JP2007308156A - Structure of mobile type low-temperature liquefied gas tank - Google Patents

Structure of mobile type low-temperature liquefied gas tank Download PDF

Info

Publication number
JP2007308156A
JP2007308156A JP2006137620A JP2006137620A JP2007308156A JP 2007308156 A JP2007308156 A JP 2007308156A JP 2006137620 A JP2006137620 A JP 2006137620A JP 2006137620 A JP2006137620 A JP 2006137620A JP 2007308156 A JP2007308156 A JP 2007308156A
Authority
JP
Japan
Prior art keywords
tank
wave
liquid
liquefied gas
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006137620A
Other languages
Japanese (ja)
Other versions
JP4919698B2 (en
Inventor
Yoshifumi Kimura
由史 木村
Shoji Kamiya
祥二 神谷
Kiyoshi Aizawa
清志 合澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006137620A priority Critical patent/JP4919698B2/en
Publication of JP2007308156A publication Critical patent/JP2007308156A/en
Application granted granted Critical
Publication of JP4919698B2 publication Critical patent/JP4919698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To restrain swing of a liquid stored in a tank and prevent a pressure increase in the tank due to the swing during transportation of liquefied gas with a low boiling point, low latent heat, and low density, such as liquid hydrogen or liquid helium, at a low liquid level, and to reduce a pressure increase in the tank even if this tank is used as a fixed type liquefied gas tank. <P>SOLUTION: The mobile low-temperature liquefied gas tank has a plurality of breakwater plates 8 arranged in the tank 5 and perpendicular to the lengthwise direction of the tank 5 with a space in a vertical direction and the lengthwise direction. In such a gas tank, a plurality of lower breakwater plates 9 each having a communication hole 9a are disposed in the lower part of the tank 5 at intervals perpendicularly to the lengthwise direction and away from the breakwater plates 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、主に低沸点、低密度、低潜熱の液化ガス(例えば、液体ヘリウム、液体水素)を、トラックや鉄道貨物車両、あるいは船舶などに搭載して輸送するのに好適な移動式低温液化ガスタンク(移動式低温容器)の構造に関する。   The present invention is a mobile low temperature suitable for transporting liquefied gas (e.g., liquid helium, liquid hydrogen) having a low boiling point, low density, and low latent heat mainly on a truck, rail freight vehicle, or ship. The present invention relates to the structure of a liquefied gas tank (movable cryogenic container).

LPG(液化石油ガス)やLNG(液化天然ガス)などの高密度の液化ガスを輸送するための移動式低温液化ガスタンクについては、高圧ガス保安法により、タンク内に下記のように防波板(バッフル板)を設けることが規定されている。すなわち、図5に示すように、横型タンクの場合、防波板8は車両の進行方向(ここではタンク内の長手方向)に対し直角で、タンク5の横断面積の40%以上の面積をもち、タンク5内の上部空間5Aがタンク5の横断面積の20%以下となる上下方向の位置に、タンク内容積3m3以下に付き1枚となるように設けることが規定されている。この規定は、上記のような高密度の液化ガスを対象とするもので、例えばトラック輸送時の発進・停止時の加速度や振動のような、タンク5への外乱による運動量変化の低減を目的としている。 For mobile low-temperature liquefied gas tanks for transporting high-density liquefied gas such as LPG (liquefied petroleum gas) and LNG (liquefied natural gas), the wave protection plate ( Baffle plate) is provided. That is, as shown in FIG. 5, in the case of a horizontal tank, the wave preventing plate 8 is perpendicular to the traveling direction of the vehicle (in this case, the longitudinal direction in the tank) and has an area of 40% or more of the transverse area of the tank 5. It is specified that the upper space 5A in the tank 5 is provided at a position in the vertical direction at which the cross-sectional area of the tank 5 is 20% or less so that there is one sheet with a tank internal volume of 3 m 3 or less. This regulation is intended for high-density liquefied gas as described above. For the purpose of reducing momentum changes due to disturbance to the tank 5, such as acceleration and vibration during start and stop during truck transportation, for example. Yes.

この種の低温液化ガスタンクの先行技術として、低温冷媒容器に大気と連通するガス配管が設けられ、このガス配管に接続して低温冷媒容器内の気液二相のガスを、遠心力および重力で気相と液相に分離する螺旋状の管からなる気液分離器が設けられている低温装置が提案されている(例えば、特許文献1参照)。この低温装置では、液体ヘリウム等の低温冷媒容器内で生じた粒子状の液を液中に戻す手段として、螺旋状の管の中に二相の気液を流すことで、螺旋状の管を通過するときにに生じる遠心力で気相と液相に分離されるようにしてあり、液相は、その遠心力と重力によりその螺旋管に沿って流れ、遠心力がなくなったガス配管では、液相はそのガス配管の管壁に沿って液中に戻すことができる。一方、気相は、遠心力の小さなガス配管のほぼ中心部に集まり、ガス配管の上方に上昇する。この気相、つまりガスのみが、大気または、冷凍機内に吐出できる。   As a prior art of this type of low-temperature liquefied gas tank, a gas pipe communicating with the atmosphere is provided in a low-temperature refrigerant container, and the gas-liquid two-phase gas in the low-temperature refrigerant container is connected to this gas pipe by centrifugal force and gravity. There has been proposed a low-temperature apparatus provided with a gas-liquid separator composed of a spiral tube that separates a gas phase and a liquid phase (see, for example, Patent Document 1). In this low-temperature apparatus, as a means for returning the particulate liquid generated in a low-temperature refrigerant container such as liquid helium into the liquid, a two-phase gas-liquid is caused to flow in the helical pipe, thereby The gas phase and the liquid phase are separated by the centrifugal force generated when passing through, and the liquid phase flows along the spiral tube due to the centrifugal force and gravity, and in the gas pipe where the centrifugal force disappears, The liquid phase can be returned to the liquid along the wall of the gas pipe. On the other hand, the gas phase collects at substantially the center of the gas pipe having a small centrifugal force and rises above the gas pipe. Only this gas phase, that is, gas, can be discharged into the atmosphere or into the refrigerator.

なお、特許文献1において低温装置の先行技術として、モービルタイプのスロッシングに関し、液体ヘリウム容器にバッフル板を設けることで、走行中に液体ヘリウムのスロッシングを小さくでき、この結果、走行中の液体ヘリウムの消費量を軽減できることが示された、R.C.Van Meerbekeによる「Thermal Stratification and Sloshing in Liquid Helium Trailers」;Advances in Cryogenic Engineering.Vol13,199 の論文が挙げられている。   In addition, as a prior art of the low temperature apparatus in Patent Document 1, with regard to mobile type sloshing, by providing a baffle plate in a liquid helium container, the sloshing of liquid helium can be reduced during traveling, and as a result, the liquid helium during traveling is reduced. RCVan Meerbeke's “Thermal Stratification and Sloshing in Liquid Helium Trailers”; Advances in Cryogenic Engineering. Vol 13, 199, which has been shown to reduce consumption, is cited.

その他の先行技術として、貯蔵タンク内に液体が自由に移動可能な流動孔を有する仕切り壁を設置しタンク本体を上下方向に分割多槽化し異常に大きなスロッシング現象の発生を阻止できる円筒型液体貯蔵タンクの構造が提案されている(例えば、特許文献2参照)。   As another prior art, a cylindrical liquid storage that can prevent the occurrence of abnormally large sloshing phenomenon by installing a partition wall with flow holes in which liquid can freely move in the storage tank and dividing the tank body vertically into multiple tanks A tank structure has been proposed (see, for example, Patent Document 2).

さらに別の先行技術として、船舶に搭載される液体タンク内に、この船舶のローリングおよびピッチングによる液体の波動を阻止するような仕切りを設け、これらの仕切りに相互の連通孔を形成した構造の船舶搭載用液体タンクが提案されている(例えば、特許文献3参照)。
特開平9−189399号公報(0004・0009〜0015・0019〜0021および図1) 特開2005−280837号公報(0005・0006・0012〜0014および図1) 特開昭51−61980号公報(第3頁・第4頁および第3図・第4図)
Further, as another prior art, a ship having a structure in which a partition is provided in a liquid tank mounted on the ship so as to prevent the wave of liquid due to rolling and pitching of the ship, and mutual communication holes are formed in these partitions. A liquid tank for mounting has been proposed (see, for example, Patent Document 3).
JP-A-9-189399 (0004, 0009 to 0015, 0019 to 0021 and FIG. 1) Japanese Patent Laying-Open No. 2005-280837 (0005/0006/0012 to 0014 and FIG. 1) JP 51-61980 (pages 3 and 4 and FIGS. 3 and 4)

ところで、燃料電池を初めとし、水素エネルギーを消費する社会の幕開けに向けて、液体水素の輸送が今後、非常に重要な課題となってくる。液体水素の輸送は、移動式低温液化ガスタンクを用いて行われることになる。この場合、比較的大型(例えばISO40ftコンテナ)の液化ガスタンクに貯留した液体水素を複数の水素ステーションに分配する、いわゆる小口配送が予想されるが、液化ガスタンク内の液体水素量が段階的に減少し、特に低液位レベル(例えば液位が10〜50%)での輸送になると、車両の発進・停止時にタンク内の貯留液のスロッシング(揺動)が激しくなる。この結果、タンクの高温部(天井面など)に揺動液が接触して侵入熱の影響を受け貯留液の蒸発が促進され、タンク内の圧力が上昇しタンク設計圧力以上になるおそれがある。また、タンク内の貯留液の液位レベルが比較的高い場合でも、液体水素や液体ヘリウムのような低沸点・低潜熱・低密度の液化ガスの輸送に際しては、高圧ガス保安法に基づいて上部寄りにだけ防波板を設けた従来のタンク構造では、車両の発進・停止時に貯留液がスロッシングすることにより液表面から液が小さな粒子となってガスと一緒に大気中に押し出され、見かけ上、侵入熱が増加した時と同様の現象が起きるおそれがある。   By the way, transportation of liquid hydrogen will become a very important issue in the future for the beginning of a society that consumes hydrogen energy, including fuel cells. Liquid hydrogen will be transported using a mobile cryogenic liquefied gas tank. In this case, so-called small-port delivery is expected in which liquid hydrogen stored in a relatively large (eg, ISO 40 ft container) liquefied gas tank is distributed to a plurality of hydrogen stations. However, the amount of liquid hydrogen in the liquefied gas tank decreases in stages. In particular, when the transportation is performed at a low liquid level (for example, the liquid level is 10 to 50%), the sloshing (swing) of the stored liquid in the tank becomes intense when the vehicle starts and stops. As a result, the oscillating liquid comes into contact with the high-temperature part (ceiling surface, etc.) of the tank, and the evaporation of the stored liquid is promoted due to the influence of intrusion heat, so that the pressure in the tank rises and may exceed the tank design pressure. . Even when the liquid level of the stored liquid in the tank is relatively high, when transporting liquefied gas with low boiling point, low latent heat and low density such as liquid hydrogen and liquid helium, In the conventional tank structure with a wave barrier only on the side, the stored liquid sloshing when the vehicle starts and stops, so that the liquid becomes small particles from the liquid surface and is pushed into the atmosphere together with the gas. The same phenomenon as when the intrusion heat increases may occur.

この発明は上述の点に鑑みなされたもので、液体水素や液体ヘリウムのような低沸点・低潜熱・低密度の液化ガスの低液位レベルでの輸送に際し、タンク内貯留液の揺動を抑制し、揺動による圧力上昇を防止することができ、また定置式液化ガスタンクとして使用する場合にも、タンク内の圧力上昇を低減できる移動式低温液化ガスタンク(移動式低温容器)の構造を提供しようとするものである。   The present invention has been made in view of the above-mentioned points, and when the low boiling point / low latent heat / low density liquefied gas such as liquid hydrogen or liquid helium is transported at a low liquid level, the stored liquid in the tank is swung. Providing a structure of mobile cryogenic liquefied gas tank (movable cryogenic container) that can suppress and prevent pressure rise due to rocking and reduce pressure rise in the tank even when used as a stationary liquefied gas tank It is something to try.

上記の目的を達成するために本発明に係る移動式低温液化ガスタンクの構造は、タンク内の長手方向に対し直角方向に複数枚の防波板を、上部および下部に空間部をあけ、かつ長手方向に間隔をあけて備えた移動式低温液化ガスタンクの構造において、連通孔を有する複数枚の下部防波板を、前記タンク内下部の長手方向に対し直角方向に、かつ前記各防波板から離間してタンク長手方向に間隔をあけて設けたことを特徴とする。   In order to achieve the above object, the structure of the mobile cryogenic liquefied gas tank according to the present invention includes a plurality of wave blocking plates in a direction perpendicular to the longitudinal direction in the tank, a space in the upper part and the lower part, and a longitudinal part. In the structure of the mobile cryogenic liquefied gas tank provided with an interval in the direction, a plurality of lower wave breakers having communication holes are perpendicular to the longitudinal direction of the lower part in the tank and from each wave breaker It is characterized in that it is provided so as to be spaced apart in the tank longitudinal direction.

上記の構成を有する移動式低温液化ガスタンクの構造によれば、液体水素や液体ヘリウムのような低沸点・低潜熱・低密度の液化ガスの低液位レベルでの輸送においても、下部防波板が上部側の防波板とともに発進や停止時の貯留液の揺動を低減するから、貯留液の揺動が抑制され(図6のシミュレーション参照)、タンク内圧力の上昇が防止される。また、下部防波板は上部側の各防波板とは離間して設けられるので、防波板を介したタンク外部からの入熱は増加しない。   According to the structure of the mobile low-temperature liquefied gas tank having the above-described configuration, the lower wave-breaking plate can be used for transporting a low-boiling point, low latent heat, low-density liquefied gas such as liquid hydrogen or liquid helium at a low liquid level. However, since the rocking of the stored liquid at the time of starting and stopping is reduced together with the upper side wave preventing plate, the rocking of the stored liquid is suppressed (see the simulation of FIG. 6), and the increase in the pressure in the tank is prevented. Further, since the lower wave preventing plate is provided apart from the upper wave preventing plates, heat input from the outside of the tank via the wave preventing plate does not increase.

請求項2に記載のように、前記下部防波板を、前記各防波板間のほぼ中間位置下方および最前位置の防波板とタンク内前壁とのほぼ中間位置下方ならびに最後位置の防波板とタンク内後壁とのほぼ中間位置下方にそれぞれ設け、前記タンク内前後各壁面の上下方向のほぼ中間位置に水平な防波板を設けることができる。   According to a second aspect of the present invention, the lower wave-breaking plate is formed at a position substantially below the middle position between the wave-breaking plates and at a position substantially below the middle position between the wave-breaking plate at the foremost position and the front wall in the tank and at the last position. A horizontal wave-breaking plate can be provided at a position substantially below the middle position between the corrugated plate and the rear wall in the tank, and a horizontal wave-breaking plate at a substantially middle position in the vertical direction of the front and rear wall surfaces in the tank.

このように構成することにより、タンク内貯留液の液位レベルが低液位となって加速度を受けた場合にも、図6の下段(ケース2)のシミュレーションに示されるように、タンク内貯留液の揺動が抑制されることにより、貯留液がタンク内天井面などの高温部に接触するおそれがなくなるので、高温部タンク壁の熱量容量により貯留液が加温され、タンク内の圧力が大幅に上昇することが防止される。   With this configuration, even when the liquid level of the liquid stored in the tank is low and the acceleration is received, the liquid stored in the tank is shown in the simulation in the lower part of FIG. 6 (case 2). By suppressing the oscillation of the liquid, there is no risk of the stored liquid coming into contact with the high temperature part such as the ceiling surface in the tank, so the stored liquid is heated by the heat capacity of the high temperature part tank wall, and the pressure in the tank is reduced. A significant increase is prevented.

請求項3に記載のように、前記各防波板の下端部分と前記下部防波板の上端部分が、タンクの高さ方向において重なり合うように構成することができる。 このように構成することにより、タンク内貯留液が揺動により各下部防波板の上端部を越えるのが抑制されるので、貯留液の揺動がさらに抑制される。   According to a third aspect of the present invention, the lower end portion of each of the wave preventing plates and the upper end portion of the lower wave preventing plate can be configured to overlap in the height direction of the tank. By configuring in this way, the stored liquid in the tank is prevented from exceeding the upper end portion of each lower wave preventing plate due to the swinging, so that the swinging of the stored liquid is further suppressed.

請求項4に記載のように、前記各防波板の少なくとも一面に、高熱伝導率の金属板(銅板やアルミ板など)を貼り付けることができる。   According to a fourth aspect of the present invention, a metal plate (such as a copper plate or an aluminum plate) having a high thermal conductivity can be attached to at least one surface of each of the wave preventing plates.

このように構成することにより、定置式液化ガスタンクとして使用した場合、定置における蒸発ガス封じ切り(密封)状態では、図3に示すように、外部からの侵入熱によりタンク内の液が自然対流を起こし、液面部に気相圧力に相当する飽和温度に成層(高温層)が形成され、液の深部が過冷却状態になる。この状態において、各上部側の防波板に対し高熱伝導率の金属板(例えば銅板)の上部を貼り付け、貯留液中の下方へ垂らすと、高温層は金属板を介して過冷却部(バルク層)からの冷却熱が伝導され、冷却されるので、タンク内圧力の上昇が低減される。   With this configuration, when used as a stationary liquefied gas tank, as shown in FIG. 3, the liquid in the tank undergoes natural convection in the stationary evaporative gas sealing (sealed) state, as shown in FIG. As a result, a stratification (high temperature layer) is formed on the liquid surface portion at a saturation temperature corresponding to the gas phase pressure, and the deep portion of the liquid becomes supercooled. In this state, when the upper part of a metal plate (for example, a copper plate) having a high thermal conductivity is attached to each wave preventing plate on the upper side and hung downward in the stored liquid, the high temperature layer is passed through the metal plate to the supercooling part ( The cooling heat from the bulk layer) is conducted and cooled, so that the increase in pressure in the tank is reduced.

本発明に係る移動式低温液化ガスタンクの構造は、上記のような構成からなるので、次のような優れた効果がある。すなわち、
液体水素のような低沸点・低潜熱・低密度の液化ガスの低液位レベルでの輸送においても、下部防波板が上部側の防波板とともに発進や停止時の貯留液の揺動を低減するから、貯留液の揺動が抑制され、タンク内圧力の上昇が防止される。また、下部防波板は上部側の各防波板とは離間して設けられるので、防波板を介したタンク外部からの入熱は増加しない。
Since the structure of the mobile low-temperature liquefied gas tank according to the present invention is configured as described above, the following excellent effects are obtained. That is,
Even when transporting low boiling point, low latent heat, and low density liquefied gas such as liquid hydrogen at a low liquid level, the lower wave breaker, together with the wave breaker on the upper side, swings the stored liquid when starting and stopping. Therefore, the stored liquid is prevented from swinging and the tank pressure is prevented from increasing. Further, since the lower wave preventing plate is provided apart from the upper wave preventing plates, heat input from the outside of the tank via the wave preventing plate does not increase.

以下、本発明に係る移動式低温液化ガスタンクの構造について実施の形態を挙げ図面に基づいて説明する。   Hereinafter, the structure of a mobile low-temperature liquefied gas tank according to the present invention will be described with reference to the drawings, citing embodiments.

図1は本発明に実施例に係る液体水素コンテナタンクの構造を示す、一部を削除してタンク内の一部を表した斜視図、図2は図1のコンテナタンクの構造を概念的に示す縦断面図である。   FIG. 1 is a perspective view showing a structure of a liquid hydrogen container tank according to an embodiment of the present invention, with a part removed and showing a part in the tank, and FIG. 2 conceptually showing the structure of the container tank of FIG. It is a longitudinal cross-sectional view shown.

図1に示すように、移動式液体水素コンテナタンク1は、トラックの荷台や鉄道車両の貨物車両に搭載して使用されるもので、コンテナ枠2内に前後の台座2aを介して支持されている。コンテナタンク1は外槽タンク3と内槽タンク5とからなり、内槽タンク5は外槽タンク3内の中央空間部に複数本のテンションロッド6により支持されている。外槽タンク3と内槽タンク5との間の空間部は、真空断熱層4に形成されている。外槽タンク3の後部に操作箱7が一体に設けられ、この操作箱7もコンテナ枠2内に支持されている。   As shown in FIG. 1, the mobile liquid hydrogen container tank 1 is used by being mounted on a truck bed or a railcar freight vehicle, and is supported in a container frame 2 via front and rear pedestals 2a. Yes. The container tank 1 includes an outer tank 3 and an inner tank 5, and the inner tank 5 is supported by a plurality of tension rods 6 in a central space in the outer tank 3. A space between the outer tank 3 and the inner tank 5 is formed in the vacuum heat insulating layer 4. An operation box 7 is integrally provided at the rear part of the outer tank 3, and this operation box 7 is also supported in the container frame 2.

図2に示すように、内槽タンク5は外槽タンク3と同様に前後面5a・5bが中央部が外方に突出した半球面で、側周面が横断面円形で直径に比べて長さが長い円筒体からなる。内槽タンク5内の上部寄りには、本例では4枚の防波板8が長手方向に間隔をあけて設けられている。内槽タンク5の長手方向がトラックや鉄道車両の進行方向になる。防波板8は、高圧ガス保安法の規定によるもので、図5に示す防波板8と同様に、内槽タンク5内の長手方向に対し直角に配置され、各防波板8の面積は内槽タンク5の横断面積の40%以上で、上部側空間部5Aの断面積が内槽タンク5の横断面積の20%以下になる位置に配置されている。このため、各防波板8の下部側空間部5Bが上部側空間部5Aに比べて大きい。また、防波板8は内槽タンク5内の容積が3.3m3以下に付き一枚の割合で設けられている。 As shown in FIG. 2, the inner tank 5 is similar to the outer tank 3 in that the front and rear surfaces 5 a and 5 b are hemispherical surfaces with the central portion projecting outward, the side circumferential surface is circular in cross section and longer than the diameter. It consists of a long cylindrical body. Near the upper part in the inner tank 5, in this example, four wave blocking plates 8 are provided at intervals in the longitudinal direction. The longitudinal direction of the inner tank 5 is the traveling direction of the truck and the railway vehicle. The wave preventing plate 8 is in accordance with the provisions of the High Pressure Gas Safety Law, and is disposed at right angles to the longitudinal direction in the inner tank 5 as with the wave preventing plate 8 shown in FIG. Is disposed at a position that is 40% or more of the cross-sectional area of the inner tank 5 and the cross-sectional area of the upper space portion 5A is 20% or less of the cross-sectional area of the inner tank 5. For this reason, the lower space part 5B of each wave preventing plate 8 is larger than the upper space part 5A. Further, the wave preventing plate 8 is provided at a ratio of one sheet per 3.3 m 3 or less of the volume in the inner tank 5.

内槽タンク5内の下部(底部寄り)には、下部防波板9が長手方向に間隔をあけ、かつ防波板8から離間させてタンク底面上に立設されている。本例の場合、下部防波板9は隣接する防波板8・8間の中間位置の下方および最前の防波板8とタンク前面5aとの間の下方および最後の防波板8とタンク後面5bとの間の下方に配置されている。各下部防波板9の高さは、防波板8の下端よりわずかに低くしており、各下部防波板9の幅方向の中央で下端寄りに連通孔9aが穿設されている。下部防波板9のピッチおよび面積は限定されるものではなく、外乱の大きさ等を考慮の上で決定される。また、タンク前面5aおよびタンク後面5bの上下方向の中間位置に、水平防波板10が相対向させ、かつ防波板8および下部防波板9から離間させて設けられている。   At the lower part (closer to the bottom) in the inner tank 5, a lower wave-breaking plate 9 is erected on the tank bottom surface with a space in the longitudinal direction and spaced from the wave-breaking plate 8. In the case of this example, the lower wave-breaking plate 9 is located below the intermediate position between the adjacent wave-breaking plates 8 and 8 and below the foremost wave-breaking plate 8 and the tank front surface 5a and the last wave-breaking plate 8 and the tank. It arrange | positions below between the rear surfaces 5b. The height of each lower wave-breaking plate 9 is slightly lower than the lower end of the wave-breaking plate 8, and a communication hole 9 a is formed near the lower end at the center in the width direction of each lower wave-breaking plate 9. The pitch and area of the lower wave preventing plate 9 are not limited and are determined in consideration of the magnitude of the disturbance. Further, a horizontal wave breaking plate 10 is provided opposite to each other at an intermediate position in the vertical direction between the tank front surface 5a and the tank rear surface 5b and separated from the wave blocking plate 8 and the lower wave blocking plate 9.

さらに、本実施例では、移動式液体水素コンテナタンク1を定置式液体水素容器として使用する場合の圧力上昇低減を考慮し、高熱伝導率の金属板(銅板)11を各防波板8および各下部防波板9の両面にそれぞれ貼り付けている。   Furthermore, in the present embodiment, considering the reduction in pressure rise when the mobile liquid hydrogen container tank 1 is used as a stationary liquid hydrogen container, a metal plate (copper plate) 11 having a high thermal conductivity is connected to each wave-protecting plate 8 and each It is affixed on both surfaces of the lower wave-shielding board 9, respectively.

ここで、図3は銅板11の上部を各上部側防波板8に貼り付け、液体水素H中の下方へ垂らした場合の作用効果を示す模式図である。つまり、移動式液体水素コンテナタンク1を定置式液体水素容器として使用した場合、図3に示すように、銅板11により、定置における蒸発ガス封じ切り(密封)状態では、内槽タンク5の外方からの侵入熱によりタンク5内の液体水素Hが自然対流を起こし、液面部Huに気相圧力に相当する飽和温度に成層(高温層)が形成され、液体水素H中の深部Hdが過冷却状態になる。この状態において、各上部側の防波板8に対し銅板11を貼り付けて液体水素H中の下方へ垂らすと、高温層は銅板11を介して過冷却部(バルク層)からの冷却熱が伝導され、冷却されるので、タンク5内圧力の上昇が低減されることになる。   Here, FIG. 3 is a schematic diagram showing the action and effect when the upper part of the copper plate 11 is attached to each upper-side wave preventing plate 8 and hung downward in the liquid hydrogen H. FIG. In other words, when the mobile liquid hydrogen container tank 1 is used as a stationary liquid hydrogen container, as shown in FIG. 3, the copper plate 11 causes the evaporative gas sealed (sealed) in the stationary state to move outwardly from the inner tank 5. The liquid hydrogen H in the tank 5 undergoes natural convection due to intrusion heat from the water, and a stratification (high temperature layer) is formed on the liquid surface portion Hu at a saturation temperature corresponding to the gas phase pressure, and the deep portion Hd in the liquid hydrogen H is excessive. It becomes cool. In this state, when the copper plate 11 is attached to each of the wave preventing plates 8 on the upper side and hung downward in the liquid hydrogen H, the high-temperature layer receives the cooling heat from the supercooling portion (bulk layer) via the copper plate 11. Conducted and cooled, the increase in the pressure in the tank 5 is reduced.

また上記内槽タンク5の大きさ:容積15m3、内径2.1m×内長4.6mとし、防波板8の平均幅を1m、厚さ4mm、枚数4枚とし、銅板11の厚さを2mm、有効面積を0.004m2とし、防波板8の両面に貼り付けられる。 そして、・内槽タンク5への侵入熱:40W ・銅板11の熱伝導率は約1000W/mK@20K(銅の熱伝導率は室温下より飛躍的に高くなり、液体水素の熱伝導率である0.2W/(mK)よりも大きい)
・高温層と過冷却部の温度差:3K(2.3atmの飽和温度23K−過冷却温度20K) ・銅板11の熱伝導長さ1m
以上の仮定に基づき試算すると、防波板8の1枚当たりの可能な熱移動量は12W、全体の熱移動量は48Wが可能になる。
The size of the inner tank 5 is 15 m 3 , the inner diameter is 2.1 m, the inner length is 4.6 m, the average width of the wave-breaking plate 8 is 1 m, the thickness is 4 mm, and the number of sheets is four. The thickness of the copper plate 11 Is 2 mm and the effective area is 0.004 m 2, and is attached to both surfaces of the wave-breaking plate 8. And ・ Invasion heat into the inner tank 5: 40 W ・ The thermal conductivity of the copper plate 11 is about 1000 W / mK @ 20K (The thermal conductivity of copper is dramatically higher than that at room temperature, and the thermal conductivity of liquid hydrogen Greater than 0.2W / (mK))
-Temperature difference between the high temperature layer and the supercooling part: 3K (2.3atm saturation temperature 23K-supercooling temperature 20K)-Heat conduction length of the copper plate 11 1m
If a trial calculation is made based on the above assumptions, the possible heat transfer amount per wave-breaking plate 8 is 12 W, and the total heat transfer amount is 48 W.

また、蒸発ガス封じ切り(畜圧)期間による熱収支については、
外部入熱=液蒸発潜熱+液・ガスの内部エネルギー変化+高温層温度上昇分+タンク壁温度上昇分となり、
この割合は、内槽タンク5の形状、液体水素Hの液位、静定時間などに大きく影響するが、高温層温度上昇分を20%に想定すると8Wになる。したがって、この熱量は銅板11やアルミ板などの金属板で十分に冷却可能な熱量である。
In addition, about heat balance by evaporative gas sealing (livestock pressure) period,
External heat input = latent heat of liquid evaporation + internal energy change of liquid / gas + high temperature layer temperature increase + tank wall temperature increase
This ratio greatly affects the shape of the inner tank 5, the liquid level of the liquid hydrogen H, the settling time, etc., but is 8 W when the temperature rise of the high temperature layer is assumed to be 20%. Therefore, this amount of heat is the amount of heat that can be sufficiently cooled by a metal plate such as the copper plate 11 or an aluminum plate.

図4は本発明に係る移動式低温ガスタンク構造の他の実施例を示すもので、本例の低温ガスタンク1’が上記実施例の低温ガスタンク1と相違するところは、下部防波板9の高さを防波板8の下端よりも高くしたこと、および水平防波板11を省いたことである。下部防波板9の上端部分を防波板8の下端部分とラップさせているので、特に内槽タンク5内の液体水素Hの液位が下部防波板9の上端よりも下がった時に、液体水素Hが下部防波板9の上端を越えにくくなり、液体水素Hが加速度を受けたときの揺動がさらに抑制される。このため、前後の水平防波板10を省いている。   FIG. 4 shows another embodiment of the mobile low temperature gas tank structure according to the present invention. The low temperature gas tank 1 ′ of this example is different from the low temperature gas tank 1 of the above embodiment in that the height of the lower wave breaker 9 is high. The height is made higher than the lower end of the wave preventing plate 8 and the horizontal wave preventing plate 11 is omitted. Since the upper end portion of the lower wave preventing plate 9 is wrapped with the lower end portion of the wave preventing plate 8, particularly when the liquid level of the liquid hydrogen H in the inner tank 5 is lowered from the upper end of the lower wave preventing plate 9, The liquid hydrogen H does not easily exceed the upper end of the lower wave-breaking plate 9, and the swing when the liquid hydrogen H is subjected to acceleration is further suppressed. For this reason, the front and rear horizontal wave blocking plates 10 are omitted.

また、図4(b)(c)に示すように、上部側の防波板8に孔縁部が一方に湾曲するように突出する複数の補強孔8aを一定間隔で穿設し、図示を省略した1本乃至2本の細いロッド12(図4(a))にて1乃至2つの補強孔8aを用いて防波板8間を連結している。さらに、防波板8の下端部8bを一方へ屈曲させて強度(剛性)を高めている。このため、液面揺動による防波板8の変形が起こりにくいが、こうした補強構造はLPGやLNGなどの高密度の液化ガスの場合に有効であるので、液体水素や液体ヘリウムのような低密度の液化ガス専用のガスタンクでは省いても良い。   Also, as shown in FIGS. 4B and 4C, a plurality of reinforcing holes 8a projecting so that the edge of the hole is curved in one direction are formed in the upper wave preventing plate 8 at regular intervals. The one or two thin rods 12 (FIG. 4 (a)) that are omitted connect the wave preventing plates 8 using one or two reinforcing holes 8a. Further, the lower end 8b of the wave preventing plate 8 is bent to one side to increase the strength (rigidity). Therefore, the deformation of the wave preventing plate 8 due to the fluctuation of the liquid level is unlikely to occur, but such a reinforcing structure is effective in the case of a high-density liquefied gas such as LPG or LNG. It may be omitted in gas tanks dedicated to high density liquefied gas.

さて、図6は本発明に係る上記実施例のタンク構造(図2)による液面揺動の抑制効果を確認するために、従来のタンク構造(図5)と比較したシミュレーションを示す図面である。内槽タンク5の内径が2.1m×内長が4.6mで、液体水素の液位が50%、加速度を進行方向に0.4G(100km/hの走行速度でブレーキをかけ7秒で停止する減速加速度に相当)作用させた場合のシミュレーションである。熱解析モデルはSTAR−CDを使用。ケース1が従来構造、ケース2が本発明である。   FIG. 6 is a diagram showing a simulation compared with the conventional tank structure (FIG. 5) in order to confirm the effect of suppressing the liquid level fluctuation by the tank structure (FIG. 2) of the above embodiment according to the present invention. . The inner tank 5 has an inner diameter of 2.1 m × inner length of 4.6 m, liquid hydrogen level of 50%, acceleration in the traveling direction of 0.4 G (braking at a traveling speed of 100 km / h in 7 seconds) This is a simulation in the case of applying the action (corresponding to the deceleration acceleration to stop). The thermal analysis model uses STAR-CD. Case 1 is a conventional structure and case 2 is the present invention.

ケース2では、主に下部防波板9により液面上昇が抑制され、上昇した液がタンク内の上部壁との接触による熱交換(入熱の増加)を防止しているのが確認される。   In case 2, it is confirmed that the rise of the liquid level is mainly suppressed by the lower wave-breaking plate 9, and the raised liquid prevents heat exchange (increased heat input) due to contact with the upper wall in the tank. .

本発明に実施例に係る液体水素コンテナタンクの構造を示す、一部を削除してタンク内の一部を表した斜視図である。It is the perspective view which showed the structure of the liquid hydrogen container tank which concerns on an Example at this invention, and represented a part in a tank by removing a part. 図1のコンテナタンクの構造を概念的に示す縦断面図である。It is a longitudinal cross-sectional view which shows notionally the structure of the container tank of FIG. 銅板11の上部を各上部側防波板8に貼り付け、液体水素H中の下方へ垂らした場合の作用効果を示す模式図である。FIG. 6 is a schematic diagram showing the action and effect when the upper part of the copper plate 11 is attached to each upper-side wave preventing plate 8 and hung downward in the liquid hydrogen H. 本発明に係る移動式低温ガスタンク構造の他の実施例を示すもので(a)は図2に対応する縦断面図、(b)は防波板8の正面図、(c)は(b)のc−c線拡大断面図である。2A and 2B show another embodiment of the mobile cryogenic gas tank structure according to the present invention, in which FIG. 2A is a longitudinal sectional view corresponding to FIG. 2, FIG. It is a cc line expanded sectional view of. 高圧ガス保安法の規定による従来のタンク構造を示すもので、(a)は縦断面図,(b)は(a)のb−b線断面図である。The conventional tank structure by prescription | regulation of the high pressure gas security law is shown, (a) is a longitudinal cross-sectional view, (b) is the bb sectional view taken on the line of (a). 本発明に係る上記実施例のタンク構造(図2)による液面揺動の抑制効果を確認するために、従来のタンク構造(図5)と比較したシミュレーションを示す図面である。7 is a diagram showing a simulation compared with a conventional tank structure (FIG. 5) in order to confirm the effect of suppressing the liquid level fluctuation by the tank structure (FIG. 2) of the above embodiment according to the present invention.

符号の説明Explanation of symbols

1・1’移動式液体水素コンテナタンク(移動式低温液化ガスタンク)
2 コンテナ枠
2a台座
3 外槽タンク
4 真空断熱層
5 内槽タンク
6 テンションロッド
7 操作箱
8 防波板
9 下部防波板
10 水平防波板
11 銅板(高熱伝導率金属板)
12 ロッド
1.1 'mobile liquid hydrogen container tank (mobile low temperature liquefied gas tank)
2 Container frame 2a pedestal 3 Outer tank tank 4 Vacuum heat insulating layer 5 Inner tank tank 6 Tension rod 7 Operation box 8 Wave breaker 9 Lower wave breaker 10 Horizontal wave breaker 11 Copper plate (high thermal conductivity metal plate)
12 rods

Claims (4)

タンク内の長手方向に対し直角方向に複数枚の防波板を、上部および下部に空間部をあけ、かつ長手方向に間隔をあけて備えた移動式低温液化ガスタンクの構造において、連通孔を有する複数枚の下部防波板を、前記タンク内下部の長手方向に対し直角方向に、かつ前記各防波板から離間してタンク長手方向に間隔をあけて設けたことを特徴とする移動式低温液化ガスタンクの構造。   In the structure of a mobile cryogenic liquefied gas tank having a plurality of wave blocking plates in a direction perpendicular to the longitudinal direction in the tank, with spaces in the upper and lower portions and spaced in the longitudinal direction, there are communication holes. A mobile low temperature characterized in that a plurality of lower wave-breaking plates are provided in a direction perpendicular to the longitudinal direction of the lower part in the tank and spaced apart from each wave-breaking plate in the tank longitudinal direction. Structure of liquefied gas tank. 前記下部防波板を、前記各防波板間のほぼ中間位置下方および最前位置の防波板とタンク内前壁とのほぼ中間位置下方ならびに最後位置の防波板とタンク内後壁とのほぼ中間位置下方にそれぞれ設け、前記タンク内前後各壁面の上下方向のほぼ中間位置に水平な防波板を設けたことを特徴とする請求項1記載の移動式低温液化ガスタンクの構造。   The lower wave-breaking plate includes a lower position between the wave-breaking plates and a position between the wave-breaking plate at the frontmost position and a front wall in the tank. 2. The structure of a mobile cryogenic liquefied gas tank according to claim 1, wherein a horizontal wave preventing plate is provided at a substantially intermediate position in the vertical direction of each of the front and rear wall surfaces in the tank. 前記各防波板の下端部分と前記下部防波板の上端部分が、タンクの高さ方向において重なり合うように構成したことを特徴とする請求項1又は2記載の移動式低温液化ガスタンクの構造。   The structure of the mobile cryogenic liquefied gas tank according to claim 1 or 2, wherein a lower end portion of each of the wave preventing plates and an upper end portion of the lower wave preventing plate are overlapped with each other in a tank height direction. 前記各防波板の少なくとも一面に、高熱伝導率の金属板を貼り付けたことを特徴とする請求項1〜3のいずれか記載の移動式低温液化ガスタンクの構造。   The structure of the mobile cryogenic liquefied gas tank according to any one of claims 1 to 3, wherein a metal plate having a high thermal conductivity is attached to at least one surface of each of the wave preventing plates.
JP2006137620A 2006-05-17 2006-05-17 Structure of mobile cryogenic liquefied gas tank Active JP4919698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137620A JP4919698B2 (en) 2006-05-17 2006-05-17 Structure of mobile cryogenic liquefied gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137620A JP4919698B2 (en) 2006-05-17 2006-05-17 Structure of mobile cryogenic liquefied gas tank

Publications (2)

Publication Number Publication Date
JP2007308156A true JP2007308156A (en) 2007-11-29
JP4919698B2 JP4919698B2 (en) 2012-04-18

Family

ID=38841385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137620A Active JP4919698B2 (en) 2006-05-17 2006-05-17 Structure of mobile cryogenic liquefied gas tank

Country Status (1)

Country Link
JP (1) JP4919698B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009583A1 (en) * 2009-07-21 2011-01-27 Huber Albert M Stabilizing and securing system for liquid transporting containers
CN103129864A (en) * 2013-03-14 2013-06-05 南通四方罐式储运设备制造有限公司 Tank container with swash plates
CN103244822A (en) * 2013-04-27 2013-08-14 张家港市联信化工机械有限公司 Swash plate
CN103895986A (en) * 2013-08-22 2014-07-02 哈尔滨工业大学 Anti-shaking liquid storage box with rotatable cross blades and anti-shaking method
JP2015502518A (en) * 2011-12-20 2015-01-22 コノコフィリップス カンパニー Internal baffle for sloshing suppression in core heat exchanger in shell
KR101564306B1 (en) * 2015-01-06 2015-10-29 주식회사 태진중공업 Cryogenic Liquid Storage ISO Tank Container
CN105800195A (en) * 2016-04-28 2016-07-27 吉林大学 Inertial-impact-preventing liquid tank provided with cylindrical spiral tubes inside
JP2019138329A (en) * 2018-02-07 2019-08-22 Jfeエンジニアリング株式会社 Bog suppression method and device for low-temperature liquefied gas storage tank
CN111086787A (en) * 2020-01-08 2020-05-01 中山顺隆集装箱袋有限公司 Fluid bag for container
CN112830116A (en) * 2021-01-25 2021-05-25 李小芬 Liquid material transportation and storage tank structure
CN112849809A (en) * 2020-12-31 2021-05-28 合肥工业大学 Dense-distributed tank truck light wave-proof plate structure and transportation tank thereof
CN113548330A (en) * 2021-08-09 2021-10-26 南京工业大学 Swash plate device of mobile energy storage tank car
CN114408405A (en) * 2021-12-22 2022-04-29 徐州恒安石油储运技术有限公司 Wave-proof self-discharging pressure storage tank for petroleum road and railway transportation
WO2022131381A1 (en) * 2020-12-15 2022-06-23 Jtss株式会社 Carbon dioxide transport container, carbon dioxide transport method, and carbon dioxide discharge method
WO2023195583A1 (en) * 2022-04-04 2023-10-12 주식회사 엑센스 Standard transportation container for liquid hydrogen receptacle, in which vaporization of liquid hydrogen is minimized
JP7462317B2 (en) 2020-12-15 2024-04-05 Jtss株式会社 Carbon dioxide transport container, carbon dioxide transport method, and carbon dioxide emission method
JP7462318B2 (en) 2020-12-15 2024-04-05 Jtss株式会社 Carbon dioxide transport container and carbon dioxide transport method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1575773A (en) * 1968-02-24 1969-07-25
JPS5012665B1 (en) * 1970-05-19 1975-05-13
GB2001015A (en) * 1977-07-12 1979-01-24 Northern Eng Ind Road vehicle tanks
JPH0853188A (en) * 1994-04-12 1996-02-27 Hydro Quebec Double-framed wall container for transportation and storage of liquefied gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1575773A (en) * 1968-02-24 1969-07-25
JPS5012665B1 (en) * 1970-05-19 1975-05-13
GB2001015A (en) * 1977-07-12 1979-01-24 Northern Eng Ind Road vehicle tanks
JPH0853188A (en) * 1994-04-12 1996-02-27 Hydro Quebec Double-framed wall container for transportation and storage of liquefied gas

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009583A1 (en) * 2009-07-21 2011-01-27 Huber Albert M Stabilizing and securing system for liquid transporting containers
JP2015502518A (en) * 2011-12-20 2015-01-22 コノコフィリップス カンパニー Internal baffle for sloshing suppression in core heat exchanger in shell
JP2018013328A (en) * 2011-12-20 2018-01-25 コノコフィリップス カンパニー Internal baffle for suppressing slosh in core-in-shell heat exchanger
CN103129864A (en) * 2013-03-14 2013-06-05 南通四方罐式储运设备制造有限公司 Tank container with swash plates
CN103244822A (en) * 2013-04-27 2013-08-14 张家港市联信化工机械有限公司 Swash plate
CN103895986A (en) * 2013-08-22 2014-07-02 哈尔滨工业大学 Anti-shaking liquid storage box with rotatable cross blades and anti-shaking method
KR101564306B1 (en) * 2015-01-06 2015-10-29 주식회사 태진중공업 Cryogenic Liquid Storage ISO Tank Container
CN105800195A (en) * 2016-04-28 2016-07-27 吉林大学 Inertial-impact-preventing liquid tank provided with cylindrical spiral tubes inside
JP2019138329A (en) * 2018-02-07 2019-08-22 Jfeエンジニアリング株式会社 Bog suppression method and device for low-temperature liquefied gas storage tank
CN111086787A (en) * 2020-01-08 2020-05-01 中山顺隆集装箱袋有限公司 Fluid bag for container
WO2022131381A1 (en) * 2020-12-15 2022-06-23 Jtss株式会社 Carbon dioxide transport container, carbon dioxide transport method, and carbon dioxide discharge method
JP7462317B2 (en) 2020-12-15 2024-04-05 Jtss株式会社 Carbon dioxide transport container, carbon dioxide transport method, and carbon dioxide emission method
JP7462318B2 (en) 2020-12-15 2024-04-05 Jtss株式会社 Carbon dioxide transport container and carbon dioxide transport method
CN112849809A (en) * 2020-12-31 2021-05-28 合肥工业大学 Dense-distributed tank truck light wave-proof plate structure and transportation tank thereof
CN112830116A (en) * 2021-01-25 2021-05-25 李小芬 Liquid material transportation and storage tank structure
CN113548330A (en) * 2021-08-09 2021-10-26 南京工业大学 Swash plate device of mobile energy storage tank car
CN114408405A (en) * 2021-12-22 2022-04-29 徐州恒安石油储运技术有限公司 Wave-proof self-discharging pressure storage tank for petroleum road and railway transportation
WO2023195583A1 (en) * 2022-04-04 2023-10-12 주식회사 엑센스 Standard transportation container for liquid hydrogen receptacle, in which vaporization of liquid hydrogen is minimized

Also Published As

Publication number Publication date
JP4919698B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4919698B2 (en) Structure of mobile cryogenic liquefied gas tank
JP6049084B2 (en) Sloshing prevention device and sloshing prevention method
US9180938B2 (en) Liquefied gas storage tank and marine structure including the same
KR100758666B1 (en) An extremely low temperature liquid fuel storage tank using the heat recovery cycle
JP2001254894A (en) Storage vessel
KR102633981B1 (en) Tank
US20160031531A1 (en) LNG Ship or LPG Ship
JP6270734B2 (en) Internal baffle for sloshing suppression in core heat exchanger in shell
KR20180060238A (en) Liquified gas storage tank having corrugated baffle
JP2010261658A (en) Evaporator with cool storage function
JP2009541708A (en) Cryogenic distillation apparatus with vacuum insulation panel
KR101670869B1 (en) Device For Reducing Sloshing Of LNG Storage Tank
JP2012137199A (en) Evaporator with cooling storage function
JP2010203748A (en) Evaporator with cold storage function
JP2010234974A (en) Evaporator with cold storage function
KR101180960B1 (en) Lng storage tank of floating structure having a means for reducing slosing
JP6410660B2 (en) Evaporator with cool storage function
KR101167916B1 (en) Hybrid type independent lng cargo tank
US20180043754A1 (en) Compact exchanger for indirect-injection cyrogenic transportation
JP6949049B2 (en) Transport container
JP6546344B2 (en) Liquefied gas storage tank with thermal insulation
TR201802608T4 (en) Heat carrier with channels for reducing fluid movements.
JP2011127754A (en) Hydrogen gas cooling device
JP2007056891A (en) Fuel gas storage container
JP2018146110A (en) Offshore floating body type facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4919698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250