JP2007307784A - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
JP2007307784A
JP2007307784A JP2006138656A JP2006138656A JP2007307784A JP 2007307784 A JP2007307784 A JP 2007307784A JP 2006138656 A JP2006138656 A JP 2006138656A JP 2006138656 A JP2006138656 A JP 2006138656A JP 2007307784 A JP2007307784 A JP 2007307784A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
gas barrier
organic
barrier film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006138656A
Other languages
Japanese (ja)
Other versions
JP4775763B2 (en
Inventor
Tsunenori Komori
常範 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006138656A priority Critical patent/JP4775763B2/en
Publication of JP2007307784A publication Critical patent/JP2007307784A/en
Application granted granted Critical
Publication of JP4775763B2 publication Critical patent/JP4775763B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas barrier film having both of excellent steam barrier properties and high transparency because it is known that an organic EL element is extremely weak against oxygen or moisture and the deterioration of the organic EL element caused by the penetration of oxygen and steam into the organic EL element is brought about if the organic EL element is allowed to stand in a state exposed to the atmosphere while it is indispensable to apply barrier properties to a plastic base material in order to realize the flexible organic EL element because the plastic base material is inferior to water and oxygen barrier properties. <P>SOLUTION: The gas barrier film is obtained by providing a silicon oxide (SiOx) film 2 formed using a plasma CVD method using a silane compound as a start raw material on one side or both side of the plastic base material 1. The silicon oxide film 2 is characterized in that an x-value is within a range of 1.9-2.1, a refractive index is within a range of 1.45-1.48 and the ratio of a hydrogen atom in the film is 30% or below. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液晶素子(LCD)、エレクトロルミネッセンス素子(EL)、等に代表されるフラットパネルディスプレイにフレキシブル性を付与するのに有効なガスバリアフィルムに関するものである。   The present invention relates to a gas barrier film effective for imparting flexibility to a flat panel display represented by a liquid crystal element (LCD), an electroluminescence element (EL) and the like.

自己発光体である有機ELディスプレイは低消費電力、高い応答速度、高視野角等の多くの利点から、ブラウン管や液晶ディスプレイに変わるフラットパネルディスプレイとして注目されている。有機ELは、一般に透明基板上に陽極、有機発光層、陰極を積層し有機EL素子が形成され、両電極間に電圧を印可することにより有機発光層で発光が生じるものである。また有機ELはその構造からも薄型化、軽量化が可能であり、フレキシブルディスプレイへの応用の期待も高い。   Organic EL displays, which are self-luminous materials, are attracting attention as flat panel displays that replace cathode ray tubes and liquid crystal displays because of their many advantages such as low power consumption, high response speed, and high viewing angle. In general, an organic EL element is formed by laminating an anode, an organic light emitting layer, and a cathode on a transparent substrate, and light is emitted from the organic light emitting layer by applying a voltage between both electrodes. In addition, organic EL can be made thinner and lighter due to its structure, and it is highly expected to be applied to flexible displays.

しかしながら、有機EL素子は非常に酸素や水分に弱いことが知られており、このような有機EL素子は大気中に暴露した状態で放置すると、酸素、水蒸気の有機EL素子内への進入による劣化が引き起こされることが知られている。特に陰極層に用いられる仕事関数の低いアルカリ金属または、アルカリ土類金属は水分により酸化されやすく、酸化されることにより電子の注入が阻害され、ダークスポットと呼ばれる非発光領域が発生し時間の経過と共に拡大する。そのため現状では有機EL素子はガラス上に形成され、乾燥剤、封止管を用いて封止されている。   However, organic EL elements are known to be very sensitive to oxygen and moisture. If such organic EL elements are left exposed to the atmosphere, they will deteriorate due to the entry of oxygen and water vapor into the organic EL elements. Is known to be caused. In particular, alkali metals or alkaline earth metals with a low work function used for the cathode layer are easily oxidized by moisture, which inhibits the injection of electrons and generates non-light-emitting regions called dark spots. Expand with. Therefore, at present, the organic EL element is formed on glass and sealed with a desiccant and a sealing tube.

一般的にプラスチック基材は水、酸素のバリア性に乏しく、この陰極層保護のために必要な水蒸気バリア性は1×10-6g/m2/dayともいわれており、フレキシブル有機ELディスプレイを実現するためにはプラスチック基材へのバリア性の付与が不可欠である(特許文献1、非特許文献1参照)。またこのバリア層としては、主に透明性の高い珪素、アルミニウムなどの酸化物や、窒化物があげられ、スパッタリング法、イオンプレーティング法、真空蒸着法、CVD法などにより形成されることが知られている。更にディスプレイ作製時におこる種々の工程中での、耐熱性、耐薬品性、耐アルカリ性、耐酸性等が要求され、また様々な環境下での高いバリア性を維持することが要求される。 Generally, plastic substrates have poor water and oxygen barrier properties, and the water vapor barrier property necessary to protect the cathode layer is said to be 1 × 10 -6 g / m 2 / day. In order to achieve this, it is indispensable to impart barrier properties to the plastic substrate (see Patent Document 1 and Non-Patent Document 1). The barrier layer is mainly made of highly transparent oxides such as silicon and aluminum, and nitrides, and is known to be formed by sputtering, ion plating, vacuum deposition, CVD, or the like. It has been. Furthermore, heat resistance, chemical resistance, alkali resistance, acid resistance, and the like in various processes that occur during display fabrication are required, and it is also required to maintain high barrier properties in various environments.

酸化珪素膜は古くからバリア膜としてさまざまな手法で検討されてきており、食品包装分野では実用化されている(特許文献2参照)。しかしながら、バリア性を得ようとすると着色してしまい、また十分なバリア性ではない。また近年高品質な酸化珪素膜を作製する手法としてPECVD法も挙げられるが、高品質な膜を得るためには、特ガス指定のシラン(SiH4)を用いなければならなかったり、成膜温度が高温であったりと、プラスチック基材への応用が難しかった。それらを改善した有機シラン化合物を用いたPECVD法による酸化珪素膜も検討されているが、有機EL向けのバリア基材として十分な物性の得られているものはなかった(非特許文献2参照)。
特開2001−118674号公報 特開平7-164591号公報 PIONEER R&D Vol. 11 No.3「有機フィルムディスプレイの開発」 "Novel Transparent Gas Barrier Film Prepared by PECVD Method", 43rd Annual Technical Conference Proceedings, Society of Vacuum Coater, 1, (2000)
Silicon oxide films have been studied as various barrier films for a long time and have been put to practical use in the food packaging field (see Patent Document 2). However, if an attempt is made to obtain a barrier property, it is colored, and the barrier property is not sufficient. In recent years, PECVD has also been used as a method for producing high-quality silicon oxide films. To obtain high-quality films, special gas-designated silane (SiH 4 ) must be used, or the deposition temperature can be increased. When it was hot, it was difficult to apply to plastic substrates. A silicon oxide film by PECVD method using an improved organosilane compound has been studied, but none has sufficient physical properties as a barrier substrate for organic EL (see Non-Patent Document 2). .
JP 2001-118674 A Japanese Patent Application Laid-Open No. 7-164591 PIONEER R & D Vol. 11 No.3 “Development of organic film display” "Novel Transparent Gas Barrier Film Prepared by PECVD Method", 43rd Annual Technical Conference Proceedings, Society of Vacuum Coater, 1, (2000)

本発明は、上記のような問題点を解決するためのものであり、その課題とするところは水蒸気バリア性に優れかつ高透明性を合わせ持つ、ガスバリアフィルムを提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a gas barrier film having excellent water vapor barrier properties and high transparency.

本発明は上記課題を鑑みてなされたものであり、本発明はプラスチック基材の片面または両面にシラン化合物を出発原料に用いたプラズマCVD法により形成された酸化珪素(SiOx)膜を有するガスバリアフィルムであって、プラスチック基材の片面または両面にシラン化合物を出発原料に用いたプラズマCVD法により形成された酸化珪素(SiOx)膜を有するガスバリアフィルムであって、前記酸化珪素膜は、xの値が1.9-2.1の範囲にあり、屈折率が1.45-1.48の範囲にあり、さらに膜中の水素原子の割合が30%以下であることを特徴とするガスバリアフィルムとするものである。   The present invention has been made in view of the above problems, and the present invention provides a gas barrier film having a silicon oxide (SiOx) film formed by a plasma CVD method using a silane compound as a starting material on one or both sides of a plastic substrate. A gas barrier film having a silicon oxide (SiOx) film formed by a plasma CVD method using a silane compound as a starting material on one or both sides of a plastic substrate, wherein the silicon oxide film has a value of x Is in the range of 1.9-2.1, the refractive index is in the range of 1.45-1.48, and the ratio of hydrogen atoms in the film is 30% or less.

まず、本発明によればガスバリア膜として成膜された酸化珪素膜の組成を化学量論であるSiO2に近くし、屈折率を1.45-1.48に規定するものである。屈折率を1.45-1.48に規定することにより、組成、密度を制御することが可能である。さらに膜中の水素原子の割合を30%以下とすることで欠陥の少ないSiOx膜が得られるものと考えられ、さらに高いバリア性が期待できるものである。
したがって本発明によれば、水蒸気バリア性に優れかつ高透明性を合わせ持つ、ガスバリアフィルムを提供することができる。
First, according to the present invention, the composition of the silicon oxide film formed as the gas barrier film is made close to the stoichiometric SiO 2 and the refractive index is regulated to 1.45-1.48. By defining the refractive index to 1.45-1.48, the composition and density can be controlled. Furthermore, it is considered that a SiOx film having few defects can be obtained by setting the ratio of hydrogen atoms in the film to 30% or less, and higher barrier properties can be expected.
Therefore, according to the present invention, it is possible to provide a gas barrier film having excellent water vapor barrier properties and high transparency.

以下本発明を詳細に説明する。
図1は本発明のガスバリアフィルムを説明する断面図である。図1における基材(1)は透明プラスチック材料からなるプラスチック基材であり、基材上にプラズマCVD法による酸化珪素膜(2)を成膜したものである。これより、プラスチック基材および、酸化珪素膜について順に説明する。
The present invention will be described in detail below.
FIG. 1 is a cross-sectional view illustrating a gas barrier film of the present invention. The base material (1) in FIG. 1 is a plastic base material made of a transparent plastic material, and a silicon oxide film (2) is formed on the base material by a plasma CVD method. Hereafter, a plastic base material and a silicon oxide film are demonstrated in order.

[プラスチック基材]
本発明に用いられる透明プラスチック基材はバリア層の透明性を生かすために透明なフィルムが好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステルフィルム、ポリカーボネートフィルム(PC)、ポリエーテルスルフォン(PES)、ポリアリレートフィルム、ポリエチレンやポリプロピレンなどのポリオレフィンフィルムや、環状シクロオレフィンを含むシクロオレフィンフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリ塩化ビニルフィルム、ポリアクリルニトリルフィルム、ポリイミドフィルム等が用いられ、延伸、未延伸のどちらでも良く、また機械的強度や寸法安定性を有するものが良い。これらをフィルム状に加工して用いられる。二軸方向に任意に延伸されていても問題ない。またこの基材の表面に、周知の種々の添加剤や安定剤、例えば帯電防止剤、紫外線防止剤、可塑剤、滑剤などが使用されていても良く、薄膜との密着性を良くするために、プライマー層を設けたり、前処理としてコロナ処理、低温プラズマ処理、イオンボンバード処理を施したりしておいても良く、さらに薬品処理、溶剤処理などを施しても良い。
[Plastic substrate]
The transparent plastic substrate used in the present invention is preferably a transparent film in order to make use of the transparency of the barrier layer. Examples include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate films (PC), polyethersulfone (PES), polyarylate films, polyolefin films such as polyethylene and polypropylene, and cyclic cycloolefins. A cycloolefin film, a polystyrene film, a polyamide film, a polyvinyl chloride film, a polyacrylonitrile film, a polyimide film, or the like is used. Either a stretched film or an unstretched film, and a material having mechanical strength and dimensional stability are preferable. These are processed into a film and used. There is no problem even if the film is arbitrarily stretched in the biaxial direction. In addition, various well-known additives and stabilizers such as an antistatic agent, an anti-ultraviolet agent, a plasticizer, and a lubricant may be used on the surface of the base material, in order to improve the adhesion to the thin film. In addition, a primer layer may be provided, or a corona treatment, a low temperature plasma treatment, or an ion bombardment treatment may be performed as a pretreatment, and a chemical treatment or a solvent treatment may be further performed.

[酸化珪素膜]
本発明のガスバリア膜として成膜されるのはシラン化合物を出発原料に用いたプラズマCVD法により形成された酸化珪素膜(SiOx)であり、上記基材の片面または両面に成膜することができる。またプラスチック基材の特徴を活かした巻き取り式による連続蒸着を行うことできる、巻き取り式の真空成膜装置を用いることが好ましい。
[Silicon oxide film]
The gas barrier film of the present invention is a silicon oxide film (SiOx) formed by a plasma CVD method using a silane compound as a starting material, and can be formed on one or both surfaces of the substrate. . Further, it is preferable to use a winding type vacuum film forming apparatus capable of performing continuous vapor deposition by taking up the characteristics of the plastic substrate.

次に、この酸化珪素膜を形成するための巻き取り式真空成膜機の例を示す。
図2はその概略図である。本透明ガスバリアフィルムを作成する真空成膜装置(3)には、ウエブ状のプラスチック基材の巻出し・巻き取り室(4)に、トルクモータ等の一定の張力にて巻き取り可能な巻き取り手段をもつ巻取り軸(7)、かつパウダークラッチ等のトルク制御手段により一定のバックテンションをかけつつウエブ状のプラスチックフィルム基材(8)の巻出しを可能にする巻出し軸(6)、プラスチック基材の走行を規制する複数のアイドルローラ(11、12)、適宣にフィードバックを行うための張力検出器を具備したテンションロール(13、14)、フィルム表面の温度を監視するための温度センサー(15、16)を有しており、また成膜室(5)には、成膜時のフィルム表面の温度をコントロールし、表面に膜を形成するための温調入り成膜ドラム(17)、プロセスガスまたは原料ガスを導入するシャワーヘッドをもつプラズマCVD用の電極(18)からなる成膜部を配置することによりなる真空成膜装置である。符号9はウエブ状のプラスチックフィルム原反であり、符号10はウエブ状の成膜済みフィルムである。今回例として示したのは巻き取り式の真空成膜装置の例であるが、その他のバッチ式の成膜装置でも全く問題はない。プラズマ発生法としては直流(DC)プラズマ、低周波プラズマ、高周波(RF)プラズマ、パルス波プラズマ、3極構造プラズマ、マイクロ波プラズマ等の低温プラズマ発生装置が用いられる。
Next, an example of a winding type vacuum film forming machine for forming this silicon oxide film will be shown.
FIG. 2 is a schematic diagram thereof. The vacuum film forming apparatus (3) for producing the transparent gas barrier film includes a web-shaped plastic substrate unwinding / winding chamber (4) that can be wound with a constant tension such as a torque motor. A winding shaft (6) having a means, and a winding shaft (6) enabling unwinding of the web-shaped plastic film substrate (8) while applying a constant back tension by a torque control means such as a powder clutch, A plurality of idle rollers (11, 12) for regulating the travel of the plastic substrate, tension rolls (13, 14) equipped with a tension detector for appropriately feeding back, temperature for monitoring the temperature of the film surface The film forming chamber (5) includes a sensor (15, 16), and a film forming drum (17) with temperature control for controlling the temperature of the film surface during film formation and forming a film on the surface. ), This is a vacuum film-forming apparatus in which a film-forming part consisting of an electrode (18) for plasma CVD having a shower head for introducing a process gas or a raw material gas is arranged. Reference numeral 9 denotes a web-shaped plastic film original, and reference numeral 10 denotes a web-shaped film. An example of the take-up vacuum film forming apparatus is shown as an example this time, but there is no problem at all with other batch type film forming apparatuses. As a plasma generation method, a low temperature plasma generator such as direct current (DC) plasma, low frequency plasma, high frequency (RF) plasma, pulse wave plasma, tripolar structure plasma, microwave plasma, or the like is used.

プラズマCVD法にて作成される酸化珪素膜は、シラン化合物と酸素ガスを加えたもの、場合によってはそれに不活性ガスを加えたものを原料として用いて成膜される。シラン化合物の例としては、シラン(SiH4)、ジクロロシラン、テトラクロロシラン、テトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、テトラメチルシラン(TMS)、ヘキサメチルジシラン(HMDS)、ヘキサメチルジシロキサン(HMDSO)、テトラメチルジシロキサン、メチルトリメトキシシラン等の比較的低分子量のシラン化合物を選択し、これらシラン化合物の一つまたは、複数を選択しても良い。しかしながら、シラン、ジクロロシラン、テトラクロロシラン等のシラン化合物は毒性、爆発性共に高く取扱が難しい。そこでこれらシラン化合物の中で安全性や、蒸気圧を考えると、TEOS、TMOS、TMS、HMDS、HMDSO等の有機珪素化合物が好ましい。成膜にはこれらの有機珪素化合物を気化させ、酸素ガスと混合し、上記、真空成膜装置の成膜室(5)へと導入し、温調入り成膜ドラム(17)と電極(18)間にプラズマを発生させ、プラズマCVD法にて酸化珪素膜をプラスチック基材上に成膜する。また酸化珪素膜の性質はプラズマCVD法では様々な方法で変えることが可能である。例えば有機珪素化合物やガス種の変更、有機珪素化合物と酸素ガスの混合比や、投入電力等の様々な方法が考えられる。 A silicon oxide film formed by a plasma CVD method is formed by using a material obtained by adding a silane compound and oxygen gas, and optionally adding an inert gas as a raw material. Examples of silane compounds include silane (SiH 4 ), dichlorosilane, tetrachlorosilane, tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetramethylsilane (TMS), hexamethyldisilane (HMDS), hexamethyldisilane. A relatively low molecular weight silane compound such as siloxane (HMDSO), tetramethyldisiloxane, or methyltrimethoxysilane may be selected, and one or more of these silane compounds may be selected. However, silane compounds such as silane, dichlorosilane, and tetrachlorosilane are both toxic and explosive and difficult to handle. In view of safety and vapor pressure among these silane compounds, organic silicon compounds such as TEOS, TMOS, TMS, HMDS, and HMDSO are preferable. For film formation, these organosilicon compounds are vaporized, mixed with oxygen gas, introduced into the film formation chamber (5) of the vacuum film formation apparatus, and the temperature-controlled film formation drum (17) and electrode (18 ) Plasma is generated, and a silicon oxide film is formed on the plastic substrate by plasma CVD. The properties of the silicon oxide film can be changed by various methods in the plasma CVD method. For example, various methods such as change of organosilicon compound and gas type, mixing ratio of organosilicon compound and oxygen gas, input power, and the like can be considered.

バリア層である酸化珪素膜の膜厚は特に限定されるものではないが、あまり薄すぎるとバリア性の発現が難しいため、10nm以上は必要であると考えられる。これ以上の膜厚は、透明性が損なわれない範囲において、必要なバリア性能に合わせて膜厚をコントロールすることが可能である。しかし、ある程度の膜厚となる、柔軟性、経済性の面で問題を生じるが、有機ELに適応するようなバリア性を得ようとするならば、 50〜500nmの範囲が好ましい。また膜厚のコントロールはバッチ装置では成膜時間をコントロールすることにより可能であるが、巻き取り式の装置の場合には、ラインスピードまたは、電極の個数を変化させることによりコントロールが可能であり、また、一度成膜を行った後に再度反転し、膜厚を増加させることも可能である。   The thickness of the silicon oxide film that is a barrier layer is not particularly limited, but if it is too thin, it is difficult to express the barrier property, and it is considered that 10 nm or more is necessary. A film thickness greater than this can be controlled in accordance with the required barrier performance as long as the transparency is not impaired. However, although a problem arises in terms of flexibility and economy, which results in a certain film thickness, the range of 50 to 500 nm is preferable if it is desired to obtain a barrier property suitable for organic EL. Also, the film thickness can be controlled by controlling the film formation time in the batch apparatus, but in the case of a winding type apparatus, it can be controlled by changing the line speed or the number of electrodes. It is also possible to increase the film thickness by reversing after film formation once.

得られた酸化珪素膜の詳細な組成および、水素濃度の分析はラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometory)、反跳粒子検出法(ERDA法)により決定することができる。これらの測定法はよく平行化された高速He2+を試料に照射し、後方に散乱されるHeのエネルギー及び強度を測定することによって、試料表面の構成元素、組成を得る分析である。RBSにより珪素、窒素の定量が、ERDAにより水素の定量が可能である。
酸化珪素膜(SiOx)のxの値を、1.9-2.1と規定したのは化学量論であるSiOに近い組成が、バリア膜には必要であることが判明したためであり、1.9-2.1を外れると、化学量論を外れ、余剰なボンドが発生し、バリア性の発現が難しくなる。また1.9を下回ると珪素過剰な膜となり、膜の着色の恐れがあるため好ましくない。また、得られた水素濃度を30%以下とすることにより欠陥の少ないSiOx膜が得られると考えられる。SiOxのxの値のみで規定した場合、珪素と酸素の比は2に近づいたとしても、その構造の特定は難しい。それは、膜中にSi-H結合や、SiO-H結合など、水素を含む構造が考えられ、構造的に欠陥と考えられる。そこで水素存在量を規定することにより、これらの欠陥を少なくすることが可能であり高いバリア性の発現が期待できる。
The detailed composition of the obtained silicon oxide film and the analysis of the hydrogen concentration can be determined by Rutherford Backscattering Spectroscopy (RBS) and recoil detection method (ERDA method). These measurement methods are analysis to obtain the constituent elements and composition of the sample surface by irradiating the sample with well collimated high-speed He2 + and measuring the energy and intensity of He scattered back. Silicon and nitrogen can be quantified by RBS, and hydrogen can be quantified by ERDA.
The value of x of the silicon oxide film (SiOx) was defined as 1.9-2.1 because it was found that a composition close to the stoichiometric SiO 2 was necessary for the barrier film. If it deviates, it will deviate from the stoichiometry, and excessive bonds will be generated, making it difficult to develop barrier properties. On the other hand, if it is less than 1.9, a silicon-excess film is formed, and the film may be colored. Further, it is considered that a SiOx film having few defects can be obtained by setting the obtained hydrogen concentration to 30% or less. When it is defined only by the value of x of SiOx, even if the ratio of silicon and oxygen approaches 2, it is difficult to specify the structure. That is, a structure containing hydrogen such as Si—H bond or SiO—H bond in the film is considered, and it is considered structurally a defect. Thus, by defining the amount of hydrogen present, it is possible to reduce these defects and to expect high barrier properties.

酸化珪素膜の屈折率は、エリプソメトリにより測定することが可能である。測定には波長633nmのレーザー光を用い測定を行った。他にも得られたガスバリアフィルムの透過光および、反射光を測定することによっても測定が可能である。膜の屈折率は酸化珪素に吸収のない範囲の屈折率で規定することが可能である。酸化珪素膜の屈折率は主に密度と相関があるものとされている。たとえば熱CVD法により得られた化学量論にあるSiO2膜の屈折率は1.465とされている。この値よりも大きいと(1.465<)珪素過剰な膜となり、逆に小さい場合(1.465>)は酸素過剰または、密度の低い膜となることが知られている。今回の分子内に炭素を有するシラン化合物を出発原料に用いたプラズマCVD法による酸化珪素膜においても屈折率を1.45-1.48に規定することにより、組成、密度を制御することができ、高いバリア性を維持できる。 The refractive index of the silicon oxide film can be measured by ellipsometry. Measurement was performed using laser light having a wavelength of 633 nm. In addition, the measurement can be performed by measuring the transmitted light and reflected light of the obtained gas barrier film. The refractive index of the film can be defined by a refractive index in a range in which silicon oxide does not absorb. The refractive index of the silicon oxide film is mainly correlated with the density. For example, the refractive index of the SiO 2 film in the stoichiometry obtained by the thermal CVD method is 1.465. It is known that if this value is larger than (1.465 <) a silicon-excess film, and if it is smaller (1.465>), an oxygen-excess or low-density film is obtained. In this silicon oxide film by plasma CVD method using silane compound with carbon in the molecule as the starting material, the refractive index is regulated to 1.45-1.48, the composition and density can be controlled, and the high barrier property. Can be maintained.

以下、実施例を挙げて本発明を説明するが、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, it is not limited to a following example.

[実施例1]
厚さ100μmの二軸延伸ポリエチレンテレフタレート(PET)フィルムを基材として、図2に示す巻き取り式プラズマCVD成膜装置の巻出し部にセットし、真空ポンプで排気し、巻き取り式プラズマCVD成膜装置内部を、5×10-5torrにまで減圧をした。つぎにヘキサメチルジシロキサン(HMDSO):酸素=10:100となるように混合した原料ガスを、成膜室の各電極表面のシャワーヘッドより導入し、成膜室内部を2×10-2torrとした。続いて、各電極に13.56MHzの高周波を0.5kW印可し、プラズマを発生させた。続いてPETフィルムを0.3m/minで走行させて成膜を行った。そのとき得られた酸化珪素膜の膜厚は100nmであった。このようにして本発明の目的であるガスバリアフィルム1を得た。
[Example 1]
Using a biaxially stretched polyethylene terephthalate (PET) film with a thickness of 100μm as a base material, it is set in the unwinding part of the wind-up type plasma CVD film forming apparatus shown in Fig. 2 and evacuated with a vacuum pump to form a wind-up type plasma CVD film. The inside of the membrane device was depressurized to 5 × 10 −5 torr. Next, a raw material gas mixed so that hexamethyldisiloxane (HMDSO): oxygen = 10: 100 is introduced from a shower head on each electrode surface of the film forming chamber, and the inside of the film forming chamber is 2 × 10 −2 torr. It was. Subsequently, a high frequency of 13.56 MHz was applied to each electrode at 0.5 kW to generate plasma. Subsequently, the PET film was run at 0.3 m / min for film formation. The thickness of the silicon oxide film obtained at that time was 100 nm. Thus, the gas barrier film 1 which is the object of the present invention was obtained.

[実施例2]
実施例1において、各電極に印加した高周波電力を1.0kWとし、HMDSO:酸素比=15:100とし、また酸化珪素膜の膜厚が100nmとなるようにラインスピードを調節して、本発明の目的であるガスバリアフィルム2を得た。
[Example 2]
In Example 1, the high frequency power applied to each electrode is 1.0 kW, the HMDSO: oxygen ratio is 15: 100, and the line speed is adjusted so that the thickness of the silicon oxide film is 100 nm. The objective gas barrier film 2 was obtained.

[比較例1]
実施例1において、 HMDSO:酸素比=15:100とし、また酸化珪素膜の膜厚が100nmとなるようにラインスピードを調節して、酸化珪素を成膜したフィルムを得た。
[Comparative Example 1]
In Example 1, an HMDSO: oxygen ratio was set to 15: 100, and the line speed was adjusted so that the thickness of the silicon oxide film was 100 nm to obtain a film on which silicon oxide was formed.

[比較例2]
実施例2において、 HMDSO:酸素比=20:100とし、また酸化珪素膜の膜厚が100nmとなるようにラインスピードを調節して、酸化珪素を成膜したフィルムを得た。
[Comparative Example 2]
In Example 2, an HMDSO: oxygen ratio was set to 20: 100, and the line speed was adjusted so that the thickness of the silicon oxide film was 100 nm, thereby obtaining a film on which silicon oxide was formed.

得られた酸化珪素膜の組成比の決定は同一条件でシリコン基板上に成膜したものについて、RBSおよび、ERDA測定を行うことにより決定した。RBS、ERDAの測定条件はビームエネルギー2300eV、イオン種He+、散乱角170゜、試料電流30nA、ビーム照射量40uCとした。   The composition ratio of the obtained silicon oxide film was determined by performing RBS and ERDA measurements on a film formed on a silicon substrate under the same conditions. The measurement conditions for RBS and ERDA were beam energy of 2300 eV, ion species He +, scattering angle of 170 °, sample current of 30 nA, and beam irradiation amount of 40 uC.

また得られた試料のガスバリア性の測定は水蒸気透過率測定装置(MOCON社製 PERMATRAN-W 3/33)をもちい、 40℃、相対湿度90%の条件下で測定を行った。その結果を下表に示す。また基材に用いたPETフィルムのバリア性は5.0g/m2/dayである。その結果を表に示す。 The gas barrier property of the obtained sample was measured using a water vapor transmission rate measuring device (PERMATRAN-W 3/33 manufactured by MOCON) under the conditions of 40 ° C. and 90% relative humidity. The results are shown in the table below. The barrier property of the PET film used for the substrate is 5.0 g / m 2 / day. The results are shown in the table.

Figure 2007307784
Figure 2007307784

表1に示すとおり、実施例1-2においては上述のような膜組成にコントロールすることによって、基材と比較して非常に高いバリア性を示していることがわかる。このようにして得られたガスバリアフィルムは水蒸気透過率測定装置(MOCON社製 PERMATRAN-W 3/33)の検出限界以下のバリア性を示し、ディスプレイ用途にも耐えうるようなバリア膜の形成が可能である。   As shown in Table 1, in Example 1-2, it can be seen that by controlling the film composition as described above, the barrier property is very high as compared with the base material. The gas barrier film obtained in this way shows barrier properties below the detection limit of the water vapor transmission rate measurement device (PERCON-W 3/33 manufactured by MOCON), and can form a barrier film that can withstand display applications. It is.

本発明のガスバリアフィルムは、液晶素子(LCD)、エレクトロルミネッセンス素子(EL)、等に代表されるフラットパネルディスプレイに有効である。   The gas barrier film of the present invention is effective for a flat panel display represented by a liquid crystal element (LCD), an electroluminescence element (EL) and the like.

本発明のガスバリアフィルムを説明する断面図である。It is sectional drawing explaining the gas barrier film of this invention. 本発明に関わる巻き取り式真空成膜装置の全体図を示す概略説明図である。It is a schematic explanatory drawing which shows the whole figure of the winding-type vacuum film-forming apparatus concerning this invention.

符号の説明Explanation of symbols

1……プラスチック基材、2……酸化珪素膜、3……真空成膜装置、4……巻出し・巻き取り室、5……成膜室、6……巻出し軸、7……巻取り軸、8……プラスチックフィルム基材、17……温調入り成膜ドラム、18……電極。
DESCRIPTION OF SYMBOLS 1 ... Plastic base material, 2 ... Silicon oxide film, 3 ... Vacuum film-forming apparatus, 4 ... Unwinding and winding chamber, 5 ... Film-forming chamber, 6 ... Unwinding shaft, 7 ... Winding Take-up shaft, 8 ... plastic film substrate, 17 ... temperature-regulating film forming drum, 18 ... electrode.

Claims (5)

プラスチック基材の片面または両面にシラン化合物を出発原料に用いたプラズマCVD法により形成された酸化珪素(SiOx)膜を有するガスバリアフィルムであって、前記酸化珪素膜は、xの値が1.9-2.1の範囲にあり、屈折率が1.45-1.48の範囲にあり、さらに膜中の水素原子の割合が30%以下であることを特徴とするガスバリアフィルム。   A gas barrier film having a silicon oxide (SiOx) film formed by a plasma CVD method using a silane compound as a starting material on one or both surfaces of a plastic substrate, wherein the silicon oxide film has a value of x of 1.9-2.1 A gas barrier film having a refractive index in the range of 1.45-1.48 and a hydrogen atom ratio in the film of 30% or less. 前記酸化珪素膜は、xの値が1.98-2.01の範囲にあり、屈折率が1.465-1.468の範囲にあり、さらに膜中の水素原子の割合が15-20%の範囲にあることを特徴とする請求項1に記載のガスバリアフィルム。   The silicon oxide film is characterized in that the value of x is in the range of 1.98-2.01, the refractive index is in the range of 1.465-1.468, and the percentage of hydrogen atoms in the film is in the range of 15-20%. The gas barrier film according to claim 1. 前記シラン化合物が、ヘキサメチルジシロキサンであることを特徴とする請求項2に記載のガスバリアフィルム。   The gas barrier film according to claim 2, wherein the silane compound is hexamethyldisiloxane. 前記酸化珪素膜は、xの値が1.98であり、屈折率が1.465であり、さらに膜中の水素原子の割合が20%であることを特徴とする請求項3に記載のガスバリアフィルム。   The gas barrier film according to claim 3, wherein the silicon oxide film has a value of x of 1.98, a refractive index of 1.465, and a ratio of hydrogen atoms in the film of 20%. 前記酸化珪素膜は、xの値が2.01であり、屈折率が1.468であり、さらに膜中の水素原子の割合が15%であることを特徴とする請求項3に記載のガスバリアフィルム。
The gas barrier film according to claim 3, wherein the silicon oxide film has a value of x of 2.01, a refractive index of 1.468, and a ratio of hydrogen atoms in the film of 15%.
JP2006138656A 2006-05-18 2006-05-18 Gas barrier film Expired - Fee Related JP4775763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138656A JP4775763B2 (en) 2006-05-18 2006-05-18 Gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138656A JP4775763B2 (en) 2006-05-18 2006-05-18 Gas barrier film

Publications (2)

Publication Number Publication Date
JP2007307784A true JP2007307784A (en) 2007-11-29
JP4775763B2 JP4775763B2 (en) 2011-09-21

Family

ID=38841070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138656A Expired - Fee Related JP4775763B2 (en) 2006-05-18 2006-05-18 Gas barrier film

Country Status (1)

Country Link
JP (1) JP4775763B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132696A1 (en) * 2011-03-30 2012-10-04 リンテック株式会社 Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
JP2014065281A (en) * 2012-09-27 2014-04-17 Keio Gijuku Laminate and method for manufacturing the same
WO2016190047A1 (en) * 2015-05-22 2016-12-01 ダイキン工業株式会社 Method for manufacturing article having surface treatment layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241829A (en) * 1996-03-08 1997-09-16 Toyobo Co Ltd Gas barrier film and its production
JPH11195487A (en) * 1997-12-27 1999-07-21 Tdk Corp Organic el element
JP2000043875A (en) * 1998-07-31 2000-02-15 Toppan Printing Co Ltd Gas barrier plastic bottle
JP2000117881A (en) * 1998-10-20 2000-04-25 Toppan Printing Co Ltd Container made of plastic with gas barrier property
JP2002192646A (en) * 2000-03-14 2002-07-10 Dainippon Printing Co Ltd Gas-barrier film
JP2002521247A (en) * 1998-07-27 2002-07-16 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Hard coat for flat panel display substrate
JP2003063574A (en) * 2001-08-24 2003-03-05 Toppan Printing Co Ltd Gas barrier plastic container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241829A (en) * 1996-03-08 1997-09-16 Toyobo Co Ltd Gas barrier film and its production
JPH11195487A (en) * 1997-12-27 1999-07-21 Tdk Corp Organic el element
JP2002521247A (en) * 1998-07-27 2002-07-16 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Hard coat for flat panel display substrate
JP2000043875A (en) * 1998-07-31 2000-02-15 Toppan Printing Co Ltd Gas barrier plastic bottle
JP2000117881A (en) * 1998-10-20 2000-04-25 Toppan Printing Co Ltd Container made of plastic with gas barrier property
JP2002192646A (en) * 2000-03-14 2002-07-10 Dainippon Printing Co Ltd Gas-barrier film
JP2003063574A (en) * 2001-08-24 2003-03-05 Toppan Printing Co Ltd Gas barrier plastic container

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132696A1 (en) * 2011-03-30 2012-10-04 リンテック株式会社 Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
CN103534084A (en) * 2011-03-30 2014-01-22 琳得科株式会社 Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
EP2692522A1 (en) * 2011-03-30 2014-02-05 LINTEC Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
EP2692522A4 (en) * 2011-03-30 2015-04-29 Lintec Corp Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
US9763345B2 (en) 2011-03-30 2017-09-12 Lintec Corporation Gas barrier laminated body, method for producing same, member for electronic device, and electronic device
JP2014065281A (en) * 2012-09-27 2014-04-17 Keio Gijuku Laminate and method for manufacturing the same
WO2016190047A1 (en) * 2015-05-22 2016-12-01 ダイキン工業株式会社 Method for manufacturing article having surface treatment layer
JPWO2016190047A1 (en) * 2015-05-22 2017-09-28 ダイキン工業株式会社 Method for producing article having surface treatment layer
CN107614257A (en) * 2015-05-22 2018-01-19 大金工业株式会社 The manufacture method of article with surface-treated layer

Also Published As

Publication number Publication date
JP4775763B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5251071B2 (en) Barrier film and method for producing the same
JP4830733B2 (en) Gas barrier film and manufacturing method thereof
US9263677B2 (en) Method for manufacturing a transparent gas barrier film
JP5889281B2 (en) Barrier vapor deposition film
US20100003482A1 (en) Transparent gas barrier film and method for producing transparent gas barrier film
JP5893627B2 (en) Permeation barrier for device and substrate encapsulation
US10780675B2 (en) Gas barrier film, optical film, and flexible display
JP2009274251A (en) Transparent barrier film and its manufacturing method
KR20160102452A (en) Laminate film and flexible electronic device
US20160059261A1 (en) Gas barrier film and method for producing the same
JP5948928B2 (en) Gas barrier laminated film
JP4775763B2 (en) Gas barrier film
Kim et al. Surface modification of polymeric substrates to enhance the barrier properties of an Al2O3 layer formed by PEALD process
JP2005256061A (en) Laminate
JP5664341B2 (en) Gas barrier film
JPWO2007142059A1 (en) PLASTIC OPTICAL ELEMENT WITH GAS BARRIER FILM, MANUFACTURING METHOD THEREOF, AND OPTICAL PICKUP DEVICE USING THE SAME
JP5751027B2 (en) Transparent conductive film
JP2007144977A (en) Transparent barrier film and its manufacturing method
US10221486B2 (en) Laminate film, organic electroluminescence device, photoelectric conversion device, and liquid crystal display
JP2009220482A (en) Transparent barrier film and manufacturing method thereof
Lee et al. Silicon oxide film deposited at room temperatures using high-working-pressure plasma-enhanced chemical vapor deposition: Effect of O2 flow rate
JP2005074987A (en) Transparent gas-barrier film and method for producing the same
JP2013233705A (en) Gas barrier film
WO2017086170A1 (en) Gas barrier film
JP2013233745A (en) Gas barrier film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees