JP2007303963A - Analyzer, and method for controlling temperature of liquid sample in analyzer - Google Patents

Analyzer, and method for controlling temperature of liquid sample in analyzer Download PDF

Info

Publication number
JP2007303963A
JP2007303963A JP2006132556A JP2006132556A JP2007303963A JP 2007303963 A JP2007303963 A JP 2007303963A JP 2006132556 A JP2006132556 A JP 2006132556A JP 2006132556 A JP2006132556 A JP 2006132556A JP 2007303963 A JP2007303963 A JP 2007303963A
Authority
JP
Japan
Prior art keywords
temperature
liquid sample
reaction
analyzer
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006132556A
Other languages
Japanese (ja)
Inventor
Takahiro Misu
貴浩 三須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006132556A priority Critical patent/JP2007303963A/en
Publication of JP2007303963A publication Critical patent/JP2007303963A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzer capable of simply holding a liquid sample to a predetermined temperature in the case where the liquid sample held to a reaction container is stirred using a surface elastic wave element, and to provide a method of controlling a temperature of the liquid sample. <P>SOLUTION: The analyzer 1 includes a thermostatic tank 6 which houses a plurality of reaction containers 9 for holding the liquid sample containing a specimen and a reagent, and constituted so as to stirr the liquid sample by the sonic wave emitted from the surface elastic wave element to analyze a reaction liquid. The temperature control method of the liquid sample is also disclosed. The analyzer 1 is provided with a temperature control circuit 16c for holding the liquid sample to a predetermined temperature by controlling the temperature of the thermostatic tank 6 to a temperature lower than a target temperature by the estimated value of the temperature rise of the liquid sample estimated from the drive signal of the surface elastic wave element. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、分析装置と分析装置における液体試料の温度制御方法に関するものである。   The present invention relates to an analyzer and a temperature control method for a liquid sample in the analyzer.

従来、分析装置、例えば、血液等の生体試料を分析する自動分析装置は、検体と試薬とを保持した複数の反応容器を収容する反応ホイールを備え、検体と試薬とが反応した反応液を光学的に測定することにより検体の成分濃度等を分析している。このとき、自動分析装置は、恒温槽内の温度を温度センサによってモニタし、このモニタした温度に基づいてヒータをオン,オフ制御することによって槽内の温度、従って液体試料を所定温度に保温している。また、液体試料を攪拌する攪拌装置として、音波によって先鋭的な音場によって音響流を生成し、この音響流によって液体を攪拌するものが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an analyzer, for example, an automatic analyzer that analyzes a biological sample such as blood, includes a reaction wheel that accommodates a plurality of reaction containers holding a specimen and a reagent, and optically reacts a reaction solution obtained by reacting the specimen and the reagent. The component concentration of the specimen is analyzed by measuring it automatically. At this time, the automatic analyzer monitors the temperature in the thermostatic chamber with a temperature sensor, and controls the heater on and off based on the monitored temperature to keep the temperature in the bath, and thus the liquid sample, at a predetermined temperature. ing. Further, as an agitating device for agitating a liquid sample, an apparatus that generates an acoustic stream with a sharp sound field using sound waves and agitates the liquid by the acoustic stream is known (for example, see Patent Document 1).

独国特許発明第10325307号明細書German Patent Invention No. 10325307

ところで、特許文献1に開示された攪拌装置は、圧電基板上に櫛型電極(IDT)を形成した表面弾性波(SAW)素子を用い、駆動制御回路によって表面弾性波素子を駆動している。このため、特許文献1の攪拌装置は、攪拌に用いた表面弾性波(音波)のエネルギーが最終的に熱エネルギーに変化して液体試料の温度を上昇させる。従って、自動分析装置において特許文献1の攪拌装置を使用すると、反応容器に保持された液体試料の温度が攪拌によって所定温度以上に上昇して分析精度が低下し、場合によっては検体が変質することがある等の問題があった。この場合、反応容器に保持された液体試料の温度を直接測定することは、検体の少量化、コンタミネーションの防止、温度センサの感度等の観点から技術的に難しいという問題があった。   Incidentally, the stirring device disclosed in Patent Document 1 uses a surface acoustic wave (SAW) element in which a comb electrode (IDT) is formed on a piezoelectric substrate, and drives the surface acoustic wave element by a drive control circuit. For this reason, in the stirring apparatus of Patent Document 1, the energy of the surface acoustic wave (sound wave) used for stirring is finally changed to thermal energy to increase the temperature of the liquid sample. Therefore, when the stirrer disclosed in Patent Document 1 is used in an automatic analyzer, the temperature of the liquid sample held in the reaction vessel rises to a predetermined temperature or higher due to stirring, resulting in a decrease in analysis accuracy, and in some cases, the specimen is altered. There were problems such as. In this case, there is a problem that it is technically difficult to directly measure the temperature of the liquid sample held in the reaction vessel from the viewpoints of a small amount of specimen, prevention of contamination, sensitivity of the temperature sensor, and the like.

本発明は、上記に鑑みてなされたものであって、表面弾性波素子を用いて反応容器に保持した液体試料を攪拌する場合、液体試料を所定温度に簡易に保持することが可能な分析装置と分析装置における液体試料の温度制御方法を提供することを目的とする。   The present invention has been made in view of the above, and in the case of stirring a liquid sample held in a reaction vessel using a surface acoustic wave element, an analyzer capable of easily holding the liquid sample at a predetermined temperature Another object of the present invention is to provide a temperature control method for a liquid sample in an analyzer.

上述した課題を解決し、目的を達成するために、請求項1に係る分析装置は、検体と試薬を含む液体試料を保持した複数の反応容器を収容し、前記液体試料を所定温度に保温する恒温槽を備え、表面弾性波素子が発する音波によって前記液体試料を攪拌し、反応液を分析する分析装置であって、前記恒温槽の温度を前記表面弾性波素子の駆動信号から予測される前記液体試料の温度上昇の予測値分だけ目標温度よりも低く制御することにより、前記液体試料を所定温度に保温する温度制御手段を設けたことを特徴とする。   In order to solve the above-described problems and achieve the object, an analyzer according to claim 1 houses a plurality of reaction containers holding a liquid sample containing a specimen and a reagent, and keeps the liquid sample at a predetermined temperature. An analysis apparatus comprising a thermostatic chamber, wherein the liquid sample is stirred by a sound wave generated by a surface acoustic wave element, and a reaction liquid is analyzed, wherein the temperature of the thermostatic chamber is predicted from a driving signal of the surface acoustic wave element A temperature control means is provided for keeping the liquid sample at a predetermined temperature by controlling the temperature of the liquid sample to be lower than the target temperature by a predicted value of the temperature rise of the liquid sample.

また、上述した課題を解決し、目的を達成するために、請求項2に係る分析装置における液体試料の温度制御方法は、検体と試薬を含む液体試料を保持した複数の反応容器を収容し、前記液体試料を所定温度に保温する恒温槽を備え、表面弾性波素子が発する音波によって前記液体試料を攪拌し、反応液を分析する分析装置における液体試料の温度制御方法であって、前記恒温槽の温度を前記表面弾性波素子の駆動信号から予測される前記液体試料の温度上昇の予測値分だけ目標温度よりも低く制御することにより、前記液体試料を所定温度に保温することを特徴とする。   In order to solve the above-described problems and achieve the object, the temperature control method for a liquid sample in the analyzer according to claim 2 contains a plurality of reaction containers holding a liquid sample containing a specimen and a reagent, A temperature control method for a liquid sample in an analyzer that comprises a thermostatic chamber for keeping the liquid sample at a predetermined temperature, and stirs the liquid sample with sound waves generated by a surface acoustic wave element to analyze a reaction liquid, the thermostat The temperature of the liquid sample is controlled to be lower than the target temperature by the predicted value of the temperature rise of the liquid sample predicted from the driving signal of the surface acoustic wave element, thereby keeping the liquid sample at a predetermined temperature. .

本発明の分析装置は、恒温槽の温度を表面弾性波素子の駆動信号から予測される液体試料の温度上昇の予測値分だけ目標温度よりも低く制御することにより、前記液体試料を所定温度に保温する温度制御手段を設け、本発明の分析装置における液体試料の温度制御方法は、恒温槽の温度を表面弾性波素子の駆動信号から予測される液体試料の温度上昇の予測値分だけ目標温度よりも低く制御することにより、液体試料を所定温度に保温する。従って、本発明の分析装置と分析装置における液体試料の温度制御方法は、表面弾性波素子を駆動して液体試料を攪拌することによって熱が発生しても、恒温槽の温度を目標温度よりも低く制御するので、液体試料を所定温度に簡易に保持することができるという効果を奏する。   The analyzer of the present invention controls the temperature of the thermostat to a predetermined temperature by controlling the temperature of the liquid sample to be lower than the target temperature by the predicted value of the temperature rise of the liquid sample predicted from the driving signal of the surface acoustic wave device. A temperature control means for keeping the temperature is provided, and the temperature control method for the liquid sample in the analyzer of the present invention is the target temperature corresponding to the predicted value of the temperature rise of the liquid sample predicted from the driving signal of the surface acoustic wave device. The temperature of the liquid sample is kept at a predetermined temperature by controlling the temperature to a lower level. Therefore, the temperature control method for the liquid sample in the analyzer and the analyzer according to the present invention is such that, even if heat is generated by agitating the liquid sample by driving the surface acoustic wave element, the temperature of the thermostatic chamber is set higher than the target temperature. Since it is controlled to be low, the liquid sample can be easily held at a predetermined temperature.

(実施の形態1)
以下、本発明の分析装置と分析装置における液体試料の温度制御方法にかかる実施の形態1について、図面を参照しつつ詳細に説明する。図1は、実施の形態1の自動分析装置を示す概略構成図である。図2は、図1に示す自動分析装置の反応ホイールを拡大して分注装置及び攪拌装置の概略構成と共に示す図である。
(Embodiment 1)
Hereinafter, an analysis apparatus and a liquid sample temperature control method according to a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating the automatic analyzer according to the first embodiment. FIG. 2 is an enlarged view of the reaction wheel of the automatic analyzer shown in FIG. 1 together with schematic configurations of a dispensing device and a stirring device.

自動分析装置1は、図1及び図2に示すように、作業テーブル2上に検体テーブル3、反応ホイール6及び試薬テーブル13が互いに離隔してそれぞれ周方向に沿って回転、かつ、位置決め自在に設けられ、攪拌装置20を備えている。また、自動分析装置1は、検体テーブル3と反応ホイール6との間に検体分注機構5が設けられ、反応ホイール6と試薬テーブル13との間には試薬分注機構12が設けられている。   As shown in FIGS. 1 and 2, the automatic analyzer 1 includes a sample table 3, a reaction wheel 6 and a reagent table 13 which are spaced apart from each other on a work table 2 and can be rotated and positioned in the circumferential direction. A stirrer 20 is provided. In the automatic analyzer 1, a sample dispensing mechanism 5 is provided between the sample table 3 and the reaction wheel 6, and a reagent dispensing mechanism 12 is provided between the reaction wheel 6 and the reagent table 13. .

検体テーブル3は、図1に示すように、駆動手段によって矢印で示す方向に回転され、外周には周方向に沿って等間隔で配置される収納室3aが複数設けられている。各収納室3aは、検体を収容した検体容器4が着脱自在に収納される。   As shown in FIG. 1, the sample table 3 is rotated in the direction indicated by the arrow by the driving means, and a plurality of storage chambers 3 a are provided on the outer periphery at regular intervals along the circumferential direction. In each storage chamber 3a, a sample container 4 storing a sample is detachably stored.

検体分注機構5は、反応容器9に試薬よりも少量の尿,血液等の検体を分注する手段であり、図1及び図2に示すように、分注ノズル5aによって検体テーブル3の複数の検体容器4から検体を順次反応ホイール6のホルダ6bに収納された反応容器9に分注する。検体分注機構5は、図2に示すように、分注ノズル5aによる反応容器9へ検体を分注する分注タイミングを制御する分注制御部5bを備えている。   The sample dispensing mechanism 5 is a means for dispensing a sample such as urine and blood smaller than the reagent into the reaction container 9, and as shown in FIGS. 1 and 2, a plurality of sample tables 3 are provided by a dispensing nozzle 5a. Samples are sequentially dispensed from the sample container 4 to the reaction container 9 accommodated in the holder 6 b of the reaction wheel 6. As shown in FIG. 2, the sample dispensing mechanism 5 includes a dispensing control unit 5b that controls the dispensing timing for dispensing the sample to the reaction container 9 by the dispensing nozzle 5a.

反応ホイール6は、図1に示すように、検体テーブル3とは異なる駆動手段によって矢印で示す方向に回転され、隔壁6aによって周方向に沿って等間隔で区画されるホルダ6bが複数設けられている。隔壁6aは、下部が開放され、隣接するホルダ6bが周方向に連通している。このように下部で周方向に連通している複数のホルダ6bの一つには、図1に示すように、複数のホルダ6b内の温度を検知する温度センサ7が設けられている。各ホルダ6bには、攪拌容器として検体を試薬と反応させる反応容器9が着脱自在に収納され、半径方向両側に光が透過する開口が形成されている。そして、反応ホイール6は、周方向に連通している複数のホルダ6b内を所定温度(例えば、37℃)に保持する面ヒータ8を設けた端子基板22が下部に配置されている(図2参照)。従って、反応ホイール6は、複数のホルダ6bに収容した反応容器9に保持された液体試料を前記所定温度に保持する恒温槽を兼ねている。また、各ホルダ6bは、図2及び図3に示すように、反応ホイール6の底壁6cを上下に貫通した引き出し電極6dが半径方向に設けられている。反応ホイール6は、一周期で時計方向に(1周−1反応容器)/4分回転し、四周期で反時計方向に反応容器9の1個分回転する。反応ホイール6には、測定光学系10及び排出装置11が設けられている。   As shown in FIG. 1, the reaction wheel 6 is rotated in a direction indicated by an arrow by a driving means different from the sample table 3, and a plurality of holders 6 b that are partitioned at equal intervals along the circumferential direction by a partition wall 6 a are provided. Yes. The lower part of the partition wall 6a is opened, and the adjacent holder 6b communicates in the circumferential direction. As shown in FIG. 1, a temperature sensor 7 for detecting the temperature in the plurality of holders 6b is provided in one of the plurality of holders 6b communicating in the circumferential direction at the lower portion in this way. In each holder 6b, a reaction vessel 9 for reacting a specimen with a reagent as a stirring vessel is detachably accommodated, and openings through which light is transmitted are formed on both sides in the radial direction. In the reaction wheel 6, a terminal substrate 22 provided with a surface heater 8 that holds a plurality of holders 6 b communicating in the circumferential direction at a predetermined temperature (for example, 37 ° C.) is disposed in the lower part (FIG. 2). reference). Accordingly, the reaction wheel 6 also serves as a thermostatic chamber that holds the liquid sample held in the reaction vessel 9 accommodated in the plurality of holders 6b at the predetermined temperature. As shown in FIGS. 2 and 3, each holder 6b is provided with an extraction electrode 6d extending vertically through the bottom wall 6c of the reaction wheel 6 in the radial direction. The reaction wheel 6 rotates clockwise (1 turn-1 reaction vessel) / 4 minutes in one cycle and rotates one reaction vessel 9 counterclockwise in four cycles. The reaction wheel 6 is provided with a measurement optical system 10 and a discharge device 11.

反応容器9は、容量が数nL〜数十μLと微量な容器であり、光源10aから出射された分析光(340〜800nm)に含まれる光の80%以上を透過する素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等の合成樹脂が使用される。反応容器9は、図4及び図5に示すように、側壁9aと底壁9bとによって上部に開口9cを有する四角筒状に成形され、検体や試薬等の液体を保持する内面には液体に対する親和性処理が施されている。反応容器9は、平行に対向する一組の側壁9aの一部が分析光を透過させる窓として利用される。反応容器9は、図5に示すように、底壁9bの下面に音響整合層を介して表面弾性波素子21が取り付けられている。   The reaction container 9 is a very small container having a capacity of several nL to several tens of μL, and is a material that transmits 80% or more of the light contained in the analysis light (340 to 800 nm) emitted from the light source 10a, such as heat resistant glass. Synthetic resins such as glass, cyclic olefin and polystyrene are used. As shown in FIGS. 4 and 5, the reaction vessel 9 is formed into a rectangular tube shape having an opening 9c in the upper part by a side wall 9a and a bottom wall 9b, and an inner surface for holding a liquid such as a specimen or a reagent is provided with respect to the liquid. Affinity treatment is applied. The reaction vessel 9 is used as a window through which a part of the pair of side walls 9a facing in parallel transmits the analysis light. As shown in FIG. 5, the reaction vessel 9 has a surface acoustic wave element 21 attached to the lower surface of the bottom wall 9b via an acoustic matching layer.

測定光学系10は、試薬と検体とが反応した反応容器9内の液体を分析するための分析光(340〜800nm)を光源10aから出射する。光源10aから出射された分析用の光ビームは、反応容器9内の液体を透過し、光源10aと対向する位置に設けた受光素子10bによって受光される。一方、排出装置11は、排出ノズルを備えており、反応容器9から反応終了後の液体を前記排出ノズルによって吸引し、排出容器(図示せず)に排出する。ここで、排出装置11を通過した反応容器9は、図示しない洗浄装置に移送されて洗浄された後、再度、新たな検体の分析に使用される。   The measurement optical system 10 emits analysis light (340 to 800 nm) for analyzing the liquid in the reaction container 9 in which the reagent and the sample have reacted from the light source 10a. The light beam for analysis emitted from the light source 10a passes through the liquid in the reaction vessel 9, and is received by the light receiving element 10b provided at a position facing the light source 10a. On the other hand, the discharge device 11 includes a discharge nozzle, and sucks the liquid after completion of the reaction from the reaction container 9 by the discharge nozzle and discharges it to a discharge container (not shown). Here, the reaction container 9 that has passed through the discharge device 11 is transferred to a cleaning device (not shown) and washed, and then used again for analysis of a new specimen.

試薬分注機構12は、試薬を分注する手段であり、図1に示すように、試薬テーブル13の所定の試薬容器14から試薬を順次反応ホイール6のホルダ6bに収納した反応容器9に分注する。   The reagent dispensing mechanism 12 is a means for dispensing a reagent. As shown in FIG. 1, the reagent dispensing mechanism 12 dispenses the reagent from a predetermined reagent container 14 of the reagent table 13 into the reaction container 9 sequentially accommodated in the holder 6b of the reaction wheel 6. Note.

試薬テーブル13は、図1に示すように、検体テーブル3及び反応ホイール6とは異なる駆動手段によって矢印で示す方向に回転され、扇形に成形された収納室13aが周方向に沿って複数設けられている。各収納室13aは、試薬容器14が着脱自在に収納される。複数の試薬容器14は、それぞれ検査項目に応じた所定の試薬が満たされ、外面には収容した試薬に関する情報を表示するバーコードラベル(図示せず)が貼付されている。   As shown in FIG. 1, the reagent table 13 is rotated in a direction indicated by an arrow by a driving means different from the sample table 3 and the reaction wheel 6, and a plurality of fan-shaped storage chambers 13 a are provided along the circumferential direction. ing. In each storage chamber 13a, the reagent container 14 is detachably stored. Each of the plurality of reagent containers 14 is filled with a predetermined reagent corresponding to the inspection item, and a barcode label (not shown) for displaying information on the stored reagent is attached to the outer surface.

ここで、試薬テーブル13の外周には、読取装置15が設置されている。読取装置15は、試薬容器14に貼付した前記バーコードラベルに記録された試薬の種類,ロット及び有効期限等の情報を読み取り、制御部16へ出力する。   Here, a reading device 15 is installed on the outer periphery of the reagent table 13. The reading device 15 reads information such as the reagent type, lot, and expiration date recorded on the barcode label attached to the reagent container 14 and outputs the information to the control unit 16.

制御部16は、自動分析装置1の各部の作動を制御する装置制御部16aと、分注制御部5bと駆動制御回路24の制御作動を連携させる連携部16bと、面ヒータ8の作動を制御する温度制御回路16cとを有しており、例えば、分析結果を記憶する記憶機能を備えたマイクロコンピュータ等が使用される。制御部16は、検体分注機構5、受光素子10b、排出装置11、読取装置15、分析部17、入力部18、表示部19及び攪拌装置20等と接続され、自動分析装置1の各部の作動を制御すると共に、前記バーコードラベルの記録から読み取った情報に基づき、試薬のロットや有効期限等が設置範囲外の場合、分析作業を規制するように自動分析装置1を制御し、或いはオペレータに警告を発する。   The control unit 16 controls the operation of the surface heater 8, the device control unit 16 a that controls the operation of each unit of the automatic analyzer 1, the linkage unit 16 b that links the control operations of the dispensing control unit 5 b and the drive control circuit 24. For example, a microcomputer or the like having a storage function for storing the analysis result is used. The control unit 16 is connected to the sample dispensing mechanism 5, the light receiving element 10b, the discharge device 11, the reading device 15, the analysis unit 17, the input unit 18, the display unit 19, the stirring device 20, and the like. In addition to controlling the operation, based on the information read from the record of the bar code label, if the reagent lot or expiration date is outside the installation range, the automatic analyzer 1 is controlled so as to regulate the analysis work, or the operator A warning is issued.

このとき、温度制御回路16cは、駆動制御回路24が出力した信号発生器23の作動を制御する制御信号が連携部16bを介して入力され(図6参照)、この制御信号から表面弾性波素子21の駆動信号を求める。そして、温度制御回路16cは、反応ホイール6の温度が表面弾性波素子21の駆動信号から予測される反応容器9内の液体試料の温度上昇の予測値分だけ反応ホイール6の目標温度よりも低くなるように面ヒータ8を制御し、液体試料を所定温度に保温する。例えば、温度制御回路16cは、表面弾性波素子21の駆動信号から、表面弾性波素子21に印加される電力量を求め、この電力量と反応容器9内の液体試料の温度上昇との関係を予め求めておく。温度制御回路16cは、この関係と連携部16bを介して駆動制御回路24から入力される表面弾性波素子21の駆動信号とをもとに液体試料の温度上昇の予測値を求める。また、温度制御回路16cには、温度センサ7が検知した反応ホイール6における複数のホルダ6b内の温度情報が入力される(図6参照)。   At this time, the temperature control circuit 16c receives a control signal for controlling the operation of the signal generator 23 output from the drive control circuit 24 via the linkage unit 16b (see FIG. 6). 21 drive signals are obtained. The temperature control circuit 16c then lowers the temperature of the reaction wheel 6 below the target temperature of the reaction wheel 6 by the predicted value of the temperature rise of the liquid sample in the reaction vessel 9 predicted from the drive signal of the surface acoustic wave element 21. The surface heater 8 is controlled so that the liquid sample is kept at a predetermined temperature. For example, the temperature control circuit 16 c obtains the amount of electric power applied to the surface acoustic wave element 21 from the drive signal of the surface acoustic wave element 21, and shows the relationship between this electric energy and the temperature rise of the liquid sample in the reaction vessel 9. Find in advance. The temperature control circuit 16c obtains a predicted value of the temperature rise of the liquid sample based on this relationship and the drive signal of the surface acoustic wave element 21 input from the drive control circuit 24 via the linkage unit 16b. Further, temperature information in the plurality of holders 6b in the reaction wheel 6 detected by the temperature sensor 7 is input to the temperature control circuit 16c (see FIG. 6).

分析部17は、制御部16を介して受光素子10bに接続され、受光素子10bが受光した光量に基づく反応容器9内の液体の吸光度から検体の成分濃度等を分析し、分析結果を制御部16に出力する。入力部18は、制御部16へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。表示部19は、分析内容や警報等を表示するもので、ディスプレイパネル等が使用される。   The analysis unit 17 is connected to the light receiving element 10b via the control unit 16, and analyzes the component concentration of the specimen from the absorbance of the liquid in the reaction container 9 based on the amount of light received by the light receiving element 10b, and the analysis result is controlled by the control unit. 16 is output. The input unit 18 is a part that performs an operation of inputting inspection items and the like to the control unit 16, and for example, a keyboard, a mouse, or the like is used. The display unit 19 displays analysis contents, alarms, and the like, and a display panel or the like is used.

攪拌装置20は、反応容器9に保持される液体を音波によって攪拌する装置であり、反応容器9に取り付けられる表面弾性波素子21の他、図2に示すように、端子基板22、信号発生器23及び駆動制御回路24を備えている。   The stirring device 20 is a device for stirring the liquid held in the reaction vessel 9 by sound waves. In addition to the surface acoustic wave element 21 attached to the reaction vessel 9, as shown in FIG. 23 and a drive control circuit 24 are provided.

表面弾性波素子21は、図5に示すように、ニオブ酸リチウム(LiNbO3)等の圧電素材からなる圧電基板21a上に櫛型電極(IDT)からなる振動子(発音部)21bが形成されている。   As shown in FIG. 5, the surface acoustic wave element 21 has a vibrator (sound generator) 21b made of a comb-shaped electrode (IDT) formed on a piezoelectric substrate 21a made of a piezoelectric material such as lithium niobate (LiNbO3). Yes.

端子基板22は、図2に示すように、反応ホイール6の下部に配置されるリング状の絶縁板であり、回転しない。端子基板22は、複数のホルダ6bにおける検体分注機構5の分注ノズル5aが反応容器9に検体Sを分注する反応ホイール6の回転方向におけるホルダ6bの位置をPNとすると、位置PNの1つ手前から2つ先までの位置PN-1〜PN+2の範囲と対応する攪拌領域に引き出し電極6dと接触して振動子21bに電力を分注する接触電極22a,22bが設けられている。ここで、攪拌領域は、位置PN-1〜PN+2の4箇所の範囲に限られるものではなく、少なくとも分注ノズル5aが検体Sを分注する位置PNを含んでいれば必要に応じて4箇所以上の広い範囲に設定し、或いは4箇所未満の狭い範囲に設定してもよい。   As shown in FIG. 2, the terminal substrate 22 is a ring-shaped insulating plate disposed below the reaction wheel 6 and does not rotate. The terminal substrate 22 has a position PN, where PN is the position of the holder 6b in the rotation direction of the reaction wheel 6 in which the dispensing nozzle 5a of the sample dispensing mechanism 5 in the plurality of holders 6b dispenses the sample S into the reaction vessel 9. Contact electrodes 22a and 22b that contact the extraction electrode 6d and dispense power to the vibrator 21b are provided in the stirring region corresponding to the range of the positions PN-1 to PN + 2 from the previous one to the second position. Yes. Here, the agitation region is not limited to the range of four positions PN-1 to PN + 2, and if necessary, at least the position PN at which the dispensing nozzle 5a dispenses the sample S is included. You may set to the wide range of 4 or more places, or you may set to the narrow range of less than 4 places.

信号発生器23は、図2に示すように、接触電極22a,22bとの間が配線23aによって接続され、駆動制御回路24からの制御信号に基づいて数十MHz〜数百MHz程度の高周波信号を表面弾性波素子21に出力し、振動子21bに音波を発振させる。駆動制御回路24は、メモリとタイマを内蔵した電子制御手段(ECU)が使用され、表面弾性波素子21の駆動信号を制御する。   As shown in FIG. 2, the signal generator 23 is connected to the contact electrodes 22a and 22b by a wiring 23a, and a high-frequency signal of about several tens to several hundreds of MHz based on a control signal from the drive control circuit 24. Is output to the surface acoustic wave element 21, and the sound wave is oscillated by the vibrator 21b. The drive control circuit 24 uses electronic control means (ECU) incorporating a memory and a timer, and controls the drive signal of the surface acoustic wave element 21.

駆動制御回路24は、図2に示すように、連携部16bを介して分注制御部5bと接続され、信号発生器23の作動を制御すると共に、分注制御部5bとの制御作動が連携されている。駆動制御回路24は、信号発生器23の作動を制御する制御信号を信号発生器23に出力すると共に、連携部16bを介して温度制御回路16cに出力する(図6参照)。駆動制御回路24は、例えば、表面弾性波素子21が発する音波の特性(周波数,強度,位相,波の特性)、波形(正弦波,三角波,矩形波,バースト波等)或いは変調(振幅変調,周波数変調)等を制御する。また、駆動制御回路24は、内蔵したタイマに従って信号発生器23が発振する発振信号の周波数を切り替えることができる。   As shown in FIG. 2, the drive control circuit 24 is connected to the dispensing control unit 5b via the linkage unit 16b, and controls the operation of the signal generator 23, and the control operation with the dispensing control unit 5b is linked. Has been. The drive control circuit 24 outputs a control signal for controlling the operation of the signal generator 23 to the signal generator 23 and also outputs it to the temperature control circuit 16c via the linkage unit 16b (see FIG. 6). The drive control circuit 24 is, for example, a characteristic (frequency, intensity, phase, wave characteristic), a waveform (sine wave, triangular wave, rectangular wave, burst wave, etc.) or modulation (amplitude modulation, Frequency modulation) and the like. Further, the drive control circuit 24 can switch the frequency of the oscillation signal oscillated by the signal generator 23 according to a built-in timer.

以上のように構成される自動分析装置1は、回転する反応ホイール6によって周方向に沿って搬送されてくる反応容器9に試薬分注機構12が所定の試薬容器14から試薬を順次分注する。試薬が分注された反応容器9は、反応ホイール6の回転によって検体分注機構5の近傍へ搬送され、検体テーブル3の複数の検体容器4から検体が順次分注される。そして、検体が分注された反応容器9は、反応ホイール6によって周方向に沿って搬送される間に攪拌装置20によって試薬と検体とが攪拌されて反応し、光源10aと受光素子10bとの間を通過する。このとき、反応容器9内の試薬と検体とが反応した反応液は、受光素子10bによって測光され、分析部17によって成分濃度等が分析される。そして、分析が終了した反応容器9は、排出装置11によって反応液が排出されて図示しない洗浄装置によって洗浄された後、再度検体の分析に使用される。   In the automatic analyzer 1 configured as described above, the reagent dispensing mechanism 12 sequentially dispenses a reagent from a predetermined reagent container 14 to the reaction container 9 conveyed along the circumferential direction by the rotating reaction wheel 6. . The reaction container 9 into which the reagent has been dispensed is transported to the vicinity of the sample dispensing mechanism 5 by the rotation of the reaction wheel 6, and samples are dispensed sequentially from the plurality of sample containers 4 on the sample table 3. The reaction container 9 into which the specimen has been dispensed reacts while the reagent and specimen are stirred by the stirring device 20 while being transported along the circumferential direction by the reaction wheel 6, and the reaction between the light source 10 a and the light receiving element 10 b. Pass between. At this time, the reaction liquid in which the reagent in the reaction container 9 has reacted with the sample is measured by the light receiving element 10b, and the component concentration and the like are analyzed by the analysis unit 17. Then, after the analysis is completed, the reaction vessel 9 is discharged by the discharge device 11 and washed by a washing device (not shown), and then used again for analyzing the specimen.

このとき、自動分析装置1は、以下に説明する温度制御方法により、反応容器9に保持された液体試料を所定温度に制御する。自動分析装置1は、温度制御回路16cの制御の下、温度センサ7から入力される反応ホイール6におけるホルダ6b内の温度情報をもとに反応ホイール6内が目標温度THとなるように制御する。図7において、点線は反応ホイール6の目標温度THを示し、実線は温度センサ7が検知した反応ホイール6の実測温度を示している。   At this time, the automatic analyzer 1 controls the liquid sample held in the reaction vessel 9 to a predetermined temperature by a temperature control method described below. Under the control of the temperature control circuit 16c, the automatic analyzer 1 controls the reaction wheel 6 so as to reach the target temperature TH based on the temperature information in the holder 6b of the reaction wheel 6 input from the temperature sensor 7. . In FIG. 7, the dotted line indicates the target temperature TH of the reaction wheel 6, and the solid line indicates the measured temperature of the reaction wheel 6 detected by the temperature sensor 7.

このとき、自動分析装置1においては、検体の分析を開始すると、温度制御回路16cが、図7に示すように、少なくとも表面弾性波素子21の駆動時間twの間、面ヒータ8をオフし、反応ホイール6の温度を表面弾性波素子21の駆動信号から予め求めておいた関係に基づいて予測される液体試料の温度上昇の予測値分だけ反応ホイール6の目標温度THよりも低く制御する。これにより、自動分析装置1は、温度制御回路16cの制御の下に、表面弾性波素子21による液体試料の攪拌によって熱が発生しても、反応容器9に保持された液体試料を目標温度TLに保温し(図8参照)、検体の変質等を防止している。ここで、表面弾性波素子21の駆動時間twは、攪拌領域の4箇所の位置PN-1〜PN+2における表面弾性波素子21の駆動時間の総和として表わしている。   At this time, when the analysis of the sample is started in the automatic analyzer 1, the temperature control circuit 16c turns off the surface heater 8 for at least the driving time tw of the surface acoustic wave element 21, as shown in FIG. The temperature of the reaction wheel 6 is controlled to be lower than the target temperature TH of the reaction wheel 6 by the predicted value of the temperature rise of the liquid sample predicted based on the relationship obtained in advance from the drive signal of the surface acoustic wave element 21. As a result, the automatic analyzer 1 uses the temperature control circuit 16c to control the liquid sample held in the reaction vessel 9 to the target temperature TL even if heat is generated by stirring the liquid sample by the surface acoustic wave element 21. The sample is kept warm (see FIG. 8) to prevent deterioration of the specimen. Here, the driving time tw of the surface acoustic wave element 21 is expressed as the sum of the driving times of the surface acoustic wave element 21 at the four positions PN-1 to PN + 2 in the stirring region.

このとき、自動分析装置1は、温度制御回路16cを設けないと従来の自動分析装置と同様に、面ヒータ8のオン,オフによって反応ホイール6内が目標温度THとなるように制御するので、反応ホイール6内の温度は、図9に実線で示すように、点線で示す目標温度THを挟んで高温側と低温側の間で変動する。このため、表面弾性波素子21によって反応容器9内の液体試料を攪拌すると、面ヒータ8による加熱と表面弾性波素子21による攪拌に起因した熱により、図10に示すように、反応容器9に保持された液体試料の温度が目標温度TLを簡単に超えてしまう。しかも、反応ホイール6は、恒温槽を兼ねていることから熱容量が大きいので、面ヒータ8をオフしても温度が下がり難い。このため、反応容器9に保持された液体試料は、図10に示すように、駆動時間tw後における温度の低下が非常に遅く、目標温度TLの維持が難しい。   At this time, unless the temperature control circuit 16c is provided, the automatic analyzer 1 controls the inside of the reaction wheel 6 to be the target temperature TH by turning the surface heater 8 on and off as in the conventional automatic analyzer. As shown by the solid line in FIG. 9, the temperature in the reaction wheel 6 varies between the high temperature side and the low temperature side across the target temperature TH indicated by the dotted line. For this reason, when the liquid sample in the reaction vessel 9 is stirred by the surface acoustic wave element 21, the heat generated by the heating by the surface heater 8 and the stirring by the surface acoustic wave element 21 causes the reaction vessel 9 to be stirred as shown in FIG. The temperature of the held liquid sample easily exceeds the target temperature TL. Moreover, since the reaction wheel 6 also serves as a constant temperature bath, the reaction wheel 6 has a large heat capacity. Therefore, even if the surface heater 8 is turned off, the temperature is hardly lowered. For this reason, as shown in FIG. 10, the liquid sample held in the reaction vessel 9 has a very slow temperature drop after the drive time tw, and it is difficult to maintain the target temperature TL.

ここで、自動分析装置1において、反応ホイール6は、上述のように熱容量が大きいので、面ヒータ8をオフする時間は表面弾性波素子21の駆動時間twよりも長くする必要がある。また、面ヒータ8は、必要に応じて分割することにより、反応ホイール6における複数のホルダ6b内の温度低下が著しく加熱を要する部分に重点的に配置するようにしてもよい。一方、反応容器9は、前述のように容量が数nL〜数十μLと微量である。このため、温度制御回路16cは、液体試料の温度上昇の予測値分だけ反応ホイール6の温度を目標温度よりも低く制御すればよく、液体試料の温度上昇の予測値、容量並びに反応容器9の数の積に関する熱量までは考慮しない。   Here, in the automatic analyzer 1, since the reaction wheel 6 has a large heat capacity as described above, the time for turning off the surface heater 8 needs to be longer than the drive time tw of the surface acoustic wave element 21. In addition, the surface heater 8 may be divided as necessary, so that the temperature drop in the plurality of holders 6b in the reaction wheel 6 is significantly arranged in a portion that requires significant heating. On the other hand, as described above, the reaction container 9 has a very small capacity of several nL to several tens of μL. For this reason, the temperature control circuit 16c may control the temperature of the reaction wheel 6 to be lower than the target temperature by the predicted value of the temperature rise of the liquid sample. The amount of heat related to the product of numbers is not considered.

(実施の形態2)
次に、本発明の分析装置と分析装置における液体試料の温度制御方法にかかる実施の形態2を図面を参照しつつ詳細に説明する。実施の形態1の自動分析装置は、駆動制御回路が反応ホイールとは独立して設けられていたのに対し、実施の形態2の自動分析装置は、駆動制御回路が反応ホイールに設けられている。図11は、実施の形態2の自動分析装置の要部を示す模式図である。ここで、実施の形態2の自動分析装置は、駆動制御回路の配置を除いて実施の形態1の自動分析装置と構成が同じであるので、同一構成要素には同一の符号を付して説明している。
(Embodiment 2)
Next, a second embodiment of the analyzer and the temperature control method for a liquid sample in the analyzer according to the present invention will be described in detail with reference to the drawings. In the automatic analyzer of the first embodiment, the drive control circuit is provided independently of the reaction wheel, whereas in the automatic analyzer of the second embodiment, the drive control circuit is provided in the reaction wheel. . FIG. 11 is a schematic diagram illustrating a main part of the automatic analyzer according to the second embodiment. Here, the automatic analyzer according to the second embodiment has the same configuration as the automatic analyzer according to the first embodiment except for the arrangement of the drive control circuit. is doing.

実施の形態2の自動分析装置1は、駆動制御回路24を反応ホイール6に設けることによって、表面弾性波素子21の駆動に伴って駆動制御回路24が発生する熱を反応ホイール6内の加熱に利用する。これにより、実施の形態2の自動分析装置1は、反応容器9に保持された液体試料を目標温度TLに制御する効果に加え、駆動制御回路24が発生する熱を利用することによる面ヒータ8の使用の抑制により省電力を達成している。   In the automatic analyzer 1 according to the second embodiment, the drive control circuit 24 is provided in the reaction wheel 6, so that the heat generated by the drive control circuit 24 when the surface acoustic wave element 21 is driven is used to heat the reaction wheel 6. Use. As a result, the automatic analyzer 1 according to the second embodiment has a surface heater 8 that uses the heat generated by the drive control circuit 24 in addition to the effect of controlling the liquid sample held in the reaction vessel 9 to the target temperature TL. Power saving has been achieved by suppressing the use of.

実施の形態1の自動分析装置を示す概略構成図である。1 is a schematic configuration diagram illustrating an automatic analyzer according to a first embodiment. 図1に示す自動分析装置の反応ホイールを拡大して分注装置及び攪拌装置の概略構成と共に示す図である。It is a figure which expands the reaction wheel of the automatic analyzer shown in FIG. 1, and shows with schematic structure of a dispensing apparatus and a stirring apparatus. 反応ホイールのA部を拡大して引き出し電極を示す断面図である。It is sectional drawing which expands the A section of a reaction wheel and shows an extraction electrode. 実施の形態1の自動分析装置で使用する反応容器の斜視図である。2 is a perspective view of a reaction container used in the automatic analyzer according to Embodiment 1. FIG. 図4の反応容器の底面図である。It is a bottom view of the reaction container of FIG. 実施の形態1の自動分析装置の要部を示す模式図である。FIG. 3 is a schematic diagram illustrating a main part of the automatic analyzer according to the first embodiment. 実施の形態1の自動分析装置における反応ホイールの目標温度と実測温度を示す温度制御図である。FIG. 3 is a temperature control diagram showing a target temperature of a reaction wheel and an actually measured temperature in the automatic analyzer according to the first embodiment. 実施の形態1の自動分析装置における反応容器に保持された液体試料の目標温度と実測温度を示す温度制御図である。FIG. 3 is a temperature control diagram showing a target temperature and an actually measured temperature of a liquid sample held in a reaction container in the automatic analyzer according to the first embodiment. 従来の自動分析装置における反応ホイールの目標温度と実測温度を示す温度制御図である。It is a temperature control figure which shows the target temperature and the actual temperature of the reaction wheel in the conventional automatic analyzer. 従来の自動分析装置における反応容器に保持された液体試料の目標温度と実測温度を示す温度制御図である。It is a temperature control figure which shows the target temperature and measured temperature of the liquid sample hold | maintained at the reaction container in the conventional automatic analyzer. 実施の形態2の自動分析装置の要部を示す模式図である。FIG. 6 is a schematic diagram showing a main part of an automatic analyzer according to a second embodiment.

符号の説明Explanation of symbols

1 自動分析装置
2 作業テーブル
3 検体テーブル
4 検体容器
5 検体分注機構
6 反応ホイール
6b ホルダ
7 温度センサ
8 面ヒータ
9 反応容器
10 測定光学系
11 排出装置
12 試薬分注機構
13 試薬テーブル
14 試薬容器
15 読取装置
16 制御部
16a 装置制御部
16b 連携部
16c 温度制御回路
17 分析部
18 入力部
19 表示部
20 攪拌装置
21 表面弾性波素子
22 端子基板
23 信号発生器
24 駆動制御回路
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Work table 3 Specimen table 4 Specimen container 5 Specimen dispensing mechanism 6 Reaction wheel 6b Holder 7 Temperature sensor 8 Surface heater 9 Reaction container 10 Measurement optical system 11 Discharge device 12 Reagent dispensing mechanism 13 Reagent table 14 Reagent container DESCRIPTION OF SYMBOLS 15 Reader 16 Control part 16a Apparatus control part 16b Cooperation part 16c Temperature control circuit 17 Analysis part 18 Input part 19 Display part 20 Stirring device 21 Surface acoustic wave element 22 Terminal board 23 Signal generator 24 Drive control circuit

Claims (2)

検体と試薬を含む液体試料を保持した複数の反応容器を収容し、前記液体試料を所定温度に保温する恒温槽を備え、表面弾性波素子が発する音波によって前記液体試料を攪拌し、反応液を分析する分析装置であって、
前記恒温槽の温度を前記表面弾性波素子の駆動信号から予測される前記液体試料の温度上昇の予測値分だけ目標温度よりも低く制御することにより、前記液体試料を所定温度に保温する温度制御手段を設けたことを特徴とする分析装置。
A plurality of reaction containers holding a liquid sample containing a specimen and a reagent are accommodated, and a thermostatic bath for keeping the liquid sample at a predetermined temperature is provided. The liquid sample is stirred by a sound wave generated by a surface acoustic wave element, and a reaction solution is prepared. An analysis device for analyzing,
Temperature control for keeping the liquid sample at a predetermined temperature by controlling the temperature of the thermostatic chamber to be lower than the target temperature by the predicted value of the temperature rise of the liquid sample predicted from the driving signal of the surface acoustic wave device An analyzer characterized by providing means.
検体と試薬を含む液体試料を保持した複数の反応容器を収容し、前記液体試料を所定温度に保温する恒温槽を備え、表面弾性波素子が発する音波によって前記液体試料を攪拌し、反応液を分析する分析装置における液体試料の温度制御方法であって、
前記恒温槽の温度を前記表面弾性波素子の駆動信号から予測される前記液体試料の温度上昇の予測値分だけ目標温度よりも低く制御することにより、前記液体試料を所定温度に保温することを特徴とする分析装置における液体試料の温度制御方法。
A plurality of reaction containers holding a liquid sample containing a specimen and a reagent are accommodated, and a thermostatic bath for keeping the liquid sample at a predetermined temperature is provided. The liquid sample is stirred by a sound wave generated by a surface acoustic wave element, and a reaction solution is prepared. A temperature control method for a liquid sample in an analyzer for analysis,
Maintaining the temperature of the liquid sample at a predetermined temperature by controlling the temperature of the thermostatic chamber to be lower than the target temperature by the predicted value of the temperature increase of the liquid sample predicted from the driving signal of the surface acoustic wave device. A temperature control method for a liquid sample in a featured analyzer.
JP2006132556A 2006-05-11 2006-05-11 Analyzer, and method for controlling temperature of liquid sample in analyzer Pending JP2007303963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132556A JP2007303963A (en) 2006-05-11 2006-05-11 Analyzer, and method for controlling temperature of liquid sample in analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132556A JP2007303963A (en) 2006-05-11 2006-05-11 Analyzer, and method for controlling temperature of liquid sample in analyzer

Publications (1)

Publication Number Publication Date
JP2007303963A true JP2007303963A (en) 2007-11-22

Family

ID=38838004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132556A Pending JP2007303963A (en) 2006-05-11 2006-05-11 Analyzer, and method for controlling temperature of liquid sample in analyzer

Country Status (1)

Country Link
JP (1) JP2007303963A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783934A (en) * 1993-09-17 1995-03-31 Hitachi Ltd Analyzer equipped with thermostatic oven with temperature compensation function
JP2001188070A (en) * 1999-12-28 2001-07-10 Hitachi Ltd Automatic analyzing device and method
JP2006090791A (en) * 2004-09-22 2006-04-06 Olympus Corp Stirring container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783934A (en) * 1993-09-17 1995-03-31 Hitachi Ltd Analyzer equipped with thermostatic oven with temperature compensation function
JP2001188070A (en) * 1999-12-28 2001-07-10 Hitachi Ltd Automatic analyzing device and method
JP2006090791A (en) * 2004-09-22 2006-04-06 Olympus Corp Stirring container

Similar Documents

Publication Publication Date Title
US7808631B2 (en) Stirrer and analyzer
JP2007303964A (en) Surface acoustic wave element, stirring device and analyzer
JP4746924B2 (en) Stirring apparatus, stirring method, reaction vessel, and analyzer equipped with stirring apparatus
JP2009042049A (en) Autoanalyzer
US8092079B2 (en) Method for determining whether a liquid is properly stirred
US20080240995A1 (en) Reaction vessel and analyzer
WO2007023616A1 (en) Analyzer, feeder, agitator and agitating method
JP2007303965A (en) Analyzer, and method of regulating liquid temperature in reaction container
JP2007303963A (en) Analyzer, and method for controlling temperature of liquid sample in analyzer
WO2007077684A1 (en) Reaction vessel and analyzer
JP2010217050A (en) Automatic analyzer and method for inhibiting temperature rise of liquid sample thereof
JP2007248252A (en) Agitator and analyzer
JP2009036666A (en) Liquid quantity detection device and automatic analyzer
JP2007232523A (en) Stirrer and analyzer
JP2008256565A (en) Stirring apparatus and analyzer
JP2008268079A (en) Liquid level detector and autoanalyzer
WO2010106998A1 (en) Stirring device, automatic analyzer, and stirring method
JP5216621B2 (en) Automatic analyzer
JP2009036665A (en) Liquid quantity detection device and automatic analyzer
JP2007232521A (en) Stirrer and analyzer
JP2007047085A (en) Reaction container, stirrer and analyzer equipped with stirrer
JP2008268078A (en) Stirrer and autoanalyzer
JP2008145161A (en) Stirrer and autoanalyzer
JP2009192303A (en) Automatic analyzer
JP2007232376A (en) Agitation device and analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090312

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

A977 Report on retrieval

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110916