JP2007302952A - ALUMINUM BASED ALLOY OF Al-Mg-Ge SYSTEM AND ALUMINUM ALLOY MATERIAL USING THE SAME - Google Patents

ALUMINUM BASED ALLOY OF Al-Mg-Ge SYSTEM AND ALUMINUM ALLOY MATERIAL USING THE SAME Download PDF

Info

Publication number
JP2007302952A
JP2007302952A JP2006133123A JP2006133123A JP2007302952A JP 2007302952 A JP2007302952 A JP 2007302952A JP 2006133123 A JP2006133123 A JP 2006133123A JP 2006133123 A JP2006133123 A JP 2006133123A JP 2007302952 A JP2007302952 A JP 2007302952A
Authority
JP
Japan
Prior art keywords
alloy
aluminum
phase
hardness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133123A
Other languages
Japanese (ja)
Other versions
JP4876249B2 (en
Inventor
Kenji Matsuda
健二 松田
Susumu Ikeno
進 池野
Tsunemasa Kawabata
常眞 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2006133123A priority Critical patent/JP4876249B2/en
Publication of JP2007302952A publication Critical patent/JP2007302952A/en
Application granted granted Critical
Publication of JP4876249B2 publication Critical patent/JP4876249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum based alloy whose high temperature hardness and high temperature strength are high, and in which the temperature stability of the highest hardness and age hardening speed properties are excellent. <P>SOLUTION: The aluminum based alloy comprises, by atom, 0.2 to 1.0% Mg and 0.1 to 0.5% Ge, and has excellent age hardening speed properties and high temperature strength. Preferably, the Mg content is 0.4 to 0.8%, and the Ge content is 0.2 to 0.4%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は新規アルミニウム基合金に関し、特に高温硬度及び高温強度が高く、時効硬化速度性に優れるAl−Mg−Ge系のアルミニウム基合金及びアルミニウム合金材に係る。   The present invention relates to a novel aluminum-based alloy, and particularly to an Al—Mg—Ge-based aluminum-based alloy and aluminum alloy material having high high-temperature hardness and high-temperature strength and excellent age hardening rate.

JIS6000系アルミニウム合金として知られているAl−Mg−Si系合金を用いたアルミニウム合金材は展伸性に優れることからプレス加工等がしやすく、自然時効性が弱いことから熱処理前の柔らかい段階で塑性加工を施し、その後に人工時効処理にて所定の強度を得ることができる。   Aluminum alloy materials using Al-Mg-Si alloys known as JIS 6000 series aluminum alloys are excellent in extensibility, are easy to press work, and are weak in natural aging. Predetermined strength can be obtained by performing plastic working and then artificial aging treatment.

Al−Mg−Si系合金は、展伸性に優れることから従来から押出加工にて押出形材を得ることでアルミサッシとして広く採用されている。
近年は、自然時効性に弱い特性を活かして、時効処理前の柔らかい材料特性の段階にてプレス成形等を実施し、その後に塗装工程における塗料の焼付け温度を利用して人工時効処理する方法が検討されている。
しかし、塗装工程における焼付け温度は塗料の物性値や生産性等を考慮して実装業では、175〜250℃×10〜30分となっているのが一般的であり、従来のAl−Mg−Si系合金であっては上記塗料の焼付け条件はアルミニウム合金材の物性値を充分に活かす条件ではないという技術的課題があった。
即ち、Al−Mg−Si系合金において人工時効処理による強度確保には安定したβ”相の析出が欠かせなく、200℃以下の低温長時間時効が必要であり、高温になるとβ”相が成長してβ’−MgSi相になるために母相との整合性途切れて充分な硬度及び強度が得られない課題があった。
Al-Mg-Si-based alloys have been widely adopted as aluminum sashes by obtaining extruded shapes by extrusion since they are excellent in extensibility.
In recent years, there has been a method of performing artificial aging treatment using the baking temperature of the paint in the painting process, such as press molding at the stage of soft material properties before aging treatment, taking advantage of the characteristics weak to natural aging. It is being considered.
However, the baking temperature in the coating process is generally 175 to 250 ° C. × 10 to 30 minutes in the mounting industry in consideration of the physical property value and productivity of the paint, and the conventional Al—Mg— In the case of a Si-based alloy, there has been a technical problem that the baking condition of the paint is not a condition that makes full use of the physical properties of the aluminum alloy material.
That is, in order to secure strength by artificial aging treatment in an Al—Mg—Si alloy, stable β ″ phase precipitation is indispensable, and low temperature and long term aging at 200 ° C. or lower is necessary. In order to grow into a β′-Mg 2 Si phase, there is a problem that the consistency with the parent phase is interrupted and sufficient hardness and strength cannot be obtained.

(非特許文献1)にはAl−Mg−Ge系合金の時効現象について開示するが時効処理における析出挙動の記載があるだけであり、最高硬度の温度安定性及び時効硬化速度性に関する知見は得られていない。   (Non-Patent Document 1) discloses the aging phenomenon of Al—Mg—Ge-based alloys, but only describes the precipitation behavior in the aging treatment. Knowledge about the temperature stability of the highest hardness and the age hardening rate is not available. It is not done.

「Al−Mg−Ge系合金の時効現象」鈴木 寿,菅野 幹広,伊藤 五朗:軽金属,Vol.31,No.4,1981“Aging phenomenon of Al—Mg—Ge alloys” Hisashi Suzuki, Mikihiro Kanno, Goro Ito: Light Metal, Vol. 31, no. 4,1981

本発明は、高温硬度及び高温強度が高く、最高硬度の温度安定性及び時効硬化速度性に優れるアルミニウム基合金及び合金材の提供を目的とする。   An object of the present invention is to provide an aluminum-based alloy and an alloy material having high high-temperature hardness and high-temperature strength, and excellent temperature stability and age-hardening rate at the highest hardness.

本願発明者らは、強度に寄与する生成物(中間相)の結晶構造に着目し、その格子定数を操作して、高温で強度を発揮できる合金開発を行った。
従来のAl−Mg−Si合金の場合、強度に寄与するとされる析出物はβ”相とされる。
β”相であればアルミ母相の結晶格子との整合性があり母相に対するひずみ硬化が得られるが、β”相が成長してβ’−MgSi相になるとアルミ母相の結晶格子との整合性が途切れて母相に対するひずみ硬化の影響が極端に低下するため、強度が出なくなると考えられている。
本発明は、Al−Mg合金と3元系固溶体を形成し、かつ工業上、従来のAl−Mg−Si系合金と同様に扱うことができ、さらに析出中間相と母相と整合性を保つためにSi原子と同族で原子番号が1周期異なり、かつ原子半径がSiより大きいGeに着目した。
Geがβ’を構成するSiと完全に置換してβ’−MgGe相となる場合の結晶格子の推定図を図1に示す。
( )で示した値がSiの場合であり、太字で示した値がGeに置換した場合の予想値である。
c軸(0.405nm)が変化しないとするとa軸が約0.002nm拡張し、結晶格子が約0.023nm拡張することになる。
その結果、アルミ母相{100}面とβ’相の{1120}面の格子ミスフィットは−13.33%から−12.59%へと改善される。
またアルミ母相{200}面とβ’相の{3300}面の格子ミスフィットは0.5%で変化しない。
アルミ母相との整合性が改善されることから、従来は硬化に寄与しない粗大な析出物が、十分硬化に寄与するものとなり、高温側での硬さ改善に寄与できると予想される。
また、アルミ母相と析出中間相との整合性が保たれることは析出物の相変態もスムーズに進行することが推測され、時効硬化速度の改善が見込まれ、短時間で高い硬さが得られることが期待できる。
The inventors of the present application focused on the crystal structure of a product (intermediate phase) that contributes to strength, and developed an alloy that can exhibit strength at high temperatures by manipulating the lattice constant.
In the case of a conventional Al—Mg—Si alloy, the precipitate that is supposed to contribute to the strength is the β ″ phase.
If it is β ”phase, it is consistent with the crystal lattice of the aluminum matrix and strain hardening for the matrix is obtained. However, when the β” phase grows into a β′-Mg 2 Si phase, the crystal lattice of the aluminum matrix is obtained. It is considered that the strength cannot be obtained because the effect of strain hardening on the matrix is extremely reduced due to the interruption of the consistency with the matrix.
The present invention forms an ternary solid solution with an Al-Mg alloy and can be handled industrially in the same manner as a conventional Al-Mg-Si alloy, and further maintains consistency between the precipitated intermediate phase and the matrix phase. Therefore, we focused on Ge, which is the same family as Si atoms, has an atomic number different by one period, and has an atomic radius larger than Si.
FIG. 1 shows an estimation diagram of a crystal lattice in the case where Ge is completely substituted with Si constituting β ′ to form a β′-Mg 2 Ge phase.
The values shown in parentheses are for Si, and the values shown in bold are the expected values when Ge is substituted.
If the c-axis (0.405 nm) does not change, the a-axis extends about 0.002 nm and the crystal lattice extends about 0.023 nm 3 .
As a result, the lattice misfit between the aluminum matrix {100} plane and the β ′ phase {1120} plane is improved from −13.33% to −12.59%.
The lattice misfit between the aluminum matrix {200} plane and the β3 phase {3300} plane does not change at 0.5%.
Since consistency with the aluminum matrix is improved, coarse precipitates that do not contribute to hardening in the past contribute to sufficient hardening, and are expected to contribute to improvement in hardness on the high temperature side.
In addition, maintaining consistency between the aluminum matrix and the precipitation intermediate phase is presumed that the phase transformation of the precipitate proceeds smoothly, and the age hardening rate is expected to be improved. It can be expected to be obtained.

上記の観点からAl−Mg−Ge系合金を設計し、試験評価した結果、本発明に係るアルミニウム基合金は、Mg:0.2〜1.0at%,Ge:0.1〜0.5at%含有し、時効硬化速度性及び高温強度に優れていることを特徴とする。
また、好ましいアルミニウム基合金組成としては、Mg:0.4〜0.8at%,Ge:0.2〜0.4at%含有しているのがよい。
さらに、Mn:0.01〜0.1at%含有してもよい。
ここでat%は原子量%を意味する。
Mg:0.2〜1.0at%、好ましくはMg:0.4〜0.8at%とし、Ge:0.1〜0.5at%、好ましくはGe:0.2〜0.4at%としたのはMgGe相の析出によるひずみ効果を期待したものである。
従って、Mg成分が0.2at%未満であれば硬度(強度)の上昇が小さく、Mg成分が1.0at%を超えるとGeとのバランスに対してMgが過剰になりすぎ、またMgの添加量が多いとアルミニウム合金の延性が著しく低下する。
また、Ge成分が0.1at%未満になるとMgGeの析出効果が弱く、0.5at%を超えると固溶が困難になる。
よって、後述するように従来のAl−Mg−Si系合金と同等に取り扱うことができて、高温熱処理においても高強度が得られ、最高硬度の熱処理温度安定性を得ることにより、時効硬化速度性及び高温強度に優れるためにはMg:0.4〜0.8at%、Ge:0.2〜0.4at%が好ましい。
また、SiをGeに置換する目的が得られれば必ずしもSi成分を完全にGeに置換する必要がない。
このようなアルミニウム基合金を用いたアルミニウム合金材としては、アルミニウム合金材中に1.0〜1.4mass%のMgGe析出相が出現するように時効処理したことを特徴とする。
ここで、時効硬化速度性に優れるとは析出物β”相がβ’−MgGe相になってもアルミ母相との整合性に優れることから析出物の相変態が速やかに進行することになり従来のAl−Mg−Si系合金よりも人工時効速度が速いことをいう。
より具体的には523Kの熱処理温度で20分以内に最高硬度に達する。
また、高温強度に優れるとは、従来のAl−Mg−Si系合金においては523Kにて人工時効処理すると最高硬度がHV(マイクロビッカーズ硬度)60以下であったものが本発明に係るAl−Mg−Ge系合金はHV80以上を確保することができ、引張り強度200MPa以上を得ることができることをいう。
特に本発明に係るAl−Mg−Ge系合金にあっては熱処理温度を423〜523Kに変化させても最高硬度の値はHV硬度で約10以内の差に抑えることができる。
よって本発明に係るアルミニウム基合金を用いたアルミニウム合金材は焼付け塗装工程における実装温度448〜523K(175〜250℃)において安定した硬度及び高強度を得ることができる。
また本発明に係るAl−Mg−Ge系合金は従来のAl−Mg−Si系合金と同等の不純物が含まれていてもよく、Mn、Cr、Zr等の結晶粒微細化元素を添加してもよく、その場合に個々の成分として0.01at%以上0.1at%以下がよい。
As a result of designing and test-evaluating an Al—Mg—Ge alloy from the above viewpoint, the aluminum-based alloy according to the present invention has Mg: 0.2 to 1.0 at%, Ge: 0.1 to 0.5 at%. It is characterized by being excellent in age hardening rate and high temperature strength.
Moreover, as a preferable aluminum base alloy composition, it is good to contain Mg: 0.4-0.8at%, Ge: 0.2-0.4at%.
Furthermore, you may contain Mn: 0.01-0.1at%.
Here, at% means atomic weight%.
Mg: 0.2-1.0 at%, preferably Mg: 0.4-0.8 at%, Ge: 0.1-0.5 at%, preferably Ge: 0.2-0.4 at% No. expects the strain effect due to the precipitation of the Mg 2 Ge phase.
Therefore, if the Mg component is less than 0.2 at%, the increase in hardness (strength) is small, and if the Mg component exceeds 1.0 at%, Mg becomes excessive with respect to the balance with Ge, and addition of Mg When the amount is large, the ductility of the aluminum alloy is remarkably lowered.
Further, when the Ge component is less than 0.1 at%, the precipitation effect of Mg 2 Ge is weak, and when it exceeds 0.5 at%, solid solution becomes difficult.
Therefore, as will be described later, it can be handled in the same way as a conventional Al-Mg-Si alloy, high strength can be obtained even at high temperature heat treatment, and heat treatment temperature stability with the highest hardness can be obtained. And in order to be excellent in high temperature strength, Mg: 0.4-0.8 at% and Ge: 0.2-0.4 at% are preferable.
Further, if the purpose of replacing Si with Ge is obtained, it is not always necessary to completely replace the Si component with Ge.
An aluminum alloy material using such an aluminum-based alloy is characterized in that an aging treatment is performed so that a 1.0 to 1.4 mass% Mg 2 Ge precipitated phase appears in the aluminum alloy material.
Here, the excellent age-hardening rate property means that even if the precipitate β ″ phase becomes a β′-Mg 2 Ge phase, the phase transformation of the precipitate proceeds promptly because it is excellent in consistency with the aluminum matrix phase. It means that the artificial aging speed is faster than the conventional Al-Mg-Si alloy.
More specifically, the maximum hardness is reached within 20 minutes at a heat treatment temperature of 523K.
In addition, the fact that the high temperature strength is excellent means that in a conventional Al—Mg—Si based alloy, when the artificial aging treatment is performed at 523 K, the maximum hardness is HV (micro Vickers hardness) 60 or less. The -Ge-based alloy means that HV80 or more can be secured and a tensile strength of 200 MPa or more can be obtained.
In particular, in the Al—Mg—Ge alloy according to the present invention, even when the heat treatment temperature is changed to 423 to 523 K, the maximum hardness value can be suppressed to a difference of about 10 or less in HV hardness.
Therefore, the aluminum alloy material using the aluminum base alloy according to the present invention can obtain stable hardness and high strength at a mounting temperature of 448 to 523 K (175 to 250 ° C.) in the baking coating process.
Further, the Al—Mg—Ge alloy according to the present invention may contain impurities equivalent to those of the conventional Al—Mg—Si alloy, and a crystal grain refining element such as Mn, Cr, or Zr is added. In that case, 0.01 at% or more and 0.1 at% or less is preferable as each component.

人工時効温度又は焼付け塗装温度が高くても十分な強度が、従来よりも短時間で得られる。
これにより仮に熱処理条件に差が生じても硬さ、強度、伸びという材料の信頼性のばらつきを低減できる。
Even if the artificial aging temperature or baking coating temperature is high, sufficient strength can be obtained in a shorter time than conventional.
Accordingly, even if a difference occurs in the heat treatment conditions, variations in material reliability such as hardness, strength, and elongation can be reduced.

純アルミニウム地金にMg及びGeを溶解してMg:0.4at%、Ge:0.2at%のアルミニウム基合金を試作し、423、473、523Kで時効したときの硬さ変化曲線を図2に示す。
なお、試作した合金の成分組成を分析すると、Mg:0.49at%、Ge:0.19at%、Fe:0.02質量%以下、Cr:0.01質量%以下、Mn:0.01質量%以下、Ti:0.01質量%以下、Cu:0.01質量%以下であった。
図3のAl−Mg(0.4at%)−Si(0.2at%)合金と比較して、Al−Mg−Ge合金ではいずれの時効温度でも最高硬さはほぼ90±5HVで、温度の上昇に伴って硬さが低下するAl−Mg−Si合金と大きく異なっている。
また、時効初期での硬さの立ち上がりが、Al−Mg−Ge合金のほうが速く硬くなることが明らかで、最高硬さに到達する時間も短い。
図4(a)は、Al−Mg−Si合金、図4(b)はAl−Mg−Ge合金を523Kで12ks時効した試料のTEM明視野像であり、後者のほうが析出物の数が多いことが明らかである。
図5は、Al−Mg−Ge合金中のβ’相を高分解能透過型電顕で観察してアルミ母相との整合性を確認した結果である。
中央のβ’相と周りのアルミ母相の結晶格子縞をつなぐと、良好につながっており、整合性の良いことがわかる。
さらに図6は、Al−Mg−Si合金(a)(c)とAl−Mg−Ge(b)(d)合金中のβ’相から得られた電子回析図形である。
(c)と(d)の図中に示した○印はアルミ母相、●印はβ’相からの電子回析図形であり、とくに大きい矢印で示したβ’相の回析斑点がAl−Mg−Ge合金ではアルミ母相と重なるのに対して、Al−Mg−Si合金では、ずれている。
これは図5で示した高分解能透過型電顕での整合性と同じ結果であり、Al−Mg−Si合金のβ’相が整合性が悪いのに対してAl−Mg−Ge合金で良好であることが確認できた。
図7は、本発明に係るAl−Mg−Ge合金の格子定数を実測した結果である。
実測では、格子定数はa=0.72nm,c=0.405nmと算出された。
これに基づくと、アルミ母相{100}面とβ’相の{1120}面の格子ミスフィットは−11.11%と予想した−12.59%よりも大幅に改善されていた。
一方アルミ母相{200}面とβ’相の{3300}面の格子ミスフィットは2.46%へと増加したが、10%未満であり問題はない。
このような大幅な格子定数の変化は、β’相が予想した化学組成であるMg/Ge比が2:1ではなく、MgまたはGeの割合が高い可能性を示唆している。
元素分析実験の結果ではβ’相の化学組成がMg:Ge=3:1という結果を得ており、結晶格子が膨張して母相との整合性がよくなった理由と考えられる。
図8は、523Kで最高硬さまでの時効処理をした試料の引張り試験結果である。
参考にした423Kで最高硬さまでの時効処理をしたAl−Mg−Si擬2元系合金(base)(a)及び過剰Siタイプの合金(exSi)(b)と比較して、最高強度に遜色がない。
また何よりも通常数%とという伸びが10%を超えて大幅に改善されているという特徴がある。
以上の結果より時効処理して析出する中間相が、Al−Mg−Si合金の場合と違う格子定数をもち、母相に対して高温でも整合性を保つことで、変形に対する抵抗となりうるために、粗大でも硬さに寄与するという直接証拠を得た。
Fig. 2 shows the hardness change curve when Mg and Ge are dissolved in pure aluminum ingot and Mg: 0.4at%, Ge: 0.2at% aluminum-based alloy is prototyped and aged at 423, 473, 523K. Shown in
When the component composition of the prototype alloy was analyzed, Mg: 0.49 at%, Ge: 0.19 at%, Fe: 0.02 mass% or less, Cr: 0.01 mass% or less, Mn: 0.01 mass %: Ti: 0.01% by mass or less, Cu: 0.01% by mass or less.
Compared to the Al—Mg (0.4 at%)-Si (0.2 at%) alloy in FIG. 3, the Al—Mg—Ge alloy has a maximum hardness of approximately 90 ± 5 HV at any aging temperature, This is very different from the Al—Mg—Si alloy whose hardness decreases as it rises.
Moreover, it is clear that the rise of hardness in the early aging period is faster with the Al—Mg—Ge alloy, and the time to reach the maximum hardness is shorter.
4A is a TEM bright field image of a sample obtained by aging an Al—Mg—Si alloy for 12 ks at 523 K. FIG. 4B shows that the latter has a larger number of precipitates. it is obvious.
FIG. 5 shows the result of confirming the consistency with the aluminum matrix by observing the β ′ phase in the Al—Mg—Ge alloy with a high-resolution transmission electron microscope.
When the crystal lattice fringes of the central β ′ phase and the surrounding aluminum matrix are connected, it is found that the connection is good and the matching is good.
Furthermore, FIG. 6 is an electron diffraction pattern obtained from the β ′ phase in the Al—Mg—Si alloy (a) (c) and the Al—Mg—Ge (b) (d) alloy.
The circles (c) and (d) in the figures are the aluminum matrix, and the circles are the electron diffraction patterns from the β ′ phase. In particular, the diffraction spots of the β ′ phase indicated by the large arrows are Al. The -Mg-Ge alloy overlaps with the aluminum matrix, whereas the Al-Mg-Si alloy is displaced.
This is the same result as the matching in the high-resolution transmission electron microscope shown in FIG. 5, and the β-phase of the Al—Mg—Si alloy has poor matching, whereas the Al—Mg—Ge alloy is good. It was confirmed that.
FIG. 7 shows the results of actual measurement of the lattice constant of the Al—Mg—Ge alloy according to the present invention.
In actual measurement, the lattice constants were calculated as a = 0.72 nm and c = 0.405 nm.
Based on this, the lattice misfit of the {100} face of the aluminum matrix and the {1120} face of the β ′ phase was significantly improved from the expected 12.59%, which is estimated to be 11.11%.
On the other hand, the lattice misfit between the aluminum parent phase {200} plane and the β3 phase {3300} plane increased to 2.46%, but it is less than 10% and there is no problem.
Such a large change in lattice constant suggests that the Mg / Ge ratio, which is the chemical composition expected by the β ′ phase, is not 2: 1, and that the ratio of Mg or Ge may be high.
The result of the elemental analysis experiment shows that the chemical composition of the β ′ phase is Mg: Ge = 3: 1, which is considered to be the reason that the crystal lattice expands and the consistency with the parent phase is improved.
FIG. 8 shows a tensile test result of a sample that has been subjected to aging treatment up to the maximum hardness at 523K.
Compared to the reference Al-Mg-Si pseudo binary alloy (base) (a) and excess Si type alloy (exSi) (b) that have been aged to 423K for reference, the maximum strength is inferior There is no.
Moreover, above all, the characteristic is that the growth of several percent is usually improved by over 10%.
From the above results, the intermediate phase precipitated by aging treatment has a different lattice constant from that of the Al-Mg-Si alloy, and can maintain resistance to the parent phase even at high temperatures, which can be a resistance to deformation. We obtained direct evidence that even coarse, it contributes to hardness.

次に過剰Mg合金として、純アルミニウムにMg:0.8at%、Ge:0.2at%のアルミニウム基合金を試作した。
試作後の組成分析結果は、Mg:0.95at%、Ge:0.22at%、Fe:0.02質量%以下、Cr、Mn、Ti、Cuはそれぞれ0.01質量%以下であった。
図9に、先のバランス組成合金(Mg:0.4at%、Ge:0.2at%)と今回の過剰Mg合金(Mg:0.8at%、Ge:0.2at%)との時効硬化曲線を示す。
また、図10に析出組織のTEM像(透過型電子顕微鏡)を示し、図11に中間相のHRTEM像(高分解能透過型電子顕微鏡)を示す。
この結果、図10のTEM像から過剰Mg合金の方がバランス組成合金よりも単位面積当たりの析出物数が多く、図9に示すように最高硬度の値が高くなっていると推定される。
また、図11に示すHRTEM像から過剰Mg合金であってもバランス組成合金と同様に、結晶格子が膨張した0.72nmの格子間隔を示す中間相が観察される。
Next, as an excess Mg alloy, an aluminum-based alloy of pure aluminum with Mg: 0.8 at% and Ge: 0.2 at% was prototyped.
The composition analysis results after the trial production were Mg: 0.95 at%, Ge: 0.22 at%, Fe: 0.02 mass% or less, and Cr, Mn, Ti, and Cu were each 0.01 mass% or less.
FIG. 9 shows an age hardening curve of the previous balance composition alloy (Mg: 0.4 at%, Ge: 0.2 at%) and the current excess Mg alloy (Mg: 0.8 at%, Ge: 0.2 at%). Indicates.
FIG. 10 shows a TEM image (transmission electron microscope) of the precipitated structure, and FIG. 11 shows an HRTEM image (high resolution transmission electron microscope) of the intermediate phase.
As a result, it is presumed from the TEM image of FIG. 10 that the excess Mg alloy has a larger number of precipitates per unit area than the balanced composition alloy, and the maximum hardness value is higher as shown in FIG.
Further, from the HRTEM image shown in FIG. 11, even in the case of an excess Mg alloy, an intermediate phase showing a 0.72 nm lattice spacing in which the crystal lattice is expanded is observed as in the case of the balance composition alloy.

本発明に係るAl−Mg−Ge系合金及びこれを用いた合金材は比較的高温でも高い強度が得られるので焼付け塗装と同時に人工時効処理できるベークハード性に優れるので、塑性加工後の焼付け塗装が必要な自動車材料や産業機械材料、あるいはエンジン廻り等の比較的高温環境で使用される材料としての利用価値が高い。   Since the Al-Mg-Ge-based alloy and the alloy material using the same according to the present invention can provide high strength even at a relatively high temperature, it is excellent in baking hardness that can be artificially aged simultaneously with baking coating. Therefore, it has a high utility value as a material used in a relatively high temperature environment such as an automobile material, an industrial machine material, or an engine surrounding material.

β’中間相中のSiをGeで置換したときに予想される結晶格子の変化を示す。The change in crystal lattice expected when Si in the β ′ intermediate phase is replaced by Ge is shown. Al−Mg−Ge合金を423、473、523Kで時効したときの硬さ変化曲線を示す。The hardness change curve when an Al-Mg-Ge alloy is aged at 423, 473, 523K is shown. Al−Mg−Si合金を423、473、523Kで時効したときの硬さ変化曲線を示す。The hardness change curve when an Al-Mg-Si alloy is aged at 423, 473, 523K is shown. Al−Mg−Si合金(a)及びAl−Mg−Ge合金(b)を523Kで12ks時効した試料のTEM明視野像を示す。The TEM bright field image of the sample which aged Al-Mg-Si alloy (a) and Al-Mg-Ge alloy (b) for 12 ks at 523K is shown. Al−Mg−Ge合金中のβ’相の高分解能透過型電顕観察結果を示す。The high resolution transmission electron microscope observation result of the β ′ phase in the Al—Mg—Ge alloy is shown. Al−Mg−Si合金(a)(c)とAl−Mg−Ge合金(b)(d)中のβ’相から得られた電子回析図形を示す。The electron diffraction pattern obtained from the β 'phase in the Al-Mg-Si alloy (a) (c) and the Al-Mg-Ge alloy (b) (d) is shown. Al−Mg−Ge合金中のβ’中間相の格子定数測定結果を示す。The lattice constant measurement result of the β ′ intermediate phase in the Al—Mg—Ge alloy is shown. Al−Mg−Ge合金およびAl−Mg−Si合金の引張り試験結果を示す。(Al−Mg−Ge合金は523K、Al−Mg−Si合金は423Kで最高硬さまでの時効を施した試料を使用した。)The tension test result of an Al-Mg-Ge alloy and an Al-Mg-Si alloy is shown. (Al-Mg-Ge alloy was 523K, Al-Mg-Si alloy was 423K, and a sample that had been aged to the maximum hardness was used.) バランス組成合金とMg過剰合金の523K時効硬化曲線を示す。The 523K age hardening curve of a balance composition alloy and Mg excess alloy is shown. バランス組成合金とMg過剰合金の析出組織のTEM像を示す。The TEM image of the precipitation structure | tissue of a balance composition alloy and Mg excess alloy is shown. バランス組成合金とMg過剰合金の中間相のHRTEM像を示す。The HRTEM image of the intermediate phase of a balance composition alloy and Mg excess alloy is shown.

Claims (4)

Mg:0.2〜1.0at%,Ge:0.1〜0.5at%含有し、時効硬化速度性及び高温強度に優れていることを特徴とするアルミニウム基合金。   An aluminum-based alloy containing Mg: 0.2 to 1.0 at%, Ge: 0.1 to 0.5 at%, and excellent in age hardening rate and high temperature strength. Mg:0.4〜0.8at%,Ge:0.2〜0.4at%含有し、時効硬化速度性及び高温強度に優れていることを特徴とするアルミニウム基合金。   An aluminum-based alloy characterized by containing Mg: 0.4 to 0.8 at%, Ge: 0.2 to 0.4 at%, and being excellent in age hardening rate and high temperature strength. さらに、Mn:0.01〜0.1at%含有していることを特徴とする請求項1又は2記載のアルミニウム基合金。   Furthermore, Mn: 0.01-0.1at% is contained, The aluminum base alloy of Claim 1 or 2 characterized by the above-mentioned. アルミニウム合金材中に1.0〜1.4mass%のMgGe析出相が出現するように時効処理したことを特徴とする請求項1〜3のいずれか記載のアルミニウム基合金を用いたアルミニウム合金材。 The aluminum alloy using the aluminum-based alloy according to any one of claims 1 to 3, wherein the aluminum alloy is aging-treated so that 1.0 to 1.4 mass% of Mg 2 Ge precipitation phase appears in the aluminum alloy material. Wood.
JP2006133123A 2006-05-11 2006-05-11 Al-Mg-Ge-based aluminum-based alloy and aluminum alloy material using the same Active JP4876249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133123A JP4876249B2 (en) 2006-05-11 2006-05-11 Al-Mg-Ge-based aluminum-based alloy and aluminum alloy material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133123A JP4876249B2 (en) 2006-05-11 2006-05-11 Al-Mg-Ge-based aluminum-based alloy and aluminum alloy material using the same

Publications (2)

Publication Number Publication Date
JP2007302952A true JP2007302952A (en) 2007-11-22
JP4876249B2 JP4876249B2 (en) 2012-02-15

Family

ID=38837128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133123A Active JP4876249B2 (en) 2006-05-11 2006-05-11 Al-Mg-Ge-based aluminum-based alloy and aluminum alloy material using the same

Country Status (1)

Country Link
JP (1) JP4876249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672748A (en) * 2022-03-17 2022-06-28 中南大学 Short-period heat treatment process for improving corrosion resistance of Al-Mg-Si-Cu aluminum alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853916A (en) * 1971-11-08 1973-07-28
JPS4842523B1 (en) * 1970-11-24 1973-12-13
JPS5158698A (en) * 1974-11-19 1976-05-22 Dainichi Nippon Cables Ltd DODENYOARUMINIUMUGOKIN
JPH08209277A (en) * 1995-02-03 1996-08-13 Furukawa Electric Co Ltd:The Aluminum alloy excellent in baking hardenability
JPH10212538A (en) * 1997-01-29 1998-08-11 Furukawa Electric Co Ltd:The High corrosion resistant aluminum alloy composite material for heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842523B1 (en) * 1970-11-24 1973-12-13
JPS4853916A (en) * 1971-11-08 1973-07-28
JPS5158698A (en) * 1974-11-19 1976-05-22 Dainichi Nippon Cables Ltd DODENYOARUMINIUMUGOKIN
JPH08209277A (en) * 1995-02-03 1996-08-13 Furukawa Electric Co Ltd:The Aluminum alloy excellent in baking hardenability
JPH10212538A (en) * 1997-01-29 1998-08-11 Furukawa Electric Co Ltd:The High corrosion resistant aluminum alloy composite material for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672748A (en) * 2022-03-17 2022-06-28 中南大学 Short-period heat treatment process for improving corrosion resistance of Al-Mg-Si-Cu aluminum alloy

Also Published As

Publication number Publication date
JP4876249B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4996468B2 (en) High heat resistance, high strength Co-based alloy and method for producing the same
JP5582532B2 (en) Co-based alloy
WO2015159166A1 (en) Gamma - gamma prime strengthened tungsten free cobalt-based superalloy
JP2005298931A (en) Copper alloy and its production method
JP6406971B2 (en) Method for producing aluminum alloy member
WO2008117890A1 (en) Magnesium alloys and process for producing the same
JP4906313B2 (en) High-strength aluminum alloy extruded tube excellent in tube expansion workability, its manufacturing method, and tube expansion material
JP2017508880A (en) 6000 series aluminum alloy
US20160047022A1 (en) Aluminum-copper alloys with improved strength
KR102325136B1 (en) Grain refinement in in706 using laves phase precipitation
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
JP2019143249A (en) Engineered aluminum alloy and method of fabricating the same
JP5201500B2 (en) Magnesium alloy material and method for producing the same
Meng et al. Effect of Si addition on microstructure and mechanical properties of Al-Mg-Si-Zn alloy
JP4876249B2 (en) Al-Mg-Ge-based aluminum-based alloy and aluminum alloy material using the same
US10287654B2 (en) Ni-base alloy for structural applications
JP5787535B2 (en) Nickel-base superalloy with improved degradation behavior
JP2009084681A (en) Stress buffer material composed of aluminum alloy
JP6726058B2 (en) Manufacturing method of Al alloy casting
KR101455524B1 (en) METHOD OF MANUFACTURING Al-Mg-Si BASED ALLOY
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
WO2018061317A1 (en) Method of manufacturing ni-based super heat resistant alloy extruded material, and ni-based super heat resistant alloy extruded material
WO2017168645A1 (en) Heat-resistant magnesium alloy
WO2016136781A1 (en) Heat-resistant magnesium alloy
KR20150001463A (en) METHOD OF MANUFACTURING Al-Mg-Si BASED ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090424

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110714

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150