JP2007305345A - Positive electrode for battery, its manufacturing method, and battery - Google Patents

Positive electrode for battery, its manufacturing method, and battery Download PDF

Info

Publication number
JP2007305345A
JP2007305345A JP2006130449A JP2006130449A JP2007305345A JP 2007305345 A JP2007305345 A JP 2007305345A JP 2006130449 A JP2006130449 A JP 2006130449A JP 2006130449 A JP2006130449 A JP 2006130449A JP 2007305345 A JP2007305345 A JP 2007305345A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode substrate
battery
substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006130449A
Other languages
Japanese (ja)
Other versions
JP5005951B2 (en
Inventor
Kazuhiro Okawa
和宏 大川
Hiroyuki Sakamoto
弘之 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Panasonic EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic EV Energy Co Ltd filed Critical Panasonic EV Energy Co Ltd
Priority to JP2006130449A priority Critical patent/JP5005951B2/en
Publication of JP2007305345A publication Critical patent/JP2007305345A/en
Application granted granted Critical
Publication of JP5005951B2 publication Critical patent/JP5005951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for a battery having a positive electrode substrate containing a resin skeleton made of resin fibers and having a high current collecting property; to provide its manufacturing method; to provide the battery having the positive electrode substrate containing a resin skeleton made of resin fibers; and to provide the manufacturing method of the battery. <P>SOLUTION: The positive electrode 121 (the positive electrode for the battery) is equipped with resin skeleton 121f made of resin fibers 121b; a metal covering layer 121c covering the resin skeleton 121f; and the positive electrode substrate 121k having voids K in which two or more holes are three-dimensionally connected. In the positive electrode substrate 121k, resin fibers 121b constituting the resin skeleton 121f are oriented in the prescribed direction. A positive lead 121r is joined to a crossing peripheral part (a first end part 121t) containing a crossing periphery (a first side 121m) crossing with the orientation direction Y of the resin fibers 121b out of peripheries of the positive electrode substrate 121k. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、樹脂骨格を含む正極基板を有する電池用正極、及びその製造方法、並びに樹脂骨格を含む正極を備える電池に関する。   The present invention relates to a battery positive electrode having a positive electrode substrate including a resin skeleton, a manufacturing method thereof, and a battery including a positive electrode including a resin skeleton.

近年、電池、特に、アルカリ蓄電池は、ポータブル機器や携帯機器などの電源として、また、電気自動車やハイブリッド自動車などの電源として注目されている。このようなアルカリ蓄電池としては、様々のものが提案されているが、このうち、水酸化ニッケルを主体とした活物質を含む正極と、水素吸蔵合金を主成分とした負極と、水酸化カリウムなどを含むアルカリ電解液とを備えるニッケル水素二次電池は、エネルギー密度が高く、信頼性に優れたアルカリ蓄電池として急速に普及している。   In recent years, batteries, in particular alkaline storage batteries, have attracted attention as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles. Various types of such alkaline storage batteries have been proposed. Among them, a positive electrode containing an active material mainly composed of nickel hydroxide, a negative electrode mainly composed of a hydrogen storage alloy, potassium hydroxide, etc. Nickel metal hydride secondary batteries provided with an alkaline electrolyte solution containing hydrogen are rapidly spreading as alkaline storage batteries having high energy density and excellent reliability.

ところで、ニッケル水素二次電池の正極は、電極の製法の違いによって、焼結式ニッケル電極とペースト式(非焼結式)ニッケル電極との2種類に大別される。このうち、焼結式ニッケル電極は、穿孔鋼板(パンチングメタル)の両面にニッケル微粉末を焼結した多孔性焼結基板の微細孔内に、溶液含浸法などによって、水酸化ニッケルを析出させて製作される。一方、ペースト式ニッケル電極は、高多孔度の発泡ニッケル多孔体基板(発泡ニッケル基板)の細孔内に、水酸化ニッケルを含む活物質を直接に充填して作製される。このペースト式ニッケル電極は、水酸化ニッケルの充填密度が高く、高エネルギー密度化が容易であるために、現在では、ニッケル水素蓄電池用正極の主流となっている(例えば、特許文献1参照)。   By the way, the positive electrode of the nickel metal hydride secondary battery is roughly classified into two types, that is, a sintered nickel electrode and a paste type (non-sintered) nickel electrode, depending on the manufacturing method of the electrode. Among these, the sintered nickel electrode is formed by depositing nickel hydroxide into the fine pores of a porous sintered substrate obtained by sintering nickel fine powder on both sides of a perforated steel plate (punching metal) by a solution impregnation method or the like. Produced. On the other hand, a paste-type nickel electrode is produced by directly filling an active material containing nickel hydroxide into pores of a highly porous foamed nickel porous substrate (foamed nickel substrate). Since this paste type nickel electrode has a high packing density of nickel hydroxide and can easily achieve high energy density, it is currently the mainstream of nickel-metal hydride battery positive electrodes (see, for example, Patent Document 1).

特開昭62−15769号公報JP-A-62-15769 特開平8−321303号公報JP-A-8-321303 特開2001−313038号公報JP 2001-313038 A

ペースト式ニッケル電極に用いられる発泡ニッケル基板は、発砲ポリウレタンシートの樹脂骨格にニッケルめっきを施した後、樹脂骨格を焼失させることにより作製する。このような手法により、空隙率の高いニッケル基板を得ることができ、水酸化ニッケルの充填密度を高めることが可能となるが、樹脂骨格を焼失させる工程が必要なため、製造コストが高いという課題があった。また、発泡ニッケル基板の強度が弱いために、充放電の繰り返しによって、ニッケル電極(正極)が大きく膨張してしまう虞がある。このため、ニッケル電極が大きく膨張すると、セパレータが圧縮され、これに伴い、セパレータ内の電解液が減少し、内部抵抗の上昇や充放電効率の低下を引き起こす虞があった。   The foamed nickel substrate used for the paste type nickel electrode is prepared by burning the resin skeleton after nickel plating is applied to the resin skeleton of the foamed polyurethane sheet. By such a method, a nickel substrate having a high porosity can be obtained, and it becomes possible to increase the packing density of nickel hydroxide. However, since a process of burning out the resin skeleton is necessary, there is a problem that the manufacturing cost is high. was there. Moreover, since the strength of the foamed nickel substrate is weak, there is a possibility that the nickel electrode (positive electrode) may expand greatly due to repeated charge and discharge. For this reason, when a nickel electrode expand | swells greatly, a separator will be compressed and the electrolyte solution in a separator will reduce in connection with this, and there existed a possibility of causing a raise of internal resistance and a fall of charging / discharging efficiency.

このような問題を解決するべく、近年、不織布などの樹脂骨格にニッケルめっきを施し、樹脂骨格を焼失させることなく作製した正極基板、これを用いた電池が提案されている(特許文献2、特許文献3参照)。不織布などの樹脂骨格を含む正極基板を用いることにより、正極基板を強固にできるので、正極の膨張を抑制することができる。   In order to solve such a problem, a positive electrode substrate produced by applying nickel plating to a resin skeleton such as a nonwoven fabric without burning the resin skeleton, and a battery using the same have been proposed (Patent Document 2, Patent). Reference 3). By using a positive electrode substrate including a resin skeleton such as a nonwoven fabric, the positive electrode substrate can be strengthened, so that expansion of the positive electrode can be suppressed.

ところで、ニッケル水素蓄電池等の電池としては、例えば、板状の正極、セパレータ、及び負極を、多数、交互に積層した極板群を有する電池が知られている。この電池では、多数の正極が、正の電荷を集電する正極集電部材に溶接されている。詳細には、正極は、樹脂骨格の表面に金属メッキが施されてなる正極基板と、この正極基板の一端部に溶接された金属板からなる正極リードとを有しており、このうち正極リードを正極集電部材に溶接している。   By the way, as a battery such as a nickel metal hydride storage battery, for example, a battery having an electrode plate group in which a large number of plate-like positive electrodes, separators, and negative electrodes are alternately stacked is known. In this battery, a large number of positive electrodes are welded to a positive electrode current collecting member that collects positive charges. Specifically, the positive electrode has a positive electrode substrate in which the surface of the resin skeleton is subjected to metal plating, and a positive electrode lead made of a metal plate welded to one end of the positive electrode substrate. Is welded to the positive electrode current collector.

ところが、正極基板として、不織布などの樹脂繊維からなる樹脂骨格を含む正極基板を用いた場合、発泡ニッケル基板を用いた場合に比べて、正極の集電抵抗(正極基板中の電荷を正極リードに集電する際の電気抵抗)が大きくなる傾向にあった。特に、樹脂骨格を含む正極基板と金属板からなる正極リードとの延性の程度が異なることから、正極を作製する過程において、正極基板に正極リードを溶接した後プレス成形を施したときに、正極基板と正極リードとの溶接部の境界に応力が集中し、溶接部の境界に亀裂が生じることが大きな要因であった。このため、正極の集電性が低下(電気抵抗が増大)する問題があった。本発明者が検討した結果、正極の集電性(集電抵抗)は、樹脂骨格を構成する樹脂繊維の配向方向と正極リードの接合位置とに密接に関係していることが判明した。   However, when a positive electrode substrate including a resin skeleton made of resin fibers such as non-woven fabric is used as the positive electrode substrate, the current collecting resistance of the positive electrode (the charge in the positive electrode substrate is used as the positive electrode lead) as compared with the case of using the foamed nickel substrate. There was a tendency that the electrical resistance during current collection) increased. In particular, since the degree of ductility between the positive electrode substrate including a resin skeleton and the positive electrode lead made of a metal plate is different, in the process of manufacturing the positive electrode, the positive electrode substrate is subjected to press molding after the positive electrode lead is welded to the positive electrode substrate. The main factor was that stress was concentrated at the boundary of the welded portion between the substrate and the positive electrode lead, and a crack occurred at the boundary of the welded portion. For this reason, there existed a problem that the current collection property of a positive electrode fell (electrical resistance increased). As a result of studies by the present inventors, it has been found that the current collecting property (current collecting resistance) of the positive electrode is closely related to the orientation direction of the resin fibers constituting the resin skeleton and the bonding position of the positive electrode lead.

本発明は、かかる現状に鑑みてなされたものであって、樹脂繊維からなる樹脂骨格を含む正極基板を有し、集電性が良好な電池用正極、及びその製造方法、並びに、樹脂繊維からなる樹脂骨格を含む正極基板を有する正極の集電性が良好な電池を提供することを目的とする。   The present invention has been made in view of such a situation, and has a positive electrode substrate including a resin skeleton made of resin fibers, and has a good current collecting property, a manufacturing method thereof, and a resin fiber. An object of the present invention is to provide a battery having a positive electrode having a positive electrode substrate containing a resin skeleton and having good current collecting properties.

その解決手段は、樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する正極基板、上記正極基板の上記空隙部内に充填された正極活物質、及び金属からなり、上記正極基板の周縁の一部を含む周縁部に接合されてなる正極リード、を有する電池用正極であって、前記正極基板は、上記樹脂骨格を構成する上記樹脂繊維が所定の方向に配向してなり、上記正極リードは、上記正極基板の周縁のうち上記樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合されてなる電池用正極である。   The solution includes a resin skeleton made of resin fibers and having a three-dimensional network structure, and a metal coating layer made of metal and covering the resin skeleton, and a positive electrode substrate having a void portion in which a plurality of holes are three-dimensionally connected. A positive electrode for a battery having a positive electrode active material filled in the gap portion of the positive electrode substrate, and a positive electrode lead made of metal and bonded to a peripheral portion including a part of the peripheral edge of the positive electrode substrate, The positive electrode substrate is formed by orienting the resin fibers constituting the resin skeleton in a predetermined direction, and the positive electrode lead includes a crossing edge including an intersecting peripheral edge intersecting an orientation direction of the resin fiber among peripheral edges of the positive electrode substrate. It is a battery positive electrode bonded to the peripheral edge.

本発明の電池用正極は、樹脂繊維からなる樹脂骨格と、金属からなり樹脂骨格を被覆する金属被覆層とを備える正極基板を有している。この正極基板は、樹脂骨格を構成する樹脂繊維が所定の方向に配向している。さらに、正極リードが、正極基板の周縁のうち樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合されている。これにより、正極基板中の電荷を正極リードに集電する際、樹脂繊維の配向方向に沿って(あるいは配向方向に近い方向に)集電することができるので、集電抵抗(正極基板中の電荷を正極リードに集電する際の電気抵抗)を小さくすることができる。これは、樹脂繊維からなる樹脂骨格を有する正極基板では、樹脂繊維の配向方向に電気抵抗が小さくなるからである。従って、本発明の電池用正極は、集電性が良好な電池用正極となる。   The positive electrode for a battery of the present invention has a positive electrode substrate including a resin skeleton made of resin fibers and a metal coating layer made of metal and covering the resin skeleton. In this positive electrode substrate, resin fibers constituting the resin skeleton are oriented in a predetermined direction. Furthermore, the positive electrode lead is joined to the crossing peripheral edge part including the crossing peripheral edge which crosses the orientation direction of the resin fiber among the peripheral edges of the positive electrode substrate. Thereby, when collecting the electric charge in the positive electrode substrate to the positive electrode lead, the current can be collected along the alignment direction of the resin fibers (or in a direction close to the alignment direction). It is possible to reduce the electric resistance when collecting electric charges on the positive electrode lead. This is because, in a positive electrode substrate having a resin skeleton made of resin fibers, the electric resistance is reduced in the orientation direction of the resin fibers. Therefore, the positive electrode for a battery of the present invention is a positive electrode for a battery having good current collecting properties.

なお、正極基板にかかる樹脂繊維の配向方向は、公知の手法により測定することができる。例えば、正極基板についてX線CT画像や、透過電子顕微鏡のCT画像を取得し、これらの画像を基に、繊維3D計測ソフト、TRI/3D−VOL−FBR(ラトックシステムエンジニアリング製)を用いて、樹脂繊維の配向方向を計測することができる。   In addition, the orientation direction of the resin fiber concerning a positive electrode board | substrate can be measured by a well-known method. For example, an X-ray CT image of a positive electrode substrate and a CT image of a transmission electron microscope are obtained, and based on these images, fiber 3D measurement software, TRI / 3D-VOL-FBR (manufactured by Ratok System Engineering) is used. The orientation direction of the resin fiber can be measured.

さらに、上記の電池用正極であって、前記正極基板は、矩形シート状をなし、前記交差周縁である第1辺を有し、前記正極リードは、上記正極基板の前記交差周縁部である、上記第1辺を含む第1端部に接合されてなる電池用正極とすると良い。   Furthermore, in the positive electrode for a battery described above, the positive electrode substrate has a rectangular sheet shape and has a first side that is the intersecting peripheral edge, and the positive electrode lead is the intersecting peripheral edge portion of the positive electrode substrate. A positive electrode for a battery that is joined to the first end including the first side is preferable.

本発明の電池用正極では、正極基板が矩形シート状をなしており、正極リードが、正極基板の第1辺(交差周縁部に相当する)を含む第1端部(交差周縁部に相当する)に接合されている。これにより、正極基板中の電荷を正極リードに集電する際、樹脂繊維の配向方向に沿って(あるいは配向方向に近い方向に)集電することができるので、集電抵抗を小さくすることができる。従って、本発明の電池用正極は、集電性が良好な電池用正極となる。   In the positive electrode for a battery according to the present invention, the positive electrode substrate has a rectangular sheet shape, and the positive electrode lead corresponds to the first end (corresponding to the intersecting peripheral edge) including the first side (corresponding to the intersecting peripheral edge) of the positive electrode substrate. ). Thereby, when collecting the electric charge in the positive electrode substrate to the positive electrode lead, the current can be collected along the alignment direction of the resin fibers (or in a direction close to the alignment direction), so that the current collecting resistance can be reduced. it can. Therefore, the positive electrode for a battery of the present invention is a positive electrode for a battery having good current collecting properties.

さらに、上記いずれかの電池用正極であって、前記正極基板は、前記繊維樹脂の配向方向が、前記交差周縁または前記第1辺に直交してなる電池用正極とすると良い。   Further, in any one of the battery positive electrodes, the positive electrode substrate may be a battery positive electrode in which the orientation direction of the fiber resin is orthogonal to the intersecting peripheral edge or the first side.

本発明の電池用正極では、正極基板にかかる繊維樹脂の配向方向が、交差周縁または第1辺に直交している。これにより、正極基板中の電荷を正極リードに集電する際、樹脂繊維の配向方向に沿って集電することができるので、集電抵抗を小さくすることができる。従って、本発明の電池用正極は、集電性に優れた電池用正極となる。   In the battery positive electrode of the present invention, the orientation direction of the fiber resin applied to the positive electrode substrate is orthogonal to the intersecting peripheral edge or the first side. Thereby, when the electric charge in the positive electrode substrate is collected on the positive electrode lead, the current can be collected along the orientation direction of the resin fiber, so that the current collecting resistance can be reduced. Therefore, the positive electrode for a battery of the present invention is a positive electrode for a battery excellent in current collecting properties.

さらに、上記いずれかの電池用正極であって、前記正極リードを前記正極基板に接合した後に、上記正極基板の厚み方向にプレス成形してなる電池用正極とすると良い。   Furthermore, any one of the battery positive electrodes described above may be a battery positive electrode formed by press-molding the positive electrode lead in the thickness direction of the positive electrode substrate after bonding the positive electrode lead to the positive electrode substrate.

本発明の電池用正極は、正極リードを正極基板に接合した後に、正極基板の厚み方向にプレス成形されている。正極リードを接合した正極基板をプレス成形する場合、プレス成形時に、正極基板と正極リードとの延伸の程度の差異に起因して、正極基板と正極リードとの接合部の境界に応力が生じ、接合部の境界に亀裂が生じる虞がある。   The positive electrode for a battery of the present invention is press-molded in the thickness direction of the positive electrode substrate after the positive electrode lead is bonded to the positive electrode substrate. When press-molding the positive electrode substrate to which the positive electrode lead is bonded, during press molding, due to the difference in the extent of stretching between the positive electrode substrate and the positive electrode lead, stress occurs at the boundary between the positive electrode substrate and the positive electrode lead, There is a risk of cracks occurring at the boundary of the joint.

これに対し、本発明の電池用正極では、前述のように、正極リードが、正極基板の周縁のうち樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合されている。従って、正極基板の表面に沿う方向(集電方向)に見て、正極基板と正極リードとの接合部の境界が、樹脂繊維の配向方向に直交乃至は斜交することとなる。ここで、樹脂繊維からなる樹脂骨格を有する正極基板は、プレス成形を施されたとき、特に、樹脂骨格を構成する樹脂繊維が配向する方向に延伸しがちである。換言すれば、樹脂繊維の配向方向と異なる方向、特に、樹脂繊維の配向方向に直交する方向には延伸の程度が小さくなりがちである。   On the other hand, in the battery positive electrode of the present invention, as described above, the positive electrode lead is joined to the intersecting peripheral edge portion including the intersecting peripheral edge intersecting with the orientation direction of the resin fiber in the peripheral edge of the positive electrode substrate. Therefore, when viewed in the direction along the surface of the positive electrode substrate (current collection direction), the boundary of the joint portion between the positive electrode substrate and the positive electrode lead is orthogonal or oblique to the orientation direction of the resin fibers. Here, when the positive electrode substrate having a resin skeleton made of resin fibers is subjected to press molding, the positive electrode substrate tends to be stretched particularly in a direction in which the resin fibers constituting the resin skeleton are oriented. In other words, the degree of stretching tends to be small in a direction different from the orientation direction of the resin fibers, particularly in a direction orthogonal to the orientation direction of the resin fibers.

このため、正極基板と正極リードとの接合部の境界が、樹脂繊維の配向方向に直交乃至は斜交していると、プレス成形時に、接合部の境界において、正極基板の延伸が抑制されるので、正極基板と正極リードとの延伸の程度の差異が小さくなる。これにより、正極基板と正極リードとの接合部の境界に生じる応力を抑制でき、接合部の境界に亀裂が生じるのを抑制することができるので、プレス成形による集電抵抗の増大を抑制できる。
以上より、本発明の電池用正極は、正極リードを正極基板に接合した後に、正極基板の厚み方向にプレス成形を施しているにも拘わらず、集電抵抗が小さく、集電性が良好な電池用正極となる。
For this reason, when the boundary of the joint portion between the positive electrode substrate and the positive electrode lead is orthogonal or oblique to the orientation direction of the resin fiber, the stretch of the positive electrode substrate is suppressed at the boundary of the joint portion during press molding. Therefore, the difference in the degree of stretching between the positive electrode substrate and the positive electrode lead is reduced. Thereby, since the stress which arises in the boundary of the junction part of a positive electrode board | substrate and a positive electrode lead can be suppressed, and it can suppress that a crack arises in the boundary of a junction part, increase of the current collection resistance by press molding can be suppressed.
As described above, the battery positive electrode according to the present invention has low current collection resistance and good current collection performance despite being subjected to press molding in the thickness direction of the positive electrode substrate after the positive electrode lead is bonded to the positive electrode substrate. It becomes a positive electrode for a battery.

他の解決手段は、樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する矩形シート状の正極基板、上記正極基板の上記空隙部内に充填された正極活物質、及び金属からなり、上記正極基板の第1辺を含む第1端部に接合されてなる正極リード、を有する電池用正極であって、上記正極基板は、上記正極基板において等距離をなす2点間の電気抵抗であって、上記第1辺に直交する方向にかかる電気抵抗R1と、上記第1辺に平行な方向にかかる電気抵抗R2とが、R1/R2<1.0の関係を満たす電池用正極である。   Another solution includes a resin skeleton made of resin fibers and having a three-dimensional network structure, and a metal coating layer made of metal and covering the resin skeleton, and a rectangular shape having a cavity in which a plurality of holes are three-dimensionally connected. A battery having a sheet-like positive electrode substrate, a positive electrode active material filled in the gap of the positive electrode substrate, and a positive electrode lead made of metal and bonded to a first end including the first side of the positive electrode substrate The positive electrode substrate is an electric resistance between two points that are equidistant in the positive electrode substrate, and is parallel to the first side and an electric resistance R1 in a direction orthogonal to the first side. The electric resistance R2 applied in a certain direction is a positive electrode for a battery that satisfies the relationship of R1 / R2 <1.0.

本発明の電池用正極では、正極リードが、矩形シート状の正極基板の第1辺を含む第1端部に接合されている。このため、正極基板中の電荷を正極リードに集電する集電方向が、第1辺に直交する方向となる。さらに、正極基板が、正極基板において等距離をなす2点間の電気抵抗であって、第1辺に直交する方向にかかる電気抵抗R1と、第1辺に平行な方向にかかる電気抵抗R2とが、R1/R2<1.0の関係を満たしている。すなわち、この正極基板では、第1辺に平行な方向に比べて、第1辺に直交する方向に電気抵抗が小さくなっている。
従って、本発明の電池用正極では、集電方向が、正極基板において電気抵抗の小さい方向(第1辺に直交する方向)と一致するので、集電抵抗が小さく、集電性が良好となる。
In the battery positive electrode of the present invention, the positive electrode lead is bonded to the first end including the first side of the rectangular sheet-like positive electrode substrate. For this reason, the current collecting direction for collecting the charges in the positive electrode substrate to the positive electrode lead is a direction orthogonal to the first side. Furthermore, the positive substrate has an electrical resistance between two points that are equidistant on the positive substrate, and an electrical resistance R1 applied in a direction orthogonal to the first side, and an electrical resistance R2 applied in a direction parallel to the first side However, the relationship of R1 / R2 <1.0 is satisfied. That is, in this positive electrode substrate, the electrical resistance is smaller in the direction perpendicular to the first side than in the direction parallel to the first side.
Therefore, in the positive electrode for a battery according to the present invention, the current collection direction matches the direction in which the electric resistance is small (the direction perpendicular to the first side) in the positive electrode substrate, so the current collection resistance is small and the current collecting property is good. .

さらに、上記の電池用正極であって、前記正極基板は、前記電気抵抗R1と前記電気抵抗R2とが、R1/R2≦0.5の関係を満たす電池用正極とするのが好ましい。
R1/R2≦0.5の関係を満たす正極基板は、特に、第1辺に直交する方向(集電方向)に電気抵抗が小さくなる。このため、この正極基板を有する電池用正極は、特に、集電抵抗が小さく、集電性に優れた電池用正極となる。
Further, in the battery positive electrode, the positive electrode substrate is preferably a battery positive electrode in which the electric resistance R1 and the electric resistance R2 satisfy a relationship of R1 / R2 ≦ 0.5.
In the positive electrode substrate satisfying the relationship of R1 / R2 ≦ 0.5, the electric resistance is particularly reduced in the direction (current collection direction) orthogonal to the first side. For this reason, the positive electrode for a battery having this positive electrode substrate is a positive electrode for a battery having a particularly low current collecting resistance and excellent current collecting property.

さらに、上記の電池用正極であって、前記正極基板は、前記電気抵抗R1と前記電気抵抗R2とが、R1/R2≧0.1の関係を満たし、前記正極リードを前記正極基板に接合した後に、上記正極基板の厚み方向にプレス成形してなる電池用正極とすると良い。   Further, in the positive electrode for a battery described above, the positive electrode substrate has the electric resistance R1 and the electric resistance R2 satisfy a relationship of R1 / R2 ≧ 0.1, and the positive electrode lead is bonded to the positive electrode substrate. Later, a positive electrode for a battery formed by pressing in the thickness direction of the positive electrode substrate may be used.

本発明の電池用正極では、正極リードを正極基板に接合した後に、正極基板の厚み方向にプレス成形している。前述のように、正極リードを接合した正極基板をプレス成形する場合、プレス成形時に、正極基板と正極リードとの延伸の程度の差異に起因して、正極基板と正極リードとの接合部の境界に応力が生じ、接合部の境界に亀裂が生じる虞がある。   In the battery positive electrode of the present invention, the positive electrode lead is bonded to the positive electrode substrate, and then press-molded in the thickness direction of the positive electrode substrate. As described above, when the positive electrode substrate to which the positive electrode lead is bonded is press-molded, the boundary between the positive electrode substrate and the positive electrode lead due to the difference in the extent of stretching between the positive electrode substrate and the positive electrode lead during press molding. There is a risk that stress will occur in the joints and cracks will occur at the boundaries of the joints.

これに対し、本発明の電池用正極の正極基板は、電気抵抗R1と電気抵抗R2とが、0.1≦R1/R2<1.0の関係を満たしている。R1/R2<1.0の関係を満たす正極基板では、正極基板の表面に沿う方向(集電方向)に見て、正極基板と正極リードとの接合部の境界が、樹脂繊維の配向方向に直交乃至は斜交することとなる。このため、プレス成形時に、接合部の境界において、正極基板の延伸が抑制されるので、正極基板と正極リードとの延伸の程度の差異が小さくなる。これにより、正極基板と正極リードとの接合部の境界に生じる応力を抑制でき、接合部の境界に亀裂が生じるのを抑制することができるので、プレス成形による集電抵抗の増大を抑制できる。   On the other hand, in the positive electrode substrate of the positive electrode for a battery according to the present invention, the electrical resistance R1 and the electrical resistance R2 satisfy the relationship of 0.1 ≦ R1 / R2 <1.0. In the positive electrode substrate satisfying the relationship of R1 / R2 <1.0, the boundary between the positive electrode substrate and the positive electrode lead in the direction along the surface of the positive electrode substrate (current collection direction) is in the resin fiber orientation direction. It is orthogonal or oblique. For this reason, at the time of press molding, since the stretching of the positive electrode substrate is suppressed at the boundary of the joint portion, the difference in the degree of stretching between the positive electrode substrate and the positive electrode lead is reduced. Thereby, since the stress which arises in the boundary of the junction part of a positive electrode board | substrate and a positive electrode lead can be suppressed, and it can suppress that a crack arises in the boundary of a junction part, increase of the current collection resistance by press molding can be suppressed.

ところで、正極基板のR1/R2の値が小さいほど正極の集電性は良好になるが、R1/R2の値が小さ過ぎると、すなわち、樹脂繊維の配向の強度(第1辺に直交する方向への配向の程度)が強過ぎると、プレス成形を施すことにより、正極基板自身の電気抵抗が大きく上昇してしまう。この理由は、R1/R2の値が小さ過ぎる正極基板では、第1辺に平行な方向に延びる樹脂繊維が極端に少ないことから、プレス成形を施した際、第1辺に平行な方向に延びる樹脂繊維の一部が大きく伸ばされあるいは断裂することで、これを被覆する金属被覆層の一部が断裂するためと考えられる。
これに対し、本発明の電池用正極では、R1/R2≧0.1の関係を満たす正極基板を用いている。すなわち、樹脂繊維の配向の強度を抑制した正極基板を用いている。これにより、プレス成形による正極基板自身の電気抵抗の上昇を抑制することができる。
以上より、本発明の電池用正極は、正極リードを正極基板に接合した後に、正極基板の厚み方向にプレス成形を施しているにも拘わらず、集電抵抗が小さく、集電性が良好な電池用正極となる。
Incidentally, the smaller the value of R1 / R2 of the positive electrode substrate, the better the current collecting property of the positive electrode. However, when the value of R1 / R2 is too small, that is, the strength of the orientation of the resin fibers (direction perpendicular to the first side) If the degree of orientation of the positive electrode substrate is too strong, the electrical resistance of the positive electrode substrate itself is greatly increased by press molding. The reason for this is that, in the case of a positive electrode substrate having a value of R1 / R2 that is too small, resin fibers that extend in a direction parallel to the first side are extremely few, so when press molding is performed, the resin substrate extends in a direction parallel to the first side. This is probably because a part of the resin fiber is greatly stretched or torn and a part of the metal coating layer covering the resin fiber is torn.
On the other hand, the positive electrode for a battery of the present invention uses a positive electrode substrate that satisfies the relationship of R1 / R2 ≧ 0.1. That is, a positive electrode substrate in which the strength of resin fiber orientation is suppressed is used. Thereby, the raise of the electrical resistance of positive electrode board | substrate itself by press molding can be suppressed.
As described above, the battery positive electrode according to the present invention has low current collection resistance and good current collection performance despite being subjected to press molding in the thickness direction of the positive electrode substrate after the positive electrode lead is bonded to the positive electrode substrate. It becomes a positive electrode for a battery.

さらに、上記いずれかの電池用正極であって、前記正極基板は、前記金属被覆層を、100g/m2以上250g/m2以下の範囲で含む電池用正極とすると良い。 Furthermore, in any of the battery positive electrodes described above, the positive electrode substrate may be a battery positive electrode including the metal coating layer in a range of 100 g / m 2 to 250 g / m 2 .

本発明の電池用正極は、正極基板が、金属被覆層を100g/m2以上250g/m2以下の範囲で含んでいる。金属被覆層を100g/m2以上とすることで、電池の寿命特性を良好とすることができる。金属被覆層を250g/m2以下にすることで、コストを抑制することができる。従って、本発明の電池用正極を用いることで、寿命特性が良好で、しかも安価な電池を得ることができる。 In the positive electrode for a battery of the present invention, the positive electrode substrate contains a metal coating layer in a range of 100 g / m 2 to 250 g / m 2 . By setting the metal coating layer to 100 g / m 2 or more, the battery life characteristics can be improved. By making the metal coating layer 250 g / m 2 or less, the cost can be suppressed. Therefore, by using the positive electrode for a battery according to the present invention, it is possible to obtain a battery having good life characteristics and inexpensive.

さらに、上記いずれかの電池用正極であって、前記正極基板の前記樹脂骨格は、不織布である電池用正極とすると良い。   Furthermore, in any one of the battery positive electrodes described above, the resin skeleton of the positive electrode substrate may be a battery positive electrode that is a nonwoven fabric.

不織布を製造する際、樹脂繊維の配向を、容易に調整することができる。従って、正極基板の樹脂骨格として不織布を用いた本発明の電池用正極は、集電性が良好で、且つ安価な電池用正極となる。   When manufacturing a nonwoven fabric, the orientation of the resin fibers can be easily adjusted. Therefore, the battery positive electrode of the present invention using a nonwoven fabric as the resin skeleton of the positive electrode substrate has a good current collecting property and is an inexpensive battery positive electrode.

他の解決手段は、上記いずれかの電池用正極を備える電池である。   Another solution is a battery including any one of the battery positive electrodes.

本発明の電池は、前述したいずれかの電池用正極を備えている。従って、正極基板として、樹脂骨格を含む正極基板を用いているにも拘わらず、正極の集電性が良好な電池となる。   The battery of the present invention includes any of the battery positive electrodes described above. Therefore, although the positive electrode substrate including the resin skeleton is used as the positive electrode substrate, the battery having a good positive electrode current collecting property is obtained.

他の解決手段は、樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する正極基板、上記正極基板の上記空隙部内に充填された正極活物質、及び金属からなり、上記正極基板の周縁の一部を含む周縁部に接合されてなる正極リード、を有する電池用正極の製造方法であって、上記正極基板として、上記樹脂骨格を構成する上記樹脂繊維が所定の方向に配向してなる正極基板を用い、上記正極リードを、上記正極基板の周縁のうち上記樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合する接合工程を備える電池用正極の製造方法である。   Another solution is a positive electrode having a resin skeleton made of resin fibers and having a three-dimensional network structure and a metal coating layer made of metal and covering the resin skeleton, and a plurality of pores connected in three dimensions. A method for producing a positive electrode for a battery, comprising: a substrate; a positive electrode active material filled in the gap of the positive electrode substrate; and a positive electrode lead formed of a metal and bonded to a peripheral portion including a part of the peripheral edge of the positive electrode substrate. In this case, a positive electrode substrate in which the resin fibers constituting the resin skeleton are aligned in a predetermined direction is used as the positive electrode substrate, and the positive electrode lead is arranged in the orientation direction of the resin fibers in the periphery of the positive electrode substrate. It is a manufacturing method of the positive electrode for batteries provided with the joining process joined to the crossing periphery part containing the crossing periphery which cross | intersects.

本発明の製造方法では、正極基板として、樹脂骨格を構成する樹脂繊維が所定の方向に配向してなる正極基板を用い、接合工程において、正極リードを、正極基板の周縁のうち樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合する。これにより、正極基板中の電荷を正極リードに集電する際、樹脂繊維の配向方向に沿って(あるいは配向方向に近い方向に)集電可能な電池用正極を製造することができる。樹脂繊維からなる樹脂骨格を有する正極基板では、樹脂繊維の配向方向に電気抵抗が小さくなることから、本発明の製造方法により製造された電池用正極は、集電抵抗が小さくなる。
従って、本発明の製造方法によれば、集電性が良好な電池用正極を得ることができる。
In the production method of the present invention, a positive electrode substrate in which resin fibers constituting a resin skeleton are aligned in a predetermined direction is used as the positive electrode substrate, and in the bonding step, the positive electrode lead is aligned with the resin fibers in the periphery of the positive electrode substrate. It joins to the crossing periphery including the crossing periphery that intersects the direction. Thereby, when the electric charge in a positive electrode board | substrate is collected on a positive electrode lead, the positive electrode for batteries which can be collected along the orientation direction of a resin fiber (or the direction close | similar to an orientation direction) can be manufactured. In a positive electrode substrate having a resin skeleton made of resin fibers, the electrical resistance decreases in the orientation direction of the resin fibers. Therefore, the battery positive electrode manufactured by the manufacturing method of the present invention has a low current collection resistance.
Therefore, according to the production method of the present invention, it is possible to obtain a positive electrode for a battery having good current collecting properties.

さらに、上記の電池用正極の製造方法であって、前記接合工程において、前記正極基板として、矩形シート状をなし、前記交差周縁である第1辺を有する正極基板を用い、前記正極リードを、上記正極基板の前記交差周縁部である、上記第1辺を含む第1端部に接合する電池用正極の製造方法とすると良い。   Furthermore, in the method for manufacturing a positive electrode for a battery as described above, in the joining step, a positive electrode substrate having a rectangular sheet shape and having a first side that is the intersecting peripheral edge is used as the positive electrode substrate. A method for producing a positive electrode for a battery that is bonded to a first end portion including the first side, which is the intersecting peripheral edge portion of the positive electrode substrate, is preferable.

本発明の製造方法では、正極基板として、矩形シート状をなし、第1辺(交差周縁に相当する)を有する正極基板を用い、接合工程において、正極リードを、正極基板の第1辺を含む第1端部(交差周縁部に相当する)に接合する。これにより、正極基板中の電荷を正極リードに集電する際、樹脂繊維の配向方向に沿って(あるいは配向方向に近い方向に)集電可能な電池用正極を製造することができる。このため、本発明の製造方法により製造された電池用正極は、集電抵抗が小さくなる。
従って、本発明の製造方法によれば、集電性が良好な電池用正極を得ることができる。
In the manufacturing method of the present invention, a positive electrode substrate having a rectangular sheet shape and having a first side (corresponding to a crossing periphery) is used as the positive electrode substrate, and the positive electrode lead is included in the bonding step in the bonding step. Joined to the first end (corresponding to the intersecting peripheral edge). Thereby, when the electric charge in a positive electrode board | substrate is collected on a positive electrode lead, the positive electrode for batteries which can be collected along the orientation direction of a resin fiber (or the direction close | similar to an orientation direction) can be manufactured. For this reason, the positive electrode for batteries manufactured by the manufacturing method of the present invention has a small current collecting resistance.
Therefore, according to the production method of the present invention, it is possible to obtain a positive electrode for a battery having good current collecting properties.

さらに、上記いずれかの電池用正極の製造方法であって、前記接合工程の後に、前記正極基板の前記空隙部内に正極活物質を充填する充填工程と、上記正極活物質を充填してなる上記正極基板を、その厚み方向にプレス成形するプレス工程と、を備える電池用正極の製造方法とすると良い。   Furthermore, in any one of the above-described methods for producing a positive electrode for a battery, the filling step of filling a positive electrode active material into the gap portion of the positive electrode substrate after the joining step, and the filling of the positive electrode active material. A positive electrode substrate is preferably provided with a pressing step of press-molding the positive electrode substrate in the thickness direction.

本発明の製造方法では、接合工程において正極基板に正極リードを接合した後、正極基板の空隙部内に正極活物質を充填し、その後、プレス工程において、この正極基板を、その厚み方向にプレス成形する。前述のように、樹脂骨格を含む正極基板と金属板からなる正極リードとでは、延性の程度が異なることから、プレス成形時に、正極基板と正極リードとの延伸の程度の差異に起因して、正極基板と正極リードとの接合部の境界に応力が生じ、接合部の境界に亀裂が生じる虞がある。   In the manufacturing method of the present invention, the positive electrode lead is bonded to the positive electrode substrate in the bonding step, and then the positive electrode active material is filled in the gap portion of the positive electrode substrate. Then, in the pressing step, the positive electrode substrate is press-molded in the thickness direction. To do. As described above, since the degree of ductility differs between the positive electrode substrate including the resin skeleton and the positive electrode lead made of a metal plate, due to the difference in the degree of stretching between the positive electrode substrate and the positive electrode lead during press molding, There is a possibility that stress is generated at the boundary between the positive electrode substrate and the positive electrode lead and a crack is generated at the boundary between the bonded portions.

これに対し、本発明の製造方法では、前述のように、正極基板として、樹脂骨格を構成する樹脂繊維が所定の方向に配向してなる正極基板を用い、接合工程において、正極リードを、正極基板の周縁のうち樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合する。これにより、正極基板の表面に沿う方向(集電方向)に見て、正極基板と正極リードとの接合部の境界が、樹脂繊維の配向方向に直交乃至は斜交することとなる。   On the other hand, in the manufacturing method of the present invention, as described above, a positive electrode substrate in which resin fibers constituting the resin skeleton are oriented in a predetermined direction is used as the positive electrode substrate. It joins to the crossing periphery part including the crossing periphery which cross | intersects the orientation direction of a resin fiber among the periphery of a board | substrate. As a result, when viewed in the direction along the surface of the positive electrode substrate (current collection direction), the boundary of the joint between the positive electrode substrate and the positive electrode lead is orthogonal or oblique to the orientation direction of the resin fibers.

従って、前述のように、プレス成形時に、正極基板と正極リードとの接合部の境界において、正極基板の延伸を抑制できるので、正極基板と正極リードとの延伸の程度の差異を小さくできる。これにより、正極基板と正極リードとの接合部の境界に生じる応力を抑制でき、接合部の境界に亀裂が生じるのを抑制することができるので、プレス成形による集電抵抗の増大を抑制できる。
以上より、本発明の製造方法によれば、プレス成形を施して電池用正極を製造するにも拘わらず、集電性が良好な電池用正極を得ることができる。
Therefore, as described above, since the stretching of the positive electrode substrate can be suppressed at the boundary between the positive electrode substrate and the positive electrode lead at the time of press molding, the difference in the degree of stretching between the positive electrode substrate and the positive electrode lead can be reduced. Thereby, since the stress which arises in the boundary of the junction part of a positive electrode board | substrate and a positive electrode lead can be suppressed, and it can suppress that a crack arises in the boundary of a junction part, increase of the current collection resistance by press molding can be suppressed.
As described above, according to the production method of the present invention, it is possible to obtain a positive electrode for a battery with good current collection performance, even though the positive electrode for a battery is produced by press molding.

他の解決手段は、樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する矩形シート状の正極基板、上記正極基板の上記空隙部内に充填された正極活物質、及び金属からなり、上記正極基板に接合されてなる正極リード、を有する電池用正極の製造方法であって、上記正極基板として、上記正極基板において等距離をなす2点間の電気抵抗であって、上記正極基板の第1辺に直交する方向にかかる電気抵抗R1と、上記第1辺に沿う方向にかかる電気抵抗R2とが、R1/R2<1.0の関係を満たす正極基板を用い、上記正極リードを、上記正極基板のうち上記第1辺を含む第1端部に接合する接合工程を備える電池用正極の製造方法である。   Another solution includes a resin skeleton made of resin fibers and having a three-dimensional network structure, and a metal coating layer made of metal and covering the resin skeleton, and a rectangular shape having a cavity in which a plurality of holes are three-dimensionally connected. A method for producing a positive electrode for a battery, comprising: a sheet-like positive electrode substrate; a positive electrode active material filled in the gap portion of the positive electrode substrate; and a positive electrode lead formed of a metal and bonded to the positive electrode substrate, As the positive electrode substrate, an electric resistance between two points that are equidistant in the positive electrode substrate, an electric resistance R1 applied in a direction orthogonal to the first side of the positive electrode substrate, and an electric resistance applied in a direction along the first side. For a battery including a bonding step of bonding a positive electrode lead to a first end portion including the first side of the positive electrode substrate, using a positive electrode substrate satisfying a relationship of R1 / R2 <1.0 with a resistor R2. Method for producing positive electrode A.

本発明の製造方法では、接合工程において、正極基板として、正極基板の第1辺に直交する方向にかかる電気抵抗R1と、第1辺に沿う方向にかかる電気抵抗R2とが、R1/R2<1.0の関係を満たす正極基板を用いる。すなわち、第1辺に平行な方向に比べて、第1辺に直交する方向に電気抵抗が小さい正極基板を用いる。そして、正極リードを、この正極基板のうち第1辺を含む第1端部に接合する。これにより、正極基板中の電荷を正極リードに集電する集電方向を、正極基板において電気抵抗の小さい方向(第1辺に直交する方向)と一致させることができる。従って、本発明の製造方法によれば、集電抵抗が小さく、集電性が良好な電池用正極を得ることができる。   In the manufacturing method of the present invention, in the joining step, as the positive electrode substrate, the electric resistance R1 applied in the direction orthogonal to the first side of the positive electrode substrate and the electric resistance R2 applied in the direction along the first side are R1 / R2 < A positive electrode substrate satisfying the relationship of 1.0 is used. That is, a positive electrode substrate having a smaller electric resistance in a direction orthogonal to the first side than in a direction parallel to the first side is used. Then, the positive electrode lead is bonded to the first end portion including the first side of the positive electrode substrate. As a result, the current collecting direction for collecting the charges in the positive electrode substrate to the positive electrode lead can be matched with the direction in which the electric resistance is small (the direction orthogonal to the first side) in the positive electrode substrate. Therefore, according to the production method of the present invention, it is possible to obtain a positive electrode for a battery having a small current collecting resistance and a good current collecting property.

さらに、上記の電池用正極の製造方法であって、前記接合工程において、前記正極基板として、前記電気抵抗R1と前記電気抵抗R2とがR1/R2≦0.5の関係を満たす正極基板を用いる電池用正極の製造方法とするのが好ましい。
R1/R2≦0.5の関係を満たす正極基板は、特に、第1辺に直交する方向(集電方向)に電気抵抗が小さくなる。このため、この正極基板を用いて電池用正極を製造することで、特に、集電抵抗が小さく、集電性に優れた電池用正極を得ることができる。
Furthermore, in the method for manufacturing a positive electrode for a battery, in the joining step, a positive electrode substrate satisfying a relationship of R1 / R2 ≦ 0.5 between the electric resistance R1 and the electric resistance R2 is used as the positive electrode substrate. A method for producing a positive electrode for a battery is preferred.
In the positive electrode substrate satisfying the relationship of R1 / R2 ≦ 0.5, the electric resistance is particularly reduced in the direction (current collection direction) orthogonal to the first side. Therefore, by manufacturing a positive electrode for a battery using this positive electrode substrate, it is possible to obtain a positive electrode for a battery that has a particularly low current collecting resistance and excellent current collecting ability.

さらに、上記の電池用正極の製造方法であって、前記接合工程において、前記正極基板として、前記電気抵抗R1と前記電気抵抗R2とがR1/R2≧0.1の関係を満たす正極基板を用い、前記接合工程の後に、上記正極基板の前記空隙部内に正極活物質を充填する充填工程と、上記正極活物質を充填してなる上記正極基板を、その厚み方向にプレス成形するプレス工程と、を備える電池用正極の製造方法とすると良い。   Furthermore, in the method for manufacturing a positive electrode for a battery as described above, a positive electrode substrate satisfying a relationship of R1 / R2 ≧ 0.1 between the electric resistance R1 and the electric resistance R2 is used as the positive electrode substrate in the joining step. A filling step of filling a positive electrode active material in the gap of the positive electrode substrate after the bonding step, and a pressing step of press-molding the positive electrode substrate filled with the positive electrode active material in a thickness direction thereof; It is good to set it as the manufacturing method of the positive electrode for batteries provided with.

本発明の製造方法では、接合工程において、電気抵抗R1と電気抵抗R2とが、0.1≦R1/R2<1.0の関係を満たす正極基板を用いる。R1/R2<1.0の関係を満たす正極基板では、正極基板の表面に沿う方向(集電方向)に見て、正極基板と正極リードとの接合部の境界が、樹脂繊維の配向方向に直交乃至は斜交することとなる。このため、後のプレス工程において、プレス成形時に、接合部の境界において、正極基板の延伸が抑制されるので、正極基板と正極リードとの延伸の程度の差異が小さくなる。これにより、正極基板と正極リードとの接合部の境界に生じる応力を抑制でき、接合部の境界に亀裂が生じるのを抑制することができるので、プレス成形による集電抵抗の増大を抑制できる。   In the manufacturing method of the present invention, a positive electrode substrate in which the electrical resistance R1 and the electrical resistance R2 satisfy the relationship of 0.1 ≦ R1 / R2 <1.0 is used in the joining step. In the positive electrode substrate satisfying the relationship of R1 / R2 <1.0, the boundary between the positive electrode substrate and the positive electrode lead in the direction along the surface of the positive electrode substrate (current collection direction) is in the resin fiber orientation direction. It is orthogonal or oblique. For this reason, in the subsequent pressing step, the stretching of the positive electrode substrate is suppressed at the boundary of the joint at the time of press molding, so that the difference in the degree of stretching between the positive electrode substrate and the positive electrode lead is reduced. Thereby, since the stress which arises in the boundary of the junction part of a positive electrode board | substrate and a positive electrode lead can be suppressed, and it can suppress that a crack arises in the boundary of a junction part, increase of the current collection resistance by press molding can be suppressed.

ところで、正極基板のR1/R2の値が小さいほど正極の集電性は良好になるが、R1/R2の値が小さ過ぎると、すなわち、樹脂繊維の配向の強度(第1辺に直交する方向への配向の程度)が強過ぎると、プレス成形を施すことにより、正極基板自身の電気抵抗が大きく上昇してしまう。これに対し、本発明の製造方法では、R1/R2≧0.1の関係を満たす正極基板を用いている。すなわち、樹脂繊維の配向の強度を抑制した正極基板を用いている。これにより、プレス成形による正極基板自身の電気抵抗の上昇を抑制することができる。
以上より、本発明の製造方法によれば、プレス成形を施して電池用正極を製造するにも拘わらず、集電性が良好な電池用正極を得ることができる。
Incidentally, the smaller the value of R1 / R2 of the positive electrode substrate, the better the current collecting property of the positive electrode. However, when the value of R1 / R2 is too small, that is, the strength of the orientation of the resin fibers (direction perpendicular to the first side) If the degree of orientation of the positive electrode substrate is too strong, the electrical resistance of the positive electrode substrate itself is greatly increased by press molding. On the other hand, in the manufacturing method of this invention, the positive electrode board | substrate satisfy | filling the relationship of R1 / R2> = 0.1 is used. That is, a positive electrode substrate in which the strength of resin fiber orientation is suppressed is used. Thereby, the raise of the electrical resistance of positive electrode board | substrate itself by press molding can be suppressed.
As described above, according to the production method of the present invention, it is possible to obtain a positive electrode for a battery having good current collecting performance, even though the positive electrode for a battery is produced by press molding.

さらに、上記いずれかの電池用正極の製造方法であって、前記正極基板として、前記樹脂骨格が不織布である正極基板を用いる電池用正極の製造方法とすると良い。   Furthermore, in any one of the above-described methods for producing a positive electrode for a battery, the positive electrode substrate may be a method for producing a positive electrode for a battery using a positive electrode substrate in which the resin skeleton is a nonwoven fabric.

不織布を製造する際、樹脂繊維の配向を、容易に調整することができる。従って、樹脂骨格が不織布である正極基板を用いることで、集電性が良好な電池用正極を、安価に製造することができる。   When manufacturing a nonwoven fabric, the orientation of the resin fibers can be easily adjusted. Therefore, by using a positive electrode substrate whose resin skeleton is a non-woven fabric, a positive electrode for a battery having good current collecting property can be manufactured at low cost.

(実施形態)
図1は、本実施形態にかかる電池100の正面図、図2はその側面図、図3はその断面図(図2のA−A断面図に相当する)である。
本実施形態にかかる電池100は、金属製(具体的には、ニッケルめっき鋼板)の電池ケース110と、安全弁113と、電池ケース110内に配置された、極板群120(図3参照)及び電解液(図示しない)とを備える角形密閉式ニッケル水素蓄電池である。このうち、セパレータ125としては、例えば、親水化処理された合成繊維からなる不織布を用いることができる。電解液としては、例えば、KOHを主成分とする比重1.2〜1.4のアルカリ水溶液を用いることができる。
(Embodiment)
FIG. 1 is a front view of a battery 100 according to the present embodiment, FIG. 2 is a side view thereof, and FIG. 3 is a cross-sectional view thereof (corresponding to a cross-sectional view taken along line AA in FIG. 2).
The battery 100 according to this embodiment includes a battery case 110 made of metal (specifically, a nickel-plated steel plate), a safety valve 113, an electrode plate group 120 (see FIG. 3) disposed in the battery case 110, and A rectangular sealed nickel-metal hydride storage battery including an electrolytic solution (not shown). Among these, as the separator 125, the nonwoven fabric which consists of a synthetic fiber by which the hydrophilic treatment was carried out can be used, for example. As the electrolytic solution, for example, an alkaline aqueous solution having a specific gravity of 1.2 to 1.4 containing KOH as a main component can be used.

極板群120は、図3に示すように、複数の正極121と複数の負極123とが、セパレータ125を介して交互に積層されることにより構成されている。
このうち、正極121は、図4に示すように、矩形シート状をなす正極基板121kと、この正極基板121kに接合された正極リード121rとを有している。正極基板121kは、図6に拡大断面図を示すように、樹脂繊維121bからなる樹脂骨格121f(具体的には、不織布)と、これを被覆する金属被覆層121c(具体的には、ニッケルめっき)とを備え、複数の孔が三次元に連結した空隙部Kを有するニッケル被覆樹脂基板である。この正極基板121kは、その空隙部K内に正極活物質121dが充填された正極充填部121sと、正極活物質121dが充填されていない第1端部121tとを有している。正極リード121rは、矩形板状のニッケルからなり、正極基板121kの第1辺121mを含む第1端部121tに溶接されている。
As shown in FIG. 3, the electrode plate group 120 is configured by alternately laminating a plurality of positive electrodes 121 and a plurality of negative electrodes 123 via separators 125.
Among these, the positive electrode 121 includes a positive electrode substrate 121k having a rectangular sheet shape and a positive electrode lead 121r bonded to the positive electrode substrate 121k, as shown in FIG. As shown in an enlarged cross-sectional view in FIG. 6, the positive electrode substrate 121k includes a resin skeleton 121f (specifically, non-woven fabric) made of resin fibers 121b and a metal coating layer 121c (specifically, nickel plating) covering the resin skeleton 121f. ), And a nickel-coated resin substrate having a gap portion K in which a plurality of holes are three-dimensionally connected. The positive electrode substrate 121k has a positive electrode filling portion 121s filled with the positive electrode active material 121d in the gap K and a first end portion 121t not filled with the positive electrode active material 121d. The positive electrode lead 121r is made of nickel having a rectangular plate shape, and is welded to the first end 121t including the first side 121m of the positive electrode substrate 121k.

この正極121は、いずれも、正極リード121rが所定方向(図3中、右側)に延出するように配置されている。なお、本実施形態の正極基板121kでは、樹脂骨格121fを構成する樹脂繊維121bが、第1辺121mに直交する配向方向Y(図4において上下方向)に配向している。また、正極基板121kは、金属被覆層121c(ニッケルめっき)を、100g/m2以上250g/m2以下の範囲で(具体的には、200g/m2)含んでいる。これにより、ニッケルめっきのコストを抑制しつつ、電池の寿命特性を良好とすることができる。また、正極活物質121dとして、水酸化ニッケルを含む活物質を用いている。 Each of the positive electrodes 121 is arranged such that the positive electrode lead 121r extends in a predetermined direction (right side in FIG. 3). In the positive electrode substrate 121k of the present embodiment, the resin fibers 121b constituting the resin skeleton 121f are oriented in the orientation direction Y (vertical direction in FIG. 4) perpendicular to the first side 121m. The positive electrode substrate 121k includes a metal coating layer 121c (nickel plating) in a range of 100 g / m 2 to 250 g / m 2 (specifically, 200 g / m 2 ). Thereby, the lifetime characteristic of a battery can be made favorable, suppressing the cost of nickel plating. Further, an active material containing nickel hydroxide is used as the positive electrode active material 121d.

負極123は、負極基板123kの内部に水素吸蔵合金等が充填された負極充填部123sと、負極基板123kの内部に水素吸蔵合金等が充填されていない負極未充填部123tと、負極未充填部123tに溶接された負極リード123rとを有している。この負極123は、いずれも、正極リード121rとは反対方向(図3中、左側)に延出するように配置されている。   The negative electrode 123 includes a negative electrode filling portion 123s in which a hydrogen storage alloy or the like is filled in the negative electrode substrate 123k, a negative electrode unfilled portion 123t in which the hydrogen storage alloy or the like is not filled in the negative electrode substrate 123k, and a negative electrode unfilled portion And a negative electrode lead 123r welded to 123t. Each of the negative electrodes 123 is disposed so as to extend in a direction opposite to the positive electrode lead 121r (left side in FIG. 3).

電池ケース110は、図3に示すように、金属(具体的には、ニッケルめっき鋼板)からなり、矩形箱状をなす電槽111と、金属(具体的には、ニッケルめっき鋼板)からなり、矩形板状の封口部材115とを有している。このうち、電槽111の側壁部111e(図3において右側に位置する壁部)には、2つの貫通孔111hが形成されている。この2つの貫通孔111hには、電気絶縁性のシール部材145を介在させて、第1正極端子140bと第2正極端子140cとが挿設されている。また、封口部材115は、電槽111の開口端面111f上(図3参照)に当接した状態で全周溶接され、電槽111の開口部111gを封止している。これにより、封口部材115と電槽111とが一体化して、電池ケース110をなしている。   As shown in FIG. 3, the battery case 110 is made of a metal (specifically, a nickel-plated steel plate), a battery case 111 having a rectangular box shape, and a metal (specifically, a nickel-plated steel plate). And a rectangular plate-shaped sealing member 115. Among these, two through holes 111h are formed in the side wall portion 111e (the wall portion located on the right side in FIG. 3) of the battery case 111. A first positive terminal 140b and a second positive terminal 140c are inserted into the two through holes 111h with an electrically insulating seal member 145 interposed therebetween. Further, the sealing member 115 is welded all around in a state of being in contact with the opening end surface 111f (see FIG. 3) of the battery case 111, and seals the opening 111g of the battery case 111. Thereby, the sealing member 115 and the battery case 111 are integrated to form the battery case 110.

また、図3に示すように、正極121の正極リード121rは、いずれも、矩形板状をなす正極集電部材130の内側面130bに、電子ビーム溶接等によりロウ付け接合されている。さらに、正極集電部材130は、レーザー溶接等により、第1正極端子140b及び第2正極端子140cに接合されている。これにより、第1正極端子140b及び第2正極端子140cと正極121とが、電気的に接続される。また、負極123の負極リード123rは、いずれも、矩形板状をなす封口部材115の内側面115bに、電子ビーム溶接等により接合されている。これにより、本実施形態の電池100では、封口部材115を含めた電池ケース110全体が負極となる。   Further, as shown in FIG. 3, each of the positive electrode leads 121r of the positive electrode 121 is brazed to the inner side surface 130b of the positive electrode current collecting member 130 having a rectangular plate shape by electron beam welding or the like. Furthermore, the positive electrode current collecting member 130 is joined to the first positive electrode terminal 140b and the second positive electrode terminal 140c by laser welding or the like. Thereby, the 1st positive electrode terminal 140b and the 2nd positive electrode terminal 140c, and the positive electrode 121 are electrically connected. Further, the negative electrode lead 123r of the negative electrode 123 is joined to the inner side surface 115b of the sealing member 115 having a rectangular plate shape by electron beam welding or the like. Thereby, in the battery 100 of this embodiment, the battery case 110 whole including the sealing member 115 becomes a negative electrode.

次に、本実施形態の電池100の製造方法について、以下に説明する。
まず、図7に示すように、矩形シート状をなす正極基板121kを用意した。この正極基板121kは、図8に拡大断面図を示すように、樹脂繊維121bからなる樹脂骨格121f(具体的には、不織布)と、これを被覆する金属被覆層121c(具体的には、ニッケルめっき)とを備え、複数の孔が三次元に連結した空隙部Kを有するニッケル被覆樹脂基板である。
Next, a method for manufacturing the battery 100 of the present embodiment will be described below.
First, as shown in FIG. 7, a positive electrode substrate 121k having a rectangular sheet shape was prepared. As shown in the enlarged sectional view of FIG. 8, the positive electrode substrate 121k includes a resin skeleton 121f (specifically, non-woven fabric) made of resin fibers 121b and a metal coating layer 121c (specifically, nickel) covering the resin skeleton 121f. A nickel-coated resin substrate having a gap K in which a plurality of holes are three-dimensionally connected.

さらに、この正極基板121kでは、樹脂骨格121fを構成する樹脂繊維121bが、第1辺121mに直交する配向方向Y(図7において上下方向)に配向している。
なお、正極基板121kにかかる樹脂繊維121bの配向方向は、公知の手法により測定することができる。例えば、正極基板121kについてX線CT画像や、透過電子顕微鏡のCT画像を取得し、これらの画像を基に、繊維3D計測ソフト、TRI/3D−VOL−FBR(ラトックシステムエンジニアリング製)を用いて、樹脂繊維121bの配向方向を計測することができる。
Further, in the positive electrode substrate 121k, the resin fibers 121b constituting the resin skeleton 121f are oriented in the orientation direction Y (vertical direction in FIG. 7) perpendicular to the first side 121m.
In addition, the orientation direction of the resin fiber 121b concerning the positive electrode substrate 121k can be measured by a well-known method. For example, an X-ray CT image and a transmission electron microscope CT image are acquired for the positive electrode substrate 121k, and fiber 3D measurement software, TRI / 3D-VOL-FBR (manufactured by Ratok System Engineering) is used based on these images. The orientation direction of the resin fiber 121b can be measured.

ここで、この正極基板121kについて、図7に示すように、正極基板121kにおいて等距離をなす2点間の電気抵抗であって、第1辺121mに直交する方向にかかるI−J間の電気抵抗R1と、第1辺121mに平行な方向にかかるL−M間の電気抵抗R2とを測定した。具体的には、I−J間に1Aの電流を流したときのI−J間の電圧を測定し、これに基づいて電気抵抗R1を算出した。これと同様に、L−M間の電気抵抗R2を測定した。電気抵抗R1とR2との比を算出したところ、0.1≦R1/R2<1.0の関係を満たしていた。   Here, regarding the positive electrode substrate 121k, as shown in FIG. 7, it is the electric resistance between two points that are equidistant in the positive electrode substrate 121k, and the electric current between I and J in the direction orthogonal to the first side 121m. The resistance R1 and the electrical resistance R2 between LM in the direction parallel to the first side 121m were measured. Specifically, the voltage between I and J when a current of 1 A was passed between I and J was measured, and based on this, the electric resistance R1 was calculated. Similarly, the electrical resistance R2 between LM was measured. When the ratio between the electric resistances R1 and R2 was calculated, the relationship of 0.1 ≦ R1 / R2 <1.0 was satisfied.

次いで、接合工程において、正極基板121kの第1辺121mを含む第1端部121tに、矩形板状でニッケルからなる正極リード121r接合した。なお、第1端部121tは、予め、その厚み方向(図4において紙面に直交する方向)に圧延されているため、空隙部が消失している。   Next, in the bonding step, a positive electrode lead 121r made of nickel in a rectangular plate shape was bonded to the first end 121t including the first side 121m of the positive electrode substrate 121k. In addition, since the 1st end part 121t is previously rolled in the thickness direction (direction orthogonal to a paper surface in FIG. 4), the space | gap part has lose | disappeared.

次に、充填工程に進み、正極基板121kの空隙部内に、正極活物質121d(水酸化ニッケルなど)を充填した。なお、このとき、正極リード121r接合した第1端部121tは、前述のように、圧延により空隙部を消失させているので、正極活物質121dが充填されない。次いで、プレス工程に進み、正極活物質121dを充填した正極基板121kを、それぞれ、その厚み方向(図4において紙面に直交する方向)にプレス成形した。これにより、図4、図5に示す正極121を得た。   Next, proceeding to a filling step, the positive electrode active material 121d (such as nickel hydroxide) was filled in the gap of the positive electrode substrate 121k. At this time, the first end portion 121t joined to the positive electrode lead 121r is not filled with the positive electrode active material 121d because the void portion is eliminated by rolling as described above. Next, proceeding to a pressing step, each of the positive electrode substrates 121k filled with the positive electrode active material 121d was press-molded in the thickness direction (a direction perpendicular to the paper surface in FIG. 4). Thereby, the positive electrode 121 shown in FIGS. 4 and 5 was obtained.

次に、上述のように製造した正極121と負極123との間にセパレータ125を介在させつつ、正極121と負極123とを交互に積層して、極板群120を形成する。次いで、電子ビーム溶接により、正極リード121rと正極集電部材130とを接合した。その後、極板群120のうち負極123の負極リード123rを、封口部材115の内側面115b側に、電子ビーム溶接により接合する。また、これとは別に、電槽111に第1正極端子140b及び第2正極端子140cを固着する。具体的には、電槽111の貫通穴111hにシール部材145を装着すると共に、第1正極端子140b及び第2正極端子140cの極柱部141を外側から挿入する。次いで、極柱部141の筒内に流体圧をかけて、極柱部141の一端側を径方向外側に膨出させ、更に軸方向に圧縮変形させて、圧縮変形部141hを形成する。これにより、第1正極端子140b及び第2正極端子140cが、電槽111と電気的に絶縁しつつ、電槽111に固着される。   Next, the positive electrode 121 and the negative electrode 123 are alternately laminated while the separator 125 is interposed between the positive electrode 121 and the negative electrode 123 manufactured as described above, thereby forming the electrode plate group 120. Next, the positive electrode lead 121r and the positive electrode current collector 130 were joined by electron beam welding. Thereafter, the negative electrode lead 123r of the negative electrode 123 in the electrode plate group 120 is joined to the inner surface 115b side of the sealing member 115 by electron beam welding. Separately, the first positive terminal 140 b and the second positive terminal 140 c are fixed to the battery case 111. Specifically, the seal member 145 is attached to the through hole 111h of the battery case 111, and the pole column portions 141 of the first positive terminal 140b and the second positive terminal 140c are inserted from the outside. Next, fluid pressure is applied to the inside of the pole column portion 141 to bulge one end side of the pole column portion 141 radially outward and further compressively deform in the axial direction to form a compression deformed portion 141h. Accordingly, the first positive terminal 140b and the second positive terminal 140c are fixed to the battery case 111 while being electrically insulated from the battery case 111.

次に、極板群120と封口部材115と正極集電部材130とが接合されてなる接合体のうち、正極集電部材130及び極板群120を、開口部111gから電槽111内に挿入すると共に、封口部材115で電槽111に蓋をする。次いで、外部からレーザを照射して、封口部材115と電槽111とを接合し、電槽111を封口する。次いで、第1正極端子140b及び第2正極端子140cの外側からその極柱部141の凹みに向けてレーザを照射し、極柱部141の圧縮変形部141hと正極集電部材130とを接合する。次いで、電槽111の天井部111aに位置する注入口111kから電解液を注入し、注入口111kを閉鎖するように安全弁113を取り付ける。その後、所定の工程を経て、本実施形態の電池100が完成する。   Next, among the joined body formed by joining the electrode plate group 120, the sealing member 115, and the positive electrode current collecting member 130, the positive electrode current collecting member 130 and the electrode plate group 120 are inserted into the battery case 111 from the opening 111g. At the same time, the battery case 111 is covered with the sealing member 115. Next, laser is irradiated from the outside, the sealing member 115 and the battery case 111 are joined, and the battery case 111 is sealed. Next, the laser is irradiated from the outside of the first positive electrode terminal 140b and the second positive electrode terminal 140c toward the depression of the pole column portion 141, and the compression deformation portion 141h of the pole column portion 141 and the positive electrode current collecting member 130 are joined. . Next, an electrolyte is injected from an inlet 111k located in the ceiling 111a of the battery case 111, and a safety valve 113 is attached so as to close the inlet 111k. Then, the battery 100 of this embodiment is completed through a predetermined process.

(実施例と比較例)
次に、本実施形態(実施例1〜4)の正極121の集電性について調査した。
具体的には、正極基板を構成する樹脂繊維の配向が異なる6種類の正極サンプル21〜26(実施例1〜4及び比較例1,2)を製造し、これらの集電性を比較した。
(Examples and comparative examples)
Next, the current collection property of the positive electrode 121 of the present embodiment (Examples 1 to 4) was investigated.
Specifically, six kinds of positive electrode samples 21 to 26 (Examples 1 to 4 and Comparative Examples 1 and 2) having different orientations of resin fibers constituting the positive electrode substrate were manufactured, and their current collecting properties were compared.

(実施例1)
本実施例1では、まず、図9に示すように、縦20mm×横20mmの矩形シート状をなすニッケル被覆樹脂基板21kを用意した。本実施例1のニッケル被覆樹脂基板21kでは、樹脂骨格を構成する樹脂繊維が、第1辺21mに直交する配向方向Y(図9において上下方向)に配向している。
Example 1
In Example 1, first, as shown in FIG. 9, a nickel-coated resin substrate 21k having a rectangular sheet shape of 20 mm long × 20 mm wide was prepared. In the nickel-coated resin substrate 21k of Example 1, the resin fibers constituting the resin skeleton are oriented in the orientation direction Y (vertical direction in FIG. 9) perpendicular to the first side 21m.

次いで、このニッケル被覆樹脂基板21kについて、図9に示すように、第1辺21mの中央部Cと第2辺21nの中央部Dとの2点間の電気抵抗R1を測定した。具体的には、C−D間に1Aの電流を流したときのC−D間の電圧を測定し、これに基づいて電気抵抗R1を算出した。これと同様に、第3辺21pの中央部Eと第4辺21qの中央部Fとの2点間の電気抵抗R2を測定した。電気抵抗R1とR2との比を算出したところ、R1/R2=0.1であった。   Next, for this nickel-coated resin substrate 21k, as shown in FIG. 9, the electrical resistance R1 between two points of the central part C of the first side 21m and the central part D of the second side 21n was measured. Specifically, the voltage between CD when a current of 1 A was passed between CD was measured, and based on this, the electric resistance R1 was calculated. Similarly, the electrical resistance R2 between the two points of the central part E of the third side 21p and the central part F of the fourth side 21q was measured. When the ratio between the electric resistances R1 and R2 was calculated, R1 / R2 = 0.1.

(実施例2〜4)
本実施例2〜4では、図9に示すように、縦20mm×横20mmの矩形シート状をなすニッケル被覆樹脂基板22k〜24kを用意した。なお、実施例2〜4のニッケル被覆樹脂基板22k〜24kでも、実施例1と同様に、樹脂骨格を構成する樹脂繊維が、第1辺21mに直交する配向方向Y(図9において上下方向)に配向している。これらのニッケル被覆樹脂基板22k〜24kについて、実施例1と同様にして、電気抵抗R1,R2を測定したところ、順に、R1/R2=0.15,0.5,0.8となった。
(Examples 2 to 4)
In Examples 2 to 4, as shown in FIG. 9, nickel-coated resin substrates 22k to 24k having a rectangular sheet shape of 20 mm long × 20 mm wide were prepared. In the nickel-coated resin substrates 22k to 24k of Examples 2 to 4, as in Example 1, the resin fibers constituting the resin skeleton are oriented in the direction Y (vertical direction in FIG. 9) perpendicular to the first side 21m. Oriented. With respect to these nickel-coated resin substrates 22k to 24k, when the electrical resistances R1 and R2 were measured in the same manner as in Example 1, they were R1 / R2 = 0.15, 0.5, and 0.8 in this order.

(比較例1,2)
比較例1,2では、図9に示すように、縦20mm×横20mmの矩形シート状をなすニッケル被覆樹脂基板25k,26kを用意した。なお、図示していないが、比較例1,2のニッケル被覆樹脂基板25k,26kでは、実施例1〜4と異なり、樹脂骨格を構成する樹脂繊維が、第1辺21mに直交乃至は斜交する方向(図9において上下斜め方向)に配向していない。
(Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, as shown in FIG. 9, nickel-coated resin substrates 25k and 26k having a rectangular sheet shape of 20 mm long × 20 mm wide were prepared. Although not shown, in the nickel-coated resin substrates 25k and 26k of Comparative Examples 1 and 2, unlike Examples 1 to 4, the resin fibers constituting the resin skeleton are orthogonal to or obliquely crossed with the first side 21m. It is not oriented in the direction (up and down diagonal direction in FIG. 9).

具体的には、比較例1のニッケル被覆樹脂基板25kでは、樹脂骨格を構成する樹脂繊維の配向が極めて弱く、配向方向を特定するのが困難であった。一方、比較例2のニッケル被覆樹脂基板26kでは、樹脂骨格を構成する樹脂繊維が、第1辺21mに平行な方向(図9において左右方向)に配向していた。これらのニッケル被覆樹脂基板25k,26kについて、実施例1と同様にして電気抵抗R1,R2を測定したところ、順に、R1/R2=1.0,1.5となった。   Specifically, in the nickel-coated resin substrate 25k of Comparative Example 1, the orientation of the resin fibers constituting the resin skeleton was extremely weak, and it was difficult to specify the orientation direction. On the other hand, in the nickel-coated resin substrate 26k of Comparative Example 2, the resin fibers constituting the resin skeleton were oriented in a direction parallel to the first side 21m (left and right direction in FIG. 9). With respect to these nickel-coated resin substrates 25k and 26k, when the electrical resistances R1 and R2 were measured in the same manner as in Example 1, they were R1 / R2 = 1.0 and 1.5 in this order.

次に、実施例1〜4及び比較例1,2のニッケル被覆樹脂基板21k〜26kを用いて、実施例1〜4及び比較例1,2にかかる正極サンプル21〜26を製造した。
まず、接合工程において、実施例1のニッケル被覆樹脂基板21kについて、第1辺21mを含む第1端部21tに、縦3mm×横20mmの矩形板状でニッケルからなる正極リード21r接合した。なお、第1端部21tは、予め、その厚み方向(図9において紙面に直交する方向)に圧延されているため、空隙部が消失している。
Next, positive electrode samples 21 to 26 according to Examples 1 to 4 and Comparative Examples 1 and 2 were manufactured using the nickel-coated resin substrates 21k to 26k of Examples 1 to 4 and Comparative Examples 1 and 2.
First, in the joining step, the nickel-coated resin substrate 21k of Example 1 was joined to the first end 21t including the first side 21m in a rectangular plate shape of 3 mm long × 20 mm wide and made of nickel. In addition, since the first end portion 21t is previously rolled in the thickness direction (a direction orthogonal to the paper surface in FIG. 9), the void portion disappears.

次に、充填工程に進み、ニッケル被覆樹脂基板21kの空隙部内に、正極活物質(水酸化ニッケルなど)を充填した。なお、このとき、正極リード21r接合した第1端部21tは、前述のように、圧延により空隙部を消失させているので、正極活物質が充填されない。その後、図10に示すように、正極リード21rの第1辺21rmの中央部Gとニッケル被覆樹脂基板21kの第2辺21nの中央部Dとの2点間の電気抵抗R3を測定した。具体的には、G−D点間に1Aの電流を流したときのG−D間の電圧を測定し、これに基づいて、プレス前抵抗R3を算出した。   Next, proceeding to a filling step, a positive electrode active material (such as nickel hydroxide) was filled into the voids of the nickel-coated resin substrate 21k. At this time, the first end portion 21t joined to the positive electrode lead 21r is not filled with the positive electrode active material because the void portion is eliminated by rolling as described above. After that, as shown in FIG. 10, the electrical resistance R3 between two points of the central part G of the first side 21rm of the positive electrode lead 21r and the central part D of the second side 21n of the nickel-coated resin substrate 21k was measured. Specifically, the voltage between GD when a current of 1 A was passed between points GD was measured, and based on this, the pre-press resistance R3 was calculated.

次いで、プレス工程に進み、正極活物質を充填したニッケル被覆樹脂基板21k〜26kを、それぞれ、その厚み方向にプレス成形した。これにより、図10に示す、実施例1にかかる正極サンプル21を得た。その後、図10に示すように、G−D点間に1Aの電流を流したときのG−D間の電圧を測定し、これに基づいて、プレス後抵抗R4を算出した。   Subsequently, it progressed to the press process and the nickel covering resin board | substrates 21k-26k with which the positive electrode active material was filled were press-molded in the thickness direction, respectively. This obtained the positive electrode sample 21 concerning Example 1 shown in FIG. Then, as shown in FIG. 10, the voltage between GD when 1 A of current was sent between GD points was measured, and based on this, resistance R4 after a press was computed.

その後、実施例2〜4及び比較例1,2にかかる正極サンプル22〜26についても、実施例1と同様にして製造すると共に、プレス前抵抗R3及びプレス後抵抗R4を得た。これらの結果に基づいて、実施例1〜4及び比較例1,2にかかる正極サンプル21〜26の集電性を評価した。これらの結果を表1に示す。なお、表1では、比較例2のプレス前抵抗R3の電気抵抗を基準(100)として、その他のプレス前抵抗R3及びプレス後抵抗R4を相対値として表している。   Thereafter, positive electrode samples 22 to 26 according to Examples 2 to 4 and Comparative Examples 1 and 2 were produced in the same manner as in Example 1, and a pre-press resistance R3 and a post-press resistance R4 were obtained. Based on these results, the current collecting properties of the positive electrode samples 21 to 26 according to Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated. These results are shown in Table 1. In Table 1, the electrical resistance of the pre-press resistance R3 of Comparative Example 2 is represented as a reference (100), and the other pre-press resistance R3 and post-press resistance R4 are represented as relative values.

Figure 2007305345
Figure 2007305345

まず、実施例1〜4及び比較例1,2にかかる正極サンプル21〜26について、プレス前抵抗R3を比較する。表1に示すように、比較例1,2では、プレス前抵抗R3が82以上(具体的には、82,100)であったのに対し、実施例1〜4では、プレス前抵抗R3が73以下(具体的には、26,32,41,73)であった。さらに、プレス後抵抗R4を比較すると、比較例1,2では、プレス後抵抗R4が86以上(具体的には、86,106)であったのに対し、実施例1〜4では、プレス後抵抗R4が72以下(具体的には、27,30,40,72)であった。これらの結果より、実施例1〜4の正極サンプル21〜24は、比較例1,2の正極サンプル25,26に比べて、集電性が良好であるといえる。   First, for the positive electrode samples 21 to 26 according to Examples 1 to 4 and Comparative Examples 1 and 2, the pre-press resistance R3 is compared. As shown in Table 1, in Comparative Examples 1 and 2, the pre-press resistance R3 was 82 or more (specifically 82, 100), whereas in Examples 1 to 4, the pre-press resistance R3 was 73 or less (specifically, 26, 32, 41, 73). Further, when comparing the post-press resistance R4, in Comparative Examples 1 and 2, the post-press resistance R4 was 86 or more (specifically 86, 106), whereas in Examples 1 to 4, the post-press resistance R4 The resistance R4 was 72 or less (specifically, 27, 30, 40, 72). From these results, it can be said that the positive electrode samples 21 to 24 of Examples 1 to 4 have better current collecting performance than the positive electrode samples 25 and 26 of Comparative Examples 1 and 2.

これは、ニッケル被覆樹脂基板(正極基板)を構成する樹脂繊維の配向と、正極リード21rとの接合位置との関係の違いによるものと考えられる。具体的には、実施例1〜4では、比較例1,2と異なり、図10に示すように、ニッケル被覆樹脂基板21k〜24kの樹脂骨格を構成する樹脂繊維が、第1辺21mに直交する配向方向Y(図10において上下方向)に配向している。さらに、正極リード21rを、第1辺21mを含む第1端部21tに接合している。これにより、ニッケル被覆樹脂基板21k〜24k中の電荷を正極リード21rに集電する際、樹脂繊維の配向方向Y(図10において上下方向)に沿って集電することができるので、集電抵抗(プレス前抵抗R3及びプレス後抵抗R4)を小さくすることができたと考えられる。   This is considered to be due to the difference in the relationship between the orientation of the resin fibers constituting the nickel-coated resin substrate (positive electrode substrate) and the bonding position with the positive electrode lead 21r. Specifically, in Examples 1 to 4, unlike Comparative Examples 1 and 2, as shown in FIG. 10, the resin fibers constituting the resin skeleton of the nickel-coated resin substrates 21k to 24k are orthogonal to the first side 21m. The orientation is in the orientation direction Y (vertical direction in FIG. 10). Further, the positive electrode lead 21r is joined to the first end 21t including the first side 21m. Thus, when the charges in the nickel-coated resin substrates 21k to 24k are collected on the positive electrode lead 21r, the current can be collected along the resin fiber orientation direction Y (vertical direction in FIG. 10). It is considered that (the resistance R3 before pressing and the resistance R4 after pressing) could be reduced.

さらに詳細に検討すると、比較例1,2では、プレス前でも電気抵抗(プレス前抵抗R3)が82以上と大きかったにも拘わらず、プレスした後は、さらに電気抵抗(プレス後抵抗R4)が上昇し、86以上となってしまった。これに対し、実施例1〜4では、プレス前の電気抵抗(プレス前抵抗R3)が73以下と小さく、プレスした後も、電気抵抗(プレス後抵抗R4)が72以下と小さくすることができた。これは、次のような理由によるものと考えられる。   Examining in more detail, in Comparative Examples 1 and 2, even though the electrical resistance (pre-press resistance R3) was as large as 82 or more before pressing, the electrical resistance (post-press resistance R4) was further increased after pressing. It has risen to over 86. In contrast, in Examples 1 to 4, the electrical resistance before pressing (pre-pressing resistance R3) is as small as 73 or less, and even after pressing, the electrical resistance (resistance after pressing R4) can be as small as 72 or less. It was. This is considered due to the following reasons.

比較例1,2では、ニッケル被覆樹脂基板25k,26k(正極基板)の表面に沿う方向(図10において紙面に平行な方向)に見て、ニッケル被覆樹脂基板25k,26kと正極リード21rとの接合部21vの境界21wが、樹脂繊維の配向方向に直交乃至は斜交しないこととなる。特に、比較例2では、ニッケル被覆樹脂基板26kと正極リード21rとの接合部21vの境界21wが、樹脂繊維の配向方向(図10において左右方向)に平行となる。ニッケル被覆樹脂基板25k,26kは、樹脂繊維からなる樹脂骨格を有しているため、プレス成形を施されたとき、特に、樹脂繊維が配向する方向に大きく延伸する。これにより、後のプレス工程において、プレス成形時に、接合部21vの境界において、ニッケル被覆樹脂基板25k,26kの延伸が大きくなるので、ニッケル被覆樹脂基板25k,26kと正極リード21rとの延伸の程度の差異が大きくなる。このために、ニッケル被覆樹脂基板25k,26kと正極リード21rの接合部21vの境界21wに大きな応力が生じ、接合部21vの境界21wに微細な亀裂が多数生じてしまった。これが原因で、集電抵抗(プレス後抵抗R4)が増大したと考えられる。   In Comparative Examples 1 and 2, when viewed in the direction along the surface of the nickel-coated resin substrates 25k and 26k (positive electrode substrate) (the direction parallel to the paper surface in FIG. 10), the nickel-coated resin substrates 25k and 26k and the positive electrode lead 21r The boundary 21w of the joint portion 21v is not orthogonal or oblique to the orientation direction of the resin fiber. In particular, in Comparative Example 2, the boundary 21w of the joint portion 21v between the nickel-coated resin substrate 26k and the positive electrode lead 21r is parallel to the resin fiber orientation direction (left-right direction in FIG. 10). Since the nickel-coated resin substrates 25k and 26k have a resin skeleton made of resin fibers, they are greatly stretched particularly in the direction in which the resin fibers are oriented, when press molding is performed. Thereby, in the subsequent pressing step, the extension of the nickel-coated resin substrates 25k and 26k becomes large at the boundary of the joint portion 21v at the time of press molding, so the extent of the extension between the nickel-coated resin substrates 25k and 26k and the positive electrode lead 21r. The difference becomes larger. For this reason, a large stress is generated at the boundary 21w of the joint portion 21v between the nickel-coated resin substrates 25k and 26k and the positive electrode lead 21r, and many fine cracks are generated at the boundary 21w of the joint portion 21v. It is considered that the current collection resistance (post-press resistance R4) increased due to this.

これに対し、実施例1〜4では、ニッケル被覆樹脂基板21k〜24k(正極基板)の表面に沿う方向(図10において紙面に平行な方向)に見て、ニッケル被覆樹脂基板21k〜24kと正極リード21rとの接合部21vの境界21wが、樹脂繊維の配向方向Y(図10において上下方向)に直交することとなる。このため、後のプレス工程において、プレス成形時に、接合部21vの境界において、ニッケル被覆樹脂基板21k〜24kの延伸が抑制されるので、ニッケル被覆樹脂基板21k〜24kと正極リード21rとの延伸の程度の差異が小さくなる。これにより、ニッケル被覆樹脂基板21k〜24kと正極リード21rの接合部21vの境界21wに生じる応力を抑制でき、接合部21vの境界21wに亀裂が生じるのを抑制することができるので、プレス成形による集電抵抗(プレス後抵抗R4)の増大を抑制できたと考えられる。   In contrast, in Examples 1 to 4, the nickel-coated resin substrates 21k to 24k and the positive electrode are seen in the direction along the surface of the nickel-coated resin substrates 21k to 24k (positive electrode substrate) (the direction parallel to the paper surface in FIG. 10). The boundary 21w of the joint portion 21v with the lead 21r is orthogonal to the resin fiber orientation direction Y (vertical direction in FIG. 10). For this reason, in the subsequent pressing step, since the stretching of the nickel-coated resin substrates 21k to 24k is suppressed at the boundary of the joint portion 21v during press molding, the stretching of the nickel-coated resin substrates 21k to 24k and the positive electrode lead 21r is prevented. The difference in degree is reduced. Thereby, since the stress which arises in the boundary 21w of the junction part 21v of the nickel covering resin substrate 21k-24k and the positive electrode lead 21r can be suppressed, and it can suppress that a crack arises in the boundary 21w of the junction part 21v, by press molding It is thought that the increase in the current collecting resistance (resistance R4 after pressing) could be suppressed.

また、実施例1〜4及び比較例1,2の結果より、ニッケル被覆樹脂基板(正極基板)のR1/R2の値が小さいほど、正極の集電性は良好になる傾向にあると言える。具体的には、表1からわかるように、R1/R2の値を1.0より小さくすると、正極の集電性は良好になるといえる。特に、R1/R2≦0.5とすることで、正極の集電抵抗を極めて小さくすることができ、優れた集電性を得ることができるといえる。   Moreover, it can be said from the results of Examples 1 to 4 and Comparative Examples 1 and 2 that the current collecting property of the positive electrode tends to be better as the R1 / R2 value of the nickel-coated resin substrate (positive electrode substrate) is smaller. Specifically, as can be seen from Table 1, when the value of R1 / R2 is smaller than 1.0, it can be said that the current collecting property of the positive electrode is improved. In particular, it can be said that by setting R1 / R2 ≦ 0.5, the current collecting resistance of the positive electrode can be extremely reduced, and excellent current collecting properties can be obtained.

さらに、実施例1〜4の結果について比較検討する。実施例2〜4では、プレス後抵抗R4の値が、プレス前抵抗R3に比べて小さくなった。これは、上述のように、プレス成形による接合部21vの電気抵抗の増大を抑制できたことに加えて、プレス成形により、ニッケル被覆樹脂基板22k〜24kと正極リード21rとが密着し、両者の接触抵抗を小さくすることができたためと考えられる。詳細には、プレス成形によるニッケル被覆樹脂基板22k〜24kと正極リード21rとの接触抵抗の低減量よりも、プレス成形による接合部21vの電気抵抗の増加量を小さくすることができたためと考えられる。   Further, the results of Examples 1 to 4 will be compared and examined. In Examples 2 to 4, the value of the post-press resistance R4 was smaller than the pre-press resistance R3. As described above, in addition to being able to suppress an increase in the electrical resistance of the joint 21v due to press molding, the nickel-coated resin substrates 22k to 24k and the positive electrode lead 21r are brought into close contact with each other by press molding. This is probably because the contact resistance could be reduced. More specifically, it is considered that the increase in the electrical resistance of the joint portion 21v by the press molding can be made smaller than the reduction amount of the contact resistance between the nickel-coated resin substrates 22k to 24k and the positive electrode lead 21r by the press molding. .

これに対し、実施例1では、プレス後抵抗R4の値が、プレス前抵抗R3に比べて大きくなった。これは、実施例2〜4と異なり、プレス成形によるニッケル被覆樹脂基板21kと正極リード21rとの接触抵抗の低減量よりも、プレス成形による接合部21vの電気抵抗の増加量が大きくなったためと考えられる。これは、次のような理由によるものと考えられる。   On the other hand, in Example 1, the value of the post-press resistance R4 was larger than the pre-press resistance R3. This is because, unlike Examples 2 to 4, the increase in the electrical resistance of the joint 21v by press molding was larger than the reduction in contact resistance between the nickel-coated resin substrate 21k and the positive electrode lead 21r by press molding. Conceivable. This is considered due to the following reasons.

前述のように、ニッケル被覆樹脂基板(正極基板)のR1/R2の値が小さいほど、正極の集電性は良好になる。しかしながら、R1/R2の値が小さ過ぎると、すなわち、樹脂繊維の配向の強度(第1辺21mに直交する方向への配向の程度)が強過ぎると、プレス成形を施すことにより、正極基板自身の電気抵抗が大きく上昇してしまう。この理由は、R1/R2の値が小さ過ぎる正極基板では、第1辺に平行な方向に延びる樹脂繊維が極端に少ないことから、第1辺に平行な方向にかかる力に対して強度が低い。それ故、プレス成形を施した際、第1辺に平行な方向に延びる樹脂繊維の一部が大きく伸ばされたり断裂することで、これを被覆する金属被覆層(ニッケルめっき)の一部が断裂するためと考えられる。このために、R1/R2の値を0.1と小さくした実施例1では、実施例2〜4と異なり、プレス後抵抗R4の値が、プレス前抵抗R3に比べて大きくなったと考えられる。この結果より、R1/R2の値を0.1よりもさらに小さくすれば、より一層、プレス成形による正極基板自身の電気抵抗の上昇が大きくなり、良好な正極の集電性が得られなくなる虞がある。従って、R1/R2の値は、0.1以上とするのが好ましいと言える。   As described above, the smaller the R1 / R2 value of the nickel-coated resin substrate (positive electrode substrate), the better the current collecting property of the positive electrode. However, if the value of R1 / R2 is too small, that is, if the strength of the orientation of the resin fibers (the degree of orientation in the direction perpendicular to the first side 21m) is too strong, the positive electrode substrate itself is obtained by performing press molding. The electrical resistance of the will greatly increase. This is because, in the positive electrode substrate having a too small value of R1 / R2, the strength is low with respect to the force applied in the direction parallel to the first side because there are extremely few resin fibers extending in the direction parallel to the first side. . Therefore, when press molding is performed, part of the resin fiber extending in the direction parallel to the first side is greatly stretched or torn, so that part of the metal coating layer (nickel plating) covering this part is torn. It is thought to do. For this reason, in Example 1 in which the value of R1 / R2 is reduced to 0.1, unlike in Examples 2 to 4, it is considered that the value of post-press resistance R4 is larger than the pre-press resistance R3. From this result, if the value of R1 / R2 is further made smaller than 0.1, the increase in electrical resistance of the positive electrode substrate itself due to press molding is further increased, and there is a possibility that good positive electrode current collecting properties cannot be obtained. There is. Therefore, it can be said that the value of R1 / R2 is preferably 0.1 or more.

以上より、0.1≦R1/R2<1.0の関係を満たす正極基板を用いることで、正極の集電性を良好にできるといえる。特に、0.1≦R1/R2≦0.5の関係を満たす正極基板を用いることで、集電性に優れた正極を得ることができるといえる。   From the above, it can be said that by using a positive electrode substrate that satisfies the relationship of 0.1 ≦ R1 / R2 <1.0, the current collecting property of the positive electrode can be improved. In particular, it can be said that by using a positive electrode substrate that satisfies the relationship of 0.1 ≦ R1 / R2 ≦ 0.5, it is possible to obtain a positive electrode having excellent current collecting properties.

以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.

例えば、実施形態では、正極基板121kとして、不織布にニッケルめっきを施したニッケル被覆樹脂基板を用いて、正極121を製造した。しかしながら、本発明は、樹脂繊維からなる樹脂骨格を金属被覆層で被覆した正極基板を用いる正極であれば、いずれについても、適用することができる。
また、実施形態では、電池100として、ニッケル水素蓄電池を例示して説明したが、本発明は、ニッケル水素蓄電池に限らず、樹脂繊維からなる樹脂骨格を有する正極基板を備える電池であれば、いずれの電池についても、適用することができる。
For example, in the embodiment, the positive electrode 121 is manufactured using a nickel-coated resin substrate obtained by applying nickel plating to a nonwoven fabric as the positive electrode substrate 121k. However, the present invention can be applied to any positive electrode that uses a positive electrode substrate in which a resin skeleton made of resin fibers is coated with a metal coating layer.
In the embodiment, the nickel hydride storage battery has been described as an example of the battery 100. However, the present invention is not limited to the nickel hydride storage battery, and any battery including a positive electrode substrate having a resin skeleton made of resin fibers may be used. This battery can also be applied.

実施形態にかかる電池100の正面図である。1 is a front view of a battery 100 according to an embodiment. 実施形態にかかる電池100の側面図である。It is a side view of the battery 100 concerning embodiment. 実施形態にかかる電池100の断面図であり、図2のA−A断面図に相当する。It is sectional drawing of the battery 100 concerning embodiment, and is equivalent to AA sectional drawing of FIG. 実施形態にかかる正極121の上面図である。It is a top view of the positive electrode 121 concerning embodiment. 実施形態にかかる正極121の側面図である。It is a side view of the positive electrode 121 concerning embodiment. 実施形態にかかる正極121の拡大断面図であり、図4のB−B拡大断面図に相当する。It is an expanded sectional view of the positive electrode 121 concerning embodiment, and is equivalent to the BB expanded sectional view of FIG. 実施形態にかかる正極基板121kの上面図である。It is a top view of the positive electrode substrate 121k according to the embodiment. 実施形態にかかる正極基板121kの拡大断面図であり、図7のH−H拡大断面図に相当する。It is an expanded sectional view of the positive electrode substrate 121k concerning embodiment, and is equivalent to the HH expanded sectional view of FIG. 実施例1〜4及び比較例1,2にかかるニッケル被覆樹脂基板21k〜26kの上面図である。It is a top view of the nickel covering resin board | substrates 21k-26k concerning Examples 1-4 and Comparative Examples 1 and 2. FIG. 実施例1〜4及び比較例1,2にかかる正極サンプル21〜26の上面図である。It is a top view of the positive electrode samples 21-26 concerning Examples 1-4 and Comparative Examples 1,2.

符号の説明Explanation of symbols

100 電池
121 正極(電池用正極)
121b 樹脂繊維
121c 金属被覆層
121d 正極活物質
121f 樹脂骨格(不織布)
121k 正極基板
121m 第1辺(交差周縁)
121r 正極リード
121t 第1端部(交差周縁部)
K 空隙部
R1 第1辺に直交する方向にかかる正極基板の電気抵抗
R2 第1辺に平行な方向にかかる正極基板の電気抵抗
Y 繊維樹脂の配向方向
100 battery 121 positive electrode (positive electrode for battery)
121b Resin fiber 121c Metal coating layer 121d Positive electrode active material 121f Resin skeleton (nonwoven fabric)
121k positive electrode substrate 121m first side (crossing edge)
121r positive electrode lead 121t first end (crossing peripheral edge)
K gap portion R1 electric resistance R2 of the positive electrode substrate in a direction orthogonal to the first side electric resistance Y of the positive electrode substrate in a direction parallel to the first side Y orientation direction of the fiber resin

Claims (15)

樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する正極基板、
上記正極基板の上記空隙部内に充填された正極活物質、及び
金属からなり、上記正極基板の周縁の一部を含む周縁部に接合されてなる正極リード、
を有する電池用正極であって、
前記正極基板は、上記樹脂骨格を構成する上記樹脂繊維が所定の方向に配向してなり、
上記正極リードは、上記正極基板の周縁のうち上記樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合されてなる
電池用正極。
A positive electrode substrate comprising a resin skeleton made of resin fibers and having a three-dimensional network structure, and a metal coating layer made of metal and covering the resin skeleton, wherein a plurality of holes are connected in three dimensions;
A positive electrode lead made of a positive electrode active material filled in the gap of the positive electrode substrate and a metal, and joined to a peripheral portion including a part of the peripheral edge of the positive electrode substrate;
A battery positive electrode comprising:
The positive electrode substrate is formed by orienting the resin fibers constituting the resin skeleton in a predetermined direction,
The positive electrode for a battery, wherein the positive electrode lead is bonded to an intersecting peripheral edge portion including an intersecting peripheral edge that intersects an orientation direction of the resin fiber in the peripheral edge of the positive electrode substrate.
請求項1に記載の電池用正極であって、
前記正極基板は、矩形シート状をなし、前記交差周縁である第1辺を有し、
前記正極リードは、上記正極基板の前記交差周縁部である、上記第1辺を含む第1端部に接合されてなる
電池用正極。
The battery positive electrode according to claim 1,
The positive electrode substrate has a rectangular sheet shape and has a first side that is the intersecting peripheral edge,
The positive electrode for a battery, wherein the positive electrode lead is bonded to a first end portion including the first side, which is the intersecting peripheral edge portion of the positive electrode substrate.
請求項1または請求項2に記載の電池用正極であって、
前記正極基板は、前記繊維樹脂の配向方向が、前記交差周縁または前記第1辺に直交してなる
電池用正極。
The battery positive electrode according to claim 1 or 2,
The positive electrode substrate is a positive electrode for a battery in which an orientation direction of the fiber resin is orthogonal to the intersecting peripheral edge or the first side.
請求項1〜請求項3のいずれか一項に記載の電池用正極であって、
前記正極リードを前記正極基板に接合した後に、上記正極基板の厚み方向にプレス成形してなる
電池用正極。
The battery positive electrode according to any one of claims 1 to 3,
A positive electrode for a battery, wherein the positive electrode lead is bonded to the positive electrode substrate and then press-formed in the thickness direction of the positive electrode substrate.
樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する矩形シート状の正極基板、
上記正極基板の上記空隙部内に充填された正極活物質、及び
金属からなり、上記正極基板の第1辺を含む第1端部に接合されてなる正極リード、
を有する電池用正極であって、
上記正極基板は、
上記正極基板において等距離をなす2点間の電気抵抗であって、上記第1辺に直交する方向にかかる電気抵抗R1と、上記第1辺に平行な方向にかかる電気抵抗R2とが、R1/R2<1.0の関係を満たす
電池用正極。
A rectangular sheet-like positive electrode substrate comprising a resin skeleton made of resin fibers and having a three-dimensional network structure, and a metal coating layer made of metal and covering the resin skeleton, and a plurality of holes connected in three dimensions.
A positive electrode lead made of a positive electrode active material filled in the gap of the positive electrode substrate, and a metal, and joined to a first end including the first side of the positive electrode substrate;
A battery positive electrode comprising:
The positive substrate is
An electrical resistance between two points that are equidistant in the positive electrode substrate, and an electrical resistance R1 applied in a direction orthogonal to the first side and an electrical resistance R2 applied in a direction parallel to the first side are R1. Battery positive electrode satisfying the relationship of /R2<1.0.
請求項5に記載の電池用正極であって、
前記正極基板は、前記電気抵抗R1と前記電気抵抗R2とが、R1/R2≧0.1の関係を満たし、
前記正極リードを前記正極基板に接合した後に、上記正極基板の厚み方向にプレス成形してなる
電池用正極。
The positive electrode for a battery according to claim 5,
In the positive electrode substrate, the electrical resistance R1 and the electrical resistance R2 satisfy a relationship of R1 / R2 ≧ 0.1,
A positive electrode for a battery, wherein the positive electrode lead is bonded to the positive electrode substrate and then press-formed in the thickness direction of the positive electrode substrate.
請求項1〜請求項6のいずれか一項に記載の電池用正極であって、
前記正極基板は、前記金属被覆層を、100g/m2以上250g/m2以下の範囲で含む
電池用正極。
The battery positive electrode according to any one of claims 1 to 6,
The positive electrode substrate is a battery positive electrode including the metal coating layer in a range of 100 g / m 2 to 250 g / m 2 .
請求項1〜請求項7のいずれか一項に記載の電池用正極であって、
前記正極基板の前記樹脂骨格は、不織布である
電池用正極。
The battery positive electrode according to any one of claims 1 to 7,
The positive electrode for a battery, wherein the resin skeleton of the positive electrode substrate is a nonwoven fabric.
請求項1〜請求項8のいずれか一項に記載の電池用正極を備える
電池。
A battery provided with the positive electrode for a battery according to any one of claims 1 to 8.
樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する正極基板、
上記正極基板の上記空隙部内に充填された正極活物質、及び
金属からなり、上記正極基板の周縁の一部を含む周縁部に接合されてなる正極リード、を有する
電池用正極の製造方法であって、
上記正極基板として、上記樹脂骨格を構成する上記樹脂繊維が所定の方向に配向してなる正極基板を用い、
上記正極リードを、上記正極基板の周縁のうち上記樹脂繊維の配向方向と交差する交差周縁を含む交差周縁部に接合する接合工程を備える
電池用正極の製造方法。
A positive electrode substrate comprising a resin skeleton made of resin fibers and having a three-dimensional network structure, and a metal coating layer made of metal and covering the resin skeleton, wherein a plurality of holes are connected in three dimensions;
A method for producing a positive electrode for a battery, comprising: a positive electrode active material filled in the gap of the positive electrode substrate; and a positive electrode lead made of a metal and bonded to a peripheral portion including a part of the peripheral edge of the positive electrode substrate. And
As the positive electrode substrate, using a positive electrode substrate in which the resin fibers constituting the resin skeleton are oriented in a predetermined direction,
A method for producing a positive electrode for a battery, comprising: a joining step of joining the positive electrode lead to an intersecting peripheral edge portion including an intersecting peripheral edge intersecting an orientation direction of the resin fiber among peripheral edges of the positive electrode substrate.
請求項10に記載の電池用正極の製造方法であって、
前記接合工程において、
前記正極基板として、矩形シート状をなし、前記交差周縁である第1辺を有する正極基板を用い、
前記正極リードを、上記正極基板の前記交差周縁部である、上記第1辺を含む第1端部に接合する
電池用正極の製造方法。
It is a manufacturing method of the positive electrode for batteries according to claim 10,
In the joining step,
As the positive electrode substrate, a positive electrode substrate having a rectangular sheet shape and having a first side that is the intersecting peripheral edge,
A method for producing a positive electrode for a battery, wherein the positive electrode lead is joined to a first end portion including the first side, which is the intersecting peripheral edge portion of the positive electrode substrate.
請求項10または請求項11に記載の電池用正極の製造方法であって、
前記接合工程の後に、前記正極基板の前記空隙部内に正極活物質を充填する充填工程と、
上記正極活物質を充填してなる上記正極基板を、その厚み方向にプレス成形するプレス工程と、を備える
電池用正極の製造方法。
It is a manufacturing method of the positive electrode for batteries of Claim 10 or Claim 11,
After the joining step, a filling step of filling a positive electrode active material in the gap portion of the positive electrode substrate;
A method for producing a positive electrode for a battery, comprising: a pressing step of press-molding the positive electrode substrate filled with the positive electrode active material in a thickness direction thereof.
樹脂繊維からなり三次元網状構造を有する樹脂骨格と、金属からなり上記樹脂骨格を被覆する金属被覆層とを備え、複数の孔が三次元に連結した空隙部を有する矩形シート状の正極基板、
上記正極基板の上記空隙部内に充填された正極活物質、及び
金属からなり、上記正極基板に接合されてなる正極リード、
を有する
電池用正極の製造方法であって、
上記正極基板として、上記正極基板において等距離をなす2点間の電気抵抗であって、上記正極基板の第1辺に直交する方向にかかる電気抵抗R1と、上記第1辺に沿う方向にかかる電気抵抗R2とが、R1/R2<1.0の関係を満たす正極基板を用い、
上記正極リードを、上記正極基板のうち上記第1辺を含む第1端部に接合する接合工程を備える
電池用正極の製造方法。
A rectangular sheet-like positive electrode substrate comprising a resin skeleton made of resin fibers and having a three-dimensional network structure, and a metal coating layer made of metal and covering the resin skeleton, and a plurality of holes connected in three dimensions.
A positive electrode lead made of a positive electrode active material filled in the gap of the positive electrode substrate and a metal and bonded to the positive electrode substrate;
A method for producing a positive electrode for a battery having
As the positive electrode substrate, an electric resistance between two points that are equidistant in the positive electrode substrate, and an electric resistance R1 applied in a direction orthogonal to the first side of the positive electrode substrate, and applied in a direction along the first side. Using a positive electrode substrate in which the electrical resistance R2 satisfies the relationship of R1 / R2 <1.0,
The manufacturing method of the positive electrode for batteries provided with the joining process which joins the said positive electrode lead to the 1st edge part containing the said 1st edge | side among the said positive electrode substrates.
請求項13に記載の電池用正極の製造方法であって、
前記接合工程において、
前記正極基板として、前記電気抵抗R1と前記電気抵抗R2とがR1/R2≧0.1の関係を満たす正極基板を用い、
前記接合工程の後に、上記正極基板の前記空隙部内に正極活物質を充填する充填工程と、
上記正極活物質を充填してなる上記正極基板を、その厚み方向にプレス成形するプレス工程と、を備える
電池用正極の製造方法。
It is a manufacturing method of the positive electrode for batteries according to claim 13,
In the joining step,
As the positive electrode substrate, a positive electrode substrate in which the electric resistance R1 and the electric resistance R2 satisfy a relationship of R1 / R2 ≧ 0.1 is used,
After the joining step, a filling step of filling a positive electrode active material in the gap of the positive electrode substrate;
A method for producing a positive electrode for a battery, comprising: a pressing step of press-molding the positive electrode substrate filled with the positive electrode active material in a thickness direction thereof.
請求項10〜請求項14のいずれか一項に記載の電池用正極の製造方法であって、
前記正極基板として、前記樹脂骨格が不織布である正極基板を用いる
電池用正極の製造方法。
It is a manufacturing method of the positive electrode for batteries according to any one of claims 10 to 14,
The manufacturing method of the positive electrode for batteries using the positive electrode substrate whose said resin skeleton is a nonwoven fabric as said positive electrode substrate.
JP2006130449A 2006-05-09 2006-05-09 Positive electrode for battery, method for producing the same, and battery Expired - Fee Related JP5005951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006130449A JP5005951B2 (en) 2006-05-09 2006-05-09 Positive electrode for battery, method for producing the same, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130449A JP5005951B2 (en) 2006-05-09 2006-05-09 Positive electrode for battery, method for producing the same, and battery

Publications (2)

Publication Number Publication Date
JP2007305345A true JP2007305345A (en) 2007-11-22
JP5005951B2 JP5005951B2 (en) 2012-08-22

Family

ID=38839118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130449A Expired - Fee Related JP5005951B2 (en) 2006-05-09 2006-05-09 Positive electrode for battery, method for producing the same, and battery

Country Status (1)

Country Link
JP (1) JP5005951B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071536A (en) * 2006-09-12 2008-03-27 Sumitomo Electric Ind Ltd Alkaline battery nickel electrode, and its manufacturing method
JP2012185927A (en) * 2011-03-03 2012-09-27 Fdk Twicell Co Ltd Method for manufacturing electrode core, method for manufacturing non-sintered nickel electrode, electrode core and non-sintered nickel electrode
WO2016208238A1 (en) * 2015-06-25 2016-12-29 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176757A (en) * 1992-12-09 1994-06-24 Furukawa Battery Co Ltd:The Nickel plate for alkaline storage battery and manufacture thereof
JPH08321303A (en) * 1995-05-26 1996-12-03 Furukawa Battery Co Ltd:The Electrode for alkaline secondary battery
JP2001313038A (en) * 2000-02-21 2001-11-09 Mitsubishi Materials Corp Current collector material for alkali secondary cell and manufacturing method of the same, and alkali secondary cell using the same
JP2005347177A (en) * 2004-06-04 2005-12-15 Sanoh Industrial Co Ltd Alkaline battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176757A (en) * 1992-12-09 1994-06-24 Furukawa Battery Co Ltd:The Nickel plate for alkaline storage battery and manufacture thereof
JPH08321303A (en) * 1995-05-26 1996-12-03 Furukawa Battery Co Ltd:The Electrode for alkaline secondary battery
JP2001313038A (en) * 2000-02-21 2001-11-09 Mitsubishi Materials Corp Current collector material for alkali secondary cell and manufacturing method of the same, and alkali secondary cell using the same
JP2005347177A (en) * 2004-06-04 2005-12-15 Sanoh Industrial Co Ltd Alkaline battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071536A (en) * 2006-09-12 2008-03-27 Sumitomo Electric Ind Ltd Alkaline battery nickel electrode, and its manufacturing method
JP2012185927A (en) * 2011-03-03 2012-09-27 Fdk Twicell Co Ltd Method for manufacturing electrode core, method for manufacturing non-sintered nickel electrode, electrode core and non-sintered nickel electrode
WO2016208238A1 (en) * 2015-06-25 2016-12-29 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device
JPWO2016208238A1 (en) * 2015-06-25 2018-04-12 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device

Also Published As

Publication number Publication date
JP5005951B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
KR101567674B1 (en) Manufacturing method for electrode assembly
JP5016238B2 (en) Battery and manufacturing method thereof
JP7402175B2 (en) Battery and its manufacturing method
JP2011029075A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2012138408A (en) Electrochemical device and manufacturing method thereof
JP2006202680A (en) Polymer battery
JP5005951B2 (en) Positive electrode for battery, method for producing the same, and battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP4342160B2 (en) Storage battery and manufacturing method thereof
JPWO2020026649A1 (en) Battery electrodes, batteries, and methods for manufacturing battery electrodes
JP6665074B2 (en) Electrode plate of alkaline secondary battery and alkaline secondary battery
WO2021049088A1 (en) Porous metal body and method for producing porous metal body
JP5092277B2 (en) Secondary battery electrode and manufacturing method thereof
EP1039562A2 (en) Rectangular battery
JP7316520B2 (en) battery
JP2022144855A (en) All-solid battery and manufacturing method thereof
JP2012253000A (en) Electrode
CN1222061C (en) Rectangle alkaline accumdulator
JP6686789B2 (en) Stacked alkaline secondary battery
US5348823A (en) Process of preparing an electrode for an electrochemical cell with a porous support and an electrode obtained by said process
JP2010212244A (en) Collector, battery electrode substrate, and methods of producing them
WO2018147019A1 (en) Nickel hydrogen battery
JP4835030B2 (en) Battery and battery manufacturing method
WO2023074846A1 (en) Lithium secondary battery
JP5093275B2 (en) Method for manufacturing electrode for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees