JP2007302988A - High purity aluminum wire and its production method - Google Patents
High purity aluminum wire and its production method Download PDFInfo
- Publication number
- JP2007302988A JP2007302988A JP2006135854A JP2006135854A JP2007302988A JP 2007302988 A JP2007302988 A JP 2007302988A JP 2006135854 A JP2006135854 A JP 2006135854A JP 2006135854 A JP2006135854 A JP 2006135854A JP 2007302988 A JP2007302988 A JP 2007302988A
- Authority
- JP
- Japan
- Prior art keywords
- purity aluminum
- aluminum wire
- mass
- wire
- earth metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Metal Rolling (AREA)
Abstract
Description
本発明は、高純度アルミニウム線、及びその製造方法に関するものである。特に、アルミニウム電解コンデンサのリード端子などの形成材料に利用される高純度アルミニウム線であって、表面状態が優れる高純度アルミニウム線に関する。 The present invention relates to a high-purity aluminum wire and a method for producing the same. In particular, the present invention relates to a high-purity aluminum wire that is used as a forming material such as a lead terminal of an aluminum electrolytic capacitor and has an excellent surface state.
従来、アルミニウム電解コンデンサのリード端子の形成材料には、工業的に純アルミニウムと呼ばれるような高純度のアルミニウムが利用されている。リード端子は、連続鋳造後、得られた鋳造材に圧延加工(熱間又は温間)、伸線加工(冷間)を順次施し、得られた線材に鍛造加工といった2次加工を施して製造する。また、伸線途中において、皮剥を実施したり、探傷器によって不良品を選別したりすることで、2次加工前の素材表面に存在するキズを低減することが行われている。なお、高純度のアルミニウム導体として、超電導電力貯蔵装置に利用されるものが特許文献1に開示されている。 Conventionally, high-purity aluminum called industrially pure aluminum has been used as a material for forming lead terminals of aluminum electrolytic capacitors. Lead terminals are manufactured by continuous casting, then rolling (hot or warm) and wire drawing (cold) in order on the resulting cast material, and secondary processing such as forging on the resulting wire. To do. Further, in the middle of wire drawing, scratches existing on the surface of the material before secondary processing are reduced by carrying out skinning or selecting defective products with a flaw detector. Patent Document 1 discloses a high-purity aluminum conductor used in a superconducting power storage device.
近年、コンデンサの電解液に低粘度のものを使用するようになってきている。そして、従来の高純度アルミニウム線では、低粘度の電解液に対して十分な表面状態であると言えず、このようなアルミニウム線により作製したリード端子では、低粘度の電解液が液漏れする可能性がある。従って、低粘度の電解液の漏洩を防止することができ、信頼性のあるリード端子が製造できるように、従来よりも良好な表面状態を有する高純度アルミニウム線の開発が望まれている。 In recent years, low-viscosity electrolytic solutions have been used. And with conventional high-purity aluminum wires, it cannot be said that the surface state is sufficient with respect to low-viscosity electrolytes. With lead terminals made with such aluminum wires, low-viscosity electrolytes can leak. There is sex. Therefore, it is desired to develop a high-purity aluminum wire having a surface state better than the conventional one so that leakage of a low-viscosity electrolyte can be prevented and a reliable lead terminal can be manufactured.
高純度アルミニウムは、合金成分量(Al以外の元素の含有量)が極めて低いことから、連続鋳造すると、通常のアルミニウム合金を連続鋳造する場合と比較して、凝固時に外引けが発生し易く、凝固収縮により鋳物(鋳造材)の外表面が変形するといった現象が起き易い。このような現象は、純度99.7%以上である高純度アルミニウムを用いた場合に特に生じ易い。また、この変形部分は、鋳型と接触しなくなることで冷却が遅くなり、鋳造材内部の熱により融点以上の温度に再上昇して再溶融現象が起こり、結晶粒が粗大化したり、表面状態がより悪化したりといった現象が生じる。更に、この外表面の変形部分や表面状態の悪化部分、粗大な結晶粒が起点となり、鋳造後の圧延加工や伸線加工で微少な割れやキズが発生する。このような微細な割れやキズが2次加工前の素材に存在すると、上述のような液漏れといった不具合が生じる。上述のように従来は、伸線途中において皮剥や探傷検査を行っているが、近年、表面状態に対する要求が厳しくなってきており、現状の表面状態では、十分と言えないことがある。そこで、より良好な表面状態を有し、かつ品質の安定した高純度アルミニウム線を得るために、皮剥の厚み及び皮剥の回数を増やしたり、探傷器の感度を高めて選別規準を厳しくし、表面状態がより良好なもののみを選別することが考えられる。しかし、このような対策では、要求に対応することができても、良品の割合が少なくなって歩留まりが悪く、生産効率が悪いという問題がある。従って、優れた表面状態を有し、品質の安定した高純度アルミニウム線を生産性よく製造できることが望まれる。 High-purity aluminum has a very low alloy component content (content of elements other than Al), so continuous casting is more likely to cause shrinkage during solidification than continuous aluminum alloy casting. The phenomenon that the outer surface of the casting (casting material) is deformed easily due to the solidification shrinkage easily occurs. Such a phenomenon is particularly likely to occur when high-purity aluminum having a purity of 99.7% or more is used. In addition, the deformed part is not cooled in contact with the mold, so the cooling is slowed down, the temperature inside the cast material rises again to a temperature higher than the melting point, a remelting phenomenon occurs, the crystal grains become coarse, and the surface condition Phenomena such as worsening occurs. Further, the deformed portion of the outer surface, the deteriorated portion of the surface state, and coarse crystal grains are the starting points, and minute cracks and scratches are generated in the rolling and wire drawing after casting. If such fine cracks and scratches are present in the material before the secondary processing, the above-described problem of liquid leakage occurs. As described above, in the past, peeling and flaw detection inspections have been performed in the middle of wire drawing, but in recent years, the demand for the surface state has become severe, and the current surface state may not be sufficient. Therefore, in order to obtain a high-purity aluminum wire with a better surface condition and stable quality, the thickness of the skin and the number of times of skinning are increased, the sensitivity of the flaw detector is increased, and the selection criteria are tightened. It is conceivable to select only those in better condition. However, even if such measures can meet the requirements, there is a problem that the ratio of non-defective products decreases, yield is low, and production efficiency is poor. Accordingly, it is desired that a high-purity aluminum wire having an excellent surface state and stable quality can be produced with high productivity.
そこで、本発明の主目的は、優れた表面状態を有する高純度アルミニウム線を提供することにある。また、本発明の他の目的は、表面状態に優れる高純度アルミニウム線の製造に適した製造方法を提供することにある。 Accordingly, a main object of the present invention is to provide a high purity aluminum wire having an excellent surface state. Another object of the present invention is to provide a production method suitable for producing a high-purity aluminum wire having an excellent surface state.
本発明者らは、種々検討した結果、特定の元素を微量に添加することで表面状態を改善することができ、また、高純度アルミニウム線を生産性よく製造することができるとの知見を得た。より具体的には、アルミニウムを99.7質量%以上含む高純度アルミニウムに対して、アルカリ土類金属を所定量添加することで、鋳造時の外引けが内引けに変化して、再溶融現象の発生を低減でき、圧延工程や伸線工程での微少な割れやキズの発生を低減できる、との知見を得た。内引けの凝固収縮は鋳物内部で生じるため、収縮力以上の圧力(押し湯)を与えて欠陥の発生を防止したり、続く圧延工程で欠陥を修復することができる。上記知見に基づき本発明を規定する。具体的には、本発明高純度アルミニウム線は、アルカリ土類金属元素を合計で0.002〜0.15質量%含有し、アルミニウムを99.7質量%以上含有し、残部が不可避的不純物からなり、導電率が61%IACS以上であることを特徴とする。また、本発明高純度アルミニウム線の製造方法は、アルカリ土類金属元素を合計で0.002〜0.15質量%含有し、残部がAl及び不可避的不純物からなる高純度アルミニウムの溶湯を鋳造し、得られた鋳造材に塑性加工を行って、アルミニウムを99.7質量%以上含有し、導電率が61%IACS以上である高純度アルミニウム線を製造することを特徴とする。 As a result of various studies, the present inventors have obtained knowledge that the surface state can be improved by adding a specific amount of a specific element, and that a high-purity aluminum wire can be produced with high productivity. It was. More specifically, by adding a predetermined amount of alkaline earth metal to high-purity aluminum containing 99.7% by mass or more of aluminum, the outer shrinkage at the time of casting changes to the inner shrinkage, and remelting occurs. And the generation of minute cracks and scratches in the rolling process and the wire drawing process can be reduced. Since the solidification shrinkage of the inner shrinkage occurs inside the casting, it is possible to prevent the occurrence of defects by applying a pressure (pressing water) higher than the shrinkage force, or to repair the defects in the subsequent rolling process. This invention is prescribed | regulated based on the said knowledge. Specifically, the high-purity aluminum wire of the present invention contains 0.002 to 0.15% by mass of alkaline earth metal elements in total, contains 99.7% by mass or more of aluminum, the balance is made of inevitable impurities, and the conductivity is 61 It is characterized by% IACS or more. The method for producing a high-purity aluminum wire of the present invention was obtained by casting a molten high-purity aluminum containing a total of 0.002 to 0.15% by mass of an alkaline earth metal element and the balance being Al and inevitable impurities. The cast material is plastically processed to produce a high-purity aluminum wire containing 99.7% by mass or more of aluminum and having a conductivity of 61% or more of IACS.
アルミニウムを99.7質量%以上含有する高純度アルミニウムに特定量のアルカリ土類金属元素を添加することで、鋳造時に生じる外引けや外引けに起因する再溶融現象の発生、結晶粒の粗大化などを低減して、圧延時や伸線時の割れやキズの発生を抑制できる。従って、本発明アルミニウム線は、伸線途中に、皮剥量を増加させたり、探傷器の感度を高めたりすることなく、優れた表面状態を有する。従って、例えば、低粘度の電解液を用いる電解コンデンサのリード端子の形成材料に本発明アルミニウム線を使用した場合、液漏れなどが発生することがない。また、本発明製造方法は、このような信頼性が高く、安定した品質の高純度アルミニウム線を生産性よく製造することができる。 By adding a specific amount of alkaline earth metal element to high-purity aluminum containing 99.7% by mass or more of aluminum, the occurrence of outer shrinkage during casting, remelting phenomenon due to outer shrinkage, coarsening of crystal grains, etc. This can reduce the occurrence of cracks and scratches during rolling or wire drawing. Therefore, the aluminum wire of the present invention has an excellent surface state without increasing the amount of peeling or increasing the sensitivity of the flaw detector during drawing. Therefore, for example, when the aluminum wire of the present invention is used as a material for forming a lead terminal of an electrolytic capacitor that uses a low-viscosity electrolytic solution, liquid leakage does not occur. Moreover, the manufacturing method of the present invention can manufacture such a high-purity aluminum wire with high reliability and stable quality with high productivity.
<アルミニウム線>
(組成)
本発明アルミニウム線(Al線)は、アルミニウム(Al)を99.7質量%以上含有し、アルカリ土類金属元素(以下、aem元素と呼ぶ)を0.002質量%以上0.15質量%以下含有する。Alの含有量を更に高める場合、具体的には、Alを99.9質量%以上含有する場合、aem元素の含有量は、0.002質量%以上0.05質量%以下とする。aem元素は、1種でも、2種以上でもよい。複数種のaem元素を含有する場合、合計含有量が上記の範囲を満たすものとする。aem元素の含有量が0.002質量%未満であると、外引けや外引けに伴う再溶融現象を抑制して表面状態を改善する効果が乏しい。aem元素の含有量が多いほど、表面状態の改善に効果がある。また、aem元素の含有量が多いほど、鋳造材の結晶組織を微細にする傾向がある。しかし、0.15質量%程度で再溶融の抑制効果が飽和する傾向にある。また、aem元素の含有量が0.15質量%超であると、導電率を低下させたり、コンデンサのリード端子に利用する場合などで陽極酸化皮膜処理をする際に酸化皮膜の状態が悪化するといった悪影響が出る。表面状態の改善、及び導電率などを考慮すると、aem元素のより好ましい含有量は、0.005〜0.1質量%、更に好ましい含有量は、0.01〜0.05質量%であり、より好ましい元素は、Ca,Sr,Ba、更に好ましい元素は、Caである。
<Aluminum wire>
(composition)
The aluminum wire (Al wire) of the present invention contains 99.7% by mass or more of aluminum (Al) and 0.002% by mass or more and 0.15% by mass or less of an alkaline earth metal element (hereinafter referred to as aem element). When the content of Al is further increased, specifically, when the content of Al is 99.9% by mass or more, the content of the aem element is 0.002% by mass or more and 0.05% by mass or less. The aem element may be one type or two or more types. When multiple types of aem elements are contained, the total content shall satisfy the above range. When the content of the aem element is less than 0.002% by mass, the effect of improving the surface condition by suppressing the outer melting and the remelting phenomenon accompanying the outer shrinkage is poor. The higher the aem element content, the more effective the surface condition. Further, the greater the aem element content, the finer the crystal structure of the cast material. However, the remelting suppression effect tends to be saturated at about 0.15% by mass. Also, if the content of the aem element exceeds 0.15% by mass, the electrical conductivity is lowered or the adverse effect that the state of the oxide film deteriorates when the anodic oxide film treatment is performed such as when used for a capacitor lead terminal. coming out. Considering the improvement of the surface condition and the conductivity, the more preferable content of the aem element is 0.005 to 0.1% by mass, and still more preferable content is 0.01 to 0.05% by mass, and more preferable elements are Ca, Sr. , Ba, and a more preferred element is Ca.
本発明においてアルミニウム及びアルカリ土類金属元素、後述のTi以外の元素は、不可避的元素とする。不可避的元素としては、Si,Fe,Cuなどが挙げられる。 In the present invention, elements other than aluminum, alkaline earth metal elements, and Ti described later are inevitable elements. Inevitable elements include Si, Fe, Cu and the like.
(Tiの添加)
更に、aem元素に加えて、Tiを0.002質量%以上0.05質量%以下含有する高純度アルミニウム線を提案する。Tiは、特に、鋳造材の結晶組織を微細にしたり、鋳造材中の柱状晶の割合を抑え、等軸晶の割合を増加させる効果がある。従って、Tiを含有することにより、鋳造材の塑性加工性、具体的には、圧延加工性や伸線加工性を向上できる。また、結晶組織が微細化されることで、塑性加工時にキズが生じ難いため、キズが少なく、表面状態が優れた塑性加工材を得ることができる。Tiの含有量が0.002質量%未満であると、結晶粒の微細化効果が少ない。Tiの含有量が多いほど、結晶粒の微細化、微細化に伴うキズの低減に効果があるが、0.05質量%程度でこの効果が飽和する傾向にあり、0.05質量%超では、導電率の低下を招く。結晶粒の微細化、及び導電率を考慮すると、Tiのより好ましい含有量は、0.0075〜0.04質量%であり、更に好ましい含有量は、0.01〜0.03質量%である。また、Ti及びCaの双方を添加すると、結晶粒が更に小さくなる傾向にある。
(Ti addition)
Furthermore, a high-purity aluminum wire containing 0.002% by mass or more and 0.05% by mass or less of Ti in addition to the aem element is proposed. In particular, Ti has the effect of reducing the crystal structure of the cast material, suppressing the ratio of columnar crystals in the cast material, and increasing the ratio of equiaxed crystals. Therefore, by containing Ti, the plastic workability of the cast material, specifically, the rolling workability and the wire drawing workability can be improved. Further, since the crystal structure is made finer, scratches are less likely to occur during plastic processing, so that a plastic work material with few scratches and an excellent surface state can be obtained. When the Ti content is less than 0.002% by mass, the effect of refining crystal grains is small. The higher the Ti content, the more effective the crystal grain refinement and the reduction of scratches associated with the refinement, but this effect tends to saturate at around 0.05% by mass. Incurs a decline. Considering the refinement of crystal grains and the electrical conductivity, the more preferable content of Ti is 0.0075 to 0.04 mass%, and the more preferable content is 0.01 to 0.03 mass%. Moreover, when both Ti and Ca are added, the crystal grains tend to be further reduced.
(組織)
本発明Al線は、鋳造材、又は圧延材や伸線材といった塑性加工材(塑性加工途中に適宜熱処理を施したものも含む)とする。本発明Al線が鋳造材である場合、このAl線は、鋳造組織を有する。本発明Al線が圧延材や伸線材である場合、このAl線は、加工組織(加工集合組織)を有する。コンデンサのリード端子の形成材料に利用する場合、本発明Al線は、伸線材が適する。伸線加工後に熱処理を施して再結晶組織を有する軟材では、リード端子に要求される機械的特性(強度)を満たさない。これに対し、加工組織を有する伸線材は、後述するように優れた強度を有すると共に、塑性加工後の熱処理が不要であるため、製造性がよく、コストも低減できる。
(Organization)
The Al wire of the present invention is a cast material, or a plastic working material such as a rolled material or a wire drawing material (including a material that is appropriately heat-treated during plastic working). When the Al wire of the present invention is a cast material, the Al wire has a cast structure. When the Al wire of the present invention is a rolled material or a wire drawing material, the Al wire has a processed structure (processed texture). When used as a material for forming a capacitor lead terminal, the drawn wire is suitable for the Al wire of the present invention. A soft material having a recrystallized structure after heat treatment after wire drawing does not satisfy the mechanical characteristics (strength) required for the lead terminal. In contrast, a wire drawing material having a processed structure has excellent strength as will be described later, and does not require a heat treatment after plastic working, so that the manufacturability is good and the cost can be reduced.
(結晶粒径)
鋳造材である本発明Al線に圧延加工を施したり、圧延材である本発明Al線に伸線加工を施す場合、加工前の結晶粒径が大きいと、加工性が悪く、割れやキズなどが発生し易くなる。また、伸線材である本発明Al線に実際の使用形態に応じた2次塑性加工を施す場合、例えば、コンデンサのリード端子にこのAl線を利用するにあたり、鍛造加工を施す場合、加工前の結晶粒径が大きいと、加工性が悪く、割れや異常な変形が発生し形状不良となる。従って、上記圧延や伸線といった塑性加工、上記鍛造加工といった2次加工の前において、結晶粒径は、小さいことが好ましい。結晶粒径は、小さいほど好ましく、具体的には、平均結晶粒径をr、平均結晶粒径rを測定するときの素材の線径Rとするとき、線径Rに対する平均結晶粒径rの割合r/Rが1/10以下、特に、1/50以下であることが好ましい。即ち、線径Rが平均結晶粒径rの10倍以上、特に、50倍以上であることが好ましい。
(Crystal grain size)
When rolling the Al wire of the present invention which is a cast material or drawing the Al wire of the present invention which is a rolled material, if the crystal grain size before processing is large, the workability is poor and cracks, scratches, etc. Is likely to occur. In addition, when performing secondary plastic processing according to the actual usage pattern to the Al wire of the present invention which is a wire drawing material, for example, when using this Al wire for the lead terminal of a capacitor, forging processing, before processing If the crystal grain size is large, the workability is poor, cracks and abnormal deformation occur, and the shape becomes defective. Accordingly, the crystal grain size is preferably small before the secondary processing such as plastic processing such as rolling or wire drawing or forging. The crystal grain size is preferably as small as possible. Specifically, when the average crystal grain size is r and the wire diameter R of the material when measuring the average crystal grain size r, the average crystal grain size r relative to the wire diameter R is The ratio r / R is preferably 1/10 or less, particularly preferably 1/50 or less. That is, the wire diameter R is preferably 10 times or more, particularly 50 times or more of the average crystal grain size r.
鋳造材の結晶粒径を小さくするには、上述したようにTiを添加する他、後述するように鋳造時の冷却速度を速くして、結晶粒の成長を抑制することが挙げられる。圧延材や伸線材といった塑性加工材の結晶粒径を小さくするには、加工度を高めることが挙げられる。再結晶が起こらない温間加工や冷間加工では、結晶粒径と線径との比(粒径/線径)が維持されるため、加工度を高めるにつれて、結晶粒径を小さくできる。また、再結晶が起こる熱間加工や熱処理を行う場合、再結晶粒の粒成長を抑制することで、結晶粒径を小さくできる。結晶粒径は、Alの純度が高いほど大きくなる傾向にあるが、上述のような手法により、小さくすることができる。 In order to reduce the crystal grain size of the cast material, in addition to adding Ti as described above, it is possible to suppress the growth of crystal grains by increasing the cooling rate during casting as described later. In order to reduce the crystal grain size of a plastically processed material such as a rolled material or a wire drawing material, it is possible to increase the degree of processing. In warm processing and cold processing in which recrystallization does not occur, the ratio between the crystal grain size and the wire diameter (particle size / wire diameter) is maintained, so that the crystal grain size can be reduced as the degree of processing is increased. In addition, when performing hot working or heat treatment in which recrystallization occurs, the crystal grain size can be reduced by suppressing the growth of recrystallized grains. The crystal grain size tends to increase as the purity of Al increases, but it can be reduced by the method described above.
結晶粒径の測定は、素材の断面を組織観察することで行うことが挙げられる。また、結晶粒径の測定は、最終の塑性加工、特に、最終の冷間加工が施される前に測定する。例えば、鋳造材、圧延材、最終の伸線加工が施される前の伸線途中材について測定する。本発明Al線で規定するようなAl濃度が高い高純度アルミニウムは、添加元素の濃度が比較的高いアルミニウム合金と比較して、粒界の判別が難しい傾向にある。特に、冷間加工後に組織観察を行うと、断面組織が加工組織となり、加工度の上昇に伴って形状が複雑に変形した結晶粒となる傾向がある。従って、加工度が上がるにつれて結晶粒径の測定が困難となる。そのため、特に、冷間加工後に結晶粒径を測定する場合は、最終の加工前までの早い段階で測定する。なお、冷間加工後に熱処理を実施しない場合、再結晶が起こらないため、上述した線径と結晶粒径との関係(r/R或いはR/r)は、製造途中で測定したものが、最終の線径まで維持されると考えられる。 The crystal grain size can be measured by observing the cross section of the material. The crystal grain size is measured before the final plastic working, particularly the final cold working. For example, measurement is performed on a cast material, a rolled material, and a wire intermediate material before the final wire drawing is performed. High purity aluminum having a high Al concentration as defined by the Al wire of the present invention tends to be difficult to discriminate grain boundaries as compared with an aluminum alloy having a relatively high concentration of additive elements. In particular, when the structure is observed after cold working, the cross-sectional structure becomes a processed structure, and tends to become crystal grains whose shape is complicatedly deformed as the degree of processing increases. Therefore, it becomes difficult to measure the crystal grain size as the degree of processing increases. Therefore, particularly when the crystal grain size is measured after cold working, it is measured at an early stage before the final working. In addition, since recrystallization does not occur when heat treatment is not performed after cold working, the relationship between the wire diameter and the crystal grain size (r / R or R / r) described above is the final value measured during the production. It is thought that the wire diameter is maintained up to.
(導電率)
本発明Al線は、導電率が61%IACS以上である。特に、Alを99.9質量%以上含有する本発明Al線は、導電率が62%IACS以上である。本発明Al線は、Alの含有量が高く、aem元素の含有量が微量であることから、高い導電率を有する。従って、本発明Al線は、コンデンサ用のリード端子に求められる導電率を十分に満たし、リード端子の形成材料に好適に利用することができる。
(conductivity)
The Al wire of the present invention has a conductivity of 61% IACS or more. In particular, the Al wire of the present invention containing 99.9% by mass or more of Al has a conductivity of 62% IACS or more. The Al wire of the present invention has a high electric conductivity because the content of Al is high and the content of the aem element is very small. Therefore, the Al wire of the present invention sufficiently satisfies the electrical conductivity required for the capacitor lead terminal, and can be suitably used as a material for forming the lead terminal.
(線径)
本発明Al線をコンデンサ用のリード端子に利用する場合、線径は、φ0.5〜4.5mmが好ましい。線径がφ0.5mm未満では、実用上強度不足となったり、コンデンサの封止が十分に行われず、液漏れが起きたりする可能性がある。線径を4.5mmとすることで、リード端子に要求される電気特性、機械的特性を十分満たすため、特にこれ以上の線径は必要ないと考えられる。
(Wire diameter)
When the Al wire of the present invention is used as a lead terminal for a capacitor, the wire diameter is preferably φ0.5 to 4.5 mm. If the wire diameter is less than φ0.5 mm, the strength may be insufficient in practice, or the capacitor may not be sufficiently sealed, and liquid leakage may occur. By setting the wire diameter to 4.5 mm, the electrical characteristics and mechanical characteristics required for the lead terminals are sufficiently satisfied.
(引張強さ)
本発明Al線をコンデンサ用のリード端子に利用する場合、使用の際に必要な機械的特性、特に強度を具えておくことが望まれる。例えば、引張強さは、90N/mm2以上であることが望まれる。好ましくは、95N/mm2以上、より好ましくは、105N/mm2以上である。引張強さは、所望の適正値以上であることが望ましいが、300N/mm2超では、鍛造加工などの2次加工が困難になる。従って、300N/mm2を上限とする。加工度(断面減少率)が20%以上である冷間加工を行うことで、引張強さを90N/mm2以上とすることができる。加工度を高めることで、引張強さをより高くすることができる。
(Tensile strength)
When the Al wire of the present invention is used as a lead terminal for a capacitor, it is desired to provide mechanical characteristics, particularly strength, necessary for use. For example, the tensile strength is desirably 90 N / mm 2 or more. Preferably, it is 95 N / mm 2 or more, more preferably 105 N / mm 2 or more. The tensile strength is desirably equal to or more than a desired appropriate value, but if it exceeds 300 N / mm 2 , secondary processing such as forging becomes difficult. Therefore, the upper limit is 300 N / mm 2 . By performing cold working with a workability (cross-sectional reduction rate) of 20% or more, the tensile strength can be 90 N / mm 2 or more. By increasing the degree of processing, the tensile strength can be further increased.
(0.2%耐力)
本発明Al線をコンデンサ用のリード端子に利用する場合、0.2%耐力も所定の大きさにあることが望まれる。具体的には、引張強さに対する0.2%耐力の割合が50%以上98%以下であることが好ましい。より好ましくは、60〜95%である。引張強さに対する0.2%耐力の割合は、(0.2%耐力)/(引張強さ)×100により求められる。この割合は、Al線の軟化状態を表す一つの指標であり、0.2%耐力が引張強さの50%未満であるとき、つまり、軟化させ過ぎると弾性変形範囲が狭くなると共に、加工硬化し易くなる傾向がある。このようなAl線をコイル状に巻き取ったり、巻き取ったものを取り外してリード端子に加工する際にAl線に曲げなどが加わることで、部分的に加工硬化が発生し、形状の安定を図ることが難しい。0.2%耐力が引張強さの98%超であると、硬化させ過ぎて、巻き取りやリード端子への加工が行いにくくなる。鋳造後に熱間加工又は温間加工を行い、更に冷間加工を行う、つまり、最終の線径を得る工程を冷間加工工程とすることで、引張強さに対する0.2%耐力の割合を上記範囲とすることができる。また、冷間加工における加工度を20%以上、特に40%以上、更に80%以上とすることで、リード端子に要求される機械的特性を十分に満たすAl線が得られる。
(0.2% yield strength)
When the Al wire of the present invention is used as a lead terminal for a capacitor, it is desirable that the 0.2% proof stress be in a predetermined size. Specifically, the ratio of 0.2% proof stress to tensile strength is preferably 50% or more and 98% or less. More preferably, it is 60 to 95%. The ratio of 0.2% yield strength to tensile strength can be obtained by (0.2% yield strength) / (tensile strength) × 100. This ratio is an index that represents the softened state of the Al wire. When the 0.2% proof stress is less than 50% of the tensile strength, that is, if the softening is too much, the elastic deformation range becomes narrow and work hardening is easy. Tend to be. When such Al wire is wound into a coil shape, or when the wound wire is removed and processed into a lead terminal, bending or the like is applied to the Al wire, resulting in partial work hardening and stabilization of the shape. It is difficult to plan. If the 0.2% proof stress is more than 98% of the tensile strength, it will be hardened too much, making it difficult to wind or process the lead terminal. By performing hot working or warm working after casting and further cold working, that is, the process of obtaining the final wire diameter is the cold working process, the ratio of 0.2% proof stress to the tensile strength is within the above range. It can be. Further, by setting the workability in cold working to 20% or more, particularly 40% or more, and further 80% or more, an Al wire that sufficiently satisfies the mechanical characteristics required for the lead terminal can be obtained.
<製造方法>
本発明Al線を鋳造材とする場合、本発明Al線は、aem元素を合計で0.002〜0.15質量%含有し、残部がAl及び不可避的不純物からなる高純度Alの溶湯を鋳造することで製造することができる。また、本発明Al線を圧延材や伸線材といった塑性加工材とする場合、本発明Al線は、上記高純度Alの溶湯を鋳造し、得られた鋳造材に圧延や伸線といった塑性加工を行うことで製造することができる。
<Manufacturing method>
When the Al wire of the present invention is used as a casting material, the Al wire of the present invention is produced by casting a high-purity Al melt containing 0.002 to 0.15 mass% of the aem element in total and the balance being Al and inevitable impurities. can do. In addition, when the Al wire of the present invention is used as a plastic work material such as a rolled material or a wire drawing material, the Al wire of the present invention casts the above high purity Al molten metal, and the obtained cast material is subjected to plastic working such as rolling or wire drawing. It can be manufactured by doing.
[鋳造]
鋳造時の冷却は、5℃/sec以上で行うことが好ましく、より好ましくは、8℃/sec以上、更に好ましくは20℃/sec以上である。冷却速度を5℃/sec以上とすることで、結晶粒が粗大化することを防止して、微細な組織の鋳造材としたり、単位断面積あたりの等軸晶の割合が高い鋳造材とすることができる。また、冷却過程にある溶湯のどの位置においても冷却速度が5℃/sec以上であること、つまり全体が均一的に冷却されることが好ましい。
[casting]
Cooling during casting is preferably performed at 5 ° C./sec or more, more preferably 8 ° C./sec or more, and further preferably 20 ° C./sec or more. By setting the cooling rate to 5 ° C / sec or more, the crystal grains are prevented from coarsening, so that the casting material has a fine structure or the ratio of equiaxed crystals per unit cross-sectional area is high. be able to. Further, it is preferable that the cooling rate is 5 ° C./sec or more at any position of the molten metal in the cooling process, that is, the whole is cooled uniformly.
鋳造は、連続鋳造が好適である。本発明製造方法では、高純度アルミニウムの溶湯を用いているが、aem元素を含有していることから、外引けを内引けに変化することができ、鋳造時の不具合を低減して、表面状態に優れる鋳造材を得ることができる。このような鋳造材を用いることで、圧延時や伸線時に割れやキズが発生することを低減することができ、表面性状に優れる圧延材や伸線材とすることができる。特に、本発明製造方法では、従来のように伸線途中の皮剥数を多くしたり、皮剥量を多くしたり、探傷器の感度を高めたりしなくても、表面状態に優れる伸線材を得ることができる。従って、本発明製造方法は、歩留まりがよく、表面状態に優れるAl線を生産性よく製造することができる。連続鋳造方法としては、ベルトアンドホイール方式が好ましい。 Casting is preferably continuous casting. In the production method of the present invention, a high-purity aluminum melt is used, but since it contains the aem element, the outer shrinkage can be changed to the inner shrinkage, reducing defects during casting, and the surface state Can be obtained. By using such a cast material, the occurrence of cracks and scratches during rolling or wire drawing can be reduced, and a rolled material or wire drawing material having excellent surface properties can be obtained. In particular, in the production method of the present invention, a wire drawing material having an excellent surface condition can be obtained without increasing the number of peeling during drawing, increasing the amount of peeling, or increasing the sensitivity of the flaw detector as in the prior art. be able to. Therefore, the production method of the present invention can produce an Al wire with good yield and excellent surface condition with high productivity. As the continuous casting method, a belt and wheel method is preferable.
[塑性加工]
本発明Al線を圧延材や伸線材とする場合、上記鋳造材に圧延加工、圧延加工及び伸線加工といった塑性加工を施す。鋳造と塑性加工とは連続して行うことが好ましい。例えば、ベルトとホイールを組み合わせた鋳造機とこの鋳造機に連なる圧延機を用いて行う。このような装置としては、プロペルチ式連続鋳造圧延機が挙げられる。
[Plastic processing]
When the Al wire of the present invention is used as a rolled material or a drawn material, the cast material is subjected to plastic processing such as rolling, rolling, and wire drawing. Casting and plastic working are preferably performed continuously. For example, a casting machine combining a belt and a wheel and a rolling mill connected to the casting machine are used. An example of such an apparatus is a Properti type continuous casting and rolling mill.
塑性加工は、冷間加工、温間加工、熱間加工が挙げられる。特に、本発明製造方法では、熱間加工又は温間加工後に冷間加工を行うことが好ましい。より具体的には、圧延を熱間又は温間で行い、伸線を冷間で行う。本発明Al線を塑性加工材とする場合、最終線径を得る工程が冷間加工工程であることが好ましい。このような塑性加工を行うことで、上述した引張強さや0.2%耐力を有するAl線を製造できる。特に、冷間加工は、加工度を20%以上、より好ましくは40%以上、更に好ましくは80%以上とすることで、リード端子に要求される機械的特性を十分に満たすAl線が得られる。 Plastic working includes cold working, warm working, and hot working. In particular, in the production method of the present invention, it is preferable to perform cold working after hot working or warm working. More specifically, rolling is performed hot or warm, and wire drawing is performed cold. When the Al wire of the present invention is used as a plastic working material, the step of obtaining the final wire diameter is preferably a cold working step. By performing such plastic working, an Al wire having the above-described tensile strength and 0.2% proof stress can be manufactured. In particular, in the cold working, when the degree of work is 20% or more, more preferably 40% or more, and still more preferably 80% or more, an Al wire that sufficiently satisfies the mechanical characteristics required for the lead terminal can be obtained. .
なお、コンデンサ用のリード端子に利用されるAl線は、軟材で用いられることがほとんどない。そのため、本発明Al線をリード端子に用いる場合、軟化のための熱処理を施す必要がなく、塑性加工後、特に冷間伸線後に熱処理を施すことを省略できる。熱処理を実施する場合は、塑性加工の途中で実施し、熱処理後、冷間伸線といった塑性加工を行う。即ち、本発明Al線をリード端子とする場合、最終線径の状態にある素材に対して、熱処理を実施しないことが好ましい。塑性加工途中の熱処理後に上述した結晶粒径を測定する場合、熱処理後から最終の塑性加工前までに測定する。 Al wires used for capacitor lead terminals are rarely used for soft materials. Therefore, when the Al wire of the present invention is used for a lead terminal, it is not necessary to perform heat treatment for softening, and it is possible to omit heat treatment after plastic working, particularly after cold drawing. When heat treatment is performed, it is performed in the middle of plastic working, and after heat treatment, plastic working such as cold drawing is performed. That is, when the Al wire of the present invention is used as a lead terminal, it is preferable not to perform heat treatment on the material in the final wire diameter state. When the crystal grain size is measured after the heat treatment in the middle of plastic working, it is measured after the heat treatment and before the final plastic working.
上述したような鋳造や塑性加工を行うことで、Al含有量が99.7質量%以上であって、導電率61%IACS以上である高純度Al線、或いは、99.9質量%以上であって、導電率62%IACS以上である高純度Al線を製造することができる。 By performing casting or plastic working as described above, the Al content is 99.7% by mass or more and the conductivity is 61% IACS or more, or the high purity Al wire, or 99.9% by mass or more, the conductivity High purity Al wire with 62% IACS or higher can be manufactured.
[Tiの添加]
aem元素に加えてTiを含有したAl線を製造する場合、例えば、aem元素を合計で0.002〜0.15質量%、Tiを0.002〜0.05質量%含有し、残部がAl及び不可避的不純物からなる高純度Alの溶湯を用いる。この溶湯は、所定量のAl、aem元素、Tiを溶解炉で溶解することで得られる。ここで、Ti単体では、結晶粒の微細化効果が少ないため、Tiの添加は、Tiを含む微細化剤を利用することが好ましい。Tiを含む微細化剤としては、Ti、Tiの酸化物(TiO)、Tiの硼化物(TiB)、Tiの炭化物(TiC)、及びAlとTiとの化合物(例えば、TiAl3)から選択される少なくとも一種を含有するものが挙げられる。このような微細化剤は、結晶粒を微細化すると共に、鋳造組織における等軸晶の割合を増加させる。
[Ti addition]
When manufacturing Al wires containing Ti in addition to aem elements, for example, high purity containing aem elements in a total of 0.002 to 0.15% by mass, Ti in a range of 0.002 to 0.05% by mass, the balance being Al and inevitable impurities Use molten Al. This molten metal is obtained by melting a predetermined amount of Al, aem element, and Ti in a melting furnace. Here, since Ti alone has little effect of refining crystal grains, it is preferable to use a refining agent containing Ti for the addition of Ti. The finer containing Ti is selected from Ti, Ti oxide (TiO), Ti boride (TiB), Ti carbide (TiC), and a compound of Al and Ti (for example, TiAl 3 ). And those containing at least one of the above. Such a refiner refines crystal grains and increases the ratio of equiaxed crystals in the cast structure.
上述のように予めTiを含有した溶湯を用いてもよいが、鋳型に注湯する直前にTiを含む微細化剤を添加させてもよい。つまり、aem元素を合計で0.002〜0.15質量%、残部がAl及び不可避的不純物からなる高純度Alの溶湯に、Tiの含有量が0.002〜0.05質量%となるようにTi含有微細化剤を添加しながら鋳造してもよい。予めTiを含有する溶湯を用意し、この溶湯を鋳型に注湯すると、Ti成分が鋳型の底に沈降することがある。そこで、注湯の際にTi含有微細化剤を添加して、Ti成分の沈降を防止する。具体的には、TiBなどを分散させたアルミニウムをワイヤ状に作製し、aem元素を含む高純度Alの溶湯が鋳型に注湯される際にこのワイヤを供給して、鋳型内に溶湯とワイヤとが同時に注がれるようにする。添加したTiBなどは、注湯時の溶湯の対流により沈降することなく溶湯中に均等に混合される。 As described above, a molten metal containing Ti in advance may be used, but a micronizing agent containing Ti may be added immediately before pouring into the mold. That is, a Ti-containing micronizing agent is added to a high-purity Al melt containing 0.002 to 0.15 mass% in total, the balance being Al and inevitable impurities, so that the Ti content is 0.002 to 0.05 mass%. It may be cast while. If a molten metal containing Ti is prepared in advance, and the molten metal is poured into a mold, the Ti component may settle to the bottom of the mold. Therefore, a Ti-containing finer is added during pouring to prevent sedimentation of the Ti component. Specifically, aluminum in which TiB or the like is dispersed is produced in a wire shape, and when a high-purity Al melt containing aem element is poured into the mold, this wire is supplied, and the melt and the wire are put into the mold. To be poured at the same time. The added TiB and the like are evenly mixed in the molten metal without settling due to the convection of the molten metal during pouring.
[大きさ]
得られたAl線をコンデンサ用のリード端子に利用する場合、最終の冷間加工前までにおいて、結晶粒径が特定の大きさとなるように鋳造や塑性加工を行うことが好ましい。具体的には、鋳造後における鋳造材の平均結晶粒径rcが鋳造材の線径Rcの1/10以下とする。つまり、rc/Rc≦1/10である鋳造材を製造する。或いは、圧延後における圧延材の平均結晶粒径rrが、圧延材の線径Rrの1/10以下とする。つまり、rr/Rr≦1/10である圧延材を製造する。或いは、最終の冷間加工前における加工材の平均結晶粒径rdが、加工材の線径rdの1/10以下とする。つまり、rd/Rd≦1/10である加工材を製造する。このような鋳造材、圧延材、加工材に対して、線径がφ0.5〜4.5mmとなるように冷間加工、具体的には、冷間伸線加工を施す。鋳造材には、熱間圧延又は温間圧延を施した後、上記線径となるように冷間加工、具体的には冷間伸線加工を施す。このような塑性加工を行うことで、コンデンサ用のリード端子の形成材料に適した高純度Al線を製造することができる。
[size]
When the obtained Al wire is used as a lead terminal for a capacitor, it is preferable to perform casting or plastic working so that the crystal grain size becomes a specific size before the final cold working. Specifically, the average grain size r c of the cast material after casting is 1/10 of diameter R c of the cast material. That is, a cast material with r c / R c ≦ 1/10 is manufactured. Alternatively, the average crystal grain size r r of the rolled material after rolling is 1/10 or less of the wire diameter R r of the rolled material. That is, a rolled material with r r / R r ≦ 1/10 is manufactured. Alternatively, the average grain size r d of the workpiece before between the final cold working is to 1/10 of diameter r d of the workpiece. That is, a processed material with r d / R d ≦ 1/10 is manufactured. Such cast material, rolled material, and processed material are subjected to cold working, specifically, cold drawing so that the wire diameter becomes φ0.5 to 4.5 mm. The cast material is hot-rolled or warm-rolled, and then cold-worked, specifically cold-drawn so as to have the above-mentioned wire diameter. By performing such plastic working, a high-purity Al wire suitable for a material for forming a lead terminal for a capacitor can be manufactured.
本発明高純度アルミニウム線は、表面状態が非常に優れており、優れた表面状態が望まれる用途に好適に利用できる。また、本発明製造方法は、表面状態に優れた高純度アルミニウム線を生産性よく製造することができる。 The high-purity aluminum wire of the present invention has a very excellent surface state and can be suitably used for applications where an excellent surface state is desired. In addition, the production method of the present invention can produce a high-purity aluminum wire excellent in surface condition with high productivity.
高純度アルミニウムの溶湯を用意し、プロペルチ式連続鋳造圧延機を用いて、この溶湯を連続鋳造した後、得られた鋳造材を引き続いて圧延し、圧延材を作製した。 A high-purity aluminum melt was prepared, and this molten metal was continuously cast using a Properti type continuous casting and rolling machine, and then the obtained cast material was continuously rolled to produce a rolled material.
試料No.A1〜A26,A100,B1〜B29は、表1,2に示す組成のアルミニウム(Al)及びアルカリ土類金属元素(aem元素)を反射型溶解炉にて溶解した後、得られた高純度アルミニウム溶湯にフラックスによる通常の溶湯処理を実施することで得た。試料No.F1〜F14は、表3に示す組成のAlを反射型溶解炉にて溶解した後、得られた高純度アルミニウム溶湯にフラックスによる通常の溶湯処理を実施することで得た。 Sample Nos. A1 to A26, A100, and B1 to B29 were obtained after melting aluminum (Al) and alkaline earth metal elements (aem elements) having the compositions shown in Tables 1 and 2 in a reflective melting furnace. The high-purity aluminum melt was obtained by performing a normal melt treatment with flux. Samples Nos. F1 to F14 were obtained by melting Al having the composition shown in Table 3 in a reflective melting furnace and then subjecting the resulting high-purity aluminum melt to normal melt treatment with flux.
Tiを含有しない試料No.A1〜A26,A100,F1〜F5については、処理した溶湯を連続鋳造した。Tiを含有する試料No.B1〜B29,F6〜14については、Al-3%Ti-1%Bワイヤ、又はAl-3%Ti-0.15%Cワイヤを用意し、鋳込み直前に高純度アルミニウムにおけるTiの含有量が表2,3に示す量となるようにワイヤを添加した。また、鋳型内に溶湯とワイヤとが同時に注がれるようにして連続鋳造した。Al-3%Ti-1%Bワイヤとは、ワイヤ中にTiを3質量%、Bを1質量%含有し、残部がAl及び他の元素(主として不可避的不純物)により構成されるワイヤ、Al-3%Ti-0.15%Cワイヤとは、ワイヤ中にTiを3質量%、Cを0.15質量%含有し、残部がAl及び他の元素(主として不可避的不純物)により構成されるワイヤである。表2,3における「Ti 計」の数値は、溶湯を鋳造して得られた鋳造材におけるTiの含有量を質量%で表している。また、表1〜3における不純物元素は、Fe,Siなどといった不可避不純物元素の分析量の総計を質量%で表している。 For sample Nos. A1 to A26, A100, and F1 to F5 not containing Ti, the treated molten metal was continuously cast. For samples Nos. B1 to B29 and F6 to 14 containing Ti, prepare Al-3% Ti-1% B wire or Al-3% Ti-0.15% C wire and use high purity aluminum just before casting. The wires were added so that the Ti content was as shown in Tables 2 and 3. Further, continuous casting was performed such that the molten metal and the wire were poured simultaneously into the mold. Al-3% Ti-1% B wire is a wire that contains 3% by mass of Ti and 1% by mass of B in the wire, and the balance consists of Al and other elements (mainly inevitable impurities), Al The -3% Ti-0.15% C wire is a wire containing 3% by mass of Ti and 0.15% by mass of C in the wire, with the balance being composed of Al and other elements (mainly inevitable impurities). The numerical values of “Ti meter” in Tables 2 and 3 represent the Ti content in mass% in the cast material obtained by casting the molten metal. The impurity elements in Tables 1 to 3 represent the total amount of analysis of inevitable impurity elements such as Fe and Si in mass%.
連続鋳造では、台形状の鋳造材を製造した。鋳造時における冷却速度は、溶湯のどの位置にあっても10℃/sec以上であった。得られた鋳造材を適宜サンプリングし、外観を観察して再溶融部分の数を調べると共に、断面組織を観察して結晶粒径(平均結晶粒径)を調べた。再溶融部分の評価は、試料No.F6と比較して、再溶融部分の数が減少していた試料は○、数が同等の試料は△、数が多い試料は×とした。結果を表1〜3に示す。また、平均結晶粒径を測定し、鋳造径を平均結晶粒径で割った値(線径/結晶粒径)を表1〜3に示す。鋳造径(線径)は、製造した台形状の鋳造材の断面積から等価径を求め、この等価径を用いた。 In continuous casting, a trapezoidal cast material was produced. The cooling rate during casting was 10 ° C./sec or more at any position of the molten metal. The obtained cast material was appropriately sampled, the appearance was observed to examine the number of remelted portions, and the cross-sectional structure was observed to examine the crystal grain size (average crystal grain size). In the evaluation of the remelted portion, compared with sample No. F6, the sample in which the number of remelted portions was decreased was evaluated as ◯, the sample having the same number as Δ, and the sample having a large number as ×. The results are shown in Tables 1-3. In addition, Tables 1 to 3 show values (wire diameter / crystal particle diameter) obtained by measuring the average crystal grain diameter and dividing the casting diameter by the average crystal grain diameter. For the casting diameter (wire diameter), an equivalent diameter was obtained from the cross-sectional area of the produced trapezoidal cast material, and this equivalent diameter was used.
表1〜3に示すように、アルカリ土類金属元素を所定量含有する試料No.A1〜A26,B1〜B29は、アルカリ土類金属元素を所定量含有していない試料No.F1〜F14と比較して、再溶融部分の発生が低減されていることがわかる。また、Tiを添加した試料は、「線径/結晶粒径」の値が大きくなっており、平均結晶粒径がより小さくなっていることがわかる。 As shown in Tables 1 to 3, sample Nos. A1 to A26 and B1 to B29 containing a predetermined amount of alkaline earth metal element are sample Nos. F1 to F14 not containing a predetermined amount of alkaline earth metal element. In comparison, it can be seen that the occurrence of remelted portions is reduced. Further, it can be seen that the sample added with Ti has a larger value of “wire diameter / crystal grain size” and a smaller average crystal grain size.
連続鋳造後に行った圧延は、熱間とし、線径φ9.5mmの丸線を得た。この丸線(圧延材)を多段冷間伸線機で線径φ3.6mmまで冷間伸線を実施した(加工度:約85%)。この伸線途中において皮剥を実施した。この皮剥により、再溶融以外の原因、例えば、熱間の圧延加工やその後の伸線加工において発生するガイドへの当てキズといった比較的深さの小さいキズを除去することができる。この試験では、線径φ7.5mmの伸線材に皮剥ダイスを用いて片側0.2mm(厚さ0.2mm)の皮剥を実施した。なお、皮剥は、行わなくてもよい。皮剥後、伸線機に具えるオンラインの渦流型探傷器を用いて表面のキズの個数及び大きさ(深さ)を観察し、探傷カウント部にマーキングを行った。キズの深さは、探傷器において表面のキズをカウントした部分(マーキング部分)について試料の横断面を観察して調べた。また、探傷数の評価は、アルカリ土類金属元素を添加していない試料のうち、最も探傷数が少なかった試料No.F6の探傷数を100とし、その相対数を求めた。その結果を表4に示す。 The rolling performed after continuous casting was hot, and a round wire with a wire diameter of φ9.5 mm was obtained. This round wire (rolled material) was cold-drawn to a wire diameter of φ3.6 mm with a multistage cold-drawing machine (working degree: about 85%). Skinning was performed during the wire drawing. By this peeling, it is possible to remove a cause other than remelting, for example, a scratch having a relatively small depth, such as a scratch on a guide generated in hot rolling or subsequent wire drawing. In this test, a 0.2 mm (thickness: 0.2 mm) stripping was performed on a wire drawing material having a diameter of φ7.5 mm using a stripping die. Note that skinning may not be performed. After peeling, the number and size (depth) of scratches on the surface were observed using an on-line eddy current flaw detector provided in the wire drawing machine, and marking was performed on the flaw detection counter. The depth of the scratch was examined by observing the cross section of the sample for the portion (marking portion) where the surface scratch was counted in the flaw detector. The evaluation of the number of flaw detections was performed by setting the number of flaw detections of sample No. F6, which had the smallest flaw detection number, to 100 among samples not added with alkaline earth metal elements, and obtaining the relative number. The results are shown in Table 4.
表4に示すように、アルカリ土類金属元素を所定量含有する試料No.A1〜A26,B1〜B29は、アルカリ土類金属元素を所定量含有していない試料No.F1〜F14と比較して、探傷数が減少している、つまり、表面キズが減少していることがわかる。これに対し、試料No.F1〜F14は、皮剥を行っても表面キズが多いことがわかる。また、同時に調査したキズの深さについても試料No.A1〜A26,B1〜B29は、試料No.F1〜F14と比較して、キズの深さが小さいことが分かった。 As shown in Table 4, sample Nos. A1 to A26 and B1 to B29 containing a predetermined amount of alkaline earth metal element are compared with sample Nos. F1 to F14 that do not contain a predetermined amount of alkaline earth metal element. Thus, it can be seen that the number of flaw detections is reduced, that is, the surface scratches are reduced. On the other hand, it can be seen that Sample Nos. F1 to F14 have many surface scratches even after peeling. Moreover, also about the depth of the flaw investigated simultaneously, it turned out that sample No. A1-A26 and B1-B29 have a small flaw depth compared with sample No. F1-F14.
得られた線径φ3.6mmの伸線材に更に冷間伸線を施し、最終線径φ1.5mmの伸線材を得た(最終伸線工程(φ3.6mm→φ1.5mm)の加工度:約82%)。この線径φ1.5mmの伸線材について、引張強さ、0.2%耐力、導電率を測定した。引張強さ(N/mm2)、引張強さに対する0.2%耐力の割合(%)、導電率(%IACS,室温)を表5〜7に示す。引張強さに対する0.2%耐力の割合は、(0.2%耐力)/(引張強さ)×100にて求めた。 The resulting wire drawing material with a diameter of φ3.6 mm was further cold drawn to obtain a wire drawing material with a final wire diameter of φ1.5 mm (working degree of final wire drawing step (φ3.6 mm → φ1.5 mm): About 82%). Tensile strength, 0.2% proof stress, and electrical conductivity were measured for the drawn wire having a wire diameter of φ1.5 mm. Tables 5 to 7 show the tensile strength (N / mm 2 ), the ratio (%) of the 0.2% proof stress to the tensile strength, and the conductivity (% IACS, room temperature). The ratio of 0.2% yield strength to tensile strength was determined by (0.2% yield strength) / (tensile strength) × 100.
表5〜7に示すように試料No.A1〜A26,B1〜B29は、所定量のアルカリ土類金属元素を含有しながらも61%IACS以上の導電率を有することがわかる。また、試料No.A1〜A26,B1〜B29は、熱間加工後、冷間加工を行うことで、引張強さと0.2%耐力との双方に優れることがわかる。 As shown in Tables 5 to 7, it can be seen that Sample Nos. A1 to A26 and B1 to B29 have a conductivity of 61% IACS or more while containing a predetermined amount of alkaline earth metal element. It can also be seen that Sample Nos. A1 to A26 and B1 to B29 are excellent in both tensile strength and 0.2% proof stress by performing cold working after hot working.
試料No.F6よりも探傷数が少なかった試料について、表面処理を行い、電解コンデンサの端子タブ形状に加工した。すると、試料A100を除くいずれの試料についても端子タブ形状に加工することができ、コンデンサのリード端子に使用することが可能であることが確認できた。試料A100は、酸化皮膜処理をする際に酸化皮膜の状態が他の試料と比較して悪化していた。 A sample with a smaller number of flaw detections than sample No. F6 was subjected to surface treatment and processed into a terminal tab shape of an electrolytic capacitor. Then, any sample except the sample A100 could be processed into a terminal tab shape, and it was confirmed that it could be used as a capacitor lead terminal. In the sample A100, the state of the oxide film was deteriorated as compared with other samples when the oxide film treatment was performed.
本発明高純度アルミニウム線は、優れた表面状態が求められる種々の用途、例えば、アルミニウム電解コンデンサのリード端子の形成材料に好適に利用することができる。また、本発明高純度アルミニウム線の製造方法は、表面状態に優れる高純度アルミニウム線の製造に好適に利用することができる。 The high-purity aluminum wire of the present invention can be suitably used for various applications requiring an excellent surface state, for example, a material for forming a lead terminal of an aluminum electrolytic capacitor. Moreover, the manufacturing method of this invention high purity aluminum wire can be utilized suitably for manufacture of the high purity aluminum wire which is excellent in a surface state.
Claims (18)
導電率が61%IACS以上であることを特徴とする高純度アルミニウム線。 Contains a total of 0.002 to 0.15% by mass of alkaline earth metal elements, 99.7% by mass or more of aluminum, and the balance consists of inevitable impurities,
A high-purity aluminum wire having a conductivity of 61% IACS or higher.
導電率が62%IACS以上であることを特徴とする高純度アルミニウム線。 Contains a total of 0.002 to 0.05% by weight of alkaline earth metal elements, 99.9% by weight or more of aluminum, and the balance consists of inevitable impurities,
A high-purity aluminum wire characterized by an electrical conductivity of 62% IACS or higher.
得られた鋳造材に塑性加工を行って、アルミニウムを99.7質量%以上含有し、導電率が61%IACS以上である高純度アルミニウム線を製造することを特徴とする高純度アルミニウム線の製造方法。 Casting a high-purity aluminum melt containing 0.002 to 0.15% by mass in total of alkaline earth metal elements, the balance being Al and inevitable impurities,
A method for producing a high-purity aluminum wire, comprising subjecting the obtained cast material to plastic working to produce a high-purity aluminum wire containing 99.7% by mass or more of aluminum and having a conductivity of 61% or more of IACS.
得られた鋳造材に塑性加工を行って、アルミニウムを99.7質量%以上含有し、導電率が61%IACS以上である高純度アルミニウム線を製造することを特徴とする高純度アルミニウム線の製造方法。 A total of 0.002 to 0.15% by mass of alkaline earth metal elements and 0.002 to 0.05% by mass of Ti are cast, and a high-purity aluminum melt consisting of Al and inevitable impurities is cast.
A method for producing a high-purity aluminum wire, comprising subjecting the obtained cast material to plastic working to produce a high-purity aluminum wire containing 99.7% by mass or more of aluminum and having a conductivity of 61% or more of IACS.
Tiの含有量が0.002〜0.05質量%となるように用意した高純度アルミニウムの溶湯にTiを添加しながら鋳造し、
得られた鋳造材に塑性加工を行って、アルミニウムを99.7質量%以上含有し、導電率が61%IACS以上である高純度アルミニウム線を製造することを特徴とする高純度アルミニウム線の製造方法。 Prepare a high-purity aluminum melt containing alkaline earth metal elements in a total amount of 0.002 to 0.15% by mass, the balance being Al and inevitable impurities,
Casting while adding Ti to a high-purity aluminum melt prepared so that the Ti content is 0.002 to 0.05 mass%,
A method for producing a high-purity aluminum wire, comprising subjecting the obtained cast material to plastic working to produce a high-purity aluminum wire containing 99.7% by mass or more of aluminum and having a conductivity of 61% or more of IACS.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006135854A JP4851233B2 (en) | 2006-05-15 | 2006-05-15 | High purity aluminum wire and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006135854A JP4851233B2 (en) | 2006-05-15 | 2006-05-15 | High purity aluminum wire and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007302988A true JP2007302988A (en) | 2007-11-22 |
JP4851233B2 JP4851233B2 (en) | 2012-01-11 |
Family
ID=38837164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006135854A Expired - Fee Related JP4851233B2 (en) | 2006-05-15 | 2006-05-15 | High purity aluminum wire and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4851233B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011171080A (en) * | 2010-02-17 | 2011-09-01 | Toshiba Corp | Battery part, battery pack, and method for manufacturing battery pack |
CN103952601A (en) * | 2014-04-30 | 2014-07-30 | 国家电网公司 | High-conductivity heat-resistant aluminium alloy containing alkaline-earth metals |
JP2015166480A (en) * | 2014-03-03 | 2015-09-24 | 住友電気工業株式会社 | Aluminum alloy, aluminum alloy wire material, method for producing aluminum alloy wire material, method for producing aluminum alloy member and aluminum alloy member |
JP2018163995A (en) * | 2017-03-27 | 2018-10-18 | 三菱電機株式会社 | Semiconductor mounting heat dissipation base board, and manufacturing method and manufacturing apparatus thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4911529B1 (en) * | 1970-12-02 | 1974-03-18 | ||
JPS5184715A (en) * | 1975-01-22 | 1976-07-24 | Furukawa Electric Co Ltd | TAINETSUSEIDODENYOARUMINIUMUGOKIN |
JPS5184716A (en) * | 1975-01-22 | 1976-07-24 | Furukawa Electric Co Ltd | DODENYOARUMINIUMUGOKIN |
JPS54158365A (en) * | 1978-06-05 | 1979-12-14 | Furukawa Electric Co Ltd:The | Continuous casting and rolling method for aluminum and aluminum-alloy for use of electric conductor |
JPS61295649A (en) * | 1985-06-24 | 1986-12-26 | Sumitomo Electric Ind Ltd | Bonding wire |
-
2006
- 2006-05-15 JP JP2006135854A patent/JP4851233B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4911529B1 (en) * | 1970-12-02 | 1974-03-18 | ||
JPS5184715A (en) * | 1975-01-22 | 1976-07-24 | Furukawa Electric Co Ltd | TAINETSUSEIDODENYOARUMINIUMUGOKIN |
JPS5184716A (en) * | 1975-01-22 | 1976-07-24 | Furukawa Electric Co Ltd | DODENYOARUMINIUMUGOKIN |
JPS54158365A (en) * | 1978-06-05 | 1979-12-14 | Furukawa Electric Co Ltd:The | Continuous casting and rolling method for aluminum and aluminum-alloy for use of electric conductor |
JPS61295649A (en) * | 1985-06-24 | 1986-12-26 | Sumitomo Electric Ind Ltd | Bonding wire |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011171080A (en) * | 2010-02-17 | 2011-09-01 | Toshiba Corp | Battery part, battery pack, and method for manufacturing battery pack |
JP2015166480A (en) * | 2014-03-03 | 2015-09-24 | 住友電気工業株式会社 | Aluminum alloy, aluminum alloy wire material, method for producing aluminum alloy wire material, method for producing aluminum alloy member and aluminum alloy member |
CN103952601A (en) * | 2014-04-30 | 2014-07-30 | 国家电网公司 | High-conductivity heat-resistant aluminium alloy containing alkaline-earth metals |
CN103952601B (en) * | 2014-04-30 | 2016-08-31 | 国家电网公司 | A kind of high conductivity heat-resisting aluminium alloy of alkaline including earth metal |
JP2018163995A (en) * | 2017-03-27 | 2018-10-18 | 三菱電機株式会社 | Semiconductor mounting heat dissipation base board, and manufacturing method and manufacturing apparatus thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4851233B2 (en) | 2012-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5475230B2 (en) | Copper alloy for electronic materials | |
EP2508635B1 (en) | Copper alloy sheet and process for producing same | |
EP3040430B1 (en) | Copper alloy sheet material and method for producing same, and current-carrying component | |
JP5156316B2 (en) | Cu-Sn-P copper alloy sheet, method for producing the same, and connector | |
KR101773695B1 (en) | Aluminum alloy plate for housing of electronic equipment having high-strength alumite coating film attached thereto and method of producing the same | |
JP2011214088A (en) | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME | |
US10128019B2 (en) | Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar | |
JP2014047378A (en) | Cu-Mg-P BASED COPPER ALLOY Sn PLATED SHEET | |
US11319615B2 (en) | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay | |
CN102112641A (en) | Copper alloy material for electrical/electronic component | |
WO2016171055A1 (en) | Copper alloy material and method for producing same | |
CN103492597A (en) | Aluminum alloy conductor | |
JP2006283106A (en) | Production method of chromium-containing copper alloy, chromium-containing copper alloy and drawn copper article | |
JP4813814B2 (en) | Cu-Ni-Si based copper alloy and method for producing the same | |
JP5135914B2 (en) | Manufacturing method of high-strength copper alloys for electrical and electronic parts | |
JP2008127605A (en) | High-strength copper alloy sheet superior in bend formability | |
JP4851233B2 (en) | High purity aluminum wire and manufacturing method thereof | |
JP4642119B2 (en) | Copper alloy and method for producing the same | |
KR20190095251A (en) | Copper alloy rods and its manufacturing method | |
JP2006307340A (en) | Cu-Ni-Si BASED COPPER ALLOY BAR HAVING EXCELLENT BENDABILITY | |
JP2012167319A (en) | Cu-Co-Si-BASED ALLOY, ROLLED COPPER ARTICLE, ELECTRONIC COMPONENT, CONNECTOR, AND METHOD FOR PRODUCING Cu-Co-Si-BASED ALLOY | |
JPH06220594A (en) | Production of copper alloy for electric parts having good workability | |
JP2010285671A (en) | High-strength and high-electrical conductivity copper alloy and method of producing the same | |
CN113981265A (en) | Copper alloy having excellent hot rolling properties and method for producing same | |
JP6310004B2 (en) | Cu-Co-Ni-Si alloy for electronic parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111020 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |