JP2007300248A - Optical receiving unit - Google Patents

Optical receiving unit Download PDF

Info

Publication number
JP2007300248A
JP2007300248A JP2006124584A JP2006124584A JP2007300248A JP 2007300248 A JP2007300248 A JP 2007300248A JP 2006124584 A JP2006124584 A JP 2006124584A JP 2006124584 A JP2006124584 A JP 2006124584A JP 2007300248 A JP2007300248 A JP 2007300248A
Authority
JP
Japan
Prior art keywords
signal light
light
optical axis
optical
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006124584A
Other languages
Japanese (ja)
Other versions
JP4697446B2 (en
Inventor
Masaharu Hattori
雅晴 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2006124584A priority Critical patent/JP4697446B2/en
Publication of JP2007300248A publication Critical patent/JP2007300248A/en
Application granted granted Critical
Publication of JP4697446B2 publication Critical patent/JP4697446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical receiving unit having a simple structure, capable of promptly adjusting an optical axis even if optical axis deviation exists. <P>SOLUTION: A half mirror 12 divides a signal light beam 10 into two. One divided light 10a is made incident on a light receiving element 16 via lens 14. The light receiving element 16 is mounted to an XY stage 18. The other divided signal light beam 10b is incident on area sensors 26, 30 with mutually different optical lengths. A beam gravity center detection apparatus 32 detects the beam center (center of gravity) of the incident beam on the area sensors 26, 34. From the position output of the beam gravity center detection apparatuses 32, 34, a control unit 36 calculates an incident position (X0, Y0) on the XY stage 18 of the signal light beam 10a, and drives an X-axis actuator 20 and a Y-axis actuator 22 by means of an X-drive circuit 38 and a Y-drive circuit 40, respectively, so as to position the light receiving element 16 in the position (X0, Y0). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空間光伝送の光受信装置に関する。   The present invention relates to an optical receiver for spatial light transmission.

空間光伝送では、光送信装置と光受信装置の光軸を如何にうまく合わせるかが重要である。信号光ビームが細い場合、光軸が合わなければ、信号を伝送できない。   In spatial light transmission, it is important how well the optical axes of the optical transmitter and the optical receiver are aligned. When the signal light beam is thin, the signal cannot be transmitted unless the optical axis is aligned.

2軸ジンバルミラーを帰還制御することで、入射ビームを所定箇所に誘導する光学系が特許文献1,2に記載されている。特に、特許文献2には、通信衛星のような移動する相手局からの信号ビームを受信する光受信装置として、通信2軸ジンバル機構を帰還制御する第1の閉ループ制御系と、光受光器の前面に配置したビーム偏向器を帰還制御する第2の閉ループ制御系を設けた構成が記載されている。
特開2000−292541号公報 特開2002−341006号公報
Patent Documents 1 and 2 describe optical systems that guide an incident beam to a predetermined location by feedback-controlling a biaxial gimbal mirror. In particular, Patent Document 2 discloses, as an optical receiver that receives a signal beam from a moving counterpart station such as a communication satellite, a first closed-loop control system that performs feedback control of a communication biaxial gimbal mechanism, and an optical receiver. There is described a configuration in which a second closed loop control system for feedback control of a beam deflector arranged on the front surface is provided.
JP 2000-292541 A JP 2002-341006 A

特許文献1に記載の従来技術では、2軸ジンバルミラーの回転中心、つまりミラー中央に信号光ビームが当たることが前提であり、光ビームの入射位置がジンバルミラーの回転中心からずれると、信号光ビームを正しく受光できない。つまり、入射ビームの角度ずれには対応できるが、位置ずれには対応できない。   In the prior art described in Patent Document 1, it is assumed that the signal light beam hits the rotation center of the biaxial gimbal mirror, that is, the center of the mirror. The beam cannot be received correctly. That is, it can cope with the angular deviation of the incident beam, but cannot cope with the positional deviation.

特許文献2に記載される構成では、ビーム偏向器を導入することで、角度ずれに加えて位置ずれに対しても信号光ビームを捕捉・追尾することが可能となる。しかし、2系統のフィードバック系が必要となり、装置が大型化し、コストが増大する。   In the configuration described in Patent Document 2, by introducing a beam deflector, it becomes possible to capture and track a signal light beam not only for an angle shift but also for a position shift. However, two feedback systems are required, which increases the size of the device and increases the cost.

例えば、1Gbpsを超えるような高速空間光伝送では、受光器は、高速変調に対応するために、受光器の受光径を小さくしなければならない。例えば、200μmφ以下となる。このように小さい受光器では、信号光ビームの角度ずれのみならず、入射位置のずれも、受信品質に多大な影響を与えてしまう。   For example, in high-speed spatial light transmission exceeding 1 Gbps, the light receiver must reduce the light receiving diameter of the light receiver in order to support high-speed modulation. For example, it becomes 200 μmφ or less. In such a small light receiver, not only the angle deviation of the signal light beam but also the deviation of the incident position greatly affects the reception quality.

携帯電話をはじめとする携帯端末に空間光伝送装置を実装することを考慮すると、演算処理装置への負荷軽減と装置の小型が望まれており、フィードバック制御系統及び/又は部品点数を少なくしたいとする要求がある。   In consideration of mounting a spatial light transmission device on a mobile terminal such as a mobile phone, it is desired to reduce the load on the arithmetic processing device and to reduce the size of the device, and to reduce the feedback control system and / or the number of components. There is a request to do.

本発明は、信号光ビームの角度ずれ及び位置ずれに対応可能な、より簡易な構成の光受信装置を提示することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical receiver having a simpler configuration that can cope with an angle shift and a position shift of a signal light beam.

本発明に係る光受信装置は、信号光ビームを二分割し、第1及び第2の分割信号光を出力するビーム分波器と、当該第2の分割信号光の、当該ビーム分波器からの互いに異なる光学距離でのビーム重心を検出する第1及び第2のビーム重心検出装置と、受光器と、所定面内で二次元方向に当該受光器を移動するXY移動装置と、当該第1及び第2のビーム重心検出装置の検出結果に従い当該XY移動装置を制御し、当該第1の分割信号光が入射する位置に当該受光器を移動させる制御装置とを具備することを特徴とする。   An optical receiving apparatus according to the present invention includes a beam demultiplexer that divides a signal light beam into two and outputs first and second divided signal lights, and the beam demultiplexer of the second divided signal light. First and second beam centroid detection devices that detect beam centroids at different optical distances, a photoreceiver, an XY movement device that moves the photoreceiver in a two-dimensional direction within a predetermined plane, and the first And a control device that controls the XY moving device according to the detection result of the second beam centroid detecting device and moves the light receiver to a position where the first divided signal light is incident.

本発明に係る光受信装置は、信号光ビームを二分割し、第1及び第2の分割信号光を出力するビーム分波器と、当該第2の分割信号光の、当該ビーム分波器からの互いに異なる光学距離でのビーム重心を検出する第1及び第2のビーム重心検出装置と、受光器と、当該第1の分割信号光の光軸を調整する光軸調整装置と、当該第1及び第2のビーム重心検出装置の検出結果に従い当該光軸調整装置を制御して、当該光軸調整装置から出力される当該第1の分割信号光を当該受光器に入射させる制御装置とを具備することを特徴とする。   An optical receiving apparatus according to the present invention includes a beam demultiplexer that divides a signal light beam into two and outputs first and second divided signal lights, and the beam demultiplexer of the second divided signal light. The first and second beam centroid detection devices that detect beam centroids at different optical distances, a light receiver, an optical axis adjustment device that adjusts the optical axis of the first divided signal light, and the first And a control device that controls the optical axis adjustment device according to the detection result of the second beam centroid detection device and causes the first split signal light output from the optical axis adjustment device to enter the light receiver. It is characterized by doing.

本発明に係る光受信装置は、信号光ビームを二分割し、第1及び第2の分割信号光を出力するビーム分波器と、当該第2の分割信号光の、当該ビーム分波器からの互いに異なる光学距離でのビーム重心を検出する第1及び第2のビーム重心検出装置と、受光器と、所定面内で二次元方向に当該受光器を移動するXY移動装置と、当該第1の分割信号光の光軸を調整する光軸調整装置と、当該第1及び第2のビーム重心検出装置の検出結果に従い、当該XY移動装置及び当該光軸調整装置を制御し、当該光軸調整装置から出力される当該第1の分割信号光を当該受光器に入射させる制御装置とを具備することを特徴とする。   An optical receiving apparatus according to the present invention includes a beam demultiplexer that divides a signal light beam into two and outputs first and second divided signal lights, and the beam demultiplexer of the second divided signal light. First and second beam centroid detection devices that detect beam centroids at different optical distances, a photoreceiver, an XY movement device that moves the photoreceiver in a two-dimensional direction within a predetermined plane, and the first The optical axis adjustment device that adjusts the optical axis of the divided signal light, and the XY movement device and the optical axis adjustment device are controlled according to the detection results of the first and second beam centroid detection devices, and the optical axis adjustment is performed. And a control device that causes the first split signal light output from the device to enter the light receiver.

本発明によれば、入射光束の角度ずれおよび位置ずれに対応することができ、受光強度が十分に強くなる位置で信号光を受光できる。これにり、仮に手ぶれ等で信号光の光軸に角度ずれや位置ずれが生じることがあったとしても、通信断を起こさずに、高速にデータを伝送することが可能になる。   According to the present invention, it is possible to cope with the angular deviation and the positional deviation of the incident light beam, and the signal light can be received at a position where the received light intensity is sufficiently strong. As a result, even if an angle shift or a position shift occurs in the optical axis of the signal light due to camera shake or the like, data can be transmitted at high speed without causing a communication interruption.

以下、図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の概略構成図を示す。この実施例では、信号光は、細い平行ビームになっているとする。信号光ビーム10は、ハーフミラー12で2分割され、一方の分割光(データ受信用ビーム)10aが、レンズ14により集光されて、受光素子16に入射する。受光素子16は、理想的な信号光ビーム10の光軸に対して垂直な面内でX方向及びY方向に移動可能なXYステージ18上に載置されている。X軸アクチュエータ20が、XYステージ18を信号光ビーム10aの理想的な光軸に垂直な面内でX方向に移動させ、Y軸アクチュエータ22が、XYステージ18をY方向に移動させる。これにより、受光素子16が、信号光ビーム10の理想的な光軸に垂直な面内のX方向及びY方向に移動可能である。   FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention. In this embodiment, it is assumed that the signal light is a thin parallel beam. The signal light beam 10 is split into two by a half mirror 12, and one split light (data reception beam) 10 a is collected by a lens 14 and enters a light receiving element 16. The light receiving element 16 is placed on an XY stage 18 that can move in the X and Y directions within a plane perpendicular to the optical axis of the ideal signal light beam 10. The X-axis actuator 20 moves the XY stage 18 in the X direction within a plane perpendicular to the ideal optical axis of the signal light beam 10a, and the Y-axis actuator 22 moves the XY stage 18 in the Y direction. Thereby, the light receiving element 16 can move in the X direction and the Y direction in a plane perpendicular to the ideal optical axis of the signal light beam 10.

ハーフミラー12からの他方の分割信号光ビーム10b(光軸モニタ用ビーム)は、ハーフミラー24により更に2分割され、一方の分割光が、エリアセンサ26に入射し、他方の分割光が、ミラー28により反射されてエリアセンサ30に入射する。ハーフミラー12からエリアセンサ26,30までの光学距離は、互いに異なる。エリアセンサ26,30は、いわゆる撮像素子であり、画素毎に入射光強度に応じた電荷量の電気信号を出力する。エリアセンサ26,30により、入射信号光の、その光軸に垂直な面内での強度分布情報を得ることができる。   The other divided signal light beam 10b (optical axis monitoring beam) from the half mirror 12 is further divided into two by the half mirror 24, one of the divided lights is incident on the area sensor 26, and the other divided light is mirrored. The light is reflected by 28 and enters the area sensor 30. The optical distances from the half mirror 12 to the area sensors 26 and 30 are different from each other. The area sensors 26 and 30 are so-called image sensors, and output electric signals having a charge amount corresponding to the incident light intensity for each pixel. The area sensors 26 and 30 can obtain intensity distribution information of the incident signal light in a plane perpendicular to the optical axis.

ビーム重心検出装置32は、エリアセンサ26から出力されるビーム強度分布情報からビーム中心(重心)の位置(X1,Y1)を検出する。同様に、ビーム重心検出装置34は、エリアセンサ30の出力から、エリアセンサ30に入射する信号光ビームのビーム中心(重心)の位置(X2,Y2)を検出する。   The beam center of gravity detection device 32 detects the position (X1, Y1) of the beam center (center of gravity) from the beam intensity distribution information output from the area sensor 26. Similarly, the beam gravity center detection device 34 detects the position (X2, Y2) of the beam center (center of gravity) of the signal light beam incident on the area sensor 30 from the output of the area sensor 30.

制御装置36は、ビーム重心検出装置32,34の位置出力(X1,Y1),(X2,Y2)から、信号光ビーム10aのXYステージ18上での入射位置(X0,Y0)を計算する。制御装置36は、得られた位置(X0,Y0)に受光素子16が位置するように、X駆動回路38及びY駆動回路40を制御して、それぞれX軸アクチュエータ20及びY軸アクチュエータ22を駆動させる。これにより、受光素子16は位置(X0,Y0)に移動し、信号光ビーム10aが正しく受光素子16に入射する。復調回路42は、受光素子16の出力電気信号から、信号光ビーム10で搬送されるデータを復調する。   The control device 36 calculates the incident position (X0, Y0) of the signal light beam 10a on the XY stage 18 from the position outputs (X1, Y1), (X2, Y2) of the beam centroid detection devices 32, 34. The control device 36 controls the X drive circuit 38 and the Y drive circuit 40 so that the light receiving element 16 is positioned at the obtained position (X0, Y0), and drives the X axis actuator 20 and the Y axis actuator 22, respectively. Let As a result, the light receiving element 16 moves to the position (X0, Y0), and the signal light beam 10a correctly enters the light receiving element 16. The demodulating circuit 42 demodulates data carried by the signal light beam 10 from the output electric signal of the light receiving element 16.

図2は、本実施例の等価光学系を示す。図2を参照して、計算方法を説明する。実線は、信号光ビーム10aの理想的な光軸を示し、破線は、ずれた光軸を示す。ハーフミラー12から受光素子16までの距離をD0,ハーフミラー12からエリアセンサ26までの距離をD1、ハーフミラー12からエリアセンサ30までの距離をD2とする。破線で示すように光軸がずれた場合、XYステージ18上での信号光ビームの入射位置(X0,Y0)は、エリアセンサ26,30の受光位置(X1,Y1),(X2,Y2)と距離D0,D1,D2から、下記式で求められる。即ち、
X0=X1−(D1−D0)(X2−X1)/(D2−D1)
Y0=Y1−(D1−D0)(Y2−Y1)/(D2−D1)
制御装置36は、上式の演算を行い、X駆動回路38及びY駆動回路40によりそれぞれXアクチュエータ20及びYアクチュエータ22を駆動して、位置(X0,Y0)に受光素子16を移動させる。この位置制御により、信号光ビーム10は、その光軸が理想位置・角度からずれていても、正しく受光素子16に入射でき、本実施例の光受信装置は、信号光ビーム10の搬送するデータを受信できる。
FIG. 2 shows an equivalent optical system of the present embodiment. The calculation method will be described with reference to FIG. A solid line indicates an ideal optical axis of the signal light beam 10a, and a broken line indicates a shifted optical axis. The distance from the half mirror 12 to the light receiving element 16 is D0, the distance from the half mirror 12 to the area sensor 26 is D1, and the distance from the half mirror 12 to the area sensor 30 is D2. When the optical axis is shifted as indicated by the broken line, the incident position (X0, Y0) of the signal light beam on the XY stage 18 is the light receiving position (X1, Y1), (X2, Y2) of the area sensors 26, 30. And the distances D0, D1, and D2, the following formula is used. That is,
X0 = X1- (D1-D0) (X2-X1) / (D2-D1)
Y0 = Y1- (D1-D0) (Y2-Y1) / (D2-D1)
The control device 36 performs the calculation of the above formula, drives the X actuator 20 and the Y actuator 22 by the X drive circuit 38 and the Y drive circuit 40, respectively, and moves the light receiving element 16 to the position (X0, Y0). By this position control, the signal light beam 10 can be correctly incident on the light receiving element 16 even if its optical axis is deviated from the ideal position / angle, and the light receiving device of this embodiment can transmit the data carried by the signal light beam 10. Can be received.

位置(X0,Y0)を決定する制御装置36の演算は、簡易的には、ルックアップテーブルで置換できることは明らかである。   It is clear that the calculation of the control device 36 for determining the position (X0, Y0) can be simply replaced with a lookup table.

本実施例では、2つのエリアセンサ26,30の入射ビームから、信号光ビーム10を受光するための受光素子16の位置を決定するので、簡易な構成で迅速に、信号を受信できる。   In the present embodiment, since the position of the light receiving element 16 for receiving the signal light beam 10 is determined from the incident beams of the two area sensors 26 and 30, signals can be received quickly with a simple configuration.

人間が携帯端末を手に持った状態で光軸を合わせようとするとき、かならず手ぶれによる角度ずれ及び位置ずれが発生してしまう。手ぶれによる揺れは、周波数にして1〜5Hzである。リアルタイムに光軸補正をするのであれば、これよりも十分早い応答速度で角度ずれ及び位置ずれの検出および補正を行なわなくてはならない。X軸アクチュエータ20及びY軸アクチュエータ22としては、ステッピングモータによるアクチュエータ、ボイスコイルモータによるアクチュエータ、及び圧電アクチュエータ等が挙げられる。このうち、一般的にボイスコイルモータの応答性は1msec、圧電アクチュエータの応答性は0.01msecと手ぶれの周波数1〜5Hzを十分上回る応答速度を確保できる。位置精度の観点からも、ボイスコイルモータの場合で0.1μm、圧電アクチュエータの場合で0.01μmであり、受光素子16の受光径200μmφと比較しても、十分に精度の高い制御が可能である。   When a human tries to align the optical axis while holding the portable terminal in his / her hand, an angle shift and a position shift due to camera shake always occur. Shake due to camera shake is 1 to 5 Hz in frequency. If the optical axis correction is performed in real time, the angular deviation and the positional deviation must be detected and corrected at a response speed sufficiently faster than this. Examples of the X-axis actuator 20 and the Y-axis actuator 22 include stepping motor actuators, voice coil motor actuators, and piezoelectric actuators. Among these, the response speed of the voice coil motor is generally 1 msec, and the response speed of the piezoelectric actuator is 0.01 msec, which can ensure a response speed sufficiently higher than the camera shake frequency of 1 to 5 Hz. From the viewpoint of position accuracy, it is 0.1 μm in the case of a voice coil motor and 0.01 μm in the case of a piezoelectric actuator, and sufficiently accurate control is possible even when compared with the light receiving diameter of the light receiving element 16 of 200 μmφ. is there.

アクチュエータ20,22の応答速度を活かすためにも、エリアセンサ26,30のフレームレートが大きいのが好ましい。エリアセンサ26,30としてCCD(Charge Coupled Device)センサが一般的に採用される。CCDセンサのフレームレートは、高速のもので1000frame/secであり、手ぶれによる揺れの周波数の100倍以上である。アクチュエータ付XYステージ18とエリアセンサ26,30の組み合わせで、十分な応答速度で手ぶれによる角度ずれ及び位置ずれを感知して、受光素子16を信号光入射位置に制御できる。   In order to take advantage of the response speed of the actuators 20 and 22, it is preferable that the frame rate of the area sensors 26 and 30 is large. As the area sensors 26 and 30, CCD (Charge Coupled Device) sensors are generally employed. The CCD sensor has a high frame rate of 1000 frames / sec, which is 100 times or more the frequency of shaking due to camera shake. The combination of the XY stage with actuator 18 and the area sensors 26 and 30 can sense the angular deviation and the positional deviation due to camera shake at a sufficient response speed, and control the light receiving element 16 to the signal light incident position.

エリアセンサ26,30としては、二次元PSD(Position Sensitive Detector)素子も利用可能である。二次元PSD素子に光が入射すると、入射位置に入射光量に比例した電荷が発生する。この電荷は、光電流としてPSD素子の抵抗層を通り、受光面端にある電極から取り出される。この光電流は、両端の電極までの距離に逆比例して分割されるので、電極から取り出される光電流から光の入射位置を特定できる。ビーム重心検出装置32は、X方向の2つの両端電極からの光電流から重心のX位置を検出し、Y方向の2つの両端電極からの光電流から重心のY位置を検出する。   As the area sensors 26 and 30, a two-dimensional PSD (Position Sensitive Detector) element can also be used. When light enters the two-dimensional PSD element, a charge proportional to the amount of incident light is generated at the incident position. This electric charge passes through the resistance layer of the PSD element as a photocurrent and is taken out from the electrode at the end of the light receiving surface. Since this photocurrent is divided in inverse proportion to the distance to the electrodes on both ends, the incident position of light can be specified from the photocurrent extracted from the electrodes. The beam centroid detection device 32 detects the X position of the centroid from the photocurrents from the two end electrodes in the X direction, and detects the Y position of the centroid from the photocurrents from the two end electrodes in the Y direction.

光送信装置から出力される信号光10のビーム径が大きい場合又は拡散している場合、ハーフミラー12の前段に、ビーム径を小さくする光学系又は平行な細いビームにする光学系を配置すれば良い。勿論、適宜に、エリアセンサ26,30の前に集光レンズ等の集光器を配置してもよい。   When the beam diameter of the signal light 10 output from the optical transmitter is large or diffused, an optical system for reducing the beam diameter or an optical system for making a parallel thin beam may be disposed in front of the half mirror 12. good. Of course, a condenser such as a condenser lens may be disposed in front of the area sensors 26 and 30 as appropriate.

実施例1では、信号光10の受光のために受光素子16をXY面内で移動したが、受光素子16を静止させ、レンズ14をXY面内で移動しても良い。図3は、このように変更した実施例2の概略構成図を示す。   In the first embodiment, the light receiving element 16 is moved in the XY plane for receiving the signal light 10, but the light receiving element 16 may be stopped and the lens 14 may be moved in the XY plane. FIG. 3 shows a schematic configuration diagram of the second embodiment thus modified.

この実施例では、レンズ14にX軸アクチュエータ50及びY軸アクチュエータ52を装備してあり、レンズ14を、ビーム10aの理想的な光軸に垂直な面内でX軸方向及びY軸方向に移動可能である。受光素子16は静止している。制御装置54は、先の計算式の位置(X0,Y0)に入射するビームがレンズ14により受光素子16に入射するように、X軸駆動回路56によりX軸アクチュエータ50を駆動し、Y軸駆動回路58によりY軸アクチュエータ52を駆動する。いわば、制御装置54は、信号光ビーム10の位置ずれ及び角度ずれを相殺するように、レンズ14の位置を制御する。   In this embodiment, the lens 14 is equipped with an X-axis actuator 50 and a Y-axis actuator 52, and the lens 14 is moved in the X-axis direction and the Y-axis direction in a plane perpendicular to the ideal optical axis of the beam 10a. Is possible. The light receiving element 16 is stationary. The control device 54 drives the X-axis actuator 50 by the X-axis drive circuit 56 so that the beam incident on the position (X0, Y0) of the previous calculation formula is incident on the light receiving element 16 by the lens 14, and drives the Y-axis. The Y-axis actuator 52 is driven by the circuit 58. In other words, the control device 54 controls the position of the lens 14 so as to cancel the positional deviation and the angular deviation of the signal light beam 10.

上記実施例では更に、受光素子16とレンズ14の両方をXY面内で移動させても良い。   In the above embodiment, both the light receiving element 16 and the lens 14 may be moved in the XY plane.

入射信号光10の光軸ずれに応じて分割信号光10aを偏向することで、信号光10aが、常時、受光素子16に入射するようにしてもよい。図4は、その実施例の概略構成図を示す。   The split signal light 10a may be deflected according to the optical axis deviation of the incident signal light 10 so that the signal light 10a is always incident on the light receiving element 16. FIG. 4 shows a schematic configuration diagram of the embodiment.

この実施例では、ハーフミラー12とレンズ14の間に光ビームの方向を偏向可能な偏向装置60を配置してある。受光素子16は静止している。制御装置62は、先の計算式の位置(X0,Y0)に入射しようとするビームが偏向装置60により偏向されて受光素子16に入射するように、偏向装置60を制御する。いわば、制御装置62は、信号光ビーム10の位置ずれ及び角度ずれを相殺するように、偏向装置60により信号光ビーム10aの光軸を偏向する。このような目的の偏向装置60は、例えば、可変頂角プリズムにより実現できる。   In this embodiment, a deflecting device 60 capable of deflecting the direction of the light beam is disposed between the half mirror 12 and the lens 14. The light receiving element 16 is stationary. The control device 62 controls the deflection device 60 so that the beam which is about to enter the position (X0, Y0) of the previous calculation formula is deflected by the deflection device 60 and enters the light receiving element 16. In other words, the control device 62 deflects the optical axis of the signal light beam 10 a by the deflecting device 60 so as to cancel the positional deviation and the angular deviation of the signal light beam 10. Such a deflection device 60 can be realized by, for example, a variable apex angle prism.

実施例1と実施例3を組み合わせても良い。図5は、その変更実施例の概略構成ブロック図を示す。制御装置64は、ビーム重心検出装置32,34の検出結果に従い、偏向装置60の偏向を制御すると共に、XYステージ18により受光素子16の位置を制御する。   The first embodiment and the third embodiment may be combined. FIG. 5 shows a schematic block diagram of the modified embodiment. The control device 64 controls the deflection of the deflection device 60 according to the detection results of the beam centroid detection devices 32 and 34 and controls the position of the light receiving element 16 by the XY stage 18.

特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱しないで、上述の実施例に種々の変更・修整を施しうることは、本発明の属する分野の技術者にとって自明であり、このような変更・修整も本発明の技術的範囲に含まれる。   Although the invention has been described with reference to specific illustrative embodiments, various modifications and alterations may be made to the above-described embodiments without departing from the scope of the invention as defined in the claims. This is obvious to an engineer in the field to which the present invention belongs, and such changes and modifications are also included in the technical scope of the present invention.

本発明の一実施例の概略構成図である。It is a schematic block diagram of one Example of this invention. 本実施例の等価光学系の模式図である。It is a schematic diagram of the equivalent optical system of a present Example. 本発明の実施例2の概略構成図である。It is a schematic block diagram of Example 2 of this invention. 本発明の実施例3の概略構成図である。It is a schematic block diagram of Example 3 of this invention. 本発明の実施例4の概略構成図である。It is a schematic block diagram of Example 4 of this invention.

符号の説明Explanation of symbols

10:信号光ビーム
12:ハーフミラー
10a:分割信号光(データ受信用ビーム)
10b:分割信号光(光軸モニタ用ビーム)
14:レンズ
16:受光素子
18:XYステージ
20:X軸アクチュエータ
22:Y軸アクチュエータ
24:ハーフミラー
26:エリアセンサ
28:ミラー
30:エリアセンサ
32:ビーム重心検出装置
34:ビーム重心検出装置
36:制御装置
38:X駆動回路
40:Y駆動回路
42:復調回路
50:X軸アクチュエータ
52:Y軸アクチュエータ
54:制御装置
56:X駆動回路
58:Y駆動回路
60:偏向装置
62:制御装置
64:制御装置
10: Signal light beam 12: Half mirror 10a: Divided signal light (data receiving beam)
10b: Split signal light (optical axis monitor beam)
14: Lens 16: Light receiving element 18: XY stage 20: X axis actuator 22: Y axis actuator 24: Half mirror 26: Area sensor 28: Mirror 30: Area sensor 32: Beam centroid detection device 34: Beam centroid detection device 36: Control device 38: X drive circuit 40: Y drive circuit 42: Demodulation circuit 50: X axis actuator 52: Y axis actuator 54: Control device 56: X drive circuit 58: Y drive circuit 60: Deflection device 62: Control device 64: Control device

Claims (3)

信号光ビームを二分割し、第1及び第2の分割信号光を出力するビーム分波器(12)と、
当該第2の分割信号光の、当該ビーム分波器からの互いに異なる光学距離でのビーム重心を検出する第1及び第2のビーム重心検出装置(26,30,32,34)と、
受光器(16)と、
所定面内で二次元方向に当該受光器(16)を移動するXY移動装置(18,20,22)と、
当該第1及び第2のビーム重心検出装置の検出結果に従い当該XY移動装置を制御し、当該第1の分割信号光が入射する位置に当該受光器(16)を移動させる制御装置(36)
とを具備することを特徴とする光受信装置。
A beam splitter (12) for splitting the signal light beam into two and outputting first and second split signal lights;
First and second beam centroid detectors (26, 30, 32, 34) for detecting beam centroids of the second split signal light at different optical distances from the beam splitter;
A light receiver (16);
An XY moving device (18, 20, 22) for moving the light receiver (16) in a two-dimensional direction within a predetermined plane;
A control device (36) for controlling the XY moving device according to the detection results of the first and second beam centroid detecting devices and moving the light receiver (16) to a position where the first divided signal light is incident.
An optical receiver characterized by comprising:
信号光ビームを二分割し、第1及び第2の分割信号光を出力するビーム分波器(12)と、
当該第2の分割信号光の、当該ビーム分波器からの互いに異なる光学距離でのビーム重心を検出する第1及び第2のビーム重心検出装置(26,30,32,34)と、
受光器(16)と、
当該第1の分割信号光の光軸を調整する光軸調整装置(14,60)と、
当該第1及び第2のビーム重心検出装置の検出結果に従い当該光軸調整装置を制御して、当該光軸調整装置から出力される当該第1の分割信号光を当該受光器(16)に入射させる制御装置(54,60)
とを具備することを特徴とする光受信装置。
A beam splitter (12) for splitting the signal light beam into two and outputting first and second split signal lights;
First and second beam centroid detectors (26, 30, 32, 34) for detecting beam centroids of the second split signal light at different optical distances from the beam splitter;
A light receiver (16);
An optical axis adjustment device (14, 60) for adjusting the optical axis of the first divided signal light;
The optical axis adjustment device is controlled according to the detection results of the first and second beam centroid detection devices, and the first divided signal light output from the optical axis adjustment device is incident on the light receiver (16). Control device (54, 60)
An optical receiver characterized by comprising:
信号光ビームを二分割し、第1及び第2の分割信号光を出力するビーム分波器(12)と、
当該第2の分割信号光の、当該ビーム分波器からの互いに異なる光学距離でのビーム重心を検出する第1及び第2のビーム重心検出装置(26,30,32,34)と、
受光器(16)と、
所定面内で二次元方向に当該受光器(16)を移動するXY移動装置(18,20,22)と、
当該第1の分割信号光の光軸を調整する光軸調整装置(14,60)と、
当該第1及び第2のビーム重心検出装置の検出結果に従い、当該XY移動装置及び当該光軸調整装置を制御し、当該光軸調整装置から出力される当該第1の分割信号光を当該受光器(16)に入射させる制御装置(64)
とを具備することを特徴とする光受信装置。
A beam splitter (12) for splitting the signal light beam into two and outputting first and second split signal lights;
First and second beam centroid detectors (26, 30, 32, 34) for detecting beam centroids of the second split signal light at different optical distances from the beam splitter;
A light receiver (16);
An XY moving device (18, 20, 22) for moving the light receiver (16) in a two-dimensional direction within a predetermined plane;
An optical axis adjustment device (14, 60) for adjusting the optical axis of the first divided signal light;
According to the detection results of the first and second beam centroid detection devices, the XY movement device and the optical axis adjustment device are controlled, and the first split signal light output from the optical axis adjustment device is used as the light receiver. Control device (64) for incidence on (16)
An optical receiver characterized by comprising:
JP2006124584A 2006-04-28 2006-04-28 Optical receiver Expired - Fee Related JP4697446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124584A JP4697446B2 (en) 2006-04-28 2006-04-28 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124584A JP4697446B2 (en) 2006-04-28 2006-04-28 Optical receiver

Publications (2)

Publication Number Publication Date
JP2007300248A true JP2007300248A (en) 2007-11-15
JP4697446B2 JP4697446B2 (en) 2011-06-08

Family

ID=38769395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124584A Expired - Fee Related JP4697446B2 (en) 2006-04-28 2006-04-28 Optical receiver

Country Status (1)

Country Link
JP (1) JP4697446B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214010A (en) * 1993-01-19 1994-08-05 A T R Koudenpa Tsushin Kenkyusho:Kk Alignment system for optical communication apparatus optical system
JPH07123054A (en) * 1993-10-25 1995-05-12 Sony Corp Optical space transmitter
JP2000292541A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Optical control device
JP2005064993A (en) * 2003-08-18 2005-03-10 Fuji Xerox Co Ltd Apparatus and system of optical radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214010A (en) * 1993-01-19 1994-08-05 A T R Koudenpa Tsushin Kenkyusho:Kk Alignment system for optical communication apparatus optical system
JPH07123054A (en) * 1993-10-25 1995-05-12 Sony Corp Optical space transmitter
JP2000292541A (en) * 1999-04-08 2000-10-20 Matsushita Electric Ind Co Ltd Optical control device
JP2005064993A (en) * 2003-08-18 2005-03-10 Fuji Xerox Co Ltd Apparatus and system of optical radio

Also Published As

Publication number Publication date
JP4697446B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US5917653A (en) Binoculars capable of vibration reduction
JP5109450B2 (en) Blur correction device and optical apparatus
US20130193315A1 (en) Line of sight stabilization system
US7190905B2 (en) Spatial optical communication apparatus
US9450670B1 (en) Position sensor for a fast steering mirror
JP2000049708A (en) Optical axis correction device/method
Yoshida et al. Seamless transmission between single-mode optical fibers using free space optics system
JP2004523160A (en) Window-mounted free-space optical wireless communication system
US5237166A (en) Optical atmospheric link apparatus with light path correction
JP4697446B2 (en) Optical receiver
CN109613696B (en) Optical fiber scanning projection device and electronic equipment
US7146105B1 (en) MEMS-based optical wireless communication system
JPH08223117A (en) Optical space transmission equipment
JPH08204640A (en) Optical space transmitter
JP2007074105A (en) Photodetector
JP2007282144A (en) Optical space communication apparatus
JP2002057932A (en) Image pickup device
JPH01226228A (en) Optical space transmission equipment
JP4031464B2 (en) Optical space transmission equipment
JP2005175720A (en) Photodetector and optical space transmission apparatus
JPH08163041A (en) Special light communication equipment
JP5255508B2 (en) Optical space transmission system
WO2014193134A1 (en) High speed laser processing method and apparatus
JP4462134B2 (en) Optical signal transmission system
JPH04168776A (en) Optical axis alignment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

LAPS Cancellation because of no payment of annual fees