JP2007308351A - Fluorine-containing nano diamond dispersion liquid and method for producing the same - Google Patents
Fluorine-containing nano diamond dispersion liquid and method for producing the same Download PDFInfo
- Publication number
- JP2007308351A JP2007308351A JP2006141153A JP2006141153A JP2007308351A JP 2007308351 A JP2007308351 A JP 2007308351A JP 2006141153 A JP2006141153 A JP 2006141153A JP 2006141153 A JP2006141153 A JP 2006141153A JP 2007308351 A JP2007308351 A JP 2007308351A
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- dispersion
- dispersion liquid
- particles
- containing nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、精密研磨剤、潤滑用剤、熱交換流動媒体などとして有用な、フッ素含有ナノダイヤモンドの分散液及びその作製方法に関するものである。 The present invention relates to a fluorine-containing nanodiamond dispersion useful as a precision abrasive, a lubricant, a heat exchange fluid medium, and the like, and a method for producing the same.
トリニトロトルエン(TNT)、ヘキソゲン(RDX)などの酸素欠乏型爆薬を用いた衝撃加圧の爆射法(衝撃法)により得られたダイヤモンドは、一次粒子が3〜20nmと極めて小さいためナノダイヤモンド(ND)と呼ばれている。しかし、ND微粒子表面は、非黒鉛質、黒鉛質皮膜などが融着し、粒子径が50〜7500nmの二次、三次凝集体として製造されているため、クラスターダイヤモンド(CD)とも呼ばれている(例えば、非特許文献1、非特許文献2)。NDは、そのナノ粒子径により、研磨剤、潤滑剤、熱交換流動媒体、樹脂、金属などとの複合材料、低誘電率膜、エミッター材などの電子材料、DNA担体、ウイルス捕捉用担体などの医療分野など、通常のダイヤモンドの用途以外にも広範囲な用途での利用が期待されている。このようにNDを複合材料などと工業的に利用する場合には、NDがナノオーダーの微細な粒子で液体中に分散した分散液としての提供が求められる。しかし、ナノレベルオーダーから数百ナノオーダーの粒子を溶液中に分散して取り扱う場合、粒子が小さいほど粒子同士の凝集が起こりやすく、また、凝集した粒子が沈降するため安定な分散液を得ることは非常に難しい。そのため、NDにおいても、CDを超音波ホモジナイザー、ビーズミル湿式解砕機などで、液体中に一次粒子のNDのまま安定に分散させる方法が種々検討されている(例えば、特許文献1、特許文献2)。しかし、長期的な安定性に乏しく、また乾燥後再凝集するなど、まだ市場の要求には応えられていない。 Diamonds obtained by the impact-pressure explosion method (impact method) using oxygen-deficient explosives such as trinitrotoluene (TNT) and hexogen (RDX) are nanodiamonds because the primary particles are as small as 3 to 20 nm. ND). However, since the surface of the ND fine particles is produced as a secondary or tertiary aggregate having a non-graphitic or graphite film fused and having a particle diameter of 50 to 7500 nm, it is also called cluster diamond (CD). (For example, Non-Patent Document 1, Non-Patent Document 2). Depending on the nanoparticle size, ND is a composite material with abrasive, lubricant, heat exchange fluid medium, resin, metal, etc., low dielectric constant film, electronic material such as emitter material, DNA carrier, virus capture carrier, etc. It is expected to be used in a wide range of applications other than normal diamond applications such as in the medical field. Thus, when ND is industrially used as a composite material or the like, it is required to provide a dispersion liquid in which ND is dispersed in liquid with nano-order fine particles. However, when handling nano-level to hundreds of nano-order particles dispersed in a solution, the smaller the particles, the more likely the particles will aggregate, and the aggregated particles will settle down to obtain a stable dispersion. Is very difficult. Therefore, in ND, various methods for stably dispersing CD in the liquid as ND of primary particles in an ultrasonic homogenizer, bead mill wet disintegrator, etc. have been studied (for example, Patent Document 1 and Patent Document 2). . However, it has not been able to meet market demands such as poor long-term stability and re-aggregation after drying.
一方、CDの二次、三次凝集体の解砕を目的に、CDとフッ素ガスとを反応させる方法が報告されている。例えば、CDを反応温度:300〜500℃、フッ素ガス圧:0.1MPa、反応時間:5〜10日にてフッ素と接触させると、ダイヤモンド構造を保持したままで、F/Cモル比が、0.2程度(XPS、元素分析)のフッ素含有CDが得られる(非特許文献3)。このフッ素処理により、二次粒子径が約40μmのCDは、その凝集が部分的に解けて、200nm程度になることがTEMにより観測されている。また、CDの摩擦係数は、ポリテトラフルオロエチレン(PTFE)との混合粉末での回転式摩擦試験により、著しく低下することが確認された(非特許文献4)。これは、TEM観察によるNDの格子模様が、明瞭になっていることから、高温での反応によりND表面の非黒鉛質炭素が除去され、更にND表面のCF基、CF2基、CF3基等の形成により表面エネルギーが低下したためと報告されている(非特許文献5)。また、反応温度:150、310、410、470℃、F2/H2流量比:3/1、反応時間:48時間のフッ素処理により、フッ素含有量が5〜8.6at.%(EDXによる分析)のフッ素含有NDを合成したことにより、元のNDよりもエタノールなどの極性溶媒に対する溶解性が向上する結果も報告されている(非特許文献6、特許文献3)。 On the other hand, a method of reacting CD with fluorine gas for the purpose of crushing secondary and tertiary aggregates of CD has been reported. For example, when CD is brought into contact with fluorine at a reaction temperature of 300 to 500 ° C., a fluorine gas pressure of 0.1 MPa, a reaction time of 5 to 10 days, the F / C molar ratio is maintained while maintaining the diamond structure. A fluorine-containing CD of about 0.2 (XPS, elemental analysis) is obtained (Non-patent Document 3). It has been observed by TEM that CD having a secondary particle diameter of about 40 μm is partially dissolved by the fluorine treatment to be about 200 nm. Further, it was confirmed that the friction coefficient of CD was remarkably lowered by a rotary friction test using a mixed powder with polytetrafluoroethylene (PTFE) (Non-patent Document 4). This is because the non-graphitic carbon on the ND surface is removed by the reaction at a high temperature because the ND lattice pattern by TEM observation is clear, and the CF group, CF 2 group, CF 3 group on the ND surface are further removed. It has been reported that the surface energy has decreased due to the formation of the above (Non-Patent Document 5). Moreover, the fluorine content is 5 to 8.6 at. By fluorine treatment of reaction temperature: 150, 310, 410, 470 ° C., F 2 / H 2 flow rate ratio: 3/1, reaction time: 48 hours. % (Analysis by EDX) has been reported to improve the solubility in polar solvents such as ethanol compared to the original ND (Non-Patent Document 6, Patent Document 3).
これらのNDやフッ素含有NDは、エタノールなどの炭素数3以下のアルコール類やジメチルスルホキシドなどの分散媒には分散し、NDやフッ素含有NDが高濃度で含まれる分散液を作製可能である。しかし、n−ヘキサン、ベンゼン、石油系オイル(主に炭素数10以上の直鎖状炭化水素)などの炭化水素には全く分散せず、ケトン類、エーテル類、炭素数8以上のアルコール類などに対しても分散性が極度に低い。NDやフッ素含有NDを前述の研磨剤、潤滑剤などに利用する分散液は、その用途ごとに粘度や揮発性、引火性、電気伝導性など分散媒の物理化学的性質が要求されるが、分散可能な分散媒の種類が少なく、その選択の幅が極端に制限される。
フッ素含有NDは、一部の分散媒にしか分散しないため、用途に合わせた分散媒の選択が困難な状況にある。 Since the fluorine-containing ND is dispersed only in a part of the dispersion medium, it is difficult to select a dispersion medium suitable for the application.
本発明は、フッ素含有NDの粒子が分散した分散液の粘度、揮発性、溶解度、引火性、電気伝導性などの物理化学的性質を自由に選択できない状況を改善することである。また、フッ素含有ND粒子を平均粒子径300nm以下で分散させ、120時間以上の長期に渡って安定な分散液を提供することを目的とする。 The present invention is to improve the situation in which physicochemical properties such as viscosity, volatility, solubility, flammability, and electrical conductivity of a dispersion liquid in which fluorine-containing ND particles are dispersed cannot be freely selected. It is another object of the present invention to provide a dispersion liquid in which fluorine-containing ND particles are dispersed with an average particle diameter of 300 nm or less and stable for a long period of 120 hours or more.
本発明者らは、上記目的を達成するために、鋭意検討を重ねた結果、フッ素含有NDを分散粒子とし、分散媒にフッ素系有機溶媒を使用することにより、120時間以上の長期にわたり沈殿を生じることなく、安定に存在することを見出し、本発明に至ったものである。 As a result of intensive studies to achieve the above object, the present inventors made precipitation over a long period of 120 hours or more by using fluorine-containing ND as dispersed particles and using a fluorine-based organic solvent as a dispersion medium. The present invention has been found out that it exists stably without occurring.
すなわち本発明は、フッ素含有ナノダイヤモンドの分散液であって、分散媒がフッ素系有機溶媒であることを特徴とするフッ素含有ナノダイヤモンド分散液であり、該フッ素系有機溶媒が、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、アルコール類のフッ化物のうち、少なくとも一つ以上からなるフッ素含有ナノダイヤモンド分散液であり、また、フッ素含有ナノダイヤモンド粒子とフッ素系有機溶媒を混合して懸濁液を作製する工程と、懸濁液を分級する工程から成るフッ素含有ナノダイヤモンド分散液の作製方法を提供するものである。 That is, the present invention is a fluorine-containing nanodiamond dispersion liquid characterized in that the dispersion medium is a fluorine-containing nanodiamond dispersion liquid, and the dispersion medium is a fluorine-based organic solvent. Fluorine-containing nanodiamond dispersion liquid comprising at least one of fluoroether, hydrochlorofluorocarbon, and fluorides of alcohols. Also, the suspension is obtained by mixing fluorine-containing nanodiamond particles and a fluorine-based organic solvent. The present invention provides a method for producing a fluorine-containing nanodiamond dispersion comprising a producing step and a step of classifying a suspension.
本発明のフッ素含有ナノダイヤモンド分散液は、120時間以上の長期に渡って、安定に分散し、保存することが可能である。また、本発明の分散液は、精密研磨剤、潤滑用剤、熱交換流動媒体などの有用な用途に使用可能である。 The fluorine-containing nanodiamond dispersion liquid of the present invention can be stably dispersed and stored for a long period of 120 hours or more. In addition, the dispersion of the present invention can be used for useful applications such as precision abrasives, lubricants, and heat exchange fluid media.
以下、本発明をさらに詳述する。 Hereinafter, the present invention will be described in further detail.
本発明で用いるフッ素含有ND分散粒子は、NDとフッ素ガスとの直接反応、あるいはフッ素プラズマによるフッ素化等により生成するフッ素含有NDを用いる。このフッ素含有NDのフッ素含有量は、10wt%以上であることが好ましく、フッ素含有量が10wt%未満である場合、フッ素系有機溶媒との親和性が低下し、十分な分散液の濃度や安定性が得られにくい。 As the fluorine-containing ND dispersed particles used in the present invention, fluorine-containing ND produced by direct reaction between ND and fluorine gas or fluorination by fluorine plasma is used. The fluorine content of the fluorine-containing ND is preferably 10 wt% or more. When the fluorine content is less than 10 wt%, the affinity with the fluorine-based organic solvent is lowered, and the concentration and stability of the dispersion are sufficient. It is difficult to obtain sex.
本発明において、用いるフッ素系有機溶媒は、ハイドロフルオロカーボン、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、アルコール類のフッ化物である。その構造により粘度や揮発性、化学的安定性の異なる物質が豊富にあり、また、フッ素含有NDに対する分散性が高いため、上記目的を達成する分散媒として適している。 In the present invention, the fluorinated organic solvent used is hydrofluorocarbon, hydrofluoroether, hydrochlorofluorocarbon, or fluoride of alcohols. Due to its structure, there are abundant substances with different viscosities, volatility, and chemical stability, and since it has high dispersibility with respect to fluorine-containing ND, it is suitable as a dispersion medium for achieving the above object.
フッ素系有機溶媒として、具体的には、HFC−365mfc(C4H5F5)、HFC−43−10mee(C5H2F10)、HFC−52−13p(C6HF13)、またはHFC−c−447ef(C5H3F7)などのハイドロフルオロカーボン(HFC)、あるいはHFE−449s1(C5H3F9O)、HFE−569sf2(C6H5F9O)、またはHFE−347pc−f(C4H3F7O)などのハイドロフルオロエーテル(HFE)、HCFC-225cb(C3HCl2F5)、HCFC−141b(C2H3Cl2F)などのハイドロクロロフルオロカーボン(HCFC)、テトラフルオロプロパノール(TFP:C3H4F4O)、オクタフルオロペンタノール(OFP:C5H4F8O)などのアルコール類のフッ化物などが挙げられる。 As the fluorine-based organic solvents, specifically, HFC-365mfc (C 4 H 5 F 5), HFC-43-10mee (C 5 H 2 F 10), HFC-52-13p (C 6 HF 13), or HFC-c-447ef (C 5 H 3 F 7) hydrofluorocarbons, such as (HFC), or HFE-449s1 (C 5 H 3 F 9 O), HFE-569sf2 (C 6 H 5 F 9 O), or HFE -347pc-f (C 4 H 3 F 7 O) hydrofluoroether such as (HFE), HCFC-225cb ( C 3 HCl 2 F 5), HCFC-141b (C 2 H 3 Cl 2 F) hydrochlorofluorocarbons such as fluorocarbons (HCFC), tetrafluoropropanol (TFP: C 3 H 4 F 4 O), octafluoropentanol ( FP: C 5 H 4 F 8 O) and alcohols of fluoride such.
次に、本発明のフッ素含有ND分散液の作製方法は、フッ素含有NDとフッ素系有機溶媒を超音波照射により混合し、フッ素含有ND粒子をフッ素系有機溶媒中に懸濁させ、この懸濁液を遠心分離により分級することにより、粒子径が500nmを超える範囲にある不純物および凝集粒子を除去し、平均粒子径が300nm以下のフッ素含有ND粒子からなる透明な分散液を作製する。 Next, the method for producing the fluorine-containing ND dispersion of the present invention is such that the fluorine-containing ND and the fluorine-based organic solvent are mixed by ultrasonic irradiation, and the fluorine-containing ND particles are suspended in the fluorine-based organic solvent. By classifying the liquid by centrifugation, impurities and aggregated particles having a particle diameter exceeding 500 nm are removed, and a transparent dispersion liquid composed of fluorine-containing ND particles having an average particle diameter of 300 nm or less is prepared.
得られるフッ素含有ND分散液の濃度は、0.05wt%以上が好ましい。分散液の濃度が0.05wt%未満では、分散液中に含まれるフッ素含有NDの粒子数が少なく、研磨剤等に応用した際に得られる効果が低下し好ましくない。 The concentration of the resulting fluorine-containing ND dispersion is preferably 0.05 wt% or more. If the concentration of the dispersion is less than 0.05 wt%, the number of fluorine-containing ND particles contained in the dispersion is small, and the effect obtained when applied to an abrasive or the like is lowered, which is not preferable.
フッ素含有NDの分散液濃度が0.05wt%以上の該分散液を得るには、フッ素含有ND粒子をフッ素系有機溶媒と混合し、出力が400W以上かつ0.5時間以上の超音波照射によりフッ素含有ND粒子をフッ素系有機溶媒中に懸濁させ懸濁液を得る。懸濁液を得る方法として、超音波照射以外にスターラー等による撹拌があるが、この場合、濃度が0.05wt%以上の分散液を得られにくい。 In order to obtain the dispersion liquid having a fluorine-containing ND dispersion concentration of 0.05 wt% or more, the fluorine-containing ND particles are mixed with a fluorine-based organic solvent, and the ultrasonic wave irradiation is performed with an output of 400 W or more and 0.5 hours or more. A suspension is obtained by suspending fluorine-containing ND particles in a fluorine-based organic solvent. As a method for obtaining a suspension, there is stirring by a stirrer or the like other than ultrasonic irradiation. In this case, it is difficult to obtain a dispersion having a concentration of 0.05 wt% or more.
さらに、フッ素含有ND分散液中の平均粒子径は、300nm以下が好ましい。分散液中の平均粒子径が300nmを超えると沈殿を生じ、保存および使用時の安定性が低下する。 Furthermore, the average particle size in the fluorine-containing ND dispersion is preferably 300 nm or less. When the average particle size in the dispersion exceeds 300 nm, precipitation occurs, and stability during storage and use decreases.
平均粒子径が300nm以下のフッ素含有NDの分散液を得るには、超音波照射後の懸濁液を相対遠心加速度が1800G以上で、0.5時間以上の遠心分離による分級を行うことが好ましい。相対遠心加速度が1800G未満または0.5時間未満の場合、粒子径500nm以上の粒子が完全に除去できず、良好な分散液が得られない。また、その他の分級方法としてフィルターなどを用いて濾過する方法があるが、この方法では、粒子径が500nm以下の粒子もフィルターで除去され、濃度が0.05wt%以上の分散液を得られにくい。 In order to obtain a dispersion liquid of fluorine-containing ND having an average particle size of 300 nm or less, it is preferable to classify the suspension after ultrasonic irradiation by centrifugation at a relative centrifugal acceleration of 1800 G or more and 0.5 hours or more. . When the relative centrifugal acceleration is less than 1800 G or less than 0.5 hour, particles having a particle diameter of 500 nm or more cannot be completely removed, and a good dispersion cannot be obtained. As another classification method, there is a method of filtering using a filter or the like, but in this method, particles having a particle size of 500 nm or less are also removed by the filter, and it is difficult to obtain a dispersion having a concentration of 0.05 wt% or more. .
以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically by way of examples.
実施例1〜6
あらかじめ、NDを圧力1kPa以下で3時間、400℃に加熱して、NDに含まれる水分を除去した。乾燥処理を行ったNDを20g、ニッケル製の反応管に入れ、これに室温で、フッ素ガスを流量20ml/min、アルゴンガスを流量380ml/minで流通した。そして、試料を400℃に加熱し、140時間、アルゴン希釈フッ素ガスの流通を継続し、NDとフッ素ガスを反応させ、フッ素含有NDを作製した。なお、作製したフッ素含有NDのフッ素含有量は元素分析により12wt%であった。
Examples 1-6
In advance, the ND was heated to 400 ° C. under a pressure of 1 kPa or less for 3 hours to remove moisture contained in the ND. 20 g of the ND that had been subjected to the drying treatment was placed in a nickel reaction tube, and fluorine gas was supplied at a flow rate of 20 ml / min and argon gas at a flow rate of 380 ml / min. Then, the sample was heated to 400 ° C., and the circulation of the argon-diluted fluorine gas was continued for 140 hours, whereby ND and fluorine gas were reacted to produce a fluorine-containing ND. The fluorine content of the produced fluorine-containing ND was 12 wt% by elemental analysis.
得られたフッ素含有NDを、表1に記載した分散媒各10mlにそれぞれ100mg投入し、超音波ホモジナイザー(VCX-750、Sonics&materials社製)によって、出力400Wの超音波照射を0.5時間行い、フッ素含有NDが分散した懸濁液を作製した。 100 mg of each of the obtained fluorine-containing NDs was put into 10 ml of each dispersion medium described in Table 1, and ultrasonic irradiation with an output of 400 W was performed for 0.5 hour with an ultrasonic homogenizer (VCX-750, manufactured by Sonics & materials), A suspension in which fluorine-containing ND was dispersed was prepared.
次に得られた懸濁液を、遠心機(CN−2060、HSIANGTAI社製)により、回転数4300rpm(相対遠心加速度2000G)で1時間処理し、遠心分離後の上澄み液を採取して、分散液を得た。 Next, the obtained suspension was treated with a centrifuge (CN-2060, manufactured by HSIANGTAI) at a rotational speed of 4300 rpm (relative centrifugal acceleration 2000 G) for 1 hour, and the supernatant liquid after centrifugation was collected and dispersed. A liquid was obtained.
こうして得られた分散液を、120時間静置後、動的光散乱法による粒度分布測定器(FPAR1000、大塚電子製)で重量換算粒度分布の測定を行い、分散液の平均粒子径を算出した。また、分散液の分散粒子濃度測定は、分散液を10g秤量し、50℃での乾燥にて分散媒を除去した後、残存した粒子の重量を秤量し分散粒子濃度を算出した。表1にそれぞれの算出結果を記す。 The dispersion thus obtained was allowed to stand for 120 hours, and then the weight-converted particle size distribution was measured with a particle size distribution analyzer (FPAR1000, manufactured by Otsuka Electronics Co., Ltd.) by a dynamic light scattering method, and the average particle size of the dispersion was calculated. . The dispersion particle concentration of the dispersion was measured by weighing 10 g of the dispersion, removing the dispersion medium by drying at 50 ° C., and then weighing the remaining particles to calculate the dispersion particle concentration. Table 1 shows the respective calculation results.
比較例1
上記実施例1〜6と同様の方法で作製したフッ素含有ND100mgを、表1に記載の分散媒1−オクタノール(C8H18O)10mlに投入し、上記実施例1〜6と同様の方法で超音波照射、遠心分離、粒度分布測定分および分散粒子濃度測定を行い、分散液の平均粒子径および分散粒子濃度を算出し、結果を表1に記す。
Comparative Example 1
100 mg of fluorine-containing ND prepared by the same method as in Examples 1 to 6 above was added to 10 ml of the dispersion medium 1-octanol (C 8 H 18 O) described in Table 1, and the same method as in Examples 1 to 6 above. Then, ultrasonic irradiation, centrifugal separation, particle size distribution measurement and dispersion particle concentration measurement are performed to calculate the average particle diameter and dispersion particle concentration of the dispersion, and the results are shown in Table 1.
比較例2、3
上記実施例1〜6と同様の方法で作製したフッ素含有ND100mgを、分散媒のベンゼン(C6H6)、流動パラフィン各10mlにそれぞれ投入し、上記実施例1〜6と同様の方法で超音波照射、遠心分離、粒度分布測定および分散粒子濃度測定を行ったが、いずれも分散媒中の粒子は確認できなかった。
Comparative Examples 2 and 3
100 mg of fluorine-containing ND prepared by the same method as in Examples 1 to 6 above was added to each 10 ml of benzene (C 6 H 6 ) and liquid paraffin as a dispersion medium, and the same method as in Examples 1 to 6 above. Sonication, centrifugation, particle size distribution measurement, and dispersion particle concentration measurement were performed, but none of the particles in the dispersion medium could be confirmed.
比較例4
NDを分散粒子、分散媒にHFC−43−10meeを用い、上記実施例1〜6と同様の方法で超音波照射を行ったが、粒子が0.1時間以内に沈殿し、懸濁液を作製できなかった。
Comparative Example 4
ND was dispersed particles, HFC-43-10mee was used as a dispersion medium, and ultrasonic irradiation was performed in the same manner as in Examples 1 to 6, but the particles precipitated within 0.1 hour, and the suspension was Could not be produced.
Claims (3)
The method for producing a fluorine-containing nanodiamond dispersion liquid according to claim 1 or 2, comprising a step of preparing a suspension by mixing fluorine-containing nanodiamond particles and a fluorine-based organic solvent, and a step of classifying the suspension. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006141153A JP2007308351A (en) | 2006-05-22 | 2006-05-22 | Fluorine-containing nano diamond dispersion liquid and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006141153A JP2007308351A (en) | 2006-05-22 | 2006-05-22 | Fluorine-containing nano diamond dispersion liquid and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007308351A true JP2007308351A (en) | 2007-11-29 |
Family
ID=38841562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006141153A Pending JP2007308351A (en) | 2006-05-22 | 2006-05-22 | Fluorine-containing nano diamond dispersion liquid and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007308351A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009051076A1 (en) * | 2007-10-15 | 2009-04-23 | Central Glass Company, Limited | Process for production of dispersion of fluorinated nano diamond |
WO2010001679A1 (en) * | 2008-06-30 | 2010-01-07 | セントラル硝子株式会社 | Fluorinated nano diamond and dispersion thereof, and process for production of the same |
JP2011510894A (en) * | 2008-01-25 | 2011-04-07 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Nanodiamond-like particles from nanodiamond and carbonaceous materials |
US9574155B2 (en) | 2008-07-02 | 2017-02-21 | Nanotech Lubricants, LLC | Lubricant with nanodiamonds and method of making the same |
-
2006
- 2006-05-22 JP JP2006141153A patent/JP2007308351A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009051076A1 (en) * | 2007-10-15 | 2009-04-23 | Central Glass Company, Limited | Process for production of dispersion of fluorinated nano diamond |
US20110232199A1 (en) * | 2007-10-15 | 2011-09-29 | Central Glass Company, Limited | Process for Production of Dispersion of Fluorinated Nano Diamond |
US8961631B2 (en) | 2007-10-15 | 2015-02-24 | Central Glass Company, Limited | Process for production of dispersion of fluorinated nano diamond |
JP2011510894A (en) * | 2008-01-25 | 2011-04-07 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Nanodiamond-like particles from nanodiamond and carbonaceous materials |
WO2010001679A1 (en) * | 2008-06-30 | 2010-01-07 | セントラル硝子株式会社 | Fluorinated nano diamond and dispersion thereof, and process for production of the same |
JP2010006671A (en) * | 2008-06-30 | 2010-01-14 | Central Glass Co Ltd | Fluorinated nanodiamond, dispersion thereof and method for preparing the dispersion |
CN102066246A (en) * | 2008-06-30 | 2011-05-18 | 中央硝子株式会社 | Fluorinated nano diamond and dispersion thereof, and process for production of the same |
CN102066246B (en) * | 2008-06-30 | 2013-11-06 | 中央硝子株式会社 | Fluorinated nano diamond and dispersion thereof, and process for production of the same |
US9574155B2 (en) | 2008-07-02 | 2017-02-21 | Nanotech Lubricants, LLC | Lubricant with nanodiamonds and method of making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5167696B2 (en) | Method for preparing fluorinated nanodiamond dispersion | |
JP5359166B2 (en) | Method for preparing fluorinated nanodiamond dispersion | |
KR101064843B1 (en) | Method for preparing fluorinated nanodiamond liquid dispersion | |
Yang et al. | Thermal and rheological properties of carbon nanotube-in-oil dispersions | |
JP5326381B2 (en) | Fluorinated nanodiamond and dispersion thereof and method for producing the same | |
JP2007308351A (en) | Fluorine-containing nano diamond dispersion liquid and method for producing the same | |
WO2021127474A1 (en) | Direct gas fluorination of boron nitrides and compositions including fluorinated boron nitrides | |
JPH01289896A (en) | Fluororesin dispersion | |
JP2017095640A (en) | Fluorinated hydrocarbon fluid | |
RU2680512C1 (en) | Method of producing nanosized diamonds | |
EP3268098A1 (en) | Separating method of fluorine-containing solvent, removing method of fluorine-containing solvent contaminant, and apparatus therefore | |
WO2015050257A1 (en) | Inorganic pigment particle and method for producing same | |
JP2008147617A (en) | Chemical mechanical polishing slurry | |
JP5887773B2 (en) | Dispersion containing diamond fine particles | |
Rizvi et al. | Effect of doping liquid organic chains and nanoparticles on heat capacity of commercial engine oil | |
JP2007254246A (en) | Solution or dispersion containing fullerene fluoride | |
CN110562966A (en) | Preparation process of charged tetrafluoroethylene-hexafluoropropylene polymer-containing graphene powder |