JP2007306235A - Modem - Google Patents

Modem Download PDF

Info

Publication number
JP2007306235A
JP2007306235A JP2006131712A JP2006131712A JP2007306235A JP 2007306235 A JP2007306235 A JP 2007306235A JP 2006131712 A JP2006131712 A JP 2006131712A JP 2006131712 A JP2006131712 A JP 2006131712A JP 2007306235 A JP2007306235 A JP 2007306235A
Authority
JP
Japan
Prior art keywords
carrier
level
processing unit
carrier wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006131712A
Other languages
Japanese (ja)
Inventor
Kazuhiro Iizawa
和弘 飯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Networks and System Integration Co Ltd
Original Assignee
Toyo Networks and System Integration Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Networks and System Integration Co Ltd filed Critical Toyo Networks and System Integration Co Ltd
Priority to JP2006131712A priority Critical patent/JP2007306235A/en
Publication of JP2007306235A publication Critical patent/JP2007306235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Communication Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DSP modem which is prevented from generating a false bit to have an improved error rate by using a quadratic curve as calculation expression by a carrier level adjustment processing section to generate a sent-out waveform approximating a conventional analog system. <P>SOLUTION: The DSP modem 6 comprises a modulation processing section 3 which sends out or stops a carrier based upon an RS of a terminal device 1 and modulates the carrier based upon an SD; the carrier level adjustment processing section 4 which adjusts rise and fall characteristics of the carrier when the carrier is sent out and stopped; a transmitting filter processing section 5 which removes an unnecessary signal included in the output signal from the carrier level adjustment processing section 4; a receiving filter processing section 9 which removes an unnecessary signal included in a reception signal; an AGC processing section 10 which adjusts the reception signal level output from the receiving filter processing section 9 to a predetermined level; and a demodulation processing section 11 which demodulates the carrier to regenerate a digital signal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、モデムに関し、さらに詳しくは、送信波制御を用いてモデムの受信特性を改善したDSP(デジタルシグナルプロセッサ)モデムに関するものである。   The present invention relates to a modem, and more particularly to a DSP (digital signal processor) modem that improves the reception characteristics of a modem by using transmission wave control.

モデムは、デジタル信号を音声帯域信号の搬送波に変換して伝送し、電話回線を使用してデータ伝送を行う場合に使用される装置である。モデムの変復調方法として、1200Bit/S以下の低速モデムではその使用帯域が狭いため、送信/受信で各々異なった搬送波を使用し、2線式又は4線式回線において全二重又は半二重通信を構成する場合がある。しかし、従来のモデムは、送信及び受信する搬送波信号から不要波成分を除去するフィルタとしてコイル、コンデンサ等の受動部品を使用しているため、小型化及び低価格化が困難であり、近年ではコイルやコンデンサ等を使用しないDSPを用いたモデムが開発されている。   A modem is a device used when a digital signal is converted into a carrier wave of a voice band signal and transmitted, and data transmission is performed using a telephone line. As a modem modulation / demodulation method, a low-speed modem of 1200 Bit / S or less uses a narrow band, so that different carrier waves are used for transmission / reception, and full-duplex or half-duplex communication is performed on a two-wire or four-wire line. May be configured. However, since conventional modems use passive components such as coils and capacitors as filters for removing unwanted wave components from transmitted and received carrier wave signals, it is difficult to reduce the size and cost. A modem using a DSP that does not use a capacitor or a capacitor has been developed.

しかしながら、前述したような従来のDSPを用いたモデムは、端末装置からのRS信号による制御を受けて搬送波を送出/停止する時に次のような不具合を生じていた。即ち、モデムをDSPの処理により実現すると、搬送波を送出/停止した時に出力波形は瞬時に100%のレベルに立ち上がり、又、瞬時に0%のレベルに立ち下がる特性を持っている。一方、送信側の搬送波は、ライントランスを介して送信する場合、ライントランスが持つインピーダンスと各終端インピーダンスとの間に少なからず不整合があるため、受信側にある程度のレベルが回り込んでしまう。受信側に回り込んだ送信信号は、受信側のフィルタ処理部によりかなりの部分が除去されるが、低速モデムのように送信側の搬送波と受信側の搬送波との周波数を接近させて使用している場合、フィルタ処理部からAGC処理部に受信信号と回り込んだ送信信号とが入力する。この時、送信側から回り込んでくる漏れ分が前述したように瞬時に変化する場合、及び受信信号が瞬時に変化すると、DSPのAGC処理部及び受信フィルタ、更には復調処理部が追従できず、受信特性の劣化を招いていた。   However, the modem using the conventional DSP as described above has the following problems when transmitting / stopping the carrier wave under the control of the RS signal from the terminal device. That is, when the modem is realized by DSP processing, the output waveform has a characteristic that it instantaneously rises to a level of 100% and instantaneously falls to a level of 0% when a carrier wave is transmitted / stopped. On the other hand, when the transmission-side carrier wave is transmitted via the line transformer, there is a considerable mismatch between the impedance of the line transformer and each terminal impedance, and therefore, a certain level of the carrier wave wraps around the reception side. A considerable part of the transmission signal that wraps around to the reception side is removed by the filter processing unit on the reception side, but the frequency of the carrier on the transmission side and the carrier on the reception side are used close to each other like a low-speed modem. If the received signal is received, the received signal and the transmitted transmission signal are input from the filter processing unit to the AGC processing unit. At this time, if the amount of leakage that wraps around from the transmission side changes instantaneously as described above, and if the reception signal changes instantaneously, the AGC processing unit and reception filter of the DSP and further the demodulation processing unit cannot follow. As a result, the reception characteristics deteriorated.

この受信特性の劣化を改善するために特許文献1には、変調処理部により変調された搬送波の送出時及び停止時に、搬送波の立ち上がり及び立ち下がり特性を調整する搬送波レベル調整処理部を備え、搬送波送出時及び停止時に送信信号が受信側AGC処理部に与える影響を少なくし、受信特性を向上させるDSPモデムについて開示されている。
図5は特許文献1のDSPモデムにおける搬送波レベル調整処理部により調整された立ち上がり波形(a)と立ち下がり波形(b)及び波形の抱絡線(C)を表す図である。図5(a)のように、特許文献1の搬送波レベル調整処理部が送信要求信号により搬送波を送出するときの計算式は、搬送波のレベルをVr、搬送波レベルの無調整時の出力レベルをE、搬送波のレベルVrを時間trに段階的に調整する処理数をM、この処理数Mの逆数1/MをAとしたとき、Mを0からMまで変化させて、Vr=E×A×Mとして求めていた。また、図5(b)のように、従来の搬送波レベル調整処理部が送信要求信号により搬送波を停止するときの計算式も同様にして、Vf=E×A×Mとして求めていた。
特開2001−24716公報
In order to improve the degradation of the reception characteristics, Patent Document 1 includes a carrier level adjustment processing unit that adjusts the rising and falling characteristics of the carrier wave when the carrier wave modulated by the modulation processing unit is transmitted and stopped. There has been disclosed a DSP modem that reduces the influence of a transmission signal on a reception side AGC processing unit at the time of transmission and stop and improves reception characteristics.
FIG. 5 is a diagram illustrating a rising waveform (a), a falling waveform (b), and a waveform envelope (C) adjusted by the carrier wave level adjustment processing unit in the DSP modem of Patent Document 1. As shown in FIG. 5A, the calculation formula used when the carrier level adjustment processing unit of Patent Document 1 transmits a carrier by a transmission request signal is Vr as the carrier level and E as the output level when the carrier level is not adjusted. , Where M is the number of processes for stepwise adjustment of the carrier level Vr at time tr, and A is the inverse 1 / M of the number of processes M, V is changed from 0 to M, and Vr = E × A × I was seeking as M. Further, as shown in FIG. 5B, the calculation formula when the conventional carrier level adjustment processing unit stops the carrier by the transmission request signal is similarly obtained as Vf = E × A × M.
JP 2001-24716 A

しかしながら、特許文献1に開示されている従来技術は、搬送波の立ち上がり及び立ち下がり特性を調整する計算式が、Vr=Vf=E×A×Mとして求めていたため、搬送波のレベルVr、Vfが処理数Mに比例して直線的(単位時間当たりの搬送波レベルの増大値/減少値が一定)に変化することとなり、従来のアナログ方式とは送出波形が異なり、擬似ビットの発生を助長してモデムのエラーレイトを悪化する要因となっていた。
本発明は、かかる課題に鑑み、従来のアナログ方式に近似する送出波形を生成するために、搬送波レベル調整処理部による計算式を例えば二次曲線とすることにより、擬似ビットの発生を防止してエラーレイトを改善したモデムを提供することを目的とする。
However, in the prior art disclosed in Patent Document 1, since the calculation formula for adjusting the rising and falling characteristics of the carrier wave is obtained as Vr = Vf = E × A × M, the carrier wave levels Vr and Vf are processed. It changes linearly in proportion to the number M (the increase / decrease value of the carrier level per unit time is constant), and the transmission waveform is different from the conventional analog system. It was a factor that worsened the error rate.
In view of such problems, the present invention prevents the generation of pseudo bits by, for example, using a quadratic curve as a calculation formula by the carrier level adjustment processing unit in order to generate a transmission waveform that approximates the conventional analog method. An object is to provide a modem with improved error rate.

本発明はかかる課題を解決するために、請求項1は、送信要求信号に基づいて搬送波を送出又は停止すると共に、送信データ信号に基づいて前記搬送波を変調する変調処理部と、該変調処理部から出力された変調信号を入力し、前記搬送波の送出時及び停止時に該搬送波の立ち上がり及び立ち下がり特性を調整する搬送波レベル調整処理部と、該搬送波レベル調整処理部からの出力信号に含まれる不要信号を除去する送信フィルタ処理部と、受信信号に含まれる不要信号を除去する受信フィルタ処理部と、該受信フィルタ処理部から出力された受信信号レベルを所定のレベルに調整するAGC処理部と、該AGC処理部から出力された搬送波を復調してデジタル信号を再生する復調処理部と、を備えており、前記搬送波レベル調整処理部が、搬送波の立ち上がりにおいては搬送波レベルの単位時間当たりの増大値が時間と共に漸増するようにレベル調整し、搬送波の立ち下がりにおいては搬送波レベルの単位時間当たりの減少値が時間と共に漸減するようにレベル調整することを特徴とする。
本発明のDSPモデムは、構成としては状来のDSPモデムと同様であるが、内部に備えられた搬送波レベル調整処理部の内部計算式を改良したものである。即ち、従来の計算式は、搬送波の立ち上がり及び立ち下がり特性を調整する計算式が直線的に変化するため、従来のアナログ方式とは送出波形が異なり、擬似ビットを発生する虞があった。そこで本発明では、この計算式を二次曲線の式となるようにして、擬似ビットの発生を防止してエラーレイトを改善するものである。
In order to solve this problem, the present invention provides a modulation processing unit that transmits or stops a carrier wave based on a transmission request signal and modulates the carrier wave based on a transmission data signal, and the modulation processing unit. A carrier wave level adjustment processing unit that inputs the modulation signal output from the carrier wave and adjusts the rising and falling characteristics of the carrier wave when the carrier wave is transmitted and stopped, and an unnecessary signal included in the output signal from the carrier wave level adjustment processing unit A transmission filter processing unit for removing signals, a reception filter processing unit for removing unnecessary signals included in the received signal, an AGC processing unit for adjusting the received signal level output from the reception filter processing unit to a predetermined level, A demodulation processing unit that demodulates the carrier wave output from the AGC processing unit and reproduces a digital signal, and the carrier level adjustment processing unit comprises: Level adjustment so that the increase value of the carrier level per unit time gradually increases with time at the rising edge of the transmission, and the decrease value of the carrier level per unit time gradually decreases with time at the fall of the carrier wave It is characterized by doing.
The DSP modem of the present invention is similar in configuration to a conventional DSP modem, but is an improved internal calculation formula of a carrier level adjustment processing unit provided therein. That is, in the conventional calculation formula, the calculation formula for adjusting the rising and falling characteristics of the carrier wave changes linearly, so that the transmission waveform is different from the conventional analog method, and there is a possibility that a pseudo bit is generated. Therefore, in the present invention, this calculation formula is changed to a quadratic curve formula to prevent the generation of pseudo bits and improve the error rate.

請求項2は、前記搬送波レベル調整処理部は、前記送信要求信号により前記搬送波を送出するときの前記搬送波のレベルVrを、前記搬送波レベルの無調整時の出力レベルをE、前記搬送波のレベルVrを所定時間に段階的に調整する処理数をM、該処理数Mの逆数1/MをAとしたとき、前記Mを0からMまで変化させながら、Vr=E×(A×M)2として求めることを特徴とする。
従来の搬送波レベル調整処理部が送信要求信号により搬送波を送出するときの計算式は、搬送波のレベルをVr、搬送波レベルの無調整時の出力レベルをE、搬送波のレベルVrを所定時間に段階的に調整する処理数をM、この処理数Mの逆数1/MをAとしたとき、Mを0からMまで変化させて、Vr=E×A×Mとして求めていた。これに対して本発明では、Vr=E×(A×M)2として求めることにより、搬送波の立ち上がりレベルが二次元的に変化して、従来のアナログ方式に近似することができる。
According to a second aspect of the present invention, the carrier level adjustment processing unit sets the carrier level Vr when the carrier is transmitted according to the transmission request signal, the output level when the carrier level is not adjusted, E, and the carrier level Vr. , Where M is the number of processes for stepwise adjustment to a predetermined time, and A is the inverse 1 / M of the number of processes M, Vr = E × (A × M) 2 while changing M from 0 to M It is characterized by obtaining as.
The calculation formula when the conventional carrier level adjustment processing unit transmits the carrier wave by the transmission request signal is stepwise by setting the carrier level to Vr, the carrier level unadjusted output level to E, and the carrier level to Vr at a predetermined time. When the number of processes to be adjusted to M is M and the reciprocal 1 / M of the number of processes M is A, M is changed from 0 to M, and Vr = E × A × M. On the other hand, in the present invention, by obtaining Vr = E × (A × M) 2 , the rising level of the carrier wave changes two-dimensionally and can be approximated to the conventional analog method.

請求項3は、前記搬送波レベル調整処理部は、前記送信要求信号により前記搬送波を停止するときの前記搬送波のレベルVfを、前記搬送波レベルの無調整時の出力レベルをE、前記搬送波のレベルVfを所定時間に段階的に調整する処理数をM、該処理数Mの逆数1/MをAとしたとき、前記Mを0からMまで変化させながら、Vf=E×[1−(A×M)2]として求めることを特徴とする。
従来の搬送波レベル調整処理部が送信要求信号により搬送波を停止するときの計算式は、搬送波のレベルをVf、搬送波レベルの無調整時の出力レベルをE、搬送波のレベルVfを所定時間に段階的に調整する処理数をM、この処理数Mの逆数1/MをAとしたとき、Mを0からMまで変化させて、Vf=E×A×Mとして求めていた。これに対して本発明では、Vf=E×[1−(A×M)2]として求めることにより、搬送波の立ち下がりレベルが二次元的に変化して、従来のアナログ方式に近似することができる。
According to a third aspect of the present invention, the carrier level adjustment processing unit sets the carrier level Vf when the carrier is stopped by the transmission request signal, the output level when the carrier level is not adjusted, E, and the carrier level Vf. , Where M is the number of processes to be adjusted stepwise in a predetermined time, and A is the inverse 1 / M of the number of processes M, Vf = E × [1− (A × M) 2 ].
The calculation formula used when the conventional carrier level adjustment processing unit stops the carrier wave in response to the transmission request signal is as follows. The carrier level is Vf, the output level when the carrier level is not adjusted is E, and the carrier level Vf is stepped in a predetermined time. When the number of processes to be adjusted to M is M and the inverse 1 / M of the number of processes M is A, M is changed from 0 to M, and Vf = E × A × M. On the other hand, in the present invention, by calculating as Vf = E × [1− (A × M) 2 ], the falling level of the carrier wave changes two-dimensionally and approximates to the conventional analog method. it can.

本発明によれば、搬送波の送出時及び停止時に該搬送波の立ち上がり及び立ち下がり特性を調整する搬送波レベル調整処理部により、内部計算式を二次曲線の式となるようにしたので、擬似ビットの発生を防止してエラーレイトを改善することができる。   According to the present invention, the internal calculation formula is made to be a quadratic curve formula by the carrier level adjustment processing section that adjusts the rising and falling characteristics of the carrier at the time of sending and stopping the carrier, so that the pseudo bit The error rate can be improved by preventing the occurrence.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明に係るモデムの構成図である。このモデム2は、DSPモデム6とライントランス7から成り、DSPモデム6は、端末装置1の送信要求信号(RS)に基づいて搬送波を送出又は停止すると共に、送信データ信号(SD)に基づいて搬送波を変調する変調処理部3と、変調処理部3から出力された変調信号を入力し、搬送波の送出時及び停止時に搬送波の立ち上がり及び立ち下がり特性を調整する搬送波レベル調整処理部4と、搬送波レベル調整処理部4からの出力信号に含まれる不要信号を除去する送信フィルタ処理部5と、受信信号に含まれる不要信号を除去する受信フィルタ処理部9と、受信フィルタ処理部9から出力された受信信号レベルを所定のレベルに調整するAGC処理部10と、AGC処理部10から出力された搬送波を復調してデジタル信号を再生する復調処理部11と、を備えて構成される。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a block diagram of a modem according to the present invention. The modem 2 includes a DSP modem 6 and a line transformer 7. The DSP modem 6 transmits or stops a carrier based on a transmission request signal (RS) of the terminal device 1, and also based on a transmission data signal (SD). A modulation processing unit 3 that modulates the carrier wave; a carrier wave level adjustment processing unit 4 that receives the modulation signal output from the modulation processing unit 3 and adjusts the rising and falling characteristics of the carrier wave when the carrier wave is transmitted and stopped; A transmission filter processing unit 5 that removes unnecessary signals included in the output signal from the level adjustment processing unit 4, a reception filter processing unit 9 that removes unnecessary signals included in the reception signal, and a signal output from the reception filter processing unit 9 An AGC processing unit 10 that adjusts the received signal level to a predetermined level, and a carrier wave output from the AGC processing unit 10 is demodulated to reproduce a digital signal Configured to include a demodulation processing unit 11.

次にモデム2の動作について説明する。例えば、変調方式をFS変調方式、伝送速度を200bit/sec以下、搬送波周波数として中心周波数を低域側1200Hz、高域側1600Hzとし、送信側に1200Hz、受信側に1600Hzを割り当て、更に搬送波の偏移幅はスペース信号“0”を+100Hzに、マーク信号“1”を−100Hzとする。モデムを起動してデータ伝送を行う動作を説明する。先ず、端末装置1は送信要求としてRS信号を“1”とすると、モデム2は変調処理部3が応答しスペース信号となる1300Hzの搬送波レベルを瞬時に100%まで出力し、その後、SD信号に従って搬送波を1200Hz±100Hzに変調する。この時、搬送波のレベルが瞬時に立ち上がることにより前述した不具合が発生するため、搬送波を搬送波レベル調整処理部4に入力し、搬送波の立ち上がりを緩やかにする。   Next, the operation of the modem 2 will be described. For example, the modulation method is an FS modulation method, the transmission speed is 200 bits / sec or less, the center frequency is set to 1200 Hz on the low frequency side and 1600 Hz on the high frequency side as the carrier frequency, 1200 Hz is assigned to the transmission side, and 1600 Hz is assigned to the reception side. As for the shift width, the space signal “0” is set to +100 Hz, and the mark signal “1” is set to −100 Hz. The operation of starting the modem and performing data transmission will be described. First, when the terminal device 1 sets the RS signal to “1” as a transmission request, the modem 2 instantaneously outputs a carrier level of 1300 Hz, which is a space signal in response to the modulation processing unit 3, to 100%, and then according to the SD signal. The carrier wave is modulated to 1200 Hz ± 100 Hz. At this time, since the above-described problem occurs due to the instantaneous rise of the level of the carrier wave, the carrier wave is input to the carrier wave level adjustment processing unit 4 so that the rise of the carrier wave is moderated.

図2は搬送波レベル調整処理部の出力波形を示し、(a)は搬送波の送出を行う時の立ち上がり波形を、(b)は搬送波の停止を行う時の立ち下がり波形を夫々示し、(c)は抱絡線を示す。本実施形態においては、DSPモデム6の処理時間tr、tfとして搬送波レベルの0%から100%及び100%から0%への変化を20msとしている。尚、図2おいて示している搬送波波形の周波数は搬送波レベル調整処理部4の機能を示すために用いたものであって現実の周波数とは異なる。次にレベル調整された中心周波数1200Hzの搬送波は、送信フィルタ処理部5に入力し、送信側の使用帯域である1200Hz±100Hzのみを通過させ、2線式回線8に不要波を出力しないようにフィルタリングする。フィルタリングした搬送波は、2線式/4線式変換するライントランス7に入力し、2線式回線8に出力する。   2A and 2B show output waveforms of the carrier level adjustment processing unit. FIG. 2A shows a rising waveform when the carrier wave is transmitted, FIG. 2B shows a falling waveform when the carrier wave is stopped, and FIG. Indicates a helix. In the present embodiment, the processing times tr and tf of the DSP modem 6 are set to change the carrier level from 0% to 100% and from 100% to 0% to 20 ms. Note that the frequency of the carrier wave waveform shown in FIG. 2 is used to indicate the function of the carrier wave level adjustment processing unit 4 and is different from the actual frequency. Next, the level-adjusted carrier wave having a center frequency of 1200 Hz is input to the transmission filter processing unit 5 and passes only 1200 Hz ± 100 Hz, which is a use band on the transmission side, so that unnecessary waves are not output to the two-wire line 8. Filter. The filtered carrier wave is input to the line transformer 7 that performs 2-wire / 4-wire conversion, and is output to the 2-wire line 8.

一方、2線式回線8より受信する対向局からの搬送波は、ライントランス7により2線式/4線式変換し受信回路に取り込まれる。受信した中心周波数1600Hz±100Hzに変調された搬送波は、受信フィルタ処理部9により受信側の使用帯域である1600Hz±100Hzのみを通過させ、ノイズ成分を除去する。続いて、フィルタリングされた搬送波は、AGC処理部10により受信レベルを復調に必要な所定のレベルまで自動調整する。この時、対向局の送信側の中心周波数1600Hzの搬送波を送出/停止した場合には、それに応じて受信側の搬送波レベルが変化するが、前述したようにレベル変化を緩やかな変化としてあることにより、AGC処理部10を処理するDSPモデム6の動作時間は十分追従することができて受信レベルを自動調整する。所定のレベルに自動調整した搬送波は、復調処理部11に入力し、搬送波の1700Hzはスペース信号“0”に、1500Hzはマーク信号“1”に復調し、RD信号として端末装置1に出力する。   On the other hand, the carrier wave from the opposite station received from the two-wire line 8 is converted into a two-wire / four-wire type by the line transformer 7 and taken into the receiving circuit. The received carrier wave modulated to the center frequency of 1600 Hz ± 100 Hz is allowed to pass only 1600 Hz ± 100 Hz, which is the reception side use band, by the reception filter processing unit 9 to remove noise components. Subsequently, the filtered carrier wave is automatically adjusted by the AGC processing unit 10 to a predetermined level necessary for demodulation. At this time, when a carrier wave having a center frequency of 1600 Hz on the transmitting side of the opposite station is transmitted / stopped, the carrier level on the receiving side changes accordingly. However, as described above, the level change is a gentle change. The operating time of the DSP modem 6 that processes the AGC processing unit 10 can sufficiently follow, and the reception level is automatically adjusted. The carrier wave automatically adjusted to a predetermined level is input to the demodulation processing unit 11, and the carrier wave of 1700 Hz is demodulated to the space signal “0” and 1500 Hz to the mark signal “1”, and is output to the terminal device 1 as the RD signal.

以上のように本実施形態のDSPモデム6は、構成としては状来のDSPモデムと同様であるが、内部に備えられた搬送波レベル調整処理部4の内部計算式を改良したものである。即ち、従来の計算式は、搬送波の立ち上がり及び立ち下がり特性を調整する計算式が直線的に変化するため、従来のアナログ方式とは送出波形が異なり、擬似ビットを発生する虞があった。そこで本実施形態では、この計算式を二次曲線の式となるようにして、擬似ビットの発生を防止してエラーレイトを改善するものである。
即ち、本実施形態の搬送波レベル調整処理部4が送信要求信号(RS)により搬送波を送出するときの計算式は、搬送波のレベルをVr、搬送波レベルの無調整時の出力レベルをE、搬送波のレベルVrを所定時間trに段階的に調整する処理数をM、この処理数Mの逆数1/MをAとしたとき、Mを0からMまで変化させて、Vr=E×(A×M)2として求めることにより、搬送波の立ち上がりレベルが二次元的に変化して、従来のアナログ方式に近似することができる。また、従来の搬送波レベル調整処理部が送信要求信号により搬送波を停止するときの計算式は、搬送波のレベルをVf、搬送波レベルの無調整時の出力レベルをE、搬送波のレベルVfを所定時間tfに段階的に調整する処理数をM、この処理数Mの逆数1/MをAとしたとき、Mを0からMまで変化させて、Vf=E×[1−(A×M)2]として求めることにより、搬送波の立ち下がりレベルが二次元的に変化して、従来のアナログ方式に近似することができる。
As described above, the DSP modem 6 of the present embodiment is similar in configuration to the conventional DSP modem, but is an improved internal calculation formula of the carrier level adjustment processing unit 4 provided therein. That is, in the conventional calculation formula, the calculation formula for adjusting the rising and falling characteristics of the carrier wave changes linearly, so that the transmission waveform is different from the conventional analog method, and there is a possibility that a pseudo bit is generated. Therefore, in this embodiment, this calculation formula is changed to a quadratic curve formula to prevent the generation of pseudo bits and improve the error rate.
That is, the calculation formula when the carrier level adjustment processing unit 4 of the present embodiment transmits the carrier by the transmission request signal (RS) is Vr for the carrier level, E for the carrier level without adjustment, and E for the carrier level. When the number of processes for adjusting the level Vr stepwise to the predetermined time tr is M and the inverse 1 / M of the process number M is A, M is changed from 0 to M, and Vr = E × (A × M ) By calculating as 2 , the rising level of the carrier wave changes two-dimensionally and can be approximated to the conventional analog method. Further, the calculation formula when the conventional carrier level adjustment processing unit stops the carrier by the transmission request signal is as follows: the carrier level is Vf, the carrier level is not adjusted, the output level is E, and the carrier level Vf is the predetermined time tf. Where M is the number of processes to be adjusted step by step, and A is the reciprocal 1 / M of the number of processes M, V is changed from 0 to M, and Vf = E × [1− (A × M) 2 ] As a result, the falling level of the carrier wave changes two-dimensionally and can be approximated to a conventional analog method.

図3は、本発明に係るモデムの搬送波立ち上がり時におけるレベル調整の動作を示すフローチャートである。なお、図2で説明したように、搬送波レベルの立ち上がり時及び立ち下がり時の定常状態までの時間を20ms、サンプリング周波数を8kHz、レベル調整処理を100段階とする。また定数Aは搬送波レベルの調整が100段階を20msかかって実行するように、0.01(プログラムが100周してA×M=1となるようにAの値を設定)としている。まず、端末装置1からの送信要求信号RSの有無を検出し、RS信号を検出しない場合には(S1でNOのルート)待ち受け状態を維持する(S1)。一方、RS信号を検出した場合には(S1でYESのルート)ステップS2に進み、前回のルーチンにおいて送信要求信号(RS)があったか否かを判断する(S2)。ステップS1においてRS信号を検知した直後は前回ルーチンにおける送信要求信号は存在しないので、一周前RS信号(BRS)は0であり(S2でNOのルート)、ステップS3に進む。すなわち、RS信号の立ち上がりを検知し、立ち上がり時のレベル調整処理が開始される(S3)。レベル調整処理は正数Mを0にセットし(S4)、Vr=E×(A×M)2の計算が実行される(S5)。その後、正数Mを“+1”し(S6)、さらに一周前RS信号(BRS)を1にセットし(S7)、ステップS1に戻る。 FIG. 3 is a flowchart showing the level adjustment operation at the rising edge of the carrier wave of the modem according to the present invention. As described with reference to FIG. 2, the time to the steady state at the rise and fall of the carrier wave level is 20 ms, the sampling frequency is 8 kHz, and the level adjustment process is 100 steps. The constant A is set to 0.01 (the value of A is set so that A × M = 1 after 100 rounds of the program) so that the carrier level adjustment is executed in 100 steps over 20 ms. First, the presence / absence of the transmission request signal RS from the terminal device 1 is detected. When the RS signal is not detected (NO route in S1), the standby state is maintained (S1). On the other hand, when the RS signal is detected (YES route in S1), the process proceeds to step S2, and it is determined whether or not there is a transmission request signal (RS) in the previous routine (S2). Immediately after the RS signal is detected in step S1, there is no transmission request signal in the previous routine, so the previous round RS signal (BRS) is 0 (NO route in S2), and the process proceeds to step S3. That is, the rising edge of the RS signal is detected, and the level adjustment process at the time of rising is started (S3). In the level adjustment process, the positive number M is set to 0 (S4), and the calculation of Vr = E × (A × M) 2 is executed (S5). Thereafter, the positive number M is incremented by “+1” (S6), the previous round RS signal (BRS) is set to 1 (S7), and the process returns to step S1.

2回目のルーチンにおいて、送信要求信号RSがあると(S1でYESのルート)、ステップS2に進み、その際、BRSは前回ルーチンのステップS7にて1にセットされているので、ステップS8に進み(S2でYESのルート)、正数Mの値が判断される(S8)。正数Mが“0”でない場合(S8でNOのルート)、ステップS9に進み、再び正数Mの値が100であるか否かを判断する(S9)。M=100に達していない場合(S9でNOのルート)、ステップS5においてVr=E×(A×M)2の計算が実行される。すなわち、搬送波レベルの調整をしない時の出力Eに対し、M=1、A=0.01が乗算され、レベル調整が図られ、さらに正数Mをカウントアップし(S6)、S1→S2→S8→S9→S5→S6→S7→S1の処理が行われる。 In the second routine, if there is a transmission request signal RS (YES route in S1), the process proceeds to step S2, and at that time, BRS is set to 1 in step S7 of the previous routine, so the process proceeds to step S8. (YES route in S2), the value of the positive number M is determined (S8). When the positive number M is not “0” (NO route in S8), the process proceeds to step S9, and it is determined again whether the value of the positive number M is 100 (S9). If not reached M = 100 (route NO at S9), Vr = E × ( A × M) 2 calculations are performed in step S5. That is, the output E when the carrier level is not adjusted is multiplied by M = 1 and A = 0.01, the level is adjusted, and the positive number M is counted up (S6), and S1 → S2 → The process of S8 → S9 → S5 → S6 → S7 → S1 is performed.

一方、100回目のルーチンではM=100であるので、ステップS9における判断が「Yes」となり、ステップS10に進み、M=0に設定し(S10)、出力Vrは無調整の搬送波レベルEとなり(S11)、送信要求信号RSが入力し続ける限り、ステップS7→S1→S2→S8→S11→S7の処理が行われる。以上の処理により搬送波の立ち上がり特性が、処理数Mの2乗で変化する2次曲線となり、従来のアナログ方式に近似することができる。   On the other hand, since M = 100 in the 100th routine, the determination in step S9 is “Yes”, the process proceeds to step S10, M = 0 is set (S10), and the output Vr becomes the unadjusted carrier level E ( S11) As long as the transmission request signal RS continues to be input, the process of steps S7 → S1 → S2 → S8 → S11 → S7 is performed. With the above processing, the rising characteristic of the carrier wave becomes a quadratic curve that changes with the square of the number M of processing, and can be approximated to a conventional analog system.

図4は、本発明に係るモデムの搬送波立ち下がり時におけるレベル調整の動作を示すフローチャートであって、図3の実施形態と同様に搬送波レベルの変化時間を20ms、サンプリング周波数8kHz、調整段階100、定数Aを0.01とする。まず、送信要求信号(RS)の有無を確認し(S21)、搬送波要求信号RSが存在する場合には、データ送信中のため待機する。送信要求信号RSを検出しなくなると(ステップS21でYESのルート)、前回のルーチンにおいて送信要求信号が無しか否かを確認し(S22)、“BRS=0”でない時(S22でNOのルーチン)、送信要求信号立ち下がりを検知し、処理を開始する(S23)。次に、正数Mを100に設定し(S24)、Vf=E×[1−(A×M)2]を演算する(S25)。その後、正数Mを“−1”し(S26)、一周前搬送波要求信号(BRS)を0にセットし(S27)、再びステップS21から処理が行われる。送信要求信号立ち下がり検知以降の処理ではステップS22にて“BRS=0”となるので、ステップS28に進み、正数Mの値を判断する。正数Mが“0”に等しくない場合、S25→S26→S27→S21→S22→S28→S25の処理が行われ、正数Mが1ずつ減少するので出力は搬送波レベルの調整をしない時のEから徐々にそのレベルが小さくなる。一方、正数Mが“0”に等しくなると(S28でYESのルート)、ステップS29に進み、出力Vfを0として終了する。以上のように搬送波レベルの調整処理を実行することにより、DSPモデムを用いてモデムを構成した場合であっても搬送波レベルを徐々に変化させることができ、それによりライントランスから受信側フィルタ及びAGC処理部に回り込む不要な信号を低減させることができる。以上の処理により搬送波の立ち下がり特性が、処理数Mの2乗で変化する2次曲線となり、従来のアナログ方式に近似することができる。 4 is a flowchart showing the level adjustment operation at the time of falling of the carrier wave of the modem according to the present invention. As in the embodiment of FIG. 3, the carrier level change time is 20 ms, the sampling frequency is 8 kHz, the adjustment stage 100, The constant A is set to 0.01. First, the presence / absence of a transmission request signal (RS) is confirmed (S21). If the carrier request signal RS is present, it waits because data transmission is in progress. When the transmission request signal RS is not detected (YES route in step S21), it is confirmed whether or not there is no transmission request signal in the previous routine (S22), and when it is not “BRS = 0” (NO routine in S22) ), The falling of the transmission request signal is detected, and the process is started (S23). Next, the positive number M is set to 100 (S24), and Vf = E × [1- (A × M) 2 ] is calculated (S25). Thereafter, the positive number M is set to “−1” (S26), the one-round previous carrier request signal (BRS) is set to 0 (S27), and the processing is performed again from step S21. In the processing after the detection of the fall of the transmission request signal, “BRS = 0” is set in step S22, so that the process proceeds to step S28 and the value of the positive number M is determined. When the positive number M is not equal to “0”, the processing of S25 → S26 → S27 → S21 → S22 → S28 → S25 is performed, and the positive number M is decreased by 1 so that the output is the value when the carrier level is not adjusted. The level gradually decreases from E. On the other hand, when the positive number M becomes equal to “0” (YES route in S28), the process proceeds to step S29, where the output Vf is set to 0 and the process is terminated. By executing the carrier level adjustment process as described above, the carrier level can be gradually changed even when the modem is configured by using the DSP modem, whereby the line transformer and the reception side filter and the AGC are changed. Unnecessary signals that wrap around the processing unit can be reduced. By the above processing, the falling characteristic of the carrier wave becomes a quadratic curve that changes with the square of the number M of processing, and can be approximated to the conventional analog method.

以上の通り本発明によれば、搬送波の送出時及び停止時に搬送波の立ち上がり及び立ち下がり特性を調整する搬送波レベル調整処理部4により、内部計算式を二次曲線の式となるようにしたので、擬似ビットの発生を防止してエラーレイトを改善することができる。
また、搬送波レベル調整処理部4は、送信要求信号(RS)により搬送波を送出するとき、搬送波のレベルをVr、搬送波レベルの無調整時の出力レベルをE、搬送波のレベルVrを所定時間に段階的に調整する処理数をM、この処理数Mの逆数1/MをAとしたとき、Mを0からMまで変化させながら、Vr=E×(A×M)2として求めるので、搬送波の立ち上がり特性が、処理数Mの2乗で変化する2次曲線となり、従来のアナログ方式に近似することができる。
As described above, according to the present invention, since the carrier level adjustment processing unit 4 that adjusts the rising and falling characteristics of the carrier wave at the time of sending and stopping the carrier wave, the internal calculation formula becomes a quadratic curve formula. It is possible to improve the error rate by preventing the generation of pseudo bits.
Further, when the carrier wave level adjustment processing unit 4 transmits the carrier wave by the transmission request signal (RS), the carrier wave level is set to Vr, the carrier wave level unadjusted output level is set to E, and the carrier wave level Vr is set to a predetermined time. Assuming that the number of processes to be adjusted is M and the reciprocal 1 / M of the number of processes M is A, V is obtained as Vr = E × (A × M) 2 while changing M from 0 to M. The rising characteristic is a quadratic curve that changes with the square of the number of processes M, and can be approximated to a conventional analog method.

また、搬送波レベル調整処理部4は、送信要求信号(RS)により搬送波を停止するとき、搬送波のレベルをVf、搬送波レベルの無調整時の出力レベルをE、搬送波のレベルVfを所定時間に段階的に調整する処理数をM、この処理数Mの逆数1/MをAとしたとき、Mを0からMまで変化させながら、Vf=E×[1−(A×M)2]として求めるので、搬送波の立ち下がり特性が、処理数Mの2乗で変化する2次曲線となり、従来のアナログ方式に近似することができる。 Further, when the carrier level is stopped by the transmission request signal (RS), the carrier level adjustment processing unit 4 sets the carrier level to Vf, the carrier level unadjusted output level to E, and the carrier level Vf to a predetermined time. Assuming that the number of processes to be adjusted is M and the reciprocal 1 / M of the number M is A, A is obtained as Vf = E × [1− (A × M) 2 ] while changing M from 0 to M. Therefore, the falling characteristic of the carrier wave becomes a quadratic curve that changes with the square of the number of processes M, and can be approximated to the conventional analog method.

本発明に係るモデムの構成図である。It is a block diagram of a modem according to the present invention. 搬送波レベル調整処理部の出力波形を示し、(a)は搬送波の送出を行う時の立ち上がり波形を示す図、(b)は搬送波の停止を行う時の立ち下がり波形を示す図、(c)は抱絡線を示す図である。An output waveform of the carrier level adjustment processing unit is shown, (a) is a diagram showing a rising waveform when the carrier is transmitted, (b) is a diagram showing a falling waveform when the carrier is stopped, (c) is a diagram It is a figure which shows an envelope. 本発明に係るモデムの搬送波立ち上がり時におけるレベル調整の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of level adjustment at the time of the carrier wave rising of the modem which concerns on this invention. 本発明に係るモデムの搬送波立ち下がり時におけるレベル調整の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of level adjustment at the time of the carrier wave fall of the modem which concerns on this invention. 従来のDSPモデムにおける搬送波レベル調整処理部により調整された波形であり、(a)は立ち上がり波形を示す図、(b)は立ち下がり波形を示す図、(c)は波形の抱絡線を示す図である。It is a waveform adjusted by a carrier level adjustment processing unit in a conventional DSP modem, (a) is a diagram showing a rising waveform, (b) is a diagram showing a falling waveform, and (c) is a waveform envelope. FIG.

符号の説明Explanation of symbols

1 端末装置、2 モデム、3 変調処理部、4 搬送波レベル調成部、5 送信フィルタ処理部、6 DSPモデム、7 ライントランス、8 2線式回線、9 受信フィルタ処理部、10 AGC処理部、11 復調処理部   DESCRIPTION OF SYMBOLS 1 Terminal device, 2 Modem, 3 Modulation process part, 4 Carrier-wave level preparation part, 5 Transmission filter process part, 6 DSP modem, 7 Line transformer, 8 2-wire type line, 9 Reception filter process part, 10 AGC process part, 11 Demodulation processor

Claims (3)

送信要求信号に基づいて搬送波を送出又は停止すると共に、送信データ信号に基づいて前記搬送波を変調する変調処理部と、
該変調処理部から出力された変調信号を入力し、前記搬送波の送出時及び停止時に該搬送波の立ち上がり及び立ち下がり特性を調整する搬送波レベル調整処理部と、
該搬送波レベル調整処理部からの出力信号に含まれる不要信号を除去する送信フィルタ処理部と、
受信信号に含まれる不要信号を除去する受信フィルタ処理部と、
該受信フィルタ処理部から出力された受信信号レベルを所定のレベルに調整するAGC処理部と、
該AGC処理部から出力された搬送波を復調してデジタル信号を再生する復調処理部と、を備えており、
前記搬送波レベル調整処理部が、搬送波の立ち上がりにおいては搬送波レベルの単位時間当たりの増大値が時間と共に漸増するようにレベル調整し、搬送波の立ち下がりにおいては搬送波レベルの単位時間当たりの減少値が時間と共に漸減するようにレベル調整することを特徴とするモデム。
A modulation processing unit that transmits or stops a carrier wave based on a transmission request signal and modulates the carrier wave based on a transmission data signal;
A carrier wave level adjustment processing unit that inputs a modulation signal output from the modulation processing unit and adjusts rising and falling characteristics of the carrier wave when the carrier wave is transmitted and stopped; and
A transmission filter processing unit for removing unnecessary signals included in the output signal from the carrier wave level adjustment processing unit;
A reception filter processing unit for removing unnecessary signals included in the reception signal;
An AGC processing unit that adjusts the received signal level output from the reception filter processing unit to a predetermined level;
A demodulation processing unit that demodulates the carrier wave output from the AGC processing unit and reproduces a digital signal,
The carrier level adjustment processing unit adjusts the level so that an increase value of the carrier level per unit time gradually increases with time at the rising edge of the carrier wave, and a decrease value per unit time of the carrier level at the falling edge of the carrier wave. A modem characterized in that the level is adjusted to gradually decrease with time.
前記搬送波レベル調整処理部は、前記送信要求信号により前記搬送波を送出するときの前記搬送波のレベルVrを、前記搬送波レベルの無調整時の出力レベルをE,前記搬送波のレベルVrを所定時間に段階的に調整する処理数をM、該処理数Mの逆数1/MをAとしたとき、前記Mを0からMまで変化させながら、Vr=E×(A×M)2として求めることを特徴とする請求項1に記載のモデム。 The carrier level adjustment processing unit sets the carrier level Vr when the carrier is transmitted by the transmission request signal, the output level when the carrier level is not adjusted to E, and the carrier level Vr to a predetermined time. When the number of processes to be adjusted is M and the reciprocal 1 / M of the number of processes M is A, A is obtained as Vr = E × (A × M) 2 while changing M from 0 to M. The modem according to claim 1. 前記搬送波レベル調整処理部は、前記送信要求信号により前記搬送波を停止するときの前記搬送波のレベルVfを、前記搬送波レベルの無調整時の出力レベルをE,前記搬送波のレベルVfを所定時間に段階的に調整する処理数をM、該処理数Mの逆数1/MをAとしたとき、前記Mを0からMまで変化させながら、Vf=E×[1−(A×M)2]として求めることを特徴とする請求項1又は2に記載のモデム。 The carrier level adjustment processing unit sets the carrier level Vf when the carrier is stopped by the transmission request signal, the output level when the carrier level is not adjusted to E, and the carrier level Vf to a predetermined time. Assuming that the number of processes to be adjusted is M and the reciprocal 1 / M of the number M is A, Vf = E × [1− (A × M) 2 ] while changing the M from 0 to M 3. The modem according to claim 1, wherein the modem is obtained.
JP2006131712A 2006-05-10 2006-05-10 Modem Pending JP2007306235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131712A JP2007306235A (en) 2006-05-10 2006-05-10 Modem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131712A JP2007306235A (en) 2006-05-10 2006-05-10 Modem

Publications (1)

Publication Number Publication Date
JP2007306235A true JP2007306235A (en) 2007-11-22

Family

ID=38839812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131712A Pending JP2007306235A (en) 2006-05-10 2006-05-10 Modem

Country Status (1)

Country Link
JP (1) JP2007306235A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288423A (en) * 1989-04-27 1990-11-28 Toa Corp Wireless microphone
JP2001024716A (en) * 1999-07-07 2001-01-26 Toyo Commun Equip Co Ltd Dsp modem
JP2006039744A (en) * 2004-07-23 2006-02-09 Denso Wave Inc Noncontact ic card reader device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288423A (en) * 1989-04-27 1990-11-28 Toa Corp Wireless microphone
JP2001024716A (en) * 1999-07-07 2001-01-26 Toyo Commun Equip Co Ltd Dsp modem
JP2006039744A (en) * 2004-07-23 2006-02-09 Denso Wave Inc Noncontact ic card reader device

Similar Documents

Publication Publication Date Title
WO2002015413A3 (en) Power line communication system
KR20010071626A (en) Nyquist filter and method
EP0766412A2 (en) Echo canceller using initial training
US20150103809A1 (en) Dynamic transmit power and signal shaping
US20150326279A1 (en) Device for power line communication, power line communications system, method for operating a device for power line communication and for adapting plc transmissions to noise
MX2010013172A (en) System and method of an in-band modem for data communications over digital wireless communication networks.
JPS59225626A (en) Echo canceller device for data transmitter
JP2001251223A (en) xDSL TRANSCEIVER
US6853626B1 (en) Method and apparatus for echo cancellation in an asymmetric communication system
JP2007306235A (en) Modem
EP0929160B1 (en) Apparatus and method for reducing local interference in subscriber loop communication system
JP4157962B2 (en) DSP modem
JP2008010948A (en) Power line communication system and method
WO2000007177A1 (en) Communication terminal
JP2006261858A (en) Receiving device and method of processing received signal
JPH07503109A (en) Device for reducing the risk of unwanted parameter drift in adaptive filters used for echo suppression
KR100456759B1 (en) Radio frequency noise canceller
JP2012075023A (en) Receiver
JPS62294339A (en) Distribution line communication equipment
JPH01194614A (en) Automatic equalizer
JP2002232329A (en) Echo canceller
JP6529473B2 (en) Wireless communication apparatus, wireless communication system, and noise reduction method
KR100298454B1 (en) Method for transmitting and receving of data between two medem
JP3493423B2 (en) Noise reduction method for digital wireless communication equipment
JPH0662060A (en) Two-wire type fully duplex modem

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004