JP2007307643A - Method and device for affixing together - Google Patents

Method and device for affixing together Download PDF

Info

Publication number
JP2007307643A
JP2007307643A JP2006137639A JP2006137639A JP2007307643A JP 2007307643 A JP2007307643 A JP 2007307643A JP 2006137639 A JP2006137639 A JP 2006137639A JP 2006137639 A JP2006137639 A JP 2006137639A JP 2007307643 A JP2007307643 A JP 2007307643A
Authority
JP
Japan
Prior art keywords
holder
bonding
gas
held
vacuum chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006137639A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Shinji Kato
愼治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2006137639A priority Critical patent/JP2007307643A/en
Publication of JP2007307643A publication Critical patent/JP2007307643A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for affixing together two members having a micro-structural part with the mating surfaces in alignment while bubbles are prevented from intruding. <P>SOLUTION: The device is composed of: (1) a first holder to hold a first member having a flat and smooth surface α and a micro-structural part a on the surface α; (2) a second holder to hold a second, flexible member having a flat and smooth surface β and a micro-structural part b on the surface β; (3) a position sensing mechanism to sense the positional relation between the first member and the second member; (4) an aligning mechanism to coordinate the positions of the first member and the second member; and (5) a gas lead-in hole to lead in the gas to between the second member and the second holder, and is equipped with a function to affix together the two members by introducing the gas from the lead-in hole to one part between the second member and the second holder and thereby inflating the second member toward the first member. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面に微細な構造部分を有する部材と、やはり表面に微細な構造部分を有する、可撓性のある板状又はフィルム状の部材とを、前記構造部分形成面を貼り合わせ面として、互いに位置を合わせて貼り合わせる貼り合わせ装置、及び上記部材を互いに位置を合わせて貼り合わせる貼り合わせ方法に関する。本発明は、マイクロ流体デバイスの製造方法に好ましく適用できる。   In the present invention, a member having a fine structure portion on the surface and a flexible plate-like or film-like member which also has a fine structure portion on the surface are used as the bonding surface. The present invention relates to a laminating apparatus for laminating and aligning each other, and a laminating method for laminating the above members with their positions aligned with each other. The present invention can be preferably applied to a manufacturing method of a microfluidic device.

マイクロ流体デバイスは、部材中に微細な毛細管状の流路を有し、該流路中で反応や分析を行うデバイスである。その代表的な製造方法は、溝を有する板状又はフィルム状の部材の溝形成面にカバーとなる板状又はフィルム状の部材を貼り合わせることにより、該溝と該カバーとで毛細管状の流路を形成する製造方法である。この場合には、前記二つの部材の精密な位置あわせは不要であるため、ガラス製マイクロ流体デバイスの製造においては、単に重ねて圧迫し、熱融着する方法が広く用いられている。また、前記二つの部材の少なくとも一方が粘着性である場合、例えば粘着性を有するポリマー製部材である場合や、接着剤を塗布した部材である場合には、両部材を端から順に接触するように重ねることで、間に気泡を残さずに積層することが出来る。   A microfluidic device is a device that has a fine capillary channel in a member and performs reaction and analysis in the channel. A typical manufacturing method is to attach a plate-like or film-like member serving as a cover to a groove-forming surface of a plate-like or film-like member having a groove, whereby a capillary-like flow is formed between the groove and the cover. A manufacturing method for forming a path. In this case, since precise positioning of the two members is not necessary, in the manufacture of a glass microfluidic device, a method of simply compressing and heat-sealing is widely used. Further, when at least one of the two members is sticky, for example, when it is a sticky polymer member or a member to which an adhesive is applied, both members are contacted in order from the end. It is possible to stack without leaving bubbles in between.

それに対し、該マイクロ流体デバイスに、例えば立体交差する流路、バルブ、ポンプ機構、濾過機構、内壁に多孔質体が固定された流路、内壁にプローブが固定された流路などの、さらに複雑な構造を形成する場合には、前記カバーとなる部材の表面にも、溝、孔、プローブ固定部分、多孔質層形成部分などの微小な構造部分を形成し、これらの位置を合わせて貼り合わせる必要がある。そのため、例えば部材がガラス製である場合には、上側ホルダと下側ホルダにそれぞれ部材を固定し、両部材を接触又は非接触の状態で、光学的に位置を検出して位置合わせして、非接触の場合には該二つの部材間のギャップを縮めて行き、密着させた後に加熱融着させる装置と方法が知られている。   On the other hand, the microfluidic device has a more complicated structure such as a three-dimensionally intersecting flow path, a valve, a pump mechanism, a filtration mechanism, a flow path with a porous body fixed on the inner wall, and a flow path with a probe fixed on the inner wall. When forming a simple structure, a minute structure portion such as a groove, a hole, a probe fixing portion and a porous layer forming portion is also formed on the surface of the member to be the cover, and these positions are aligned and bonded together. There is a need. Therefore, for example, when the member is made of glass, the member is fixed to the upper holder and the lower holder, and both the members are contacted or non-contacted, and the position is optically detected and aligned. In the case of non-contact, an apparatus and a method are known in which the gap between the two members is reduced, and the two members are brought into close contact with each other and heated and fused.

しかしながら、上記表面に微小な構造を有する部材または表面に微小な構造を有する部材の少なくとも一方が、半硬化状態の樹脂のように粘着性を有する場合や、接着剤を流動しない程度に極薄く、例えば0.5〜5μmの厚さに塗布したものである場合には、接触した状態では相互位置をずらすことは出来ないし、非接触の状態で位置を合わせ、両部材間のギャップを平行状態を保って縮めていって接触させる方法では、貼り合わせ面に気泡が入りがちであり、微細な毛細管状の流路をうまく形成できなかった。また、該部材の端から順に接触するように重ねる方法では精密な位置合わせが出来なかった。   However, when at least one of the member having a minute structure on the surface or the member having a minute structure on the surface is sticky like a semi-cured resin, or extremely thin to the extent that the adhesive does not flow, For example, when the coating is applied to a thickness of 0.5 to 5 μm, the mutual position cannot be shifted in the contact state, the positions are aligned in a non-contact state, and the gap between the two members is in a parallel state. In the method of maintaining the shrinkage and bringing it into contact, bubbles tend to enter the bonding surface, and a fine capillary channel cannot be formed well. In addition, precise positioning could not be performed by the method of overlapping the members so as to contact each other in order.

一方、特許文献1には、第1の基板と第2の基板のそれぞれ対向する表面の端部に沿って環状に接着剤が塗布され、上記接着剤と上記両基板とにより形成される、所定の厚さの隙間に液晶材料が充填された液晶表示装置の製造装置として、真空容器と、第1の基板の下表面全面を真空吸着で保持する第1の吸着機構と、第2の基板の上表面全面を真空吸着で保持する第2の吸着機構と、上記真空容器内の気圧の減圧時に、真空容器内にて、該第2の吸着機構及び第2の基板を鉛直方向に下降させて、第2の基板の下表面を上記液晶材料又は上記接着剤と接触させる、第1の加圧力を備える第1の加圧機構と、同じく上記真空容器内の気圧の減圧時に、真空容器内にて、第2の吸着機構及び第2の基板をさらに鉛直方向に下降させ、第2の基板を接着剤を介して第1の基板に貼り合わせ所定の間隔になるまで加圧する、第1の加圧力より大きい第2の加圧力を備える第2の加圧機構と、から構成される液晶表示装置製造装置が開示されている。   On the other hand, in Patent Document 1, an adhesive is applied annularly along the end portions of the opposing surfaces of the first substrate and the second substrate, and is formed by the adhesive and both substrates. As a manufacturing apparatus of a liquid crystal display device in which a liquid crystal material is filled in a gap of a thickness of, a vacuum container, a first suction mechanism that holds the entire lower surface of the first substrate by vacuum suction, and a second substrate A second suction mechanism that holds the entire upper surface by vacuum suction, and when the pressure in the vacuum container is reduced, the second suction mechanism and the second substrate are lowered vertically in the vacuum container. A first pressurizing mechanism having a first pressurizing force that brings the lower surface of the second substrate into contact with the liquid crystal material or the adhesive, and when the atmospheric pressure in the vacuum container is reduced, The second suction mechanism and the second substrate are further lowered in the vertical direction, and the second substrate A liquid crystal display device comprising: a second pressurizing mechanism having a second pressurizing force larger than the first pressurizing force, which is bonded to the first substrate via an adhesive and pressurizes until a predetermined interval is reached. A manufacturing apparatus is disclosed.

しかしながら、真空容器を用いると、接着面に気泡の入る恐れはなくなるが、貼り合わせ装置が大がかりになる上、貼り合わせ工程のスループットが低下しがちであった。   However, when a vacuum container is used, there is no risk of bubbles entering the bonding surface, but the bonding apparatus becomes large and the throughput of the bonding process tends to decrease.

また、特許文献2には、やはり液晶表示装置の製造装置として、下固定治具の上に下圧着治具を配置し、この下圧着治具の上に前記第1の基板と第2の基板とを積層した貼り合わせ空セルと、中圧着治具とを交互に積み重ね、最上部に位置する貼り合わせ空セルの上に上圧着治具と上固定治具とを順次配置し、更に個々の圧着治具にシートを設け、このシートにヒーターを設けるとともに、複数個のほぼ同一形状のシートと複数個のほぼ同一形状の貼り合わせ空セルとを交互に積み重ね、上記シート内に流体を流して該シートの膨張により複数個の液晶表示用貼り合わせ空セルを同時に圧着するようにした圧着装置が開示されている。   Also, in Patent Document 2, as a liquid crystal display manufacturing apparatus, a lower pressure bonding jig is disposed on a lower fixing jig, and the first substrate and the second substrate are placed on the lower pressure bonding jig. Stacked empty cells and intermediate pressure bonding jigs are alternately stacked, and an upper pressure bonding jig and an upper fixing jig are sequentially disposed on the bonding empty cell located at the uppermost position, and each individual A sheet is provided on the crimping jig, a heater is provided on the sheet, and a plurality of sheets having substantially the same shape and a plurality of bonded empty cells having substantially the same shape are alternately stacked, and a fluid is allowed to flow in the sheet. A pressure bonding apparatus is disclosed in which a plurality of liquid crystal display-bonded empty cells are pressure-bonded simultaneously by expansion of the sheet.

しかしながら、この場合には、あらかじめ前記第1の基板と第2の基板に相当する部材とを積層して、貼り合わせ空セルを作製した上で、圧着するものである。このように、貼り合わせ部分が前記両基板の周囲部だけであるように幅が小さく、しかも、接着剤を流動可能な厚さに塗布した場合には、圧着することで気泡を追い出すことが可能であろうが、マイクロ流体デバイスのように、微細な流路となる欠損部を持つ部材を貼り合わせる場合には、接着剤を流動する程度に塗布すると、前記欠損部が接着剤により埋められてしまい、微細な流路が閉塞されてしまう。即ちこの製造装置と製造方法では、マイクロ流体デバイスの部材の微細な欠損部を除いた全面を、気泡を残さずに貼り合わせることは出来なかった。   However, in this case, a member corresponding to the first substrate and the second substrate is laminated in advance to produce a bonded empty cell and then crimped. In this way, the width is small so that the bonded part is only the peripheral part of the two substrates, and when the adhesive is applied to a flowable thickness, it is possible to expel bubbles by pressure bonding. However, when a member having a defective portion that becomes a fine flow path is bonded together like a microfluidic device, if the adhesive is applied to such an extent that it flows, the defective portion is filled with the adhesive. As a result, the fine flow path is blocked. That is, with this manufacturing apparatus and manufacturing method, it was impossible to bond the entire surface of the microfluidic device member excluding the minute defects without leaving bubbles.

特開2001−051284号公報JP 2001-051284 A 特許第3439787号公報Japanese Patent No. 3439787

本発明が解決しようとする課題は、表面に微細な構造部分を有する部材、及び、やはり表面に微細な構造部分を有する、可撓性のある板状又はフィルム状の部材の少なくとも一方が粘着性である場合のように、両部材を接触させてからずらして位置を合わせることが出来ない場合でも、真空容器を使用することなく、部材間に気泡が入らないように、位置を合わせて貼り合わせる貼り合わせ装置、及び貼り合わせ方法を提供することにある。特に、上記のような部材を貼り合わせる工程を含むマイクロ流体デバイスの製造方法を提供することにある。   The problem to be solved by the present invention is that at least one of a member having a fine structure portion on the surface and a flexible plate-like or film-like member also having a fine structure portion on the surface is adhesive. Even if it is not possible to shift the position after bringing both members into contact, as in the case of, without using a vacuum vessel, align the positions so that bubbles do not enter between the members. It is in providing the bonding apparatus and the bonding method. In particular, an object of the present invention is to provide a method of manufacturing a microfluidic device including a step of bonding the above-described members.

本発明者等は、表面に微細な構造部分を有する部材である第1部材と、やはり表面に微細な構造部分を有する、可撓性のある板状又はフィルム状の部材である第2部材をわずかな間隔を開けて保持し、相対位置を合わせた後、該第2部材の、貼り合わせ面の裏側に気体を導入して前記第2部材を前記第1部材方向に膨らませ、中央部から周辺部へ、又は一方の端から他方の端へと順に前記第1部材と接触させて両部材を貼り合わせることにより、上記課題を解決出来ることを見いだし、本発明に到達した。   The inventors have a first member that is a member having a fine structure portion on the surface and a second member that is a flexible plate-like or film-like member that also has a fine structure portion on the surface. After maintaining a slight gap and aligning the relative positions, gas is introduced into the back side of the bonding surface of the second member to inflate the second member in the direction of the first member, and from the center to the periphery It has been found that the above-mentioned problem can be solved by bringing the first member into contact with the first member in order from one end to the other end, and bonding the two members together.

即ち本発明は、平滑な表面αと該平滑な表面α上に微細な構造部分aとを有する第1部材と、平滑な表面βと該平滑な表面β上に微細な構造部分bとを有し、更に可撓性を有する板状又はフィルム状の第2部材とを、
前記表面αと前記表面βを貼り合わせ面として、前記微細な構造部分aと前記微細な構造部分bの位置関係を調整して貼り合わせるための貼り合わせ装置であって、
(1)前記第1部材を保持する機構を有する第1ホルダと、
(2)前記第1ホルダに対向し、前記第2部材を保持する機構を有する第2ホルダと、
(3)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出する位置検出機構と
(4)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内における位置を調整する位置合わせ機構と
(5)前記第2部材を前記第2ホルダに保持した状態で、前記第2部材と前記第2ホルダの間に気体を導入する気体導入口
とを有し、
前記表面αと前記表面βとが対向するように、前記第1部材と前記第2部材とをそれぞれ前記第1ホルダ及び前記第2ホルダに保持させ、
前記第2部材と前記第2ホルダ間の一部に前記気体導入口から気体を導入して、前記第2部材を前記第1部材方向に膨らませたときには、前記第2部材の一部が前記第1部材と接触し、その後、前記接触した部分から周辺部へと順に接触することにより、前記第2部材が前記第1部材に貼り合わされることを特徴とする貼り合わせ装置を提供するものである。
That is, the present invention has a first member having a smooth surface α and a fine structure portion a on the smooth surface α, a smooth surface β and a fine structure portion b on the smooth surface β. And a flexible plate-like or film-like second member,
A bonding apparatus for adjusting and bonding the positional relationship between the fine structure portion a and the fine structure portion b using the surface α and the surface β as a bonding surface;
(1) a first holder having a mechanism for holding the first member;
(2) a second holder having a mechanism facing the first holder and holding the second member;
(3) A position detection mechanism for detecting a positional relationship between the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface. (4) an alignment mechanism that adjusts the position of the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface; 5) A gas introduction port for introducing gas between the second member and the second holder in a state where the second member is held by the second holder,
The first holder and the second member are held by the first holder and the second holder, respectively, so that the surface α and the surface β face each other,
When a gas is introduced from the gas inlet to a part between the second member and the second holder and the second member is expanded in the first member direction, a part of the second member is the first member. The bonding apparatus is characterized in that the second member is bonded to the first member by contacting with one member and then sequentially contacting from the contacted portion to the peripheral portion. .

また、本発明は、(1)上記の貼り合わせ装置を使用し、
(2)前記第1部材を、前記表面αが前記第2ホルダと対向するように前記第1ホルダに保持させ、
(3)前記第2部材を、前記表面βが前記表面αと対向するように前記第2ホルダに保持させ、
(4)前記位置検出機構により、前記第1部材と前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出し、
(5)前記位置合わせ機構により、前記第1部材と前記第2部材を前記貼り合わせ面に平行な面内において位置を合わせ、
(6)前記気体導入口から気体を前記第2部材と前記第2ホルダ間の一部に導入して、前記第2部材を前記第1部材方向に膨らませて、前記第2部材の一部を前記第1部材と接触させ、
その後、前記接触した部分から周辺部へと順に接触させることにより、前記第2部材を前記第1部材に貼り合わせることを特徴とする貼り合わせ方法を提供するものである。
Moreover, this invention uses (1) said bonding apparatus,
(2) The first member is held by the first holder so that the surface α faces the second holder,
(3) The second member is held by the second holder so that the surface β faces the surface α,
(4) The positional detection mechanism detects a positional relationship between the first member and the second member in a plane parallel to the bonding surface,
(5) By the alignment mechanism, the first member and the second member are aligned in a plane parallel to the bonding surface,
(6) Gas is introduced from the gas introduction port into a part between the second member and the second holder, and the second member is expanded in the direction of the first member. Contacting with the first member;
Then, the said 2nd member is bonded together to the said 1st member by making it contact sequentially from the said contact part to a peripheral part, The bonding method characterized by the above-mentioned is provided.

本発明は、表面に微細な構造部分を有する部材、及び、やはり表面に微細な構造部分を有する可撓性のある板状又はフィルム状の部材、の少なくとも一方が粘着性である場合のように、両部材を接触させてからずらして相互の位置を合わせることが出来ない場合でも、真空容器を使用することなく、部材間に気泡が入らないように、位置を合わせて貼り合わせる貼り合わせ装置、及び、位置を合わせて貼り合わせる貼り合わせ方法を提供できる。本発明はまた、表面に微細な凹状構造を有する部材を位置を合わせて貼り合わせる工程を含むマイクロ流体デバイスの製造方法を提供することができる。   In the present invention, at least one of a member having a fine structure portion on the surface and a flexible plate-like or film-like member also having a fine structure portion on the surface is adhesive. Even if it is not possible to align the mutual position by bringing both members into contact with each other, a bonding apparatus that aligns and bonds the positions so that bubbles do not enter between the members without using a vacuum vessel, In addition, it is possible to provide a bonding method in which the positions are bonded together. The present invention can also provide a method for manufacturing a microfluidic device, which includes a step of bonding a member having a fine concave structure on the surface thereof in alignment.

以下、本発明を、図1〜図8に示された態様により説明する。
[第1ホルダ]
図1に第1ホルダ1の平面図とA部断面図を示す。本態様の第1ホルダ1は、第1部材11を保持(固定)する機構(第1部材保持機構3と称する)として真空溝式の真空チャック3を有する。真空溝の幅は任意であるが、第1部材11が柔軟なフィルム状である場合にも対応出来るように、該真空溝の幅を0.03〜0.5mm、より好ましくは0.05〜0.3mm程度に細くすることが好ましく、また、真空溝の代わりに、直径0.03〜1mm程度、より好ましくは直径0.05〜0.5mmの微小な多数の孔が穿たれた細孔式の真空チャック(図示略)や、金属焼結体などの、平均孔径0.1〜100μmの多孔質体を用いた多孔質体式の真空チャック(図示略)とすることも好ましい。第1部材保持機構3が第1部材を保持する方式は任意であり、上記の他、例えばクランプやネジなどによる機械的固定、粘着力や静電気力や磁力による固定、ワックスなどの液体の冷却凝固による固定などであっても良い。真空チャック3は、図4に示されたように、切り替えバルブ21を経て、真空24と大気25に接続して使用される。第1部材保持機構3として、ワックスなどの液体の冷却凝固による固定方式を用いた場合には、固定の解除のための加熱機構を設けることが出来る。磁力によるものの場合には、第1部材11を強磁性体で形成された板やフィルム状などの一時的な支持体に粘着力などで貼り付けて使用する。粘着力や静電気力や磁力による保持方式を用いた場合には、それらの保持力の強さを、第1部材11と第2部材12の粘着力や最終的な固着力の強さより弱く設定しておけば、該両部材の貼り付け後、剥離により固定を解除できる。
Hereinafter, the present invention will be described with reference to the embodiments shown in FIGS.
[First holder]
FIG. 1 shows a plan view of the first holder 1 and a sectional view of part A. The first holder 1 of this aspect includes a vacuum groove type vacuum chuck 3 as a mechanism (referred to as a first member holding mechanism 3) for holding (fixing) the first member 11. Although the width | variety of a vacuum groove is arbitrary, the width | variety of this vacuum groove is 0.03-0.5 mm, More preferably, 0.05-0.5 so that it can respond also when the 1st member 11 is a flexible film form. It is preferable to make it as thin as about 0.3 mm, and instead of a vacuum groove, a pore in which a large number of minute holes having a diameter of about 0.03 to 1 mm, more preferably 0.05 to 0.5 mm are formed. It is also preferable to use a porous vacuum chuck (not shown) using a porous body having an average pore diameter of 0.1 to 100 μm, such as a vacuum chuck (not shown) of the type or a sintered metal body. The method by which the first member holding mechanism 3 holds the first member is arbitrary. In addition to the above, for example, mechanical fixing by a clamp or a screw, fixing by adhesive force, electrostatic force or magnetic force, cooling and solidification of liquid such as wax It may be fixed by. As shown in FIG. 4, the vacuum chuck 3 is used by being connected to a vacuum 24 and an atmosphere 25 via a switching valve 21. When a fixing method by cooling and solidifying liquid such as wax is used as the first member holding mechanism 3, a heating mechanism for releasing the fixing can be provided. In the case of using a magnetic force, the first member 11 is used by adhering to a temporary support such as a plate or film formed of a ferromagnetic material with an adhesive force. When a holding method using adhesive force, electrostatic force, or magnetic force is used, the strength of the holding force is set to be weaker than the adhesive strength and final fixing strength of the first member 11 and the second member 12. In this case, the fixing can be released by peeling after the two members are attached.

第1ホルダ1は、図4、図5に示された例のように第1部材11が板状又はフィルム状である場合は、第1ホルダ1の第1部材固定面は平面とし、水平に配置されることが好ましい。一般的に、第1ホルダ1は前記第1部材11を、第2部材12と貼り合わせする面(貼り合わせ面と称する)を外向きにして保持できるものであれば、第1部材11の形状に応じた任意の形状であって良い。
図1に示された第1ホルダ1は、中心部に孔4が開けられており、該孔4を通して、例えば図6、図7に示された様な第1部材11の位置決めマーク107、108と第2部材12の位置決めマーク117、118を光学的に観察し、位置決めできるようになっている。該孔4は、より小さな複数の孔であっても良いし、第1ホルダ1をガラスや透明プラスチックなどの光学的に透明な素材で作製した場合には、孔4を設けなくても良い。
When the first member 11 is plate-like or film-like as in the example shown in FIGS. 4 and 5, the first holder 1 has a first member fixing surface of the first holder 1 that is flat and horizontally Preferably they are arranged. In general, if the first holder 1 can hold the first member 11 with the surface to be bonded to the second member 12 (referred to as a bonding surface) facing outward, the shape of the first member 11 It may be of any shape according to
The first holder 1 shown in FIG. 1 has a hole 4 in the center, and through the hole 4, for example, positioning marks 107 and 108 of the first member 11 as shown in FIGS. The positioning marks 117 and 118 of the second member 12 can be optically observed and positioned. The holes 4 may be a plurality of smaller holes. If the first holder 1 is made of an optically transparent material such as glass or transparent plastic, the holes 4 may not be provided.

[第2ホルダ]
〔第1態様〕
図2に第2ホルダ2の第1態様の平面図とA部断面図を示す。第2ホルダ2の本第1態様に於いては、第2部材12を保持する機構(第2部材保持機構5と称する)は環状になっている。第2部材保持機構5は、実質的に環状であれば良く、一部途切れた環状であっても良いし、多数の点が環状に並んだ形状であっても良い。
図2に示したように、第2部材保持機構5は吸着面に多孔質体6を用いた多孔質体式の真空チャック5が好ましいが、固定する方式は任意であり、細孔式や真空溝式の真空チャックの他、例えば電磁気や圧力気体による着脱可能なクランプなどの機械的固定、粘着力による固定、或いはワックスなどの液体の冷却凝固による固定などであっても良い。真空チャック5は、図4に示されたように、切り替えバルブ22を経て、真空24と大気25に接続して使用される。
[Second holder]
[First embodiment]
FIG. 2 shows a plan view and a cross-sectional view of part A of the first mode of the second holder 2. In the first mode of the second holder 2, the mechanism for holding the second member 12 (referred to as the second member holding mechanism 5) is annular. The second member holding mechanism 5 may be substantially annular, may be partially interrupted, or may have a shape in which a large number of points are arranged in an annular shape.
As shown in FIG. 2, the second member holding mechanism 5 is preferably a porous body type vacuum chuck 5 using a porous body 6 on the adsorption surface, but the fixing method is arbitrary, such as a pore type or vacuum groove. In addition to the vacuum chuck of the type, for example, mechanical fixing such as a detachable clamp by electromagnetic or pressure gas, fixing by adhesive force, or fixing by cooling and solidifying liquid such as wax may be used. As shown in FIG. 4, the vacuum chuck 5 is used by being connected to a vacuum 24 and an atmosphere 25 via a switching valve 22.

第2部材保持機構5の環の内径は任意であり、製造するマイクロ流体デバイスの外寸から好適な寸法にすればよいが、例えば、第2部材の一辺の長さの80%以下が好ましく、70%以下が更に好ましく、60%以下が最も好ましい。該内径の下限は任意であるが、貼り合わせ面に残存する気泡を減じる点から、第2部材の最大径の10%以上が好ましく、20%以上が更に好ましく、30%以上が最も好ましい。第2部材保持機構5の環の外径は任意であり、第2部材の長さと同じにしてよいし、或いは、該外径を第2部材より大きく作製しておき、第2部材で覆われない部分にダミーの板状又はフィルム状部材を置いて、空気の漏洩をなくす方法も好ましい。   The inner diameter of the ring of the second member holding mechanism 5 is arbitrary, and may be a suitable dimension from the outer dimension of the microfluidic device to be manufactured. For example, 80% or less of the length of one side of the second member is preferable, It is more preferably 70% or less, and most preferably 60% or less. The lower limit of the inner diameter is arbitrary, but is preferably 10% or more of the maximum diameter of the second member, more preferably 20% or more, and most preferably 30% or more from the viewpoint of reducing bubbles remaining on the bonding surface. The outer diameter of the ring of the second member holding mechanism 5 is arbitrary, and may be the same as the length of the second member, or the outer diameter is made larger than the second member and covered with the second member. A method in which a dummy plate-like or film-like member is placed in a non-existing portion to eliminate air leakage is also preferable.

本第2ホルダ2には、前記環状の第2部材保持機構5の環の内側に、気体導入口7が設けられている。該気体導入口7の形式や形状は任意であり、1個の孔の他、前記真空チャックと同様の構造を例示できるが、図2に示したように、多孔質体8を通して気体を導入する多孔質体式の気体導入口7が好ましい。
気体導入口7は真空チャックを兼ねるものが好ましい。真空チャックを兼ねる気体導入口7は、例えば図4に示されたように、切り替えバルブ23を経て、真空24と加圧気体26に接続する方法で実施できる。
The second holder 2 is provided with a gas inlet 7 inside the ring of the annular second member holding mechanism 5. The form and shape of the gas introduction port 7 are arbitrary, and a structure similar to that of the vacuum chuck can be exemplified in addition to one hole. However, as shown in FIG. 2, the gas is introduced through the porous body 8. A porous gas inlet 7 is preferred.
It is preferable that the gas inlet 7 also serves as a vacuum chuck. For example, as shown in FIG. 4, the gas inlet 7 also serving as a vacuum chuck can be implemented by a method of connecting to a vacuum 24 and a pressurized gas 26 via a switching valve 23.

本第1態様の第2ホルダ2を用いると、第2部材保持機構5で第2部材12を固定(保持)しつつ気体導入口7から気体を第2部材12の貼り合わせ面の裏側(第2部材12と第2ホルダ2間の一部;以下、単に「裏側」と称する場合がある)に導入すると、第2部材12は中央部が球状に膨らむように変形する(図5(b))。
次いで、第2部材保持機構5(真空チャック5)の固定を解除すると、第2部材は第2ホルダから離れ、第1部材に貼り合わされる(図5(c))。
When the second holder 2 of the first mode is used, the second member 12 is fixed (held) by the second member holding mechanism 5 while the gas is introduced from the gas inlet 7 to the back side of the bonding surface of the second member 12 (first When it is introduced into a part between the two members 12 and the second holder 2 (hereinafter sometimes simply referred to as “back side”), the second member 12 is deformed so that the central portion swells in a spherical shape (FIG. 5B). ).
Next, when the fixation of the second member holding mechanism 5 (vacuum chuck 5) is released, the second member separates from the second holder and is bonded to the first member (FIG. 5C).

気体導入口7を実質的に環状の、真空チャックと兼ねる構造にして、その環の内側にさらに別の気体導入口(図示略)を設けてもよく、これを更に多段にしてもよい。これらの場合は、最内側の気体導入口から外側の気体導入口へと順次気体を導入することにより、第1部材11と第2部材12の貼り合わせ面への気泡の残留をより軽減することができる。逆に、真空チャック式の第2部材保持機構5が気体導入口の機能を有しても良い。例えば、図4において切り替えバルブ22が大気25の代わりに加圧気体26に接続することで実施できる。その場合には、本気体導入口からは最後に気体を導入する。   The gas inlet 7 may have a substantially annular structure that also serves as a vacuum chuck, and another gas inlet (not shown) may be provided inside the ring, which may be further multi-staged. In these cases, residual gas bubbles on the bonding surfaces of the first member 11 and the second member 12 can be further reduced by sequentially introducing gas from the innermost gas inlet to the outer gas inlet. Can do. Conversely, the vacuum chuck type second member holding mechanism 5 may have the function of a gas inlet. For example, it can be implemented by connecting the switching valve 22 to the pressurized gas 26 instead of the atmosphere 25 in FIG. In that case, gas is finally introduced from this gas inlet.

気体導入機構への気体導入と、第2部材保持機構5の固定の解除を好適なタイミングで実施するための、遅延タイマーやシーケンサーによる制御機構を設けることが、再現性が増し好ましい。第2部材保持機構5として、ワックスなどの液体の冷却凝固による固定方式を用いた場合には、固定の解除は加熱により実施できる。第2部材保持機構5として粘着力や静電気力による固定方式を用いた場合には、粘着力や静電気力を好適な保持力に設定しておけば、気体導入機構7からの気体導入により、第2部材12は自然に第2ホルダ2から剥がれる。   It is preferable to provide a control mechanism with a delay timer or a sequencer for performing introduction of gas into the gas introduction mechanism and release of fixing of the second member holding mechanism 5 at suitable timing, because reproducibility is increased. When the second member holding mechanism 5 uses a fixing method by cooling and solidifying a liquid such as wax, the fixing can be released by heating. When a fixing method using an adhesive force or an electrostatic force is used as the second member holding mechanism 5, if the adhesive force or the electrostatic force is set to a suitable holding force, the gas is introduced from the gas introduction mechanism 7 and the first The two members 12 are peeled off from the second holder 2 naturally.

〔第2態様〕
図3に第2ホルダの第2態様の平面図とA部断面図を示す。本第2態様では、第2部材保持機構は第2ホルダの両端に設けられており、気体導入口7がその間に配置される。第2部材保持機構5、5’は必ずしも平行である必要はない。第2部材保持機構5、5’として、図3では多孔質体式の真空チャック5、5’が好ましく用いられているが、前記第1の態様で述べたようなその他の方式を用いてもよい。
[Second embodiment]
FIG. 3 shows a plan view and a cross-sectional view of part A of the second mode of the second holder. In the second aspect, the second member holding mechanism is provided at both ends of the second holder, and the gas inlet 7 is disposed therebetween. The second member holding mechanisms 5, 5 ′ are not necessarily parallel. As the second member holding mechanism 5 and 5 ′, the porous vacuum chucks 5 and 5 ′ are preferably used in FIG. 3, but other methods as described in the first embodiment may be used. .

気体導入口7の構造は上記第1の態様と同様に任意であるが、多孔質体8を通して気体を第2部材の裏側に導入する機構が好ましく、真空チャックを兼ねる構造にすることが好ましい。真空チャックを兼ねる気体導入口7の構造は、前記第1態様と同様である。二つの第2部材保持機構5、5’の間の距離は任意であり、製造するマイクロ流体デバイスの外寸から好適な寸法にすればよいが、例えば、第2部材12の図中左右の長さの80%以下が好ましく、70%以下が更に好ましく、60%以下が最も好ましい。該距離の下限は任意であるが、貼り合わせ面に残存する気泡を減じる点から、第2部材12の図中左右の長さの10%以上が好ましく、20%以上が更に好ましく、30%以上が最も好ましい。二つの第2部材保持機構5、5‘の外側の距離は任意であり、第2部材の長さと同じにしてよいし、或いは、該外寸を第2部材より大きく作製しておき、第2部材で覆われない部分にダミーの板状又はフィルム状部材を置いて、空気の漏洩をなくす方法も好ましい。本第2態様の第2ホルダ2を用いると、二つの第2部材保持機構5、5’で第2部材12を固定しつつ気体導入口7から気体を噴出させると、第2部材12は中央部が円筒状に膨らむように変形する。   The structure of the gas introduction port 7 is arbitrary as in the first embodiment, but a mechanism for introducing gas into the back side of the second member through the porous body 8 is preferable, and a structure also serving as a vacuum chuck is preferable. The structure of the gas inlet 7 also serving as a vacuum chuck is the same as in the first aspect. The distance between the two second member holding mechanisms 5, 5 ′ is arbitrary and may be set to a suitable dimension from the outer dimension of the microfluidic device to be manufactured. Is preferably 80% or less, more preferably 70% or less, and most preferably 60% or less. The lower limit of the distance is arbitrary, but it is preferably 10% or more, more preferably 20% or more, and more preferably 30% or more of the length of the second member 12 on the left and right in the drawing in order to reduce bubbles remaining on the bonding surface. Is most preferred. The distance between the outer sides of the two second member holding mechanisms 5, 5 ′ is arbitrary, and may be the same as the length of the second member, or the outer dimension is made larger than the second member, and the second A method of placing a dummy plate-like or film-like member in a portion not covered with the member to eliminate air leakage is also preferable. When the second holder 2 of the second aspect is used, when the second member 12 is fixed by the two second member holding mechanisms 5 and 5 ′ and the gas is ejected from the gas inlet 7, the second member 12 is centered. The part is deformed so as to swell in a cylindrical shape.

この気体導入口7を図の左右方向に複数個、好ましくは3個並べて設けてもよい。中央部の気体導入口から外側の気体導入口へと順次気体を導入することにより、第1部材11と第2部材12の貼り合わせ面への気泡の残留をより減じることができる。この場合、複数の気体導入口7は必ずしも平行である必要はない。逆に、真空チャック式の第2部材保持機構5、5’が気体導入口の機能を有しても良い。その場合には、本気体導入口からは最後に気体を導入する。   A plurality, preferably three, of the gas inlets 7 may be provided in the left-right direction in the drawing. By sequentially introducing the gas from the central gas inlet to the outer gas inlet, it is possible to further reduce the residual bubbles on the bonding surfaces of the first member 11 and the second member 12. In this case, the plurality of gas inlets 7 do not necessarily have to be parallel. Conversely, the vacuum chuck type second member holding mechanism 5, 5 'may have the function of a gas inlet. In that case, gas is finally introduced from this gas inlet.

〔第三態様〕
図3に示した第2ホルダ2は、第三態様の第2ホルダ2としても使用できる。この場合は、第2ホルダ2の左端の多孔質式真空チャック5が第2部材保持機構として用いられ、右側2個の多孔質式真空チャック7、5’が気体導入口を兼ねる。さらに多くの気体導入口を図の左右方向に並べて設けても良い。これにより、第1部材11と第2部材12の貼り合わせ面への気泡の残留をより減じることが容易になる。気体導入に当たっては、右端の気体導入口5’(真空チャック)から左方へと順次気体を噴出させる。この場合も、複数の気体導入口7は必ずしも平行である必要はない。また、第2部材保持機構5(左端の真空チャック5)が気体導入口の機能を有していても良い。その場合には、本気体導入口からは最後に気体を導入する。
[Third embodiment]
The 2nd holder 2 shown in FIG. 3 can be used also as the 2nd holder 2 of a 3rd aspect. In this case, the porous vacuum chuck 5 at the left end of the second holder 2 is used as a second member holding mechanism, and the two porous vacuum chucks 7 and 5 ′ on the right side also serve as gas inlets. Further, more gas inlets may be provided side by side in the left-right direction in the figure. Thereby, it becomes easy to further reduce the remaining of bubbles on the bonding surfaces of the first member 11 and the second member 12. In introducing the gas, the gas is sequentially ejected leftward from the gas inlet 5 ′ (vacuum chuck) at the right end. Also in this case, the plurality of gas inlets 7 do not necessarily have to be parallel. Further, the second member holding mechanism 5 (the leftmost vacuum chuck 5) may have a function of a gas inlet. In that case, gas is finally introduced from this gas inlet.

[位置検出機構]
本発明の貼り合わせ装置は、前記第1部材11と前記第2部材12の、貼り合わせ面に平行な方向の位置関係を検出する位置検出機構14を有する。位置検出機構14は任意であるが、光学的検出が好ましく、第1ホルダ1を通して、例えば図6、図7に示したような、第1部材11と第2部材12の位置決めマーク107、108、117、118を観察する方式が好ましい。このような光学的な位置検出機構14は、第1部材11の貼り合わせ面に垂直な方向から観察する向きに設けることが、貼り合わせ精度が向上し、好ましい。
その他の位置検出機構14としては、例えば、部材の外周を突き当てる位置決めピンや、部材に穿たれた孔に差し込む位置決めピンのような機械的な位置検出と位置決めを同時に行う機構、電極の導通/非導通や電極間の静電容量を検出する電気的検出機構を例示できる。
[Position detection mechanism]
The bonding apparatus of the present invention includes a position detection mechanism 14 that detects a positional relationship between the first member 11 and the second member 12 in a direction parallel to the bonding surface. Although the position detection mechanism 14 is optional, optical detection is preferable, and the positioning marks 107, 108 of the first member 11 and the second member 12 as shown in FIGS. A method of observing 117 and 118 is preferable. Such an optical position detection mechanism 14 is preferably provided in a direction of observing from a direction perpendicular to the bonding surface of the first member 11 because the bonding accuracy is improved.
Other position detection mechanisms 14 include, for example, a mechanism that simultaneously performs mechanical position detection and positioning, such as a positioning pin that abuts the outer periphery of the member, or a positioning pin that is inserted into a hole formed in the member, An electrical detection mechanism that detects non-conduction or capacitance between electrodes can be exemplified.

[位置合わせ機構]
本発明の貼り合わせ装置は、第1ホルダ1に固定された第1部材11の前記構造部分と、第2ホルダ2に固定された前記第2部材12の前記構造部分の位置を合わせる位置合わせ機構13を有する。位置合わせ機構13は、前記第1部材11と前記第2部材12の貼り合わせ面に平行な面内で相対的に移動させる位置合わせ機構13が好ましい。図4の例では、位置合わせ機構13として直交する3方向への移動および回転が可能なXYZθ移動ステージ13を使用しているが、一般には、前記第2ホルダ2を前記貼り合わせ面に平行な面内で、X軸方向(図4の紙面内左右方向とする)、Y軸方向(図4の紙面に対して垂直な方向とする)への平行移動、及び、好ましくはθ方向の回転(図4の紙面内上下方向にとったZ軸回りの回転とする)が可能な機構である。第1部材11と第2部材12の位置合わせ部分が1点である場合はθ方向の移動は不要である。これらの、X、Y、θ方向の移動機構は、第1ホルダ1と第2ホルダ2の両方に設けても良いし、どちらか一方に設けてもよいし、第1ホルダと第2ホルダで分担しても良い。
[Positioning mechanism]
The bonding apparatus of the present invention is a positioning mechanism for aligning the positions of the structural portion of the first member 11 fixed to the first holder 1 and the structural portion of the second member 12 fixed to the second holder 2. 13 The alignment mechanism 13 is preferably an alignment mechanism 13 that relatively moves in a plane parallel to the bonding surface of the first member 11 and the second member 12. In the example of FIG. 4, an XYZθ moving stage 13 capable of moving and rotating in three orthogonal directions is used as the alignment mechanism 13, but generally the second holder 2 is parallel to the bonding surface. In the plane, parallel translation in the X-axis direction (left and right direction in FIG. 4), Y-axis direction (direction perpendicular to the page in FIG. 4), and preferably rotation in the θ direction ( This is a mechanism capable of rotating around the Z-axis in the vertical direction in FIG. When the alignment part of the 1st member 11 and the 2nd member 12 is one point, the movement of (theta) direction is unnecessary. These movement mechanisms in the X, Y, and θ directions may be provided in both the first holder 1 and the second holder 2, or may be provided in either one of the first holder 1 and the second holder. You may share it.

位置検出機構14が、位置決めピンのように位置検出と同時に位置合わせも行う機構である場合には、位置合わせ機構13として、第1ホルダ1や第2ホルダ2を移動させる機構ではなく、第1部材11及び第2部材12を各ホルダに装着する際に、前記X、Y、θ方向に移動させて位置合わせする機構が設けられる。   In the case where the position detection mechanism 14 is a mechanism that performs position detection at the same time as position detection, such as a positioning pin, the position detection mechanism 13 is not a mechanism that moves the first holder 1 or the second holder 2 but a first mechanism. When the member 11 and the second member 12 are mounted on each holder, a mechanism is provided that moves and aligns the X, Y, and θ directions.

位置合わせ機構13は上記Z軸方向、即ち、第1ホルダ1と第2ホルダ2間の距離を変える方向に移動できる機構を有していることが好ましい。該Z方向移動機構(垂直移動機構と称する場合がある)を備えることにより、第1部材や第2部材に種々の異なる厚さの部材を使用しても、その間隔を好適な一定距離に調節することが出来る。第1部材や第2部材の間隔は、好ましくは2[mm]以下、更に好ましくは1.5[mm]以下、最も好ましくは1[mm]以下である。この範囲とすることにより、第2部材を変形させる際に、僅かな変形で第1部材と接触するためずれが少なくなる。また、下限は、互いに接触しなければ任意であるが、好ましくは0.3[mm]以上、更に好ましくは0.4[mm]以上、最も好ましくは0.5[mm]以上である。また、該垂直移動機構を備えることにより、気体導入により第2部材を変形させてその一部を第1部材と接触させた後、該垂直移動機構により第1部材と第2部材の距離を縮めてゆくことにより、位置合わせの誤差をより少なくできる。該垂直移動機構は、第1ホルダ1と第2ホルダ2のどちらに設けてもよいし、両方に設けても良い。   The alignment mechanism 13 preferably has a mechanism that can move in the Z-axis direction, that is, in a direction that changes the distance between the first holder 1 and the second holder 2. By providing the Z-direction moving mechanism (sometimes referred to as a vertical moving mechanism), even if different thickness members are used for the first member and the second member, the distance is adjusted to a suitable constant distance. I can do it. The interval between the first member and the second member is preferably 2 [mm] or less, more preferably 1.5 [mm] or less, and most preferably 1 [mm] or less. By setting it within this range, when the second member is deformed, the displacement is reduced because the second member comes into contact with the first member with a slight deformation. The lower limit is arbitrary as long as it does not contact each other, but is preferably 0.3 [mm] or more, more preferably 0.4 [mm] or more, and most preferably 0.5 [mm] or more. Further, by providing the vertical movement mechanism, the second member is deformed by introducing gas and a part of the second member is brought into contact with the first member, and then the distance between the first member and the second member is reduced by the vertical movement mechanism. By doing so, the alignment error can be reduced. The vertical movement mechanism may be provided in either the first holder 1 or the second holder 2 or in both.

位置検出機構と位置合わせ機構による位置合わせの精度(誤差)は、好ましくは0.1μm〜100μm、更に好ましくは0.2μm〜30μm、最も好ましくは0.3μm〜10μmである。かつ該誤差は、第1部材と第2部材に設けられた位置合わせすべき構造部分の寸法の1/10以下とすることが好ましく、1/30以下とすることがさらに好ましい。この範囲とすることで、位置検出機構と位置合わせ機構を簡単で安価な機構で実現でき、かつ、マイクロ流体デバイスなどの貼り合わせ形成物を十分な精度と再現性で得ることができる。   The alignment accuracy (error) by the position detection mechanism and the alignment mechanism is preferably 0.1 μm to 100 μm, more preferably 0.2 μm to 30 μm, and most preferably 0.3 μm to 10 μm. The error is preferably 1/10 or less, and more preferably 1/30 or less, of the size of the structure portion provided on the first member and the second member to be aligned. By setting this range, the position detection mechanism and the alignment mechanism can be realized with a simple and inexpensive mechanism, and a bonded product such as a microfluidic device can be obtained with sufficient accuracy and reproducibility.

[その他の機構]
本発明の貼り合わせ装置の姿勢は任意であり、例えば図4に例示された配置の上下逆であってもよいし、横向きであってもよい。本発明の貼り合わせ装置は、気体導入機構7への気体導入と、第2部材保持機構5の固定の解除を好適なタイミングで実施するための、遅延タイマーやシーケンサーによる制御機構を設けることが、再現性が増し好ましい。
また、本貼り合わせ装置は、第1部材11と第2部材12が半硬化のエネルギー線硬化性樹脂で形成されている場合には、貼り合わせ後完全に貼り合わせさせるためのエネルギー線照射を行うエネルギー線照射装置を有することも好ましい。この場合、第1ホルダ側にエネルギー線照射装置を設け、第1ホルダに貼り合わされた両部材が保持されている状態でエネルギー線照射を行えることが好ましい。
[Other mechanisms]
The posture of the bonding apparatus of the present invention is arbitrary, and for example, it may be upside down in the arrangement illustrated in FIG. The laminating apparatus of the present invention is provided with a control mechanism by a delay timer or a sequencer for carrying out gas introduction to the gas introduction mechanism 7 and releasing the fixation of the second member holding mechanism 5 at a suitable timing. This is preferable because reproducibility is increased.
In addition, when the first member 11 and the second member 12 are formed of a semi-cured energy beam curable resin, the present bonding apparatus performs energy beam irradiation for complete bonding after bonding. It is also preferable to have an energy beam irradiation device. In this case, it is preferable that the energy beam irradiation device is provided on the first holder side, and the energy beam irradiation can be performed in a state where both members bonded to the first holder are held.

[マイクロ流体デバイス]
本発明の貼り合わせ装置や貼り合わせ方法で貼り合わせる部材について、マイクロ流体デバイスの例で説明する。本発明により好ましく製造することの出来るマイクロ流体デバイスは、表面に設けられた微細な溝状の流路や、その内部に設けられた微細な空洞状の流路の中で反応や分析を行うデバイスである。マイクロ流体デバイスを使用することにより、反応や分析の迅速化、分析試料量の必要量の減少、省資源・省エネルギー、さらには廃棄物の減少が可能となる。このようなマイクロ流体デバイスを使用して、例えば濾過、抽出、反応などの試料の前処理部と、マイクロ・クロマトグラフィー、マイクロ電気泳動などの分離部と、蛍光や可視・紫外吸収などの検出部を一体化し、医療診断、生化学分析、化学分析の方面で微量の試料を分析するマイクロ・トータル・アナリシス・システム(μ−TAS)を構築する試みが行われている。また、前記微細な流路の内表面に触媒を固定し、反応装置(マイクロリアクター)としての応用も検討されている。
[Microfluidic device]
A member to be bonded by the bonding apparatus and the bonding method of the present invention will be described using an example of a microfluidic device. A microfluidic device that can be preferably manufactured according to the present invention is a device that performs a reaction or analysis in a fine groove-like flow path provided on the surface, or a fine hollow-like flow path provided therein. It is. By using a microfluidic device, it is possible to speed up reactions and analysis, reduce the amount of analysis sample required, save resources and energy, and reduce waste. Using such a microfluidic device, for example, sample pretreatment units such as filtration, extraction, and reaction, separation units such as micro chromatography and micro electrophoresis, and detection units such as fluorescence and visible / ultraviolet absorption Attempts have been made to construct a micro total analysis system (μ-TAS) that analyzes a small amount of sample in the fields of medical diagnosis, biochemical analysis, and chemical analysis. In addition, an application as a reaction apparatus (microreactor) in which a catalyst is fixed to the inner surface of the fine flow path has been studied.

本発明で作製するマイクロ流体デバイスは、内部に空洞状の流路を有するマイクロ流体デバイスであり、平滑な表面αと、その平滑な表面α上に微細な構造部分aを有する第1部材と、やはり平滑な表面βと、その平滑な表面β上に微細な構造部分bを有する、可撓性のある板状又はフィルム状の第2部材とが、表面αと表面βを貼り合わせ面として、微細な構造部分aと微細な構造部分bの位置関係を調整して互いに貼り合わせされた、マイクロ流体デバイスである。   The microfluidic device produced in the present invention is a microfluidic device having a hollow flow path therein, and has a smooth surface α, a first member having a fine structure portion a on the smooth surface α, A smooth plate β and a flexible plate-like or film-like second member having a fine structural portion b on the smooth surface β are bonded with the surface α and the surface β as a bonding surface. This is a microfluidic device in which the positional relationship between the fine structure portion a and the fine structure portion b is adjusted and bonded together.

部材の表面の微細な構造部分a及びbとしては、表面のみに微細な構造部分がある場合と、部材内部の構造が表面まで達している場合とがあり、例えば、他方の部材と積層貼り合わせされることにより空洞状の流路となる溝や凹部、該部材に穿たれた孔、フィルム状部材の一部にU字型の長孔で囲まれて形成された、逆止弁の弁体となるフラップ、濾過膜、該部材の表面の一部に形成された多孔質層等の物理的構造部分や、該部材の表面の一部に固定されたプローブ、該部材の表面の一部に固定された、種々の物質を固定するためのアンカーとなる官能基等の化学的構造部分が上げられる。これらの微細な構造部分が前記第1部材と第2部材にそれぞれ形成される組み合わせは任意であるが、本発明に於いては、特に前記構造部分の一方が、前記の溝、凹部、または孔である場合に効果的であり好ましい。   As the fine structure portions a and b on the surface of the member, there are cases where there is a fine structure portion only on the surface and cases where the structure inside the member reaches the surface, for example, lamination bonding with the other member A valve body of a check valve formed by being surrounded by a U-shaped long hole in a part of a film-like member, a groove or a recess that becomes a hollow flow path, a hole made in the member, A physical structure part such as a flap, a filtration membrane, a porous layer formed on a part of the surface of the member, a probe fixed to a part of the surface of the member, and a part of the surface of the member The chemical structure portion such as a functional group that becomes an anchor for immobilizing various substances that have been immobilized is raised. The combination in which these fine structural parts are respectively formed on the first member and the second member is arbitrary, but in the present invention, in particular, one of the structural parts is the groove, recess, or hole. Is effective and preferable.

このような、位置合わせすべき対象となる微細な構造部分の寸法は任意であるが、その短辺(又は短径)方向の寸法は好ましくは1μm〜5mm、更に好ましくは3μm〜1mm、最も好ましくは5μm〜0.5mmである。この範囲とすることで、本発明の効果が最も発揮される。該微細な構造部分の長辺(又は長径)方向の寸法は任意であり、例えば、該構造が溝である場合の長さ方向の寸法は、マイクロ流体デバイスの最大寸法、例えば10cmであり得る。   The dimension of the fine structure portion to be aligned is arbitrary, but the dimension in the short side (or minor axis) direction is preferably 1 μm to 5 mm, more preferably 3 μm to 1 mm, most preferably. Is 5 μm to 0.5 mm. By setting it as this range, the effect of this invention is exhibited most. The dimension in the long side (or major axis) direction of the fine structure portion is arbitrary. For example, when the structure is a groove, the dimension in the length direction may be the maximum dimension of the microfluidic device, for example, 10 cm.

第1部材11と第2部材12に設ける位置決めマーク107、108、117、118は、専用のマークであっても良いし、位置合わせする構造部分そのものであってもよい。該位置決めマークの位置は、第2部材12の裏側に気体を導入したときに第2部材12が第1部材11と最初に接触する分部に近い部分とすることが、位置決め精度が高くなり、好ましい。また、2点で位置決めを行う場合であって、引き続き気体そ導入したときに第1部材11と第2部材12の接触面が広がってゆく際の接触/非接触の境界が直線状である場合には、該2つの位置決めマークは、該境界線に略平行な線上に設けることが、位置決め精度が高くなり、好ましい。位置決めが、位置決めピンによるものである場合には、位置決めマークは部材の外周となる。   The positioning marks 107, 108, 117, and 118 provided on the first member 11 and the second member 12 may be dedicated marks, or may be structural portions themselves to be aligned. The position of the positioning mark is a portion close to the part where the second member 12 first contacts the first member 11 when the gas is introduced to the back side of the second member 12, so that the positioning accuracy is high. preferable. Further, when positioning is performed at two points, and when the gas is continuously introduced, the contact / non-contact boundary when the contact surface of the first member 11 and the second member 12 expands is linear. For this reason, it is preferable to provide the two positioning marks on a line substantially parallel to the boundary line because positioning accuracy is high. When the positioning is performed by a positioning pin, the positioning mark is the outer periphery of the member.

第1部材11は任意の形状の部材であるが、板状又はフィルム状であることが好ましい。第1部材11を両面が実質的に平行な板状又はフィルム状とすることにより、本第1部材11を通して光学的に位置合わせすることが容易になる。厚みや形状は任意である。材質も任意であるが、光学的に透明であることが、該第1部材11を通して、光学的に第2部材12の位置を検出できるため好ましい。   Although the 1st member 11 is a member of arbitrary shapes, it is preferable that it is plate shape or film shape. By making the first member 11 into a plate shape or a film shape whose both surfaces are substantially parallel, it becomes easy to optically align through the first member 11. The thickness and shape are arbitrary. Although the material is arbitrary, it is preferable that the material is optically transparent because the position of the second member 12 can be optically detected through the first member 11.

第2部材12は可撓性のある板状又はフィルム状の部材である。第2部材12の可撓性の程度は、第2ホルダ2の第2部材装着面殿間に気体を導入して、第1部材側に膨らませる工程で破壊することが無ければ、硬度や厚みは任意である。そのためには、第2部材12は、円筒形に曲げたときに破壊しない半径が1[m]以下、好ましくは0.5[m]以下、さらに好ましくは0.2[m]以下のものである。該半径の下限は実質的にゼロ、即ち角を付けて折り曲げられるものであってよい。   The second member 12 is a flexible plate-like or film-like member. The degree of flexibility of the second member 12 is determined by the hardness and thickness of the second member 2 as long as the gas does not break in the process of introducing the gas between the second member mounting surfaces of the second holder 2 and causing the gas to expand toward the first member. Is optional. For this purpose, the second member 12 has a radius that does not break when bent into a cylindrical shape of 1 [m] or less, preferably 0.5 [m] or less, more preferably 0.2 [m] or less. is there. The lower limit of the radius may be substantially zero, i.e. bendable with a corner.

第2部材12の厚みは任意であり、例えば1μm〜1cmであり得るが、10μm〜1mmが好ましい。また、第2部材保持機構5により保持しつつ、裏側に気体を導入して、第1部材側に膨らませるためには、気体導入口から導入する気体の圧力が100kPa以下で、上記の半径に変形するような柔軟性を有する必要があるから、引張弾性率と厚みの積が、好ましくは3×10〜3×10「Pa・m]、さらに好ましくは3×10〜3×10「Pa・m]の範囲とする。 The thickness of the second member 12 is arbitrary, and may be, for example, 1 μm to 1 cm, but is preferably 10 μm to 1 mm. Further, in order to introduce gas to the back side and inflate to the first member side while being held by the second member holding mechanism 5, the pressure of the gas introduced from the gas introduction port is 100 kPa or less and the above radius is set. Since it is necessary to have flexibility to deform, the product of tensile modulus and thickness is preferably 3 × 10 2 to 3 × 10 6 “Pa · m”, more preferably 3 × 10 3 to 3 × 10. 5 Within the range of “Pa · m”.

第2部材の材質は任意であるが、上記の可撓性を示す素材として、有機重合体、金属、ガラス、石英などの結晶が好ましく、有機重合体が更に好ましい。勿論、本発明で製造するマイクロ流体デバイスは、前記第1部材11と第2部材12の他に、更に他の部材を積層貼り合わせすることによって作製されるものであっても良い。   The material of the second member is arbitrary, but as the material exhibiting flexibility, crystals such as organic polymer, metal, glass, and quartz are preferable, and organic polymer is more preferable. Of course, the microfluidic device manufactured by the present invention may be manufactured by laminating and bonding other members in addition to the first member 11 and the second member 12.

[製造方法]
本発明のマイクロ流体デバイスの製造方法は、
(1)本発明の貼り合わせ装置を使用し、
(2)前記第1部材を、前記表面αが前記第2ホルダと対向するように前記第1ホルダに保持させ、
(3)前記第2部材を、前記表面βが前記表面αと対向するように前記第2ホルダに保持させ、
(4)前記位置検出機構により、前記第1部材と前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出し、
(5)前記位置合わせ機構により、前記第1部材と前記第2部材を前記貼り合わせ面に平行な面内において位置を合わせ、
(6)前記気体導入口から気体を前記第2部材と前記第2ホルダ間の一部に導入して、前記第2部材を前記第1部材方向に膨らませて、前記第2部材の一部を前記第1部材と接触させ、
その後、前記接触した部分から周辺部へと順に接触させることにより、前記第2部材を前記第1部材に貼り合わせる。
[Production method]
The manufacturing method of the microfluidic device of the present invention includes:
(1) Using the bonding apparatus of the present invention,
(2) The first member is held by the first holder so that the surface α faces the second holder,
(3) The second member is held by the second holder so that the surface β faces the surface α,
(4) The positional detection mechanism detects a positional relationship between the first member and the second member in a plane parallel to the bonding surface,
(5) By the alignment mechanism, the first member and the second member are aligned in a plane parallel to the bonding surface,
(6) Gas is introduced from the gas introduction port into a part between the second member and the second holder, and the second member is expanded in the direction of the first member. Contacting with the first member;
Thereafter, the second member is bonded to the first member by sequentially contacting the contacted portion to the peripheral portion.

本発明の貼り合わせ装置のバリエーションにより、それぞれ好適な製造方法を採ることが出来るが、その方法は前記本発明の貼り合わせ装置の各項に於いて説明したとおりである。
本発明の製造方法により貼り合わされた第1部材11と第2部材12は粘着力で貼り合わされているが、さらに強固に貼り合わせさせる場合には、半硬化の樹脂の硬化を進めたり、接着剤を硬化させて貼り合わせさせる。
本発明の貼り合わせ方法は、マイクロ流体デバイスの製造方法に好ましく用いることができる。即ち、前記第1部材又は前記第2部材の少なくとも一方が、表面にまたは表面に達する微細な構造部分が、流路となる該部材の欠損部であるような、マイクロ流体デバイスを構成する部材であり、これらを貼り合わせて空洞状の流路を形成する工程を含むマイクロ流体デバイスの製造方法に好ましく適用できる。
Depending on the variations of the bonding apparatus of the present invention, a suitable manufacturing method can be employed. The method is as described in each section of the bonding apparatus of the present invention.
The first member 11 and the second member 12 bonded together by the manufacturing method of the present invention are bonded together with an adhesive force. However, in the case where the first member 11 and the second member 12 are bonded together more firmly, the curing of the semi-cured resin can be promoted, or the adhesive Are cured and bonded together.
The laminating method of the present invention can be preferably used in a method for producing a microfluidic device. That is, at least one of the first member or the second member is a member constituting a microfluidic device in which a fine structure portion reaching or reaching the surface is a defective portion of the member serving as a flow path. And can be preferably applied to a method of manufacturing a microfluidic device including a step of forming a hollow flow path by bonding them together.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、以下の実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example, this invention is not limited to the range of a following example.

(実施例1)
本実施例では、本発明における第2ホルダ2の第1態様による貼り合わせ装置を用いたマイクロ流体デバイスの製造方法を示す。
Example 1
In this example, a method for manufacturing a microfluidic device using the bonding apparatus according to the first aspect of the second holder 2 of the present invention will be described.

[貼り合わせ装置]
第1ホルダ1は、図1の形状とし、外寸が15cm×15cm×1.5cm、第1部材保持機構3である真空チャックの真空溝は直径8cm、孔4は直径6cmである。
第2ホルダ2は、図2の形状とし、外寸が15cm×15cm×1.5cm、第2部材保持機構5である真空チャック5の金属粉焼結型多孔質体の外径は10cm,内径は6cm、真空チャックを兼ねる気体導入口7の同多孔質体の直径は5cmである。
[Lamination device]
The first holder 1 has the shape shown in FIG. 1 and has an outer dimension of 15 cm × 15 cm × 1.5 cm, the vacuum groove of the vacuum chuck as the first member holding mechanism 3 has a diameter of 8 cm, and the hole 4 has a diameter of 6 cm.
The second holder 2 has the shape of FIG. 2, the outer dimensions are 15 cm × 15 cm × 1.5 cm, the outer diameter of the metal powder sintered porous body of the vacuum chuck 5 which is the second member holding mechanism 5 is 10 cm, the inner diameter Is 6 cm, and the diameter of the porous body of the gas inlet 7 also serving as a vacuum chuck is 5 cm.

図4に示したように、上記第1ホルダ1を真空チャック3面を下向きにして配置し、一方、第2ホルダ2を真空チャック5面を上向きにして、位置合わせ機構13と垂直移動機構を兼ねるXYZθ移動ステージ13に装着し、第1ホルダ1の上方に光学顕微鏡14を2基平行に設置した。また、図4に示したように、第1ホルダ1の真空チャック3は切り替えバルブ21を経て真空24と大気25に接続した。第2ホルダ2の真空チャック5は切り替えバルブ22を経て真空24と大気25に接続した。気体導入口7は、切り替えバルブ23を経て、真空24と加圧気体26に接続した。加圧気体26として、圧力200kPa(ゲージ圧)に調節した加圧空気を用いた。上記のように、本貼り合わせ装置の気体導入口7は、真空チャックの機能も有する。   As shown in FIG. 4, the first holder 1 is arranged with the vacuum chuck 3 face down, while the second holder 2 is placed with the vacuum chuck 5 face up, and the alignment mechanism 13 and the vertical movement mechanism are arranged. Two optical microscopes 14 were installed in parallel above the first holder 1 and mounted on the XYZθ moving stage 13 which also serves as the unit. Further, as shown in FIG. 4, the vacuum chuck 3 of the first holder 1 was connected to the vacuum 24 and the atmosphere 25 via the switching valve 21. The vacuum chuck 5 of the second holder 2 was connected to the vacuum 24 and the atmosphere 25 via the switching valve 22. The gas inlet 7 was connected to the vacuum 24 and the pressurized gas 26 via the switching valve 23. As the pressurized gas 26, pressurized air adjusted to a pressure of 200 kPa (gauge pressure) was used. As described above, the gas inlet 7 of the present bonding apparatus also has a function of a vacuum chuck.

[マイクロ流体デバイスの製造方法]
〔紫外線照射方法〕
本実施例における紫外線照射の方法を以下に示す。
(紫外線ランプ1による照射)
3kWメタルハライドランプを光源とするアイグラフィックス株式会社製のUE031−353CHC型UV照射装置を用い、365nmにおける紫外線強度が40mW/cmの紫外線を特に指定が無い限り室温、窒素雰囲気中で照射した。
(紫外線ランプ2による照射)
250W高圧水銀ランプを光源とするウシオ電機株式会社製のマルチライト250Wシリーズ露光装置用光源ユニットを用い、365nmにおける紫外線強度が50mW/cmの紫外線を、特に指定が無い限り室温、空気雰囲気中で照射した。
[Microfluidic device manufacturing method]
[Ultraviolet irradiation method]
The method of ultraviolet irradiation in this example is shown below.
(Irradiation with ultraviolet lamp 1)
Using a UE031-353CHC type UV irradiator manufactured by Eye Graphics Co., Ltd. using a 3 kW metal halide lamp as a light source, ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 were irradiated in a nitrogen atmosphere at room temperature unless otherwise specified.
(Irradiation with ultraviolet lamp 2)
Using a light source unit for multi-light 250W series exposure apparatus manufactured by USHIO INC. Using a 250W high-pressure mercury lamp as a light source, ultraviolet light with an ultraviolet intensity at 365 nm of 50 mW / cm 2 is used at room temperature in an air atmosphere unless otherwise specified. Irradiated.

〔組成物(X)の調製〕
エネルギー線重合性化合物として平均分子量2000の3官能ウレタンアクリレートオリゴマー「ユニディックV−4263」(大日本インキ化学工業株式会社製)70部、ヘキサンジオールジアクリレート「ニューフロンティアHDDA」(第1工業製薬株式会社製)30部、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュアー184」(チバガイギー社製)3部、及び重合遅延剤として2,4−ジフェニル−4−メチル−1−ペンテン(関東化学株式会社製)0.5部を混合して、組成物(X)を調製した。
[Preparation of Composition (X)]
70 parts of a trifunctional urethane acrylate oligomer “Unidic V-4263” (Dainippon Ink Chemical Industries, Ltd.) having an average molecular weight of 2000 as an energy ray polymerizable compound, hexanediol diacrylate “New Frontier HDDA” (Daiichi Kogyo Pharmaceutical Co., Ltd.) 30 parts), 1 part of 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” (manufactured by Ciba Geigy) as a photopolymerization initiator, and 2,4-diphenyl-4-methyl-1-pentene (Kanto) as a polymerization retarder 0.5 parts of Chemical Co., Ltd.) was mixed to prepare composition (X).

〔第1部材の作製〕
10cm×10cm×1mmのアクリル樹脂製の基板101の上に、スピンコーターを用いて組成物(X)を塗工し、流路121、導入路105、流出路106と成す部分、及び2つの位置決めマーク107、108以外の部分にフォトマスクを通して紫外線ランプ2による紫外線照射を40秒照射して組成物(X)を半硬化させ、非照射部分の未硬化の該組成物(X)を50%エタノール水溶液で洗浄除去して、流路121を構成する溝104、導入路105となる溝105、流出路106となる溝106が形成された樹脂層102を形成した。該半硬化の樹脂層102は粘着性を有していた。この、基板101と樹脂層102からなる部材を第1部材11とした。
[Production of first member]
The composition (X) is coated on a 10 cm × 10 cm × 1 mm acrylic resin substrate 101 using a spin coater, and the flow passage 121, the introduction passage 105, the portion that forms the outflow passage 106, and two positionings The composition (X) is semi-cured by irradiating the portion other than the marks 107 and 108 with ultraviolet light from the ultraviolet lamp 2 through a photomask for 40 seconds, and the uncured composition (X) in the non-irradiated portion is 50% ethanol. By washing and removing with an aqueous solution, the resin layer 102 in which the groove 104 constituting the flow path 121, the groove 105 serving as the introduction path 105, and the groove 106 serving as the outflow path 106 was formed. The semi-cured resin layer 102 was sticky. This member composed of the substrate 101 and the resin layer 102 was used as the first member 11.

〔第2部材の作製〕
片面がコロナ放電処理された厚さ30μmの2軸延伸ポリプロピレンシート(二村化学株式会社製)を一時的な支持体111として、この上に組成物(X)をスピンコーターを用いて塗工し、紫外線ランプ1により紫外線を40秒照射して、該組成物を半硬化させて樹脂層112とした。
さらに、上記樹脂層112の上に組成物(X)をスピンコーターを用いて塗工し、流路121、導入路115、流出路116と成す部分、及び2つの位置決めマーク117、118以外の部分にフォトマスクを通して紫外線ランプ2による紫外線照射を40秒照射して組成物(X)を半硬化させ、非照射部分の未硬化の該組成物(X)を50%エタノール水溶液で洗浄除去して、流路121を構成する溝114、導入路115となる溝115、第1流出路116となる溝116が形成された樹脂層113を形成した。該半硬化の樹脂層113は粘着性を有していた。一時的な支持体111、樹脂層112及び樹脂層113からなる部材を第2部材12とした。
[Production of second member]
A biaxially stretched polypropylene sheet (manufactured by Nimura Chemical Co., Ltd.) having a thickness of 30 μm, one side of which was subjected to corona discharge treatment, was used as a temporary support 111, and the composition (X) was coated thereon using a spin coater, The composition was semi-cured by irradiating ultraviolet rays from the ultraviolet lamp 1 for 40 seconds to form a resin layer 112.
Further, the composition (X) is applied onto the resin layer 112 by using a spin coater, and the flow path 121, the introduction path 115, the outflow path 116, and the portions other than the two positioning marks 117 and 118 are formed. The composition (X) is semi-cured by irradiating with ultraviolet light from the ultraviolet lamp 2 through a photomask for 40 seconds, and the uncured composition (X) in the non-irradiated part is washed and removed with a 50% aqueous ethanol solution. The resin layer 113 in which the groove 114 constituting the flow path 121, the groove 115 serving as the introduction path 115, and the groove 116 serving as the first outflow path 116 was formed. The semi-cured resin layer 113 was sticky. A member composed of the temporary support 111, the resin layer 112, and the resin layer 113 was used as the second member 12.

〔貼り合わせ〕
第5図(a)に示したように、上記第1部材11を溝形成面を下向きにして第1ホルダ1に真空チャック3で固定し、また上記第2部材12をの溝形成面を上向きにして第2ホルダ2に真空チャック5及び気体導入口7を兼ねる真空チャック7で固定し、XYZθ移動ステージ13をZ軸方向に移動させて、両部材間の距離を0.7mmに調節した。第1ホルダ1の上方から孔4を通して、二つの位置検出機構(光学顕微鏡)14で位置決めマーク107、108、117、118を観察しながら位置調節ステージのX、Y、θを調節して、位置決めマーク107と117、及び位置決めマーク108と118の位置をそれぞれ合わせた。
[Bonding]
As shown in FIG. 5 (a), the first member 11 is fixed to the first holder 1 with the vacuum chuck 3 with the groove forming surface facing downward, and the groove forming surface of the second member 12 is facing upward. Then, the second holder 2 was fixed with the vacuum chuck 7 which also serves as the vacuum chuck 5 and the gas inlet 7, and the XYZθ moving stage 13 was moved in the Z-axis direction to adjust the distance between both members to 0.7 mm. Positioning is performed by adjusting X, Y, and θ of the position adjustment stage while observing the positioning marks 107, 108, 117, and 118 through the hole 4 from above the first holder 1 with the two position detection mechanisms (optical microscope) 14. The positions of the marks 107 and 117 and the positioning marks 108 and 118 were matched.

切り替えバルブ23を操作して真空24を遮断し、加圧空気26を徐々に導入すると、真空チャック7が気体導入口7となって第2部材12の裏側に加圧空気が導入され、第5図(b)に示したように、第2部材12は球状に膨らみ中央部分が第1部材11に接触した。その後、外側の真空チャック5に接続された切り替えバルブ22を真空24から遮断し、大気25に接続すると、第2部材12は中心から周辺部方向へと徐々にd第2ホルダから離れて第1部材11に接触し、最終的には第5図(c)に示したように、第2部材12全体が第1部材11に貼り付き、第1部材11と第2部材12が粘着力によって貼り合わせされた。   When the switching valve 23 is operated to shut off the vacuum 24 and the pressurized air 26 is gradually introduced, the vacuum chuck 7 becomes the gas inlet 7 and the pressurized air is introduced to the back side of the second member 12. As shown in FIG. 2B, the second member 12 swells in a spherical shape, and the central portion contacts the first member 11. Thereafter, when the switching valve 22 connected to the outer vacuum chuck 5 is shut off from the vacuum 24 and connected to the atmosphere 25, the second member 12 gradually moves away from the second holder in the direction from the center toward the peripheral portion. As shown in FIG. 5 (c), the entire second member 12 is adhered to the first member 11, and the first member 11 and the second member 12 are adhered to each other by the adhesive force. Combined.

〔貼り合わせ、及びその他の工程〕
切り替えバルブ21により第1ホルダの真空チャック3の真空を解いて大気圧とし、第1部材11と第2部材12の貼り合わせ体を取り外し、紫外線照射装置1を用いて60秒間紫外線を照射してエネルギー線硬化性組成物(X)を完全硬化させ、第1部材11と第2部材12を完全に貼り合わせした。
その後、第2部材12から一時的な支持体111を剥離除去し、導入路105、流出路106、導入路115、流出路116の各端部において、基板101側からドリルでもって穴を開けて、導入口109、流出口110、導入口119、流出口120を形成し、図8に示されたようなマイクロ流体デバイスを得た。
得られたマイクロ流体デバイスは、第1部材11の溝104と第2部材12の溝114が完全に重なり合い、毛細管状の流路121が形成されていた。
[Lamination and other processes]
The vacuum of the vacuum chuck 3 of the first holder is released by the switching valve 21 to atmospheric pressure, the bonded body of the first member 11 and the second member 12 is removed, and ultraviolet rays are irradiated for 60 seconds using the ultraviolet irradiation device 1. The energy beam curable composition (X) was completely cured, and the first member 11 and the second member 12 were completely bonded together.
Thereafter, the temporary support 111 is peeled and removed from the second member 12, and a hole is drilled from the substrate 101 side at each end of the introduction path 105, the outflow path 106, the introduction path 115, and the outflow path 116. The inlet 109, the outlet 110, the inlet 119, and the outlet 120 were formed to obtain a microfluidic device as shown in FIG.
In the obtained microfluidic device, the groove 104 of the first member 11 and the groove 114 of the second member 12 completely overlapped to form a capillary channel 121.

〔各部の寸法〕
得られたマイクロ流体デバイスは、外寸100mm×100mm、基板101の厚さが1mm、樹脂層102、樹脂層113、及び樹脂層112が全て厚さ100μmであり、流路121が幅200μm、深さ200μm、長さ60mmであり、導入路105、流出路106、導入路115、及び流出路116が全て幅200μm、深さ100μmであり、導入口109、流出口110、導入口119、及び流出口120の孔の直径が全て500μmであった。また、流路121を構成する溝104と溝114の位置合わせ誤差は、流路121の全範囲で5μm以下であった。
[Dimensions of each part]
The obtained microfluidic device has an outer dimension of 100 mm × 100 mm, the thickness of the substrate 101 is 1 mm, the resin layer 102, the resin layer 113, and the resin layer 112 are all 100 μm thick, and the flow path 121 is 200 μm wide and deep. The inlet channel 105, the outlet channel 106, the inlet channel 115, and the outlet channel 116 are all 200 μm wide and 100 μm deep, and the inlet 109, outlet 110, inlet 119, and flow The diameters of the holes at the outlet 120 were all 500 μm. Further, the alignment error between the groove 104 and the groove 114 constituting the flow path 121 was 5 μm or less over the entire range of the flow path 121.

本発明の貼り合わせ装置の第1ホルダの(a)平面図および(b)A部断面図である。It is (a) top view and (b) A section sectional drawing of the 1st holder of the bonding apparatus of this invention. 本発明の貼り合わせ装置の第2ホルダの第1態様の(a)平面図および(b)A部断面図である。It is (a) top view and (b) A section sectional view of the 1st mode of the 2nd holder of the pasting device of the present invention. 本発明の貼り合わせ装置の第2ホルダの第2態様及び第3態様の(a)平面図および(b)A部断面図である。It is the (a) top view and (b) A section sectional view of the 2nd mode and the 3rd mode of the 2nd holder of the pasting device of the present invention. 本発明の貼り合わせ装置の配管接続模式図を含む正面図模式図である。It is a front view schematic diagram including the piping connection schematic diagram of the bonding apparatus of this invention. 本発明の貼り合わせ方法を示す、(a)気体導入前、(b)気体導入中、及び(c)最終状態を示す正面図模式図である。It is a front view schematic diagram which shows the bonding method of this invention, (a) Before gas introduction, (b) During gas introduction, and (c) Final state. 本発明で作製するマイクロ流体デバイスの第1部材の(a)平面図模式図および(b)側面図模式図である。It is the (a) top view schematic diagram and (b) side view schematic diagram of the 1st member of the microfluidic device produced by this invention. 本発明で作製するマイクロ流体デバイスの第2部材の(a)平面図模式図および(b)側面図模式図である。It is the (a) top view schematic diagram and (b) side view schematic diagram of the 2nd member of the microfluidic device produced by this invention. 本発明で作製するマイクロ流体デバイスの(a)平面図模式図および(b)側面図模式図である。It is the (a) top view schematic diagram and (b) side view schematic diagram of the microfluidic device produced by this invention.

符号の説明Explanation of symbols

1 第1ホルダ
2 第2ホルダ
3 第1部材保持機構(真空チャック)
4 孔
5、5’ 第2部材保持機構(真空チャック)
6、8 多孔質体
7 気体導入口(兼真空チャック)
11 第1部材
12 第2部材
13 位置合わせ機構(XYZθ移動ステージ)
14 位置検出機構(光学顕微鏡)
21、22、23 切り替えバルブ
24 真空
25 大気
26 加圧気体(加圧空気)
101 基板
102、112、113 樹脂層
104、114 流路となる溝
105、115 流入路(溝)
106、116 流出路(溝)
107、108、117、118 位置決めマーク
111 一時的な支持体
109、119 流入口
110、120 抽出口
121 流路
DESCRIPTION OF SYMBOLS 1 1st holder 2 2nd holder 3 1st member holding mechanism (vacuum chuck)
4 hole 5, 5 'second member holding mechanism (vacuum chuck)
6, 8 Porous material 7 Gas inlet (also vacuum chuck)
11 First member 12 Second member 13 Positioning mechanism (XYZθ moving stage)
14 Position detection mechanism (optical microscope)
21, 22, 23 Switching valve 24 Vacuum 25 Air 26 Pressurized gas (pressurized air)
101 Substrate 102, 112, 113 Resin layer 104, 114 Groove 105, 115 inflow path (groove)
106,116 Outflow channel (groove)
107, 108, 117, 118 Positioning mark 111 Temporary support 109, 119 Inflow port 110, 120 Extraction port 121 Flow path

Claims (7)

平滑な表面αと該平滑な表面α上に微細な構造部分aとを有する第1部材と、平滑な表面βと該平滑な表面β上に微細な構造部分bとを有し、更に可撓性を有する板状又はフィルム状の第2部材とを、
前記表面αと前記表面βを貼り合わせ面として、前記微細な構造部分aと前記微細な構造部分bの位置関係を調整して貼り合わせるための貼り合わせ装置であって、
(1)前記第1部材を保持する機構を有する第1ホルダと、
(2)前記第1ホルダに対向し、前記第2部材を保持する機構を有する第2ホルダと、
(3)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出する位置検出機構と
(4)前記第1ホルダに保持された前記第1部材と前記第2ホルダに保持された前記第2部材の、前記貼り合わせ面に平行な面内における位置を調整する位置合わせ機構と
(5)前記第2部材を前記第2ホルダに保持した状態で、前記第2部材と前記第2ホルダの間に気体を導入する気体導入口
とを有し、
前記表面αと前記表面βとが対向するように、前記第1部材と前記第2部材とをそれぞれ前記第1ホルダ及び前記第2ホルダに保持させ、
前記第2部材と前記第2ホルダ間の一部に前記気体導入口から気体を導入して、前記第2部材を前記第1部材方向に膨らませたときには、前記第2部材の一部が前記第1部材と接触し、その後、前記接触した部分から周辺部へと順に接触することにより、前記第2部材が前記第1部材に貼り合わされることを特徴とする貼り合わせ装置。
A first member having a smooth surface α and a fine structure portion a on the smooth surface α, a smooth surface β and a fine structure portion b on the smooth surface β, and further flexible. A plate-like or film-like second member having properties,
A bonding apparatus for adjusting and bonding the positional relationship between the fine structure portion a and the fine structure portion b using the surface α and the surface β as a bonding surface;
(1) a first holder having a mechanism for holding the first member;
(2) a second holder having a mechanism facing the first holder and holding the second member;
(3) A position detection mechanism for detecting a positional relationship between the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface. (4) an alignment mechanism that adjusts the position of the first member held by the first holder and the second member held by the second holder in a plane parallel to the bonding surface; 5) A gas introduction port for introducing gas between the second member and the second holder in a state where the second member is held by the second holder,
The first holder and the second member are held by the first holder and the second holder, respectively, so that the surface α and the surface β face each other,
When a gas is introduced from the gas inlet to a part between the second member and the second holder and the second member is expanded in the first member direction, a part of the second member is the first member. The bonding apparatus according to claim 1, wherein the second member is bonded to the first member by contacting with one member and then sequentially contacting the contacted portion to the peripheral portion.
前記第2ホルダの、前記第2部材を保持する機構が、実質的に環状の真空チャックであり、
前記気体導入口が、前記環状の真空チャックの環の内側に設けられている請求項1に記載の貼り合わせ装置。
A mechanism for holding the second member of the second holder is a substantially annular vacuum chuck;
The bonding apparatus according to claim 1, wherein the gas introduction port is provided inside a ring of the annular vacuum chuck.
前記気体導入口が、前記環状の真空チャックの環の内側に設けられた第2の真空チャックを兼ねるものである請求項1又は2に記載の貼り合わせ装置。 The bonding apparatus according to claim 1 or 2, wherein the gas introduction port also serves as a second vacuum chuck provided inside the ring of the annular vacuum chuck. 更に、前記第1ホルダ及び/又は前記第2ホルダを、前記第1部材と前記第2部材の貼り合わせ面に対して垂直方向に移動することのできる垂直移動機構を有する請求項1〜3のいずれか1項に記載の貼り合わせ装置。 Furthermore, the said 1st holder and / or the said 2nd holder have a perpendicular movement mechanism which can move to the orthogonal | vertical direction with respect to the bonding surface of the said 1st member and the said 2nd member. The bonding apparatus of any one of Claims. 更に、前記第1部材と前記第2部材を接触させた状態で、前記第1部材を通して光線を照射することのできる光線照射機構を有する請求項1〜4のいずれか1項に記載の貼り合わせ装置。 Furthermore, the bonding of any one of Claims 1-4 which has a light beam irradiation mechanism which can irradiate a light beam through the said 1st member in the state which contacted the said 1st member and the said 2nd member. apparatus. (1)請求項1〜5のいずれか1項に記載の貼り合わせ装置を使用し、
(2)前記第1部材を、前記表面αが前記第2ホルダと対向するように前記第1ホルダに保持させ、
(3)前記第2部材を、前記表面βが前記表面αと対向するように前記第2ホルダに保持させ、
(4)前記位置検出機構により、前記第1部材と前記第2部材の、前記貼り合わせ面に平行な面内に於ける位置関係を検出し、
(5)前記位置合わせ機構により、前記第1部材と前記第2部材を前記貼り合わせ面に平行な面内において位置を合わせ、
(6)前記気体導入口から気体を前記第2部材と前記第2ホルダ間の一部に導入して、前記第2部材を前記第1部材方向に膨らませて、前記第2部材の一部を前記第1部材と接触させ、
その後、前記接触した部分から周辺部へと順に接触させることにより、前記第2部材を前記第1部材に貼り合わせることを特徴とする貼り合わせ方法。
(1) Using the bonding apparatus according to any one of claims 1 to 5,
(2) The first member is held by the first holder so that the surface α faces the second holder,
(3) The second member is held by the second holder so that the surface β faces the surface α,
(4) The positional detection mechanism detects a positional relationship between the first member and the second member in a plane parallel to the bonding surface,
(5) By the alignment mechanism, the first member and the second member are aligned in a plane parallel to the bonding surface,
(6) Gas is introduced from the gas introduction port into a part between the second member and the second holder, and the second member is expanded in the direction of the first member. Contacting with the first member;
Then, the said 2nd member is bonded together to the said 1st member by making it contact sequentially from the said contact part to a peripheral part, The bonding method characterized by the above-mentioned.
前記第1部材及び前記第2部材がマイクロ流体デバイスを構成する部材であり、前記第1部材及び前記第2部材の少なくとも一方の表面に形成された微細な構造部分が、流路となる欠損部である請求項6に記載の貼り合わせ方法。
The first member and the second member are members constituting a microfluidic device, and a fine structure portion formed on at least one surface of the first member and the second member serves as a flow path. The bonding method according to claim 6.
JP2006137639A 2006-05-17 2006-05-17 Method and device for affixing together Pending JP2007307643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137639A JP2007307643A (en) 2006-05-17 2006-05-17 Method and device for affixing together

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137639A JP2007307643A (en) 2006-05-17 2006-05-17 Method and device for affixing together

Publications (1)

Publication Number Publication Date
JP2007307643A true JP2007307643A (en) 2007-11-29

Family

ID=38840947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137639A Pending JP2007307643A (en) 2006-05-17 2006-05-17 Method and device for affixing together

Country Status (1)

Country Link
JP (1) JP2007307643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192300A (en) * 2011-03-14 2012-10-11 Toyama Prefecture Microreactor
JP2017198735A (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Optical sheet, video source unit, and liquid crystal display
JP2018103438A (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Process and apparatus for producing glass film laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192300A (en) * 2011-03-14 2012-10-11 Toyama Prefecture Microreactor
JP2017198735A (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Optical sheet, video source unit, and liquid crystal display
JP2018103438A (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Process and apparatus for producing glass film laminate

Similar Documents

Publication Publication Date Title
JP4998462B2 (en) Manufacturing method of resin composite molded body
JP2008008880A (en) Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same
JP2006187730A (en) Method for manufacturing resin-made micro flow passage chemical device and structure of resin-made micro flow passage chemical device manufactured thereby
US8784973B2 (en) Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
RU2748273C9 (en) Nano-imprinted substrate
JP5410419B2 (en) Pressure-sensitive adhesive sheet for micro-analysis chip, micro-analysis chip, and manufacturing method thereof
US10906293B2 (en) Method and device for embossing of a nanostructure
JP2008175795A (en) Microchip made of plastic, and manufacturing method thereof, biochip or microanalysis chip using the same
JP2007307643A (en) Method and device for affixing together
JP2007307644A (en) Method and device for affixing together
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
US20100207301A1 (en) Method of forming fine channel using electrostatic attraction and method of forming fine structure using the same
Gutierrez-Rivera et al. Multilayer bonding using a conformal adsorbate film (CAF) for the fabrication of 3D monolithic microfluidic devices in photopolymer
JP5001203B2 (en) Manufacturing method of microchip having non-adhesive part
JP2004058214A (en) Channel connecting method, member for channel connection, microfluidic device, and connecting structure of microfluidic device
JP2009069051A (en) Manufacturing method of microfluid device
US20120020835A1 (en) Microchip
JPWO2005093416A1 (en) Bead placement substrate and bead placement method using the same
JP2010247056A (en) Microchip
WO2007089050A1 (en) Method of forming fine channel using electrostatic attraction and method of forming fine structure using the same
JP6107133B2 (en) Surface structure for suppressing protein adsorption, microchannel, and microchip
JP2006224011A (en) Micro valve
Yin et al. Polycarbonate nanofluidic chip fabrication technique by hot embossing and thermal bonding
WO2022138930A1 (en) Method for manufacturing micro chip for liquid sample analysis
Shakeri et al. Fabrication and assembly of thermoplastic microfluidics; a review