室に導くようにし、複数あるベーン背圧室それぞれがロータの回転に伴って一回転する間に連通しない閉じ込み区間を設けるようにした略円弧状の溝とを備えたベーンロータリ型圧縮機において、前記閉じ込み区間に圧力逃がし空間を前記ベーン背圧室、又は前記ベーン溝と連通するように備えることにより、ベーン背圧を圧力逃がし空間に逃がすことで、ベーン背圧が高圧になり過ぎることを防ぐこととなり、ベーン先端部およびシリンダ内壁の摩耗増と、圧縮機の動力損失を改善し信頼性と性能を向上することができる。   According to a first aspect of the present invention, there is provided a cylinder having a cylindrical hollow portion therein, a substantially cylindrical rotor in which at least a part of an outer peripheral portion is rotatably disposed close to an inner wall surface of the cylinder, and the rotor Has a plurality of vane grooves in a substantially radial manner, is slidably inserted into the vane groove, and has a tip abutting against the inner wall surface of the cylinder and at least a compression space formed between the cylinder and the rotor. A vane partitioning into the discharge space, a front side plate and a rear side plate constituting the working chamber by closing both ends of the cylinder, a vane back pressure chamber formed by the vane groove, the vane, the front portion and the rear side plate, and the front A closed section in which fluid adjusted to at least one of the front side plate and the rear side plate is guided to the vane back pressure chamber, and each of the plurality of vane back pressure chambers does not communicate with each other as the rotor rotates. In the vane rotary type compressor having a substantially arc-shaped groove, the vane is provided with a pressure relief space in the closed section so as to communicate with the vane back pressure chamber or the vane groove. By releasing the back pressure into the pressure relief space, the vane back pressure is prevented from becoming too high, increasing the wear of the vane tip and cylinder inner wall, improving the power loss of the compressor and improving the reliability and performance. can do.

第2の発明は、特に、第1の発明の圧力逃がし空間を、吐出口からアキシャルシール点までの区間でベーン溝と連通することにより、ベーン背圧の抑制をベーン背圧が高圧となる区間でのみ行うこととなり、適正な範囲で摩耗と動力損失を改善することができる。また、圧力逃がし空間をベーン背圧室と直接連通せず、ベーン溝と連通することにより、ベーン溝の空間はベーンとロータと後部側板とで形成される微小空間であるので、ベーン背圧はベーン溝の微小空間を通じて圧力逃がし空間に連通することとなり、ベーン背圧の急変を防止し、ベーンの挙動を安定させることができる。   The second aspect of the invention is particularly a section in which the vane back pressure is suppressed by connecting the pressure relief space of the first invention to the vane groove in the section from the discharge port to the axial seal point. Therefore, wear and power loss can be improved within an appropriate range. In addition, the pressure relief space does not communicate directly with the vane back pressure chamber, but communicates with the vane groove, so that the vane groove space is a minute space formed by the vane, the rotor, and the rear side plate. It communicates with the pressure relief space through the minute space of the vane groove, so that a sudden change in the vane back pressure can be prevented and the behavior of the vane can be stabilized.

第3の発明は、特に、第1、第2の発明の略円弧状の溝を、アキシャルシール点にベーンとベーン溝が到達するまで、略円弧状の溝とベーン溝が連通しないように形成することにより、閉じ込み区間において、ベーン背圧室がベーン溝を通じて圧力逃がし空間と略円弧状の溝の両方と連通することにより、ベーン背圧が必要以上に低下するのを防ぐこととなり、ベーン背圧を安定させることができる。   In the third invention, in particular, the substantially arc-shaped groove of the first and second inventions is formed so that the substantially arc-shaped groove and the vane groove do not communicate until the vane and the vane groove reach the axial seal point. In the closed section, the vane back pressure chamber communicates with both the pressure relief space and the substantially arc-shaped groove through the vane groove, thereby preventing the vane back pressure from being lowered more than necessary. Back pressure can be stabilized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1および図2、図3は、本発明の第1の実施の形態におけるベーンロータリ型圧縮機の縦断面図と横断面図、略円弧状の溝と圧力逃がし空間が形成された後部側板を示すものである。
(Embodiment 1)
1, 2, and 3 are a longitudinal sectional view and a transverse sectional view of a vane rotary compressor according to a first embodiment of the present invention, and a rear side plate in which a substantially arc-shaped groove and a pressure relief space are formed. It is shown.

図1および図2、図3において、内部に筒状の中空部を有するシリンダ1と、外周部の少なくとも一部が前記シリンダ1の内壁面に近接して回転自在に配設される略円筒状のロータ2と、前記ロータ2には略放射状に複数のベーン溝3を有し、前記ベーン溝3内に摺動自在に挿入され先端が前記シリンダ1内壁面に当接し前記シリンダ1と前記ロータ2相互間に形成された圧縮空間を少なくとも吸入空間と吐出空間に仕切るベーン4と、シリンダ1の両端を閉塞し作動室5を構成する前部側板6および後部側板7と、前記ベーン溝3と前記ベーン4と前記前部側板6及び前記後部側板7とで形成されたベーン背圧室8と、前記前部側板6あるいは前記後部側板7の少なくとも一方に調圧された流体を前記ベーン背圧室8に導くようにし、複数ある前記ベーン背圧室8それぞれが前記ロータ2の回転に伴って一回転する間に連通しない閉じ込み区間9を設けるようにした略円弧状の溝10と、前記ロータ2と一体的に構成されて回転自在に軸支される駆動軸11と、前記ロータ2外周とシリンダ1内壁とが近接しているアキシャルシール点12をはさんで前記作動室5に連通する吸入口13及び吐出口14と、前記吐出口14の出口側に設けられた吐出弁15と、前記吐出口14より連通して圧縮された高圧流体中の潤滑油を分離する油分離部16と、前記油分離部16とその下方部に油溜り部17を有する高圧ケース18と、前記ベーン背圧室8と前記油溜り部17とを連通する給油通路19と、前記給油通路19を圧縮機運転時は連通し、圧縮機停止時は遮断する給油通路開閉手段であるベーン背圧付与装置20を備えたベーンロータリ型圧縮機で、前記閉じ込み区間9に圧力逃がし空間21を前記吐出口14から前記アキシャルシール点12までの区間で前記ベーン溝3と連通するように備え、前記閉じ込み区間9の終了点を前記アキシャルシール点12までとして、前記ベーン溝3と前記略円弧状の溝10が連通しないように、前記略円弧状の溝10を形成している。   1, 2, and 3, a cylinder 1 having a cylindrical hollow portion inside, and a substantially cylindrical shape in which at least a part of the outer peripheral portion is rotatably disposed near the inner wall surface of the cylinder 1. The rotor 2 and the rotor 2 have a plurality of vane grooves 3 in a substantially radial manner. The rotor 2 is slidably inserted into the vane groove 3, and the tip abuts against the inner wall surface of the cylinder 1. A vane 4 that partitions a compression space formed between the two into at least a suction space and a discharge space, a front side plate 6 and a rear side plate 7 that close both ends of the cylinder 1 to form a working chamber 5, and the vane groove 3 The vane back pressure chamber 8 formed by the vane 4, the front side plate 6 and the rear side plate 7, and the fluid adjusted to at least one of the front side plate 6 or the rear side plate 7, the vane back pressure. Led to chamber 8 and several Each of the vane back pressure chambers 8 includes a substantially arc-shaped groove 10 that is provided with a closed section 9 that does not communicate with each other during one rotation of the rotor 2, and the rotor 2. And a drive shaft 11 that is rotatably supported, and a suction port 13 and a discharge port 14 that communicate with the working chamber 5 across an axial seal point 12 where the outer periphery of the rotor 2 and the inner wall of the cylinder 1 are close to each other. , A discharge valve 15 provided on the outlet side of the discharge port 14, an oil separation unit 16 that separates lubricating oil in the compressed high-pressure fluid that communicates with the discharge port 14, and the oil separation unit 16 A high-pressure case 18 having an oil sump 17 at the lower part, an oil supply passage 19 for communicating the vane back pressure chamber 8 and the oil sump 17, and the oil supply passage 19 are communicated during compressor operation. Oil supply passage opening and closing hand that shuts off when stopped In the vane rotary type compressor having the vane back pressure applying device 20, the pressure relief space 21 is communicated with the vane groove 3 in the section from the discharge port 14 to the axial seal point 12 in the closed section 9. The substantially arcuate groove 10 is formed so that the vane groove 3 and the substantially arcuate groove 10 do not communicate with each other, with the end point of the closed section 9 extending to the axial seal point 12. Yes.

以上のように構成されたベーンロータリ型圧縮機について、以下その動作、作用を説明する。   About the vane rotary type compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、図示しない車両のエンジンよりベルト駆動され、ロータ2と一体的に形成された駆動軸11は前部側板6および後部側板7に軸支持され、ロータ2が回転することにより、作動室5の容積が変化し、潤滑油を含んだ冷媒を吸入・圧縮し、吐出口14より吐出される。   First, a drive shaft 11 driven by a belt from a vehicle engine (not shown) and integrally formed with the rotor 2 is axially supported by the front side plate 6 and the rear side plate 7. The volume changes, the refrigerant containing the lubricating oil is sucked and compressed, and discharged from the discharge port 14.

吐出された、潤滑油を含んだ冷媒は、高圧ケース18内に形成した油分離部16で、潤滑油が分離され、高圧ケース18下部方向に形成された油溜り部17に蓄えられる。   The discharged refrigerant containing the lubricating oil is separated in the oil separating portion 16 formed in the high pressure case 18 and stored in the oil reservoir 17 formed in the lower direction of the high pressure case 18.

その蓄えられた潤滑油は、高圧ケース18内圧力とシリンダ1内圧力の差圧力により、ベーン背圧付与装置20と後部側板7の給油通路19を通り、略円弧状の溝10に供給さ
れ、ベーン背圧室8を高圧力にし、ベーン4をシリンダ1の内壁に押し付ける。また、ロータ2、ベーン4、前部側板6および後部側板7等の各摺動部の潤滑を行う。ロータ2が回転しベーン4が閉じ込み区間9に入ることにより、ベーン背圧室8内の圧力はさらに高圧となる。
The stored lubricating oil is supplied to the substantially arc-shaped groove 10 through the vane back pressure applying device 20 and the oil supply passage 19 of the rear side plate 7 due to the differential pressure between the internal pressure of the high pressure case 18 and the internal pressure of the cylinder 1. The vane back pressure chamber 8 is set to a high pressure, and the vane 4 is pressed against the inner wall of the cylinder 1. Further, the sliding portions such as the rotor 2, the vane 4, the front side plate 6, the rear side plate 7 and the like are lubricated. As the rotor 2 rotates and the vane 4 enters the closed section 9, the pressure in the vane back pressure chamber 8 becomes higher.

吐出口14からアキシャルシール点12までの区間で、ベーン背圧室8と圧力逃がし空間21が連通することにより、ベーン背圧の上昇を防ぐ。また、ベーン背圧室8と圧力逃がし空間21が、ベーン溝3を通じて連通することにより、ベーン背圧が急激に低下することを防ぐ。   In the section from the discharge port 14 to the axial seal point 12, the vane back pressure chamber 8 and the pressure relief space 21 communicate with each other, thereby preventing an increase in the vane back pressure. Further, the vane back pressure chamber 8 and the pressure relief space 21 communicate with each other through the vane groove 3, thereby preventing the vane back pressure from rapidly decreasing.

閉じ込み区間9内では、ベーン背圧室8は圧力逃がし空間21とのみ連通し、アキシャルシール点12にベーン4が到達すると、ベーン背圧室8と圧力逃がし空間21との連通は切れて、ベーン背圧室8は略円弧状の溝10と連通することとなる。   In the closed section 9, the vane back pressure chamber 8 communicates only with the pressure relief space 21, and when the vane 4 reaches the axial seal point 12, the communication between the vane back pressure chamber 8 and the pressure relief space 21 is interrupted, The vane back pressure chamber 8 communicates with the substantially arc-shaped groove 10.

前記機構を、各部品共に所定の寸法にて作製し作動させた場合の、作動室5内及びベーン背圧室8内の圧力変化例を以下に示すと、圧縮工程が始まる前の圧力は、それぞれ吸入圧力と高圧ケース18内圧力に相当するため、1.5kg/cmと30kg/cm程度となる。その後、作動室5内圧力は圧縮されるため上昇し、ベーン背圧室8内圧力も、閉じ込み区間に入ることにより圧縮され上昇する。ベーン4が吐出口14に位置するときには、作動室5内圧力は、40kg/cm程となり、ベーン背圧室8内圧力は、圧力逃がし空間がない場合は、50kg/cm程となる。作動室5内圧力に対してベーン4がジャンピングを起こさないようにベーン4をシリンダ1内壁に押し付けるために必要なベーン背圧室8内圧力は、ベーン4に掛かる力の分力により0.8倍程度以上の圧力が必要であるので、上記吐出口14に位置するときのベーン背圧室8の圧力は32kg/cm以上でよいとなるため、18kg/cmの圧力が必要圧力より高すぎることとなり、この過圧の分だけ、シリンダ1の内壁とベーン4の先端は摩耗が増し、動力損失を起こしていたことになる。そのため、圧力逃がし空間は、この18kg/cmを逃がすのに十分かつ、必要以上に逃がさない程度の体積を保有することが最適と言える。 When the mechanism is manufactured and operated for each part with predetermined dimensions, the pressure change in the working chamber 5 and the vane back pressure chamber 8 is shown below. Since they correspond to the suction pressure and the internal pressure of the high-pressure case 18, respectively, they are about 1.5 kg / cm 2 and 30 kg / cm 2 . Thereafter, the pressure in the working chamber 5 rises because it is compressed, and the pressure in the vane back pressure chamber 8 also rises after being compressed by entering the closed section. When the vane 4 is positioned at the discharge port 14, the pressure in the working chamber 5 is about 40 kg / cm 2 , and the pressure in the vane back pressure chamber 8 is about 50 kg / cm 2 when there is no pressure relief space. The pressure in the vane back pressure chamber 8 necessary to press the vane 4 against the inner wall of the cylinder 1 so that the vane 4 does not cause jumping with respect to the pressure in the working chamber 5 is 0.8 due to the component force of the force applied to the vane 4. Since a pressure of about twice or more is required, the pressure of the vane back pressure chamber 8 when it is located at the discharge port 14 may be 32 kg / cm 2 or more, so that the pressure of 18 kg / cm 2 is higher than the necessary pressure. As a result of this overpressure, the inner wall of the cylinder 1 and the tip of the vane 4 have increased wear, resulting in power loss. Therefore, it can be said that it is optimal that the pressure relief space has a volume that is sufficient to escape 18 kg / cm 2 and that does not escape more than necessary.

また、前記機構の圧力逃がし空間は、前部側板6または後部側板7に溝を加工するのみで形成できるため、安価に作ることができる。   Further, the pressure relief space of the mechanism can be formed at low cost because it can be formed only by processing the groove in the front side plate 6 or the rear side plate 7.

以上のように、本発明にかかるベーンロータリ型圧縮機は、ベーン先端部およびシリンダ内壁の摩耗増と、圧縮機の動力損失を改善し、信頼性と性能の向上が可能となるので、空調用以外の圧縮機等の用途にも、適用できる。   As described above, the vane rotary compressor according to the present invention improves the wear and loss of the vane tip and the inner wall of the cylinder and the power loss of the compressor, and improves reliability and performance. It can be applied to other uses such as compressors.

本発明の実施の形態1におけるベーンロータリ型圧縮機の縦断面図(図2のA−A断面図)FIG. 2 is a longitudinal sectional view of the vane rotary type compressor according to the first embodiment of the present invention (cross-sectional view taken along line AA in FIG. 2). 本発明の実施の形態1におけるベーンロータリ型圧縮機の横断面図1 is a cross-sectional view of a vane rotary compressor according to Embodiment 1 of the present invention. 本発明の実施の形態1における給油通路を形成している後部側板図Rear side plate view forming the oil supply passage in the first embodiment of the present invention 従来のベーンロータリ型圧縮機の横断面図(図5のA−A断面図)Cross-sectional view of a conventional vane rotary compressor (A-A cross-sectional view in FIG. 5) 従来のベーンロータリ型圧縮機の縦断面図Longitudinal sectional view of a conventional vane rotary compressor

符号の説明Explanation of symbols

1 シリンダ
2 ロ一夕
3 ベーン溝
4 ベーン
5 作動室
6 前部側板
7 後部側板
8 ベーン背圧室
9 閉じ込み区間
10 略円弧状の溝
11 駆動軸
12 アキシャルシール点
13 吸入口
14 吐出口
15 吐出弁
16 油分離部
17 油溜り部
18 高圧ケース
19 給油通路
20 ベーン背圧付与装置
21 圧力逃がし空間
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Rollover 3 Vane groove 4 Vane 5 Actuation chamber 6 Front side plate 7 Rear side plate 8 Vane back pressure chamber 9 Containment section 10 Substantially circular groove 11 Drive shaft 12 Axial seal point 13 Discharge valve 16 Oil separator 17 Oil reservoir 18 High pressure case 19 Oil supply passage 20 Vane back pressure applying device 21 Pressure relief space

Claims (3)

内部に筒状の中空部を有するシリンダと、外周部の少なくとも一部が前記シリンダの内壁面に近接して回転自在に配設される略円筒状のロータと、前記ロータには略放射状に複数のベーン溝を有し、前記ベーン溝内に摺動自在に挿入され先端が前記シリンダ内壁面に当接し前記シリンダと前記ロータ相互間に形成された圧縮空間を少なくとも吸入空間と吐出空間に仕切るベーンと、前記シリンダの両端を閉塞し作動室を構成する前部側板および後部側板と、前記ベーン溝と前記ベーンと前記前部及び後部側板とで形成されたベーン背圧室と、前記前部側板あるいは前記後部側板の少なくとも一方に調圧された流体を前記ベーン背圧室に導くようにし、複数ある前記ベーン背圧室それぞれが前記ロータの回転に伴って一回転する間に連通しない区間(以降閉じ込み区間と言う)を設けるようにした略円弧状の溝とを備えたベーンロータリ型圧縮機において、前記閉じ込み区間に圧力逃がし空間を備え、前記圧力逃がし空間は前記ベーン背圧室、又は前記ベーン溝と連通することを特徴とするベーンロータリ型圧縮機。 A cylinder having a cylindrical hollow portion therein, a substantially cylindrical rotor in which at least a part of the outer peripheral portion is rotatably disposed close to the inner wall surface of the cylinder, and a plurality of the rotor in a substantially radial manner The vane groove is slidably inserted into the vane groove, the tip abuts against the inner wall surface of the cylinder, and the compression space formed between the cylinder and the rotor is divided into at least a suction space and a discharge space. A front side plate and a rear side plate that close both ends of the cylinder to form a working chamber, a vane back pressure chamber formed by the vane groove, the vane, the front and rear side plates, and the front side plate. Alternatively, the fluid adjusted to at least one of the rear side plates is guided to the vane back pressure chamber, and the plurality of vane back pressure chambers do not communicate with each other during one rotation as the rotor rotates. In the vane rotary type compressor having a substantially arc-shaped groove that is provided with a gap (hereinafter referred to as a closed section), the closed section includes a pressure relief space, and the pressure relief space is the vane back pressure. A vane rotary compressor that communicates with the chamber or the vane groove. 前記圧力逃がし空間は、吐出口から前記ロータと前記シリンダの近接点(以降アキシャルシール点と言う)の区間において、前記ベーン溝と連通することを特徴とする請求項1に記載のベーンロータリ型圧縮機。 2. The vane rotary compression according to claim 1, wherein the pressure relief space communicates with the vane groove in a section between a discharge port and a proximity point (hereinafter referred to as an axial seal point) between the rotor and the cylinder. Machine. 前記略円弧状の溝は、前記閉じ込み区間の終了点を前記アキシャルシール点までとして、前記ベーン溝と前記ベーンが前記アキシャルシール点に到達するまで前記ベーン溝と連通しないことを特徴とする請求項1または2に記載のベーンロータリ型圧縮機。 The substantially arc-shaped groove is characterized in that the end point of the confining section is set to the axial seal point and does not communicate with the vane groove until the vane groove and the vane reach the axial seal point. Item 3. A vane rotary compressor according to item 1 or 2.
JP2006141181A 2006-05-22 2006-05-22 Vane rotary type compressor Pending JP2007309281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141181A JP2007309281A (en) 2006-05-22 2006-05-22 Vane rotary type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141181A JP2007309281A (en) 2006-05-22 2006-05-22 Vane rotary type compressor

Publications (1)

Publication Number Publication Date
JP2007309281A true JP2007309281A (en) 2007-11-29

Family

ID=38842361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141181A Pending JP2007309281A (en) 2006-05-22 2006-05-22 Vane rotary type compressor

Country Status (1)

Country Link
JP (1) JP2007309281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105386A1 (en) 2012-01-11 2013-07-18 三菱電機株式会社 Vane-type compressor
JP2014125960A (en) * 2012-12-26 2014-07-07 Calsonic Kansei Corp Gas compressor
JP2015137576A (en) * 2014-01-22 2015-07-30 カルソニックカンセイ株式会社 Compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105386A1 (en) 2012-01-11 2013-07-18 三菱電機株式会社 Vane-type compressor
US9388807B2 (en) 2012-01-11 2016-07-12 Mitsubishi Electric Corporation Vane compressor having a second discharge port that includes an opening portion to a compression space
JP2014125960A (en) * 2012-12-26 2014-07-07 Calsonic Kansei Corp Gas compressor
JP2015137576A (en) * 2014-01-22 2015-07-30 カルソニックカンセイ株式会社 Compressor

Similar Documents

Publication Publication Date Title
JP3874300B2 (en) Vane pump
EP1394418B1 (en) Vane compressor
JP5527349B2 (en) Vane type compressor
KR101520526B1 (en) Vane rotary compressor
WO2015104930A1 (en) Gas compressor
JP2006200522A (en) Multi-stage compression type rotary compressor
KR101519698B1 (en) Vane rotary compressor
JP5708570B2 (en) Vane type compressor
JP2007309281A (en) Vane rotary type compressor
JP2009007938A (en) Rotary compressor
JP2006194111A (en) Vane rotary compressor
CN103511254B (en) Serial vane compressor
JP2010138744A (en) Vane rotary type compressor
JP2010249090A (en) Vane rotary type compressor
JP2009007937A (en) Rotary compressor
JP2009264160A (en) Vane rotary type compressor
JP5585617B2 (en) Tandem vane compressor
JPH0528396Y2 (en)
JP2019100234A (en) Vane-type compressor
JP2007192035A (en) Vane rotary compressor
KR20170040409A (en) Vane rotary compressor
JP2008014174A (en) Compressor
JP2006037928A (en) Compressor
JP2004190510A (en) Gas compressor
JP2015140706A (en) compressor