JP2007302922A - Method for treating surface of magnesium member - Google Patents

Method for treating surface of magnesium member Download PDF

Info

Publication number
JP2007302922A
JP2007302922A JP2006130354A JP2006130354A JP2007302922A JP 2007302922 A JP2007302922 A JP 2007302922A JP 2006130354 A JP2006130354 A JP 2006130354A JP 2006130354 A JP2006130354 A JP 2006130354A JP 2007302922 A JP2007302922 A JP 2007302922A
Authority
JP
Japan
Prior art keywords
magnesium member
magnesium
film
surface treatment
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006130354A
Other languages
Japanese (ja)
Other versions
JP4901296B2 (en
Inventor
Noriko Suzuki
典子 鈴木
Akiyoshi Sugimoto
明義 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006130354A priority Critical patent/JP4901296B2/en
Publication of JP2007302922A publication Critical patent/JP2007302922A/en
Application granted granted Critical
Publication of JP4901296B2 publication Critical patent/JP4901296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating the surface of a magnesium member having a grounding part and a non-grounding part through a highly efficient operation process. <P>SOLUTION: This surface treatment method comprises the steps of: forming a conductive chemical conversion coating 2 (figure (a)) by chemical-conversion-treating the whole surface of the magnesium member 1; subsequently masking the grounding part A1; anodizing the non-grounding part A2 to form an anodic oxide film 3 comprising porous cells (figure (b)); and finally coating the surface of the anodic oxide film 3 with a paint to form a paint film 5 (figure (c)). Then, the pores in the anodic oxide film 3 are plugged by the coating film 5. Thereby, the method can prevent the rust of the magnesium member 1 while securing grounding, in a continuous process. As a result, the operation process for treating the surface of the magnesium member 1 is simplified, and needs a shorter period of time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車内の各部品、とりわけ湿気や塩水などの腐食液と接する部品(例えば、ジャンクションボックスなど)に適用するに好適な、マグネシウム部材の表面処理方法に関するものである。ここで、マグネシウム部材とは、マグネシウムまたはマグネシウム合金からなる部材を意味する。   The present invention relates to a method for treating a surface of a magnesium member, which is suitable for application to each part in an automobile, particularly a part (for example, a junction box) that comes into contact with a corrosive liquid such as moisture or salt water. Here, the magnesium member means a member made of magnesium or a magnesium alloy.

図4は従来のマグネシウム部材の表面処理方法の第1例(化成処理方法)を示す断面図、図5は従来のマグネシウム部材の表面処理方法の第2例(陽極酸化処理方法)を示す断面図である。   FIG. 4 is a sectional view showing a first example (chemical conversion treatment method) of a conventional magnesium member surface treatment method, and FIG. 5 is a sectional view showing a second example (anodization treatment method) of a conventional magnesium member surface treatment method. It is.

近年、自動車内における各部品については、軽量化要求の高まりを受け、低比重金属であるマグネシウム(Mg)の需要が増大する傾向にある。マグネシウムは電気化学的に非常に卑な金属であり、異種金属接触部位の腐食が問題となる。そのため、防食を目的とする表面処理として、化成処理や陽極酸化処理が主に施されている。   In recent years, the demand for magnesium (Mg), which is a low specific gravity metal, tends to increase in response to the growing demand for weight reduction for each part in an automobile. Magnesium is an electrochemically very basic metal, and corrosion of different metal contact sites becomes a problem. Therefore, chemical conversion treatment and anodizing treatment are mainly performed as a surface treatment for the purpose of anticorrosion.

ここで、化成処理とは、マグネシウムと処理液との化学反応により、図4に示すように、マグネシウム部材1の表面に酸化物などの反応生成物からなる保護性被膜、つまり化成皮膜2を形成する処理方法である。具体的には、高温の水酸化ナトリウム溶液を接触させる方法(例えば、特許文献1参照)や、ピロリン酸塩溶液および水酸化アルカリ溶液で処理する方法(例えば、特許文献2参照)、酸性(水素イオン指数pH<7)下でリン酸、マンガンイオンおよびアミン化合物を含む水性液を接触させる方法(例えば、特許文献3参照)などが提案されている。そして、この化成処理では、化成皮膜2が薄く、あまり高い耐食性が得られないという特徴がある。   Here, the chemical conversion treatment is a chemical reaction between magnesium and a treatment solution, and as shown in FIG. 4, a protective coating made of a reaction product such as an oxide is formed on the surface of the magnesium member 1, that is, the chemical conversion coating 2. It is a processing method to do. Specifically, a method of contacting a high temperature sodium hydroxide solution (for example, see Patent Document 1), a method of treating with a pyrophosphate solution and an alkali hydroxide solution (for example, see Patent Document 2), acidic (hydrogen A method of contacting an aqueous liquid containing phosphoric acid, manganese ions and an amine compound under an ion index pH <7) has been proposed (for example, see Patent Document 3). And this chemical conversion process has the characteristics that the chemical conversion film 2 is thin and a very high corrosion resistance cannot be obtained.

一方、陽極酸化処理とは、マグネシウムを陽極として電気化学的に反応させることにより、図5に示すように、マグネシウム部材1の表面に不導体の多孔質酸化被膜、つまり陽極酸化皮膜3を形成する処理方法である。そして、この陽極酸化処理では、陽極酸化皮膜3が厚く、耐食性に優れるという特徴がある。
特開昭61−90776号公報 特開平6−116740号公報 特開平7−126858号公報
On the other hand, the anodizing treatment is performed by electrochemically reacting magnesium as an anode, thereby forming a non-conductive porous oxide film, that is, an anodic oxide film 3 on the surface of the magnesium member 1 as shown in FIG. It is a processing method. In addition, this anodizing treatment is characterized in that the anodized film 3 is thick and has excellent corrosion resistance.
Japanese Patent Laid-Open No. 61-90776 JP-A-6-116740 Japanese Unexamined Patent Publication No. 7-126858

しかし、マグネシウム部材1にアース箇所が含まれる場合、アース箇所では導通を確保するとともに、それ以外の箇所(非アース箇所)では耐食性を重視して、マグネシウム部材1に表面処理を施す必要がある。したがって、表面処理の作業工程が複雑となり、所要時間も長くなるため、作業工程の効率が悪いという不都合があった。   However, when the earth location is included in the magnesium member 1, it is necessary to perform surface treatment on the magnesium member 1 while ensuring conduction at the earth location and placing importance on corrosion resistance at other locations (non-earth location). Accordingly, the work process of the surface treatment becomes complicated and the required time becomes long, and there is a disadvantage that the efficiency of the work process is poor.

本発明は、こうした不都合を解決することが可能な、マグネシウム部材の表面処理方法を提供することを目的とする。   An object of this invention is to provide the surface treatment method of a magnesium member which can solve such inconvenience.

まず、請求項1に係るマグネシウム部材の表面処理方法の発明では、アース箇所および非アース箇所からなるマグネシウム部材に表面処理を施す、マグネシウム部材の表面処理方法であって、前記マグネシウム部材の表面に導通性の化成皮膜を形成する化成処理工程と、前記マグネシウム部材の非アース箇所に陽極酸化皮膜を形成する陽極酸化処理工程とが含まれることを特徴とする。
また、請求項2に係るマグネシウム部材の表面処理方法の発明では、前記陽極酸化処理工程において、前記マグネシウム部材のアース箇所をマスキングすることを特徴とする。
また、請求項3に係るマグネシウム部材の表面処理方法の発明では、前記陽極酸化処理工程において、前記化成皮膜を消滅させることを特徴とする。
また、請求項4に係るマグネシウム部材の表面処理方法の発明では、前記陽極酸化皮膜の孔を塞ぐ封孔処理工程が含まれることを特徴とする。
また、請求項5に係るマグネシウム部材の表面処理方法の発明では、前記封孔処理工程において、前記陽極酸化皮膜の表面に塗膜を形成することを特徴とする。
First, the invention of the magnesium member surface treatment method according to claim 1 is a surface treatment method of a magnesium member in which surface treatment is performed on a magnesium member composed of a grounded portion and a non-grounded portion, and is conducted to the surface of the magnesium member. It includes a chemical conversion treatment step for forming a chemical conversion coating and an anodization treatment step for forming an anodic oxidation coating at a non-ground portion of the magnesium member.
Further, in the invention of the surface treatment method for a magnesium member according to claim 2, the grounding portion of the magnesium member is masked in the anodizing treatment step.
The magnesium member surface treatment method according to claim 3 is characterized in that the chemical conversion film is extinguished in the anodizing step.
According to a fourth aspect of the present invention, there is provided a magnesium member surface treatment method including a sealing treatment step of closing a hole of the anodized film.
The magnesium member surface treatment method according to claim 5 is characterized in that a coating film is formed on the surface of the anodized film in the sealing treatment step.

本発明によれば、アース箇所および非アース箇所からなるマグネシウム部材に対して、その防食とアース確保を一連の工程で行うことができる。その結果、アース箇所および非アース箇所からなるマグネシウム部材において、表面処理の作業工程が単純化され、所要時間が短くなることから、作業工程を高効率化することが可能となる。   According to the present invention, corrosion prevention and grounding can be performed in a series of steps on a magnesium member composed of a grounded location and a non-grounded location. As a result, the surface treatment work process is simplified and the required time is shortened in the magnesium member composed of the ground part and the non-ground part, so that the work process can be made highly efficient.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係るマグネシウム部材の表面処理方法の一実施形態を示す工程図であって、(a)は第1工程(化成処理工程)を示す断面図、(b)は第2工程(陽極酸化処理工程)を示す断面図、(c)は第3工程(封孔処理工程)を示す断面図である。   FIG. 1 is a process diagram showing an embodiment of a surface treatment method for a magnesium member according to the present invention, wherein (a) is a sectional view showing a first process (chemical conversion treatment process), and (b) is a second process ( Sectional drawing which shows an anodizing process process, (c) is sectional drawing which shows a 3rd process (sealing process process).

本発明に係るマグネシウム部材の表面処理方法は、次の手順に従って行われる。   The magnesium member surface treatment method according to the present invention is performed according to the following procedure.

まず、第1工程(化成処理工程)で、図1(a)に示すように、アース箇所A1および非アース箇所A2からなるマグネシウム部材1に対して、その表面全体(アース箇所A1および非アース箇所A2)に導通性(導電性)の化成皮膜2を形成する。それには、例えば特許第3307882号公報に開示された方法により、マグネシウム部材1の表面全体に化成処理を施す。   First, in the first step (chemical conversion treatment step), as shown in FIG. 1 (a), the entire surface (the ground point A1 and the non-ground point) is applied to the magnesium member 1 composed of the ground point A1 and the non-ground point A2. A conductive (conductive) chemical conversion film 2 is formed on A2). For this purpose, for example, the entire surface of the magnesium member 1 is subjected to chemical conversion treatment by the method disclosed in Japanese Patent No. 3307882.

次に、第2工程(陽極酸化処理工程)に移行し、図1(b)に示すように、アース箇所A1を除き、マグネシウム部材1の表面に多孔質セル状の陽極酸化皮膜3を形成する。それには、マグネシウム部材1のアース箇所A1をマスキングし、その状態で、例えば特開2005−103505号公報に開示された方法により、マグネシウム部材1の表面に陽極酸化処理を施す。すると、マグネシウム部材1の表面のうちアース箇所A1については、マスキングされているため、陽極酸化皮膜3が形成されない。一方、マグネシウム部材1の表面のうち非アース箇所A2については、マスキングされていないため、陽極酸化皮膜3が形成される。このように、アース箇所A1はマスキングされているので、非アース箇所A2のみを迅速かつ簡便に陽極酸化処理することができる。   Next, the process proceeds to the second step (anodizing treatment step), and as shown in FIG. 1 (b), the porous cell-like anodic oxide film 3 is formed on the surface of the magnesium member 1 except for the ground portion A1. . For this purpose, the ground portion A1 of the magnesium member 1 is masked, and in this state, the surface of the magnesium member 1 is anodized by, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2005-103505. Then, the ground portion A1 in the surface of the magnesium member 1 is masked, so that the anodized film 3 is not formed. On the other hand, the non-earthed portion A2 of the surface of the magnesium member 1 is not masked, so that the anodized film 3 is formed. As described above, since the ground portion A1 is masked, only the non-ground portion A2 can be anodized quickly and easily.

このとき、非アース箇所A2においては、化成皮膜2が破壊されて消滅し、陽極酸化皮膜3のみで被覆された状態となる。この化成皮膜2の消滅メカニズムは次のとおりである。すなわち、陽極酸化処理を施す場合、まず前処理として、フッ酸などの高酸化力を有する溶液にて表面の酸洗浄を行った後、陽極酸化皮膜3の形成時に、強アルカリ溶液など反応性に富む溶液を用いて、通電状態にて電気分解で陽極酸化皮膜3を形成する。したがって、膜厚が数百nm〜数μm程度と極めて薄い化成皮膜2は、以上の過程において破壊されて消滅することになる。   At this time, in the non-earth location A2, the chemical conversion film 2 is destroyed and disappears, and only the anodized film 3 is covered. The disappearance mechanism of the chemical conversion film 2 is as follows. That is, when anodizing treatment is performed, first, as a pretreatment, the surface is cleaned with a solution having a high oxidizing power such as hydrofluoric acid, and then, when anodized film 3 is formed, a strong alkali solution or the like is made reactive. Using a rich solution, the anodic oxide film 3 is formed by electrolysis in an energized state. Therefore, the very thin chemical conversion film 2 having a film thickness of about several hundred nm to several μm is destroyed and disappears in the above process.

最後に、第3工程(封孔処理工程)に移行し、図1(c)に示すように、多孔質セル状の陽極酸化皮膜3の孔を塞ぐ。それには、陽極酸化皮膜3に封孔処理を施す。この封孔処理の具体的方法としては、陽極酸化皮膜3の表面に塗装して塗膜5を形成する方法が考えられる。例えば、エポキシ系塗料にて下塗り、焼付け、中塗り、焼付けを行った後、アクリル系塗料にて上塗り、焼付けを行えばよい。このとき、合計塗装厚みを一定(例えば、60μm)以上とすることにより、陽極酸化皮膜3の孔は塗膜5によって塞がれた状態となる。さらに、この塗膜5により、マグネシウム部材1の非アース箇所A2の耐食性を高めることができる。   Finally, the process proceeds to the third step (sealing treatment step), and as shown in FIG. 1C, the pores of the porous cellular anodized film 3 are closed. For this purpose, the anodized film 3 is subjected to a sealing treatment. As a specific method of this sealing treatment, a method of coating the surface of the anodized film 3 to form the coating film 5 can be considered. For example, after undercoating, baking, intermediate coating, and baking with an epoxy paint, overcoating and baking with an acrylic paint may be performed. At this time, by setting the total coating thickness to a certain value (for example, 60 μm) or more, the holes of the anodized film 3 are closed by the coating film 5. Furthermore, the coating film 5 can enhance the corrosion resistance of the non-earthed portion A2 of the magnesium member 1.

ここで、マグネシウム部材1の表面処理工程が終了する。   Here, the surface treatment process of the magnesium member 1 is completed.

このように、アース箇所A1および非アース箇所A2からなるマグネシウム部材1に対して、その防食とアース確保を一連の工程で行うことができる。その結果、アース箇所A1および非アース箇所A2からなるマグネシウム部材1において、表面処理の作業工程が単純化され、所要時間が短くなることから、作業工程を高効率化することが可能となる。   Thus, the corrosion prevention and grounding can be performed in a series of steps on the magnesium member 1 composed of the ground point A1 and the non-ground point A2. As a result, in the magnesium member 1 composed of the ground point A1 and the non-ground point A2, the work process of the surface treatment is simplified and the required time is shortened, so that the work process can be made highly efficient.

なお、アース箇所A1には化成皮膜2を形成されているが、この化成皮膜2は導通性を具備しているので、アースの取り出しを支障なく行うことができる。   In addition, although the chemical conversion film 2 is formed in the earth location A1, since this chemical conversion film 2 has electroconductivity, taking out of an earth can be performed without trouble.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

図2はマグネシウム製のジャンクションボックスの斜視図、図3は図2に示すジャンクションボックスの開蓋状態の斜視図である。   2 is a perspective view of a junction box made of magnesium, and FIG. 3 is a perspective view of the junction box shown in FIG.

上述した効果を確認するため、図2および図3に示すように、マグネシウム製の六面体のジャンクションボックス6について、化成処理と陽極酸化処理とを組み合わせた本発明の表面処理方法(実施例)を施した。このジャンクションボックス6は、有底角筒状の箱体6aに対して平板状の上蓋6bが4本のねじ6cで締結される構造となっており、箱体6aの中の部品に通電する場合、1本のねじ6cの締結部にアースを取る必要がある。なお、この実施例には、第3工程における塗膜の厚さが、40μm以上のもの(実施例1)と60μm以上のもの(実施例2)の2種類が含まれる。   In order to confirm the above-described effects, as shown in FIGS. 2 and 3, the surface treatment method (Example) of the present invention combining the chemical conversion treatment and the anodic oxidation treatment is applied to the hexagonal junction box 6 made of magnesium. did. The junction box 6 has a structure in which a flat top cover 6b is fastened to a bottomed rectangular tube-shaped box 6a with four screws 6c and energizes components in the box 6a. It is necessary to ground the fastening portion of one screw 6c. In addition, this example includes two types of coating film thicknesses in the third step: 40 μm or more (Example 1) and 60 μm or more (Example 2).

比較のため、同サイズのマグネシウム製の六面体のジャンクションボックス6について、化成処理のみによる従来の表面処理方法(比較例1)および陽極酸化処理のみによる従来の表面処理方法(比較例2)を施した。   For comparison, a hexagonal junction box 6 made of magnesium of the same size was subjected to a conventional surface treatment method only by chemical conversion treatment (Comparative Example 1) and a conventional surface treatment method only by anodization treatment (Comparative Example 2). .

そして、比較例1、2および実施例1、2について、日本工業規格(JIS Z 2371)に準拠した塩水噴霧試験を実施し、腐食の進行度合を目視で確認した。ここで、槽温度は35℃、試験時間は240時間(ただし、比較例1、2については48時間)とし、塩溶液として5%NaCl水溶液を用いた。   And about the comparative examples 1 and 2 and Examples 1 and 2, the salt spray test based on Japanese Industrial Standard (JIS Z 2371) was implemented, and the progress degree of corrosion was confirmed visually. Here, the bath temperature was 35 ° C., the test time was 240 hours (however, 48 hours for Comparative Examples 1 and 2), and a 5% NaCl aqueous solution was used as the salt solution.

その結果、比較例1では、24時間経過時に腐食が発生し、48時間経過時に腐食が激しく進行した。また、比較例2では、48時間経過しても腐食が発生しなかった。さらに、実施例1、2では、48時間経過しても腐食が発生しなかった。したがって、比較例1では耐食性に問題があるのに対して、比較例2および実施例1、2では耐食性に問題がないことが確認された。   As a result, in Comparative Example 1, corrosion occurred when 24 hours passed, and the corrosion progressed violently after 48 hours. Further, in Comparative Example 2, no corrosion occurred even after 48 hours. Furthermore, in Examples 1 and 2, no corrosion occurred even after 48 hours. Therefore, it was confirmed that there was no problem in the corrosion resistance in Comparative Example 2 and Examples 1 and 2 while there was a problem in the corrosion resistance in Comparative Example 1.

一方、実施例1では、48時間経過した後、ねじ6cの締結部で腐食し始め、240時間経過時には腐食が広範囲にわたって進行した。これに対して実施例2では、240時間経過しても、ねじ6cの締結部で腐食は見られなかった。したがって、塗膜の厚さを60μm以上に厚くすることにより、耐食性が一層向上することが判明した。   On the other hand, in Example 1, after 48 hours passed, corrosion started at the fastening portion of the screw 6c, and corrosion progressed over a wide range when 240 hours passed. On the other hand, in Example 2, even if 240 hours passed, corrosion was not seen by the fastening part of the screw 6c. Accordingly, it has been found that the corrosion resistance is further improved by increasing the thickness of the coating film to 60 μm or more.

本発明は、自動車、航空機、電車、製造プラント、電化製品、OA機器など各種の産業分野に広く適用することができる。   The present invention can be widely applied to various industrial fields such as automobiles, airplanes, trains, manufacturing plants, electrical appliances, and OA equipment.

本発明に係るマグネシウム部材の表面処理方法の一実施形態を示す工程図であって、(a)は第1工程(化成処理工程)を示す断面図、(b)は第2工程(陽極酸化処理工程)を示す断面図、(c)は第3工程(封孔処理工程)を示す断面図である。It is process drawing which shows one Embodiment of the surface treatment method of the magnesium member which concerns on this invention, Comprising: (a) is sectional drawing which shows a 1st process (chemical conversion treatment process), (b) is a 2nd process (anodic oxidation process). (C) is sectional drawing which shows a 3rd process (sealing process process). マグネシウム製のジャンクションボックスの斜視図である。It is a perspective view of the junction box made from magnesium. 図2に示すジャンクションボックスの開蓋状態の斜視図である。It is a perspective view of the open state of the junction box shown in FIG. 従来のマグネシウム部材の表面処理方法の第1例(化成処理方法)を示す断面図である。It is sectional drawing which shows the 1st example (chemical conversion treatment method) of the surface treatment method of the conventional magnesium member. 従来のマグネシウム部材の表面処理方法の第2例(陽極酸化処理方法)を示す断面図である。It is sectional drawing which shows the 2nd example (anodic oxidation method) of the surface treatment method of the conventional magnesium member.

符号の説明Explanation of symbols

1……マグネシウム部材
2……化成皮膜
3……陽極酸化皮膜
5……塗膜
6……ジャンクションボックス
A1……アース箇所
A2……非アース箇所
DESCRIPTION OF SYMBOLS 1 ... Magnesium member 2 ... Chemical conversion film 3 ... Anodized film 5 ... Coating film 6 ... Junction box A1 ... Ground location A2 ... Non-ground location

Claims (5)

アース箇所および非アース箇所からなるマグネシウム部材に表面処理を施す、マグネシウム部材の表面処理方法であって、
前記マグネシウム部材の表面に導通性の化成皮膜を形成する化成処理工程と、
前記マグネシウム部材の非アース箇所に陽極酸化皮膜を形成する陽極酸化処理工程と
が含まれることを特徴とする、マグネシウム部材の表面処理方法。
A surface treatment method for a magnesium member, in which a surface treatment is performed on a magnesium member composed of a ground point and a non-ground point,
A chemical conversion treatment step of forming a conductive chemical film on the surface of the magnesium member;
A surface treatment method for a magnesium member, comprising: an anodizing treatment step of forming an anodized film at a non-earthed portion of the magnesium member.
前記陽極酸化処理工程において、
前記マグネシウム部材のアース箇所をマスキングすることを特徴とする、請求項1に記載のマグネシウム部材の表面処理方法。
In the anodizing process,
The surface treatment method for a magnesium member according to claim 1, wherein a ground portion of the magnesium member is masked.
前記陽極酸化処理工程において、
前記化成皮膜を消滅させることを特徴とする、請求項1または2に記載のマグネシウム部材の表面処理方法。
In the anodizing process,
The surface treatment method for a magnesium member according to claim 1 or 2, wherein the chemical conversion film is extinguished.
前記陽極酸化皮膜の孔を塞ぐ封孔処理工程が含まれることを特徴とする、請求項1乃至3のいずれかに記載のマグネシウム部材の表面処理方法。   The surface treatment method for a magnesium member according to any one of claims 1 to 3, further comprising a sealing treatment step of closing the pores of the anodized film. 前記封孔処理工程において、
前記陽極酸化皮膜の表面に塗膜を形成することを特徴とする、請求項4に記載のマグネシウム部材の表面処理方法。
In the sealing treatment step,
The surface treatment method for a magnesium member according to claim 4, wherein a coating film is formed on the surface of the anodized film.
JP2006130354A 2006-05-09 2006-05-09 Magnesium member surface treatment method Expired - Fee Related JP4901296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006130354A JP4901296B2 (en) 2006-05-09 2006-05-09 Magnesium member surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006130354A JP4901296B2 (en) 2006-05-09 2006-05-09 Magnesium member surface treatment method

Publications (2)

Publication Number Publication Date
JP2007302922A true JP2007302922A (en) 2007-11-22
JP4901296B2 JP4901296B2 (en) 2012-03-21

Family

ID=38837099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006130354A Expired - Fee Related JP4901296B2 (en) 2006-05-09 2006-05-09 Magnesium member surface treatment method

Country Status (1)

Country Link
JP (1) JP4901296B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240717A (en) * 2009-04-08 2010-10-28 Japan Steel Works Ltd:The Surface treatment method of magnesium alloy member and magnesium alloy member
WO2014081089A1 (en) * 2012-11-26 2014-05-30 주식회사 위스코하이텍 Method for surface treating metal articles
KR101500133B1 (en) * 2013-09-03 2015-03-06 주식회사 포스코 Surface-treated magnesium alloy sheet and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307882B2 (en) * 1998-09-18 2002-07-24 ミリオン化学株式会社 Low electrical resistance coating of magnesium-containing metal and surface treatment method
WO2003080897A1 (en) * 2002-03-25 2003-10-02 Hori Metal Finishing Ind. Ltd. Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof
WO2005017235A1 (en) * 2003-08-19 2005-02-24 Okayama Prefecture Magnesium or magnesium alloy product and method for producing same
JP2005288993A (en) * 2004-04-05 2005-10-20 Arrk Okayama Co Ltd Manufacturing method for product composed of magnesium or magnesium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307882B2 (en) * 1998-09-18 2002-07-24 ミリオン化学株式会社 Low electrical resistance coating of magnesium-containing metal and surface treatment method
WO2003080897A1 (en) * 2002-03-25 2003-10-02 Hori Metal Finishing Ind. Ltd. Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof
WO2005017235A1 (en) * 2003-08-19 2005-02-24 Okayama Prefecture Magnesium or magnesium alloy product and method for producing same
JP2005288993A (en) * 2004-04-05 2005-10-20 Arrk Okayama Co Ltd Manufacturing method for product composed of magnesium or magnesium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240717A (en) * 2009-04-08 2010-10-28 Japan Steel Works Ltd:The Surface treatment method of magnesium alloy member and magnesium alloy member
WO2014081089A1 (en) * 2012-11-26 2014-05-30 주식회사 위스코하이텍 Method for surface treating metal articles
KR101500133B1 (en) * 2013-09-03 2015-03-06 주식회사 포스코 Surface-treated magnesium alloy sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP4901296B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
Barchiche et al. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods
JP4757893B2 (en) Metal oxide and / or metal hydroxide-coated metal material and method for producing the same
JP4686728B2 (en) Method for producing magnesium or magnesium alloy product having an anodized film on the surface
US20070089808A1 (en) Liquid trivalent chromate for aluminium or aluminium alloy and method for forming corrosion-resistant film over surface of aluminium or aluminium alloy by using same
CN102817063B (en) Preparation method for light green superhydrophobic corrosion-resistant film on surface of magnesium-lithium alloy
Mubarok et al. Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy
JP2008138288A (en) Method for treating surface of aluminum product before spray coating
JP2008138288A6 (en) Surface treatment method of aluminum material before painting
Lee et al. Corrosion resistance studies of cerium conversion coating with a fluoride-free pretreatment on AZ91D magnesium alloy
WO2008125246A3 (en) Button cell comprising a coated exterior
JP4901296B2 (en) Magnesium member surface treatment method
Heller et al. Effect of phosphate source on post-treatment of cerium-based conversion coatings on Al 2024-T3
WO2014149002A1 (en) Method of forming a coating on a metal substrate
JPWO2014203919A1 (en) Manufacturing method of magnesium alloy products
JP5613917B2 (en) Method for producing molded article made of magnesium or magnesium alloy
KR102090559B1 (en) Magnesium ally sheet with improved corrosion resistance and method for treating surface thereof
US20040177898A1 (en) Method and means for corrosion preventive surface treatment of metals
KR101576987B1 (en) Method for producing magnesium materials
US10837555B2 (en) Metal mesh with a low electrical resistance conversion coating for use with aircraft structures
US20130011688A1 (en) Corrosion Resistant Metal Coating and Method of Making Same
US20070256591A1 (en) Corrosion inhibiting inorganic coatings for magnesium alloys
Fan et al. Studies of the conversion coatings formed by combined use of lanthanum salt and benzotriazole on commercial brass
CN100425734C (en) Surface treatment method of Mg alloy
WO2013094753A1 (en) Method for manufacturing magnesium-alloy product
RU2577402C1 (en) Anode for extracting oxygen and method of making same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees