JPS59225626A - Echo canceller device for data transmitter - Google Patents

Echo canceller device for data transmitter

Info

Publication number
JPS59225626A
JPS59225626A JP10150783A JP10150783A JPS59225626A JP S59225626 A JPS59225626 A JP S59225626A JP 10150783 A JP10150783 A JP 10150783A JP 10150783 A JP10150783 A JP 10150783A JP S59225626 A JPS59225626 A JP S59225626A
Authority
JP
Japan
Prior art keywords
echo
signal
circuit
echo canceller
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10150783A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hara
博之 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10150783A priority Critical patent/JPS59225626A/en
Publication of JPS59225626A publication Critical patent/JPS59225626A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/23Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
    • H04B3/237Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers using two adaptive filters, e.g. for near end and for end echo cancelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To decrease the required bit number of an operation processing circuit by combining a processing pre echo canceller and an adaptive type digital processing echo canceller and eliminating a part of an echo signal from an input signal of the latter in advance so as to narrow the dynamic range of an A/D converter. CONSTITUTION:A transmission signal from a transmitter 2 is given a specific frequency characteristic by a filter circuit 22 in a pre echo canceller 21 and attenuated properly by an attenuation circuit 23, then subtracted from a reception signal including an echo signal incoming through a terminal 6 and a hybrid transformer 5 by a subtraction circuit 24. When the frequency characteristic of the filter 22 and the attenuation of the attenuation circuit 23 are decided properly, the absolute amount of the echo signal included in the signal inputted to the digital processing adaptive type echo canceller 13 is decreased, the number of bits required for an A/D converter 7 is reduced and the number of bits of the operation processing circuit is reduced.

Description

【発明の詳細な説明】 この発明は2線式回線を用いて双方向1云送するだめの
データ伝送装置用エコーキャンセラ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an echo canceller device for a data transmission device that uses a two-wire line to transmit one signal in both directions.

〈従来技術〉 2線式回線を用いて双方向のデータ信号を相互に伝送す
る方式として、エコーキャンセラ装置を用い、同時に同
一周波数帯域を用いる方式がある。
<Prior Art> As a method for mutually transmitting bidirectional data signals using a two-wire line, there is a method that uses an echo canceller device and uses the same frequency band at the same time.

従来この種のエコーキャンセラ装置としてはアナログ的
に擬似エコー信号をつくり、エコー消去を行う方式も考
えられているが、種々の回線に接続された時に適応的に
エコー消去を行うためには、装置が複雑になるとともに
十分な精度が得られず、アナログ/ディジタル(A/D
 )変換及びディジタル/アナログCD/A )変換を
用いてディジタル信号処理により擬似エコーをつくる方
式が用いられている。
Conventionally, this type of echo canceller device has been considered to create analog pseudo-echo signals and perform echo cancellation, but in order to perform echo cancellation adaptively when connected to various lines, it is necessary to Analog/digital (A/D)
) conversion and digital/analog CD/A) A method is used in which a pseudo echo is created by digital signal processing using conversion.

ディジタル処理によシエコー消去を行う装置は例えば第
1図に示す構成が提案されている。送信データ入力端子
1に与えられるデータ系列は通常の場合と同様に送信器
2に与えられると同時に擬似エコー信号発生器3に与え
られる。擬似エコー信号発生器3は例えばディジタル演
算処理にて実現されるトランスバー・サルフィルタとそ
のタップ係数を適応的に制御する制御部とからなる。擬
似エコー信号発生器3でつくられたベースバンドN似エ
コーは変調器4により、送信器2内で行われる変調と同
様の変調を施される。送信器2の出力はハイブリッド変
成器5を通じ、更に接続端子6を通じて2線式回線(図
示せず)へ送出される。
For example, a configuration shown in FIG. 1 has been proposed as an apparatus for eliminating echoes by digital processing. The data sequence applied to the transmission data input terminal 1 is applied to the transmitter 2 as well as to the pseudo echo signal generator 3 at the same time as in the normal case. The pseudo echo signal generator 3 includes, for example, a transversal filter realized by digital arithmetic processing and a control section that adaptively controls the tap coefficients of the transversal filter. The baseband N-like echoes generated by the pseudo-echo signal generator 3 are subjected to modulation similar to the modulation performed within the transmitter 2 by the modulator 4 . The output of the transmitter 2 is sent through a hybrid transformer 5 and further through a connection terminal 6 to a two-wire line (not shown).

端子6よりハイブリッド変成器5を通って受信されたエ
コー信号を含む受信信号はA/D変換器7によってディ
ジタル化され、このエコー信号を含む受信信号から減算
器8によシデイジタル演算処理によって変調器4の出力
が引算される。減算器8の出力rは理想的には受信信号
のみであり、D、/A変換器9によりアナログaに変換
され受信器11に与えられ、これにて受信データが復元
されて受信データ出力端子12へ出力される。
The received signal including the echo signal received from the terminal 6 through the hybrid transformer 5 is digitized by the A/D converter 7, and the received signal including the echo signal is digitally processed by the subtracter 8 to the modulator. The output of 4 is subtracted. Ideally, the output r of the subtracter 8 is only the received signal, which is converted to analog a by the D/A converter 9 and given to the receiver 11, where the received data is restored and sent to the received data output terminal. 12.

−力試算器8の出力rは擬似エコー信号発生器3の調整
に関する限シ誤差信号であるので擬似エコー信号発生器
3に加えられ、擬似エコーを適応的に調整するために利
用される。図中破線内の擬似エコー信号発生器3、変調
G 4 、A / D変換器7、減算器8、D/A変換
器9はディジタル処理適応形エコーキャンセラ13を構
成している。この構成例のエコーキャンセラ13は1云
送帯域のナイキスト周波数以上の周波数で動作し々けれ
ばならず、高速な演算処理が必要であるという欠点があ
る。
- The output r of the force estimator 8 is a limiting error signal for the adjustment of the pseudo-echo signal generator 3 and is therefore applied to the pseudo-echo signal generator 3 and used for adaptively adjusting the pseudo-echo. The pseudo echo signal generator 3, modulation G 4 , A/D converter 7, subtractor 8, and D/A converter 9 within the broken line in the figure constitute a digital processing adaptive echo canceller 13. The echo canceller 13 of this configuration example must operate at a frequency higher than the Nyquist frequency of one transmission band, and has the drawback that high-speed arithmetic processing is required.

第2図はディジタル処理エコーキャンセラ装置の第2の
従来例を示す回路例であり、エコーキャンセラが受信器
と一体構成と々っている場合である。第2の従来例の動
作は次のとおりである。このエコーキャンセラ190基
本動作は第1の従来例(第1図)と変わらないが、この
第2の従来例ではA/D変換器7の出力は等化器14で
等化された後、復調器15で復調され、減算器16で擬
似エコー信号発生器17の出力が差し引かれ、エコー消
去を復調されたベースバンド成分にて行うものである。
FIG. 2 is a circuit example showing a second conventional example of a digital processing echo canceller device, in which the echo canceler is integrated with the receiver. The operation of the second conventional example is as follows. The basic operation of this echo canceller 190 is the same as the first conventional example (Fig. 1), but in this second conventional example, the output of the A/D converter 7 is equalized by the equalizer 14, and then demodulated. The subtracter 16 subtracts the output of the pseudo echo signal generator 17, and echo cancellation is performed using the demodulated baseband component.

また減算器16の出力は判定回路18へ供給され、擬似
エコー信号発生器17の調整収用いられる誤差信号は受
信信号を判定回路18にて判定した結果と受信信号との
差(図中eで示す)である。この第2の従来例はベース
バンド帯域でエコー消去を行うのでエコーキャンセラの
動作はデータシンボル速度と同一でよく演算処理速度は
第1の従来例の場合よシも低減される。
The output of the subtracter 16 is also supplied to the determination circuit 18, and the error signal adjusted and collected by the pseudo echo signal generator 17 is the difference between the result of determining the received signal in the determination circuit 18 and the received signal (represented by e in the figure). ). Since this second conventional example performs echo cancellation in the baseband band, the operation of the echo canceller is the same as the data symbol rate, and the arithmetic processing speed is also reduced compared to the first conventional example.

しかしながら回線の損失が大であるときには受信信号よ
シも大きなエコー信号が受信信号に加算される場合があ
り、その場合においても受信信号を誤りなく復元するた
めに必要な分解能を得るためには第1、第2のどちらの
従来例においても、A/D変換器7のダイナミックレン
ジを広くとる必要があり、所要語長(ビット数)が大き
くなりハード構成が複雑となる欠点があった。またこの
所要語長の増大にともないディジタル演算のビット数も
大きくなり、演算処理回路の規模も大きくなるという問
題があった。なお伝送方式が端末一端末間をベースバン
ドで伝送する方式の場合には第1図中の変調器4及び第
2図中の復調器15は不用である。
However, when the line loss is large, an echo signal that is larger than the received signal may be added to the received signal, and even in this case, it is necessary to In both the first and second conventional examples, it is necessary to widen the dynamic range of the A/D converter 7, which increases the required word length (number of bits) and has the disadvantage of complicating the hardware configuration. Furthermore, as the required word length increases, the number of bits for digital operations also increases, causing the problem that the scale of the arithmetic processing circuit also increases. Note that if the transmission method is one in which baseband transmission is performed between terminals, the modulator 4 in FIG. 1 and the demodulator 15 in FIG. 2 are unnecessary.

ぐ発明の概要〉 この発明の目的は適応形エコーキャンセラ内のA/D変
換器のダイナミックレンジを狭くすることができ、演算
処理回路の所要ビット数を小さくすることができ、それ
だけ回路規模を小さくし、安価に構成することができる
データ伝送装置用エコーキャンセラ装置を提供すること
にある。
Summary of the Invention The purpose of the present invention is to narrow the dynamic range of the A/D converter in the adaptive echo canceller, reduce the number of bits required for the arithmetic processing circuit, and reduce the circuit size accordingly. However, it is an object of the present invention to provide an echo canceller device for a data transmission device that can be constructed at low cost.

この発明によればアナログ処理前置エコーキャンセラと
適応形ディジタル処理エコーキャンセラを組合せ、あら
かじめ適応形ディジタル処理エコーキャンセラの入力信
号からエコー信号の一部を除去し、受信信号との相対レ
ベル差を小さくする。
According to this invention, an analog processing pre-echo canceller and an adaptive digital processing echo canceller are combined, and a part of the echo signal is removed from the input signal of the adaptive digital processing echo canceler in advance to reduce the relative level difference with the received signal. do.

〈実施例〉 第3図はこの発明を第1図の形式の装置に適用した場合
の実施例を示す。入力端子1に与えられる入力データ系
列は適応形エコーキャンセラ13と送信器2とに加えら
れ、送信器2によって所定の変調をなされて送信信号と
なる。その送信信号はハイブリッド変成器5を通り端子
6がら2線式回線に送出される。この発明では送信器2
がらの送信信号は前置エコーキャンセラ21内のフィル
タ回路22に加えられ、特定の周波数特性を与えられ、
減衰回路23で適当に減衰された後、減算回路24によ
って、端子6及びハイブリッド変成器5を通じて到来し
たエコー信号を含む受信信号から引算される。
<Embodiment> FIG. 3 shows an embodiment in which the present invention is applied to an apparatus of the type shown in FIG. An input data sequence applied to input terminal 1 is applied to adaptive echo canceller 13 and transmitter 2, and is modulated in a predetermined manner by transmitter 2 to become a transmission signal. The transmission signal passes through the hybrid transformer 5 and is sent out to the two-wire line from the terminal 6. In this invention, the transmitter 2
The transmitted signal is applied to the filter circuit 22 in the pre-echo canceller 21 and given a specific frequency characteristic,
After being suitably attenuated by the attenuation circuit 23, it is subtracted by the subtraction circuit 24 from the received signal including the echo signal arriving through the terminal 6 and the hybrid transformer 5.

従ってフィルタ回路2.20周波数特性及び減衰回路2
3の減衰量が適当に決定されていれば、ディジタル処理
適応形エコーキャンセラ13に入力される信号に含まれ
るエコー信号の絶対量は小さくなり、A/D変換器7に
必要とされるビット数を少なくシ、かつディジタル信号
処理に用いる演算処理回路のビット数を少なくすること
ができる。
Therefore, filter circuit 2.20 Frequency characteristics and attenuation circuit 2
If the amount of attenuation in step 3 is appropriately determined, the absolute amount of the echo signal included in the signal input to the digital processing adaptive echo canceller 13 will be small, and the number of bits required for the A/D converter 7 will be small. It is possible to reduce the number of bits of the arithmetic processing circuit used for digital signal processing.

また受信信号とエコー信号とのレベル差が小さくなるこ
とにより、A/D変換器7の前段にアナログ的な自動利
得調整回路を設置し、設定されたA/D変換器7の動作
領域に自動的に信号レベルを設定することも可能なため
、同一のビット数においてもディジタル信号処理の演算
精度を向上することができる。
In addition, since the level difference between the received signal and the echo signal becomes smaller, an analog automatic gain adjustment circuit is installed before the A/D converter 7, and an automatic gain adjustment circuit is installed in the preset stage of the A/D converter 7. Since it is also possible to set the signal level automatically, the calculation accuracy of digital signal processing can be improved even with the same number of bits.

フィルタ回路220周波数特性及び減衰回路23の減衰
量の適当な選定法については次に詳細に説明する。なお
適応形エコーキャンセラ13の動作は第1図中の従来例
と同様であるので省略する。
A method for appropriately selecting the frequency characteristics of the filter circuit 220 and the amount of attenuation of the attenuation circuit 23 will be described in detail below. Note that the operation of the adaptive echo canceller 13 is the same as that of the conventional example shown in FIG. 1, so a description thereof will be omitted.

エコーキャンセラによって消去されるべきエコーの発生
原因は主に回線と、ハイブリッド変成器5内の平衡回路
網とのインピーダンスの不整合による送信信号の受信信
号側への廻り込みである。
The cause of the generation of echoes to be canceled by the echo canceller is mainly due to impedance mismatch between the line and the balanced circuit network in the hybrid transformer 5, which causes the transmitted signal to sneak around to the received signal side.

例えば電話回線でのエコー信号は自己の1云送製置内の
ハイブリッド変成器5によって生じるエコー(以後近端
エコーと呼ぶ)と、回線内で2線−4線変換に使用され
るハイブリッド変成器等によって生じるエコーyJ’)
、後遠端エコーと呼ぶ)とに分類できる。遠端エコーは
時間的に変化する要素を含むが、回線での往復の減衰を
受けるので、一般に受信信号と同程度かそれ以下の信号
レベルである。一方1云送装置内のハイブリッド変成器
の平衡回路網が固定であるのに対し、種々のインピーダ
ンスを持つ回線を接続する必要があることによシ、近端
エコーは送信信号以下10〜20dB程度のレベルしか
作証され得ない。従ってMil置装コーキャンセラ21
は近端エコーのみを相殺すれば所期の効果を期待できる
For example, the echo signals on a telephone line include the echo generated by the hybrid transformer 5 in the own transmission equipment (hereinafter referred to as near-end echo), and the hybrid transformer used for 2-wire to 4-wire conversion within the line. echo yJ') caused by
, far-end echo). Although the far-end echo includes a time-varying element, it is subject to round-trip attenuation on the line, so it generally has a signal level that is comparable to or lower than the received signal. On the other hand, while the balanced circuit network of the hybrid transformer in one transmission device is fixed, it is necessary to connect lines with various impedances, so the near-end echo is about 10 to 20 dB below the transmitted signal. It can only be certified to the level of . Therefore, Mil device co-canceller 21
The desired effect can be expected by canceling only the near-end echo.

一方受信データの誤りは受信信号対エコーレベル比に依
存するため、受信信号レベルが大きく減衰する回線構成
時、即ち電話回線の場合には加入者線の損失が最大の場
合の近端エコー経路の周波数特性に近似して、フィルタ
回路22の周波数特性及び減衰回路23の減衰量を決定
すれば良い。
On the other hand, errors in received data depend on the received signal to echo level ratio, so when the received signal level is greatly attenuated, i.e. in the case of a telephone line, the near-end echo path is The frequency characteristics of the filter circuit 22 and the amount of attenuation of the attenuation circuit 23 may be determined by approximating the frequency characteristics.

また前置エコーキャンセラ21はエコー信号レベルと受
信信号レベルのレベル差を大略減じることにより所期の
効果を得ることができるため、損失が大なるときのハイ
ブリッド変成器5から回線側をみた入力インピーダンス
が、線路の特性インピーダンスに近似できることを利用
し、特性インピーダンス相当の回路を回線のかわりに接
続した場合の近端エコー経路の周波数特性に近似して前
置エコーキャンセラ21の特性を決定しても良い。
In addition, since the pre-echo canceller 21 can obtain the desired effect by approximately reducing the level difference between the echo signal level and the received signal level, the input impedance seen from the hybrid transformer 5 to the line side when the loss is large. However, it is possible to determine the characteristics of the pre-echo canceller 21 by approximating the frequency characteristics of the near-end echo path when a circuit corresponding to the characteristic impedance is connected instead of the line by using the fact that it can be approximated to the characteristic impedance of the line. good.

更に近端エコー経路の振幅−周波数特性のみを近似した
周波数特性を用いることも可能である。
Furthermore, it is also possible to use a frequency characteristic that approximates only the amplitude-frequency characteristic of the near-end echo path.

以」二の説明においては減衰回路23の減衰量も接続さ
れる回線によらず一定としたが、エコー信号の消去の精
度を一層あげるためには減衰回路23を第4図に示す構
成とすれば良い。同図において信号レベル保持回路25
は半二重1云送で送信器2が信号を送出している期間の
み起動され、受信信号入力端子26からの信号(即ちエ
コー信号)のピーク値を検出保持する。保持されたピー
ク値は可変減衰器27に入力される。可変減衰器27で
は入力端子28から入力されるフィルタ回路22の出力
のピーク値を、上記エコー信号のピーク値に一致するよ
うに減衰させ、出力端子29より出力し減算回路24に
加える。このようにすることにより減算回路24の出力
信号内の近端エコー信号はそのピーク位置で、接続され
る回線の種別によらず常に零となりエコー信号レベルを
減少させることができる。信号レベル保持回路25の動
作は、全二重データ通信に先立って行われる半二重での
トレーニング期間に行えばよい。
In the following explanation, the amount of attenuation of the attenuation circuit 23 is assumed to be constant regardless of the line to which it is connected, but in order to further improve the accuracy of canceling the echo signal, the attenuation circuit 23 may be configured as shown in FIG. Good. In the figure, the signal level holding circuit 25
is activated only during the period when the transmitter 2 is transmitting a signal in half-duplex mode, and detects and holds the peak value of the signal (ie, echo signal) from the received signal input terminal 26. The held peak value is input to the variable attenuator 27. The variable attenuator 27 attenuates the peak value of the output of the filter circuit 22 inputted from the input terminal 28 so as to match the peak value of the echo signal, outputs it from the output terminal 29, and adds it to the subtraction circuit 24. By doing this, the near-end echo signal in the output signal of the subtraction circuit 24 always becomes zero at its peak position, regardless of the type of line connected, and the echo signal level can be reduced. The operation of the signal level holding circuit 25 may be performed during a half-duplex training period that is performed prior to full-duplex data communication.

以上説明した実施例では搬送区間が含まれる一般的な電
話回線を対象としたが、一対の線路のみを用いる場合に
おいても遠端エコー信号がなくなるだけであるので、こ
の発明はそのまま適用可能である。また実施例では適応
形エコーキャンセラ13として従来例1(第1図)のも
のを用いたが、従来例2(第2図)の場合のものにおい
ても、そ(7) 他RE々の構成の適応形エコーキャン
セラにおいてもこの発明を適用できることはあきらかで
ある。
Although the embodiments described above are directed to a general telephone line that includes a carrier section, the present invention can also be applied as is since the far end echo signal is simply eliminated even when only a pair of lines are used. . In addition, although the adaptive echo canceller 13 used in the embodiment is that of the conventional example 1 (FIG. 1), the conventional example 2 (FIG. 2) also has the configurations of (7) and other REs. It is obvious that the present invention can also be applied to an adaptive echo canceller.

〈効 果〉 この発明は以上説明したようにアナログ処理でエコー消
去を行う前置エコーキャンセラとディジタル処理でエコ
ー消去を行う適応形エコーキャンセラとにより構成され
、前置エコーキャンセラで第1段回のエコー消去を行い
、その後適応形ディジタルエコーキャンセラにて精密に
エコー消去を行うのであるから、アナログ回路で構成さ
れる前置エコーキャンセラは簡単な構成でよく、一方適
応形デイジタルエコーキャンセラの入力信号に含まれる
エコー信号成分は受信信号成分と同程度に減衰されてい
るのでA/D変換器及び演算処理回路の所要ビット数は
少なくて済み、回路規模を簡単化でき、また同一のビッ
ト数を用いる場合には精度良くエコー消去を行える利点
がある。従ってこの発明を4線式の回線を用いて全二重
通信を行うだめのモデム等に応用すればモデムに使用さ
れているA/D変換器、演算処理回路のビット数をあげ
ることなく、廉価に2線式回線で全二重通°信を行うモ
デムを構成することができる。
<Effects> As explained above, the present invention is composed of a pre-echo canceller that performs echo cancellation using analog processing and an adaptive echo canceler that performs echo cancellation using digital processing. Since the echo cancellation is performed and then the adaptive digital echo canceller performs precise echo cancellation, the pre-echo canceller consisting of an analog circuit can have a simple configuration, while the input signal of the adaptive digital echo canceller Since the included echo signal component is attenuated to the same extent as the received signal component, the number of bits required for the A/D converter and arithmetic processing circuit is small, simplifying the circuit scale, and using the same number of bits. In some cases, there is an advantage that echo cancellation can be performed with high accuracy. Therefore, if this invention is applied to a modem that performs full-duplex communication using a 4-wire line, it will be possible to reduce the cost without increasing the number of bits of the A/D converter and arithmetic processing circuit used in the modem. It is possible to configure a modem that performs full-duplex communication over a two-wire line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエコーキャンセラ装置を含む伝送装置の
一例の構成を示すブロック図、第2図はエコーキャンセ
ラ装置の別の従来例を含む伝送装置を示すブロック図、
第3図はこの発明装置の一実施例の構成を示すブロック
図、第4図は第3図中の減衰回路23の減衰量を自動調
整する場合の一例の構成図である。 1:送信データ入力端子、2:送信器、3:擬似エコー
信号発生器、4:変調器、5:ハイブリッド変成器、6
:2線式回線との接続端子、7:A/D変換器、8:減
算器、9 : D/A変換器、11:受信機、12:受
信データ出力端子、13:デイジタル処理適応形エコー
キャンセラ、21:前置エコーキャンセラ、22:フィ
ルタ回路、23:減衰回路、24:減算回路。
FIG. 1 is a block diagram showing the configuration of an example of a transmission device including a conventional echo canceller device, and FIG. 2 is a block diagram showing a transmission device including another conventional example of an echo canceller device.
FIG. 3 is a block diagram showing the configuration of an embodiment of the inventive device, and FIG. 4 is a configuration diagram of an example in which the amount of attenuation of the attenuation circuit 23 in FIG. 3 is automatically adjusted. 1: Transmission data input terminal, 2: Transmitter, 3: Pseudo echo signal generator, 4: Modulator, 5: Hybrid transformer, 6
: 2-wire line connection terminal, 7: A/D converter, 8: Subtractor, 9: D/A converter, 11: Receiver, 12: Received data output terminal, 13: Digital processing adaptive echo Canceller, 21: Pre-echo canceller, 22: Filter circuit, 23: Attenuation circuit, 24: Subtraction circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)2線式回線を用いて全二重通信を行うデータ伝送
装置用エコーキャンセラ装置において、データ伝送装置
の出力信号に特定の周波数特性を与えるフィルタ回路と
、そのフィルタ回路の出力を減衰させる減衰回路と、そ
の減衰回路の出力を受信信号から減算する減算回路とか
らなる前置エコーキャンセラを有し、その前置エコーキ
ャンセラの出力を適応形エコーキャンセラに対する受信
信号とすることを特徴とするデータ伝送装置用エコーキ
ャンセラ装置。
(1) In an echo canceller device for a data transmission device that performs full-duplex communication using a two-wire line, there is a filter circuit that gives specific frequency characteristics to the output signal of the data transmission device, and the output of the filter circuit is attenuated. It has a pre-echo canceller comprising an attenuation circuit and a subtraction circuit that subtracts the output of the attenuation circuit from the received signal, and the output of the pre-echo canceller is used as the received signal for the adaptive echo canceller. Echo canceller device for data transmission equipment.
JP10150783A 1983-06-06 1983-06-06 Echo canceller device for data transmitter Pending JPS59225626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10150783A JPS59225626A (en) 1983-06-06 1983-06-06 Echo canceller device for data transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10150783A JPS59225626A (en) 1983-06-06 1983-06-06 Echo canceller device for data transmitter

Publications (1)

Publication Number Publication Date
JPS59225626A true JPS59225626A (en) 1984-12-18

Family

ID=14302503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10150783A Pending JPS59225626A (en) 1983-06-06 1983-06-06 Echo canceller device for data transmitter

Country Status (1)

Country Link
JP (1) JPS59225626A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163298A2 (en) * 1984-05-30 1985-12-04 Hitachi, Ltd. PCM coder/decoder with two-wire/four-wire conversion
JPS6266723A (en) * 1985-09-18 1987-03-26 Nec Corp Interference signal eliminating system
JPS62272630A (en) * 1986-05-20 1987-11-26 Nec Corp Echo canceler circuit
JPS62274937A (en) * 1986-05-23 1987-11-28 Nec Corp Echo canceller circuit
JPH01269324A (en) * 1988-04-20 1989-10-26 Fujitsu Ltd Pre echo canceler
EP0596610A2 (en) * 1992-11-02 1994-05-11 Advanced Micro Devices, Inc. Decorrelation controllers for adaptive digital filters
US5511129A (en) * 1990-12-11 1996-04-23 Craven; Peter G. Compensating filters
US6760451B1 (en) 1993-08-03 2004-07-06 Peter Graham Craven Compensating filters
US6895086B2 (en) 2001-11-13 2005-05-17 Inmate Telephone, Inc. 3-Way call detection system and method
US7248685B2 (en) 2003-08-05 2007-07-24 Inmate Telephone, Inc. Three-way call detection using steganography
US8942356B2 (en) 2007-02-15 2015-01-27 Dsi-Iti, Llc System and method for three-way call detection
US9225838B2 (en) 2009-02-12 2015-12-29 Value-Added Communications, Inc. System and method for detecting three-way call circumvention attempts
US9552417B2 (en) 2007-02-15 2017-01-24 Global Tel*Link Corp. System and method for multi-modal audio mining of telephone conversations
US9923936B2 (en) 2016-04-07 2018-03-20 Global Tel*Link Corporation System and method for third party monitoring of voice and video calls
US9930088B1 (en) 2017-06-22 2018-03-27 Global Tel*Link Corporation Utilizing VoIP codec negotiation during a controlled environment call
US10027797B1 (en) 2017-05-10 2018-07-17 Global Tel*Link Corporation Alarm control for inmate call monitoring
US10225396B2 (en) 2017-05-18 2019-03-05 Global Tel*Link Corporation Third party monitoring of a activity within a monitoring platform
US10572961B2 (en) 2016-03-15 2020-02-25 Global Tel*Link Corporation Detection and prevention of inmate to inmate message relay
US10860786B2 (en) 2017-06-01 2020-12-08 Global Tel*Link Corporation System and method for analyzing and investigating communication data from a controlled environment

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163298A2 (en) * 1984-05-30 1985-12-04 Hitachi, Ltd. PCM coder/decoder with two-wire/four-wire conversion
JPS6266723A (en) * 1985-09-18 1987-03-26 Nec Corp Interference signal eliminating system
JPS62272630A (en) * 1986-05-20 1987-11-26 Nec Corp Echo canceler circuit
JPS62274937A (en) * 1986-05-23 1987-11-28 Nec Corp Echo canceller circuit
JPH01269324A (en) * 1988-04-20 1989-10-26 Fujitsu Ltd Pre echo canceler
US5815580A (en) * 1990-12-11 1998-09-29 Craven; Peter G. Compensating filters
US5627899A (en) * 1990-12-11 1997-05-06 Craven; Peter G. Compensating filters
US5511129A (en) * 1990-12-11 1996-04-23 Craven; Peter G. Compensating filters
US5526347A (en) * 1992-11-02 1996-06-11 Advanced Micro Devices, Inc. Decorrelation controller for an adaptive echo cancellor
EP0596610A3 (en) * 1992-11-02 1995-01-04 Advanced Micro Devices Inc Decorrelation controllers for adaptive digital filters.
EP0596610A2 (en) * 1992-11-02 1994-05-11 Advanced Micro Devices, Inc. Decorrelation controllers for adaptive digital filters
US6760451B1 (en) 1993-08-03 2004-07-06 Peter Graham Craven Compensating filters
US6895086B2 (en) 2001-11-13 2005-05-17 Inmate Telephone, Inc. 3-Way call detection system and method
US7123704B2 (en) 2001-11-13 2006-10-17 Inmate Telephone, Inc. 3-Way call detection system
US7664243B2 (en) 2001-11-13 2010-02-16 Inmate Telephone, Inc. 3-way call detection system and method
US7248685B2 (en) 2003-08-05 2007-07-24 Inmate Telephone, Inc. Three-way call detection using steganography
US7826604B2 (en) 2003-08-05 2010-11-02 Dsi-Iti, Llc Three-way call detection using steganography
US9930173B2 (en) 2007-02-15 2018-03-27 Dsi-Iti, Llc System and method for three-way call detection
US10853384B2 (en) 2007-02-15 2020-12-01 Global Tel*Link Corporation System and method for multi-modal audio mining of telephone conversations
US9552417B2 (en) 2007-02-15 2017-01-24 Global Tel*Link Corp. System and method for multi-modal audio mining of telephone conversations
US9621732B2 (en) 2007-02-15 2017-04-11 Dsi-Iti, Llc System and method for three-way call detection
US11895266B2 (en) 2007-02-15 2024-02-06 Dsi-Iti, Inc. System and method for three-way call detection
US8942356B2 (en) 2007-02-15 2015-01-27 Dsi-Iti, Llc System and method for three-way call detection
US11789966B2 (en) 2007-02-15 2023-10-17 Global Tel*Link Corporation System and method for multi-modal audio mining of telephone conversations
US10601984B2 (en) 2007-02-15 2020-03-24 Dsi-Iti, Llc System and method for three-way call detection
US11258899B2 (en) 2007-02-15 2022-02-22 Dsi-Iti, Inc. System and method for three-way call detection
US10120919B2 (en) 2007-02-15 2018-11-06 Global Tel*Link Corporation System and method for multi-modal audio mining of telephone conversations
US9225838B2 (en) 2009-02-12 2015-12-29 Value-Added Communications, Inc. System and method for detecting three-way call circumvention attempts
US10057398B2 (en) 2009-02-12 2018-08-21 Value-Added Communications, Inc. System and method for detecting three-way call circumvention attempts
US10572961B2 (en) 2016-03-15 2020-02-25 Global Tel*Link Corporation Detection and prevention of inmate to inmate message relay
US11640644B2 (en) 2016-03-15 2023-05-02 Global Tel* Link Corporation Detection and prevention of inmate to inmate message relay
US11238553B2 (en) 2016-03-15 2022-02-01 Global Tel*Link Corporation Detection and prevention of inmate to inmate message relay
US11271976B2 (en) 2016-04-07 2022-03-08 Global Tel*Link Corporation System and method for third party monitoring of voice and video calls
US10277640B2 (en) 2016-04-07 2019-04-30 Global Tel*Link Corporation System and method for third party monitoring of voice and video calls
US9923936B2 (en) 2016-04-07 2018-03-20 Global Tel*Link Corporation System and method for third party monitoring of voice and video calls
US10715565B2 (en) 2016-04-07 2020-07-14 Global Tel*Link Corporation System and method for third party monitoring of voice and video calls
US10027797B1 (en) 2017-05-10 2018-07-17 Global Tel*Link Corporation Alarm control for inmate call monitoring
US10225396B2 (en) 2017-05-18 2019-03-05 Global Tel*Link Corporation Third party monitoring of a activity within a monitoring platform
US10601982B2 (en) 2017-05-18 2020-03-24 Global Tel*Link Corporation Third party monitoring of activity within a monitoring platform
US11044361B2 (en) 2017-05-18 2021-06-22 Global Tel*Link Corporation Third party monitoring of activity within a monitoring platform
US11563845B2 (en) 2017-05-18 2023-01-24 Global Tel*Link Corporation Third party monitoring of activity within a monitoring platform
US11526658B2 (en) 2017-06-01 2022-12-13 Global Tel*Link Corporation System and method for analyzing and investigating communication data from a controlled environment
US10860786B2 (en) 2017-06-01 2020-12-08 Global Tel*Link Corporation System and method for analyzing and investigating communication data from a controlled environment
US11381623B2 (en) 2017-06-22 2022-07-05 Global Tel*Link Gorporation Utilizing VoIP coded negotiation during a controlled environment call
US11757969B2 (en) 2017-06-22 2023-09-12 Global Tel*Link Corporation Utilizing VoIP codec negotiation during a controlled environment call
US9930088B1 (en) 2017-06-22 2018-03-27 Global Tel*Link Corporation Utilizing VoIP codec negotiation during a controlled environment call
US10693934B2 (en) 2017-06-22 2020-06-23 Global Tel*Link Corporation Utilizing VoIP coded negotiation during a controlled environment call

Similar Documents

Publication Publication Date Title
US5812537A (en) Echo canceling method and apparatus for data over cellular
JPS59225626A (en) Echo canceller device for data transmitter
US5659581A (en) Modem receiver pre-emphasis
US5790658A (en) High performance echo canceller for high speed modem
US4845746A (en) Echo canceller with relative feedback control
US5289459A (en) Duplex data transmission
US4751730A (en) Process and system for improving echo cancellation within a transmission network
EP0106640B1 (en) Noise control circuit
US7570685B2 (en) System, method and apparatus for crosstalk cancellation
US5825753A (en) Echo canceler gain tracker for cellular modems
US6236726B1 (en) Transmit power scaling for far-end crosstalk reduction
EP0543568A2 (en) High resolution filtering using low resolution processors
US5896420A (en) Transmission apparatus having echo cancellation facility
US20030123650A1 (en) Simple adaptive hybrid circuit
US7298711B1 (en) Echo cancellation in a communication device
EP0929160B1 (en) Apparatus and method for reducing local interference in subscriber loop communication system
US6996231B2 (en) Step size convergence control
JP2615795B2 (en) Adaptive echo canceller
JP3419130B2 (en) Echo canceller device
JPS6342527A (en) Digital subscriber&#39;s line transmission equipment
JPH05183472A (en) Voice addition device with echo canceler function
JPH02146827A (en) Echo canceler
JPS61242127A (en) Echo canceller
JPS62271528A (en) Subscriber line transmission equipment
JPS6018025A (en) Echo canceller