JP2007299738A - Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device - Google Patents

Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using the same, and nonaqueous electrolyte system energy device Download PDF

Info

Publication number
JP2007299738A
JP2007299738A JP2007085179A JP2007085179A JP2007299738A JP 2007299738 A JP2007299738 A JP 2007299738A JP 2007085179 A JP2007085179 A JP 2007085179A JP 2007085179 A JP2007085179 A JP 2007085179A JP 2007299738 A JP2007299738 A JP 2007299738A
Authority
JP
Japan
Prior art keywords
energy device
resin composition
binder resin
repeating unit
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007085179A
Other languages
Japanese (ja)
Other versions
JP5136946B2 (en
Inventor
Kiyotaka Mashita
清孝 真下
Kenji Suzuki
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007085179A priority Critical patent/JP5136946B2/en
Publication of JP2007299738A publication Critical patent/JP2007299738A/en
Application granted granted Critical
Publication of JP5136946B2 publication Critical patent/JP5136946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a binder resin composition of a nonaqueous electrolyte system energy device with excellent adhesiveness to a collector of an electrode, especially one of an anode, as well as an anti-swelling property against electrolyte solution, and that, with the electrode with excellent elasticity and flexibility, and an electrode for the nonaqueous electrolyte system energy device with a large capacity and a small capacity deterioration at charge/discharge cycles with the use of the binder resin composition. <P>SOLUTION: The binder resin composition for a nonaqueous electrolyte system energy device electrode made by including a nitrile system polymer containing 80% by mass of repeating units derived from a nitrile group-containing monomer, and an α-olefin-α,β-unsaturated carboxylic acid copolymer containing a repeating unit derived from α-olefin and a repeating unit derived from α,β-unsaturated carboxylic acid, and the electrode of the nonaqueous electrolyte system energy device using the same, as well as the nonaqueous electrolyte system energy device are structured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解液系エネルギーデバイス電極用バインダ樹脂組成物及びこれを用いた非水電解液系エネルギーデバイス用電極並びに非水電解液系エネルギーデバイスに関する。   The present invention relates to a binder resin composition for a non-aqueous electrolyte-based energy device electrode, a non-aqueous electrolyte-based energy device electrode using the same, and a non-aqueous electrolyte-based energy device.

ノート型パソコンや携帯電話、PDAといった携帯情報端末の電源として、高いエネルギー密度を有する非水電解液系エネルギーデバイスであるリチウムイオン二次電池が広く使われている。   2. Description of the Related Art Lithium ion secondary batteries, which are non-aqueous electrolyte energy devices having a high energy density, are widely used as power sources for portable information terminals such as notebook personal computers, mobile phones, and PDAs.

このリチウムイオン二次電池(以下、リチウム電池という)には、負極の活物質として、リチウムイオンの層間への挿入(リチウム層間化合物の形成)及び放出が可能な多層構造を有する炭素材料が用いられる。また、正極の活物質としては、リチウム含有金属複合酸化物が主に用いられる。   In this lithium ion secondary battery (hereinafter referred to as a lithium battery), as a negative electrode active material, a carbon material having a multilayer structure capable of inserting lithium ions between layers (forming a lithium intercalation compound) and releasing is used. . In addition, lithium-containing metal composite oxide is mainly used as the positive electrode active material.

リチウム電池の電極は、これらの活物質とバインダ樹脂組成物及び溶剤(N−メチル−2−ピロリドン、水等)を混練してスラリーを調製し、次いで、これを転写ロール等で集電体である金属箔の片面又は両面に塗布し、溶剤を乾燥除去して合剤層を形成後、ロールプレス機等で圧縮成形して作製される。   A lithium battery electrode is prepared by kneading these active materials, a binder resin composition and a solvent (N-methyl-2-pyrrolidone, water, etc.) to prepare a slurry, and then using a current collector with a transfer roll or the like. It is applied to one or both sides of a certain metal foil, dried by removing the solvent to form a mixture layer, and then compression molded with a roll press or the like.

上記バインダ樹脂組成物としては、ポリフッ化ビニリデン(以下、PVDFという)が多用されている。
しかし、PVDFは、負極の集電体(銅箔)との接着性に乏しいため、PVDFを用いて負極を作製する場合、合剤層と集電体との界面の接着性を確保するには、負極活物質に対してPVDFを多量に配合しなければならず、リチウム電池の高容量化を妨げる要因となっている。
As the binder resin composition, polyvinylidene fluoride (hereinafter referred to as PVDF) is frequently used.
However, since PVDF has poor adhesion to the current collector (copper foil) of the negative electrode, when producing a negative electrode using PVDF, it is necessary to ensure the adhesion at the interface between the mixture layer and the current collector. Therefore, a large amount of PVDF must be blended with the negative electrode active material, which is a factor that hinders the increase in capacity of lithium batteries.

また、PVDFは、リチウム電池の電解液(充放電に伴う正・負極間でのリチウムイオンの授受を媒介する液体)に対する耐膨潤性が必ずしも十分ではないことから、電解液によって合剤層中のPVDFが膨潤すると、合剤層と集電体との界面や合剤層中の活物質同士の接触がルーズになる。このため、電極の導電ネットワークが次第に崩壊し、リチウム電池が充放電サイクルを繰り返すと、経時的に容量低下を起こす一因となっていた。   In addition, PVDF does not necessarily have sufficient swell resistance to lithium battery electrolytes (liquids that mediate the exchange of lithium ions between the positive and negative electrodes associated with charge / discharge). When PVDF swells, the interface between the mixture layer and the current collector and the contact between the active materials in the mixture layer become loose. For this reason, when the conductive network of the electrode gradually collapses and the lithium battery repeats the charge / discharge cycle, it is a cause of a decrease in capacity over time.

これらの問題の解決策として、特許文献1には、ガラス転移温度が0℃より高い(メタ)アクリロニトリル系重合体と、電極に柔軟性・可とう性を付与するゴム成分(ガラス転移温度が−80〜0℃で、N−メチル−2−ピロリドン溶解性の良好な非フッ化ビニリデン系重合体)をブレンドしたバインダ樹脂組成物が開示されている。
しかしながら、上記ゴム成分は、活物質表面を覆いやすく、電池の充放電反応を阻害しやすい懸念がある。
As a solution to these problems, Patent Document 1 discloses a (meth) acrylonitrile-based polymer having a glass transition temperature higher than 0 ° C., and a rubber component that imparts flexibility and flexibility to the electrode (with a glass transition temperature of − A binder resin composition blended with a non-vinylidene fluoride polymer having good solubility in N-methyl-2-pyrrolidone at 80 to 0 ° C. is disclosed.
However, the rubber component tends to cover the surface of the active material, and there is a concern that the charge / discharge reaction of the battery is likely to be hindered.

一方、特許文献2には、(メタ)アクリロニトリル系重合体と、フッ化ビニリデン系重合体をブレンドしたバインダ樹脂組成物が提案されているが、上記(メタ)アクリロニトリル系重合体は、二トリル基の含有量が少ないので、電解液に対する充分な耐膨潤性が得られにくい。
また、特許文献1と同様、活物質表面を覆いやすく、電池の充放電反応を阻害しやすい問題があった。
On the other hand, Patent Document 2 proposes a binder resin composition in which a (meth) acrylonitrile-based polymer and a vinylidene fluoride-based polymer are blended, but the (meth) acrylonitrile-based polymer has a nitrile group. Therefore, it is difficult to obtain sufficient swelling resistance against the electrolytic solution.
Further, like Patent Document 1, there is a problem that the surface of the active material is easily covered and the charge / discharge reaction of the battery is easily inhibited.

特開2003−282061号公報JP 2003-282061 A 特開2003−317722号公報JP 2003-317722 A

本発明の目的は、電極の集電体との接着性及び電解液に対する耐膨潤性に優れ、なおかつ、電極の柔軟性・可とう性が良好な非水電解液系エネルギーデバイス電極用バインダ樹脂組成物(以下、バインダ樹脂組成物ということがある)を提供することにある。
また、本発明の他の目的は、前記のバインダ樹脂組成物を用いることにより、高容量で、なおかつ、充放電サイクルにおける容量低下が小さい充放電特性に優れた非水電解液系エネルギーデバイス用電極並びに非水電解液系エネルギーデバイス、特にリチウム電池の電極及びリチウム電池を提供することにある。
An object of the present invention is to provide a binder resin composition for an energy device electrode of a non-aqueous electrolyte system that has excellent adhesion to the current collector of the electrode and resistance to swelling with respect to the electrolytic solution, and also has good flexibility and flexibility of the electrode. It is in providing a thing (henceforth a binder resin composition).
Another object of the present invention is to provide an electrode for a non-aqueous electrolyte-based energy device that is excellent in charge / discharge characteristics with a high capacity and a small capacity drop in a charge / discharge cycle by using the binder resin composition. It is another object of the present invention to provide a non-aqueous electrolyte-based energy device, in particular, a lithium battery electrode and a lithium battery.

本発明者らは、鋭意研究を重ねた結果、ニトリル基の含有量が多いニトリル系重合体と、電極の柔軟性・可とう性を補うα−オレフィンとα,β−不飽和カルボン酸の共重合体のブレンド物を、非水電解液系エネルギーデバイス電極用バインダ樹脂組成物とすることにより、電解液に対する耐膨潤性及び電極の集電体との接着性に優れ、なおかつ、電極の柔軟性・可とう性が良好となることを見出し、本発明を完成するに至った。   As a result of extensive research, the present inventors have found that a nitrile polymer having a high nitrile group content, an α-olefin and an α, β-unsaturated carboxylic acid that supplement the flexibility and flexibility of the electrode. By using a polymer blend as a binder resin composition for non-aqueous electrolyte based energy device electrodes, it has excellent swelling resistance to the electrolyte and adhesion to the current collector of the electrode, and flexibility of the electrode. -It discovered that a flexibility became favorable and came to complete this invention.

即ち、本発明は、ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体及びα−オレフィン由来の繰り返し単位とα,β−不飽和カルボン酸由来の繰り返し単位とを含むα−オレフィン−α,β−不飽和カルボン酸共重合体を含有してなる非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記ニトリル基含有単量体が、アクリロニトリルである、非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
That is, the present invention includes a nitrile polymer containing 80% by mass or more of a repeating unit derived from a nitrile group-containing monomer and a repeating unit derived from an α-olefin and a repeating unit derived from an α, β-unsaturated carboxylic acid. The present invention relates to a binder resin composition for non-aqueous electrolyte-based energy device electrodes comprising an α-olefin-α, β-unsaturated carboxylic acid copolymer.
Moreover, this invention relates to the binder resin composition for non-aqueous electrolyte type energy device electrodes whose said nitrile group containing monomer is acrylonitrile.

また、本発明は、前記ニトリル系重合体が、ニトリル基含有単量体由来の繰り返し単位と、カルボキシル基含有単量体由来の繰り返し単位及び/又は下記一般式(I)   In the present invention, the nitrile polymer may be a repeating unit derived from a nitrile group-containing monomer, a repeating unit derived from a carboxyl group-containing monomer, and / or the following general formula (I):

Figure 2007299738
(式中、R1はH又はCH3、R2はH又は1価の炭化水素基、nは1〜50の整数である)
で表される単量体由来の繰り返し単位とを含むことを特徴とする非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
Figure 2007299738
(Wherein R 1 is H or CH 3 , R 2 is H or a monovalent hydrocarbon group, and n is an integer of 1 to 50)
The binder resin composition for non-aqueous-electrolyte-type energy device electrodes characterized by including the repeating unit derived from the monomer represented by these.

また、本発明は、前記カルボキシル基含有単量体が、アクリル酸である非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記一般式(I)で表される単量体が、メトキシトリエチレングリコールアクリレートである、非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記ニトリル基含有単量体由来の繰り返し単位1モルに対して、前記カルボキシル基含有単量体由来の繰り返し単位が0.01〜0.2モル及び/又は前記一般式(I)で表される単量体由来の繰り返し単位が0.001〜0.2モルである非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
Moreover, this invention relates to the binder resin composition for non-aqueous electrolyte type energy device electrodes whose said carboxyl group-containing monomer is acrylic acid.
Moreover, this invention relates to the binder resin composition for non-aqueous electrolyte system energy device electrodes whose monomer represented by the said general formula (I) is methoxytriethyleneglycol acrylate.
In addition, the present invention provides that the repeating unit derived from the carboxyl group-containing monomer is 0.01 to 0.2 mol and / or the general formula (1) with respect to 1 mol of the repeating unit derived from the nitrile group-containing monomer. It is related with the binder resin composition for nonaqueous electrolyte system energy device electrodes whose repeating unit derived from the monomer represented by I) is 0.001-0.2 mol.

また、本発明は、前記α−オレフィンが、エチレンであり、前記α,β−不飽和カルボン酸が、アクリル酸である非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、前記α−オレフィン−α,β−不飽和カルボン酸共重合体が、メルトフローレート(ASTM D 1238)で5〜150g/10minに相当する分子量を有し、酸価が50〜250KOHmg/gである非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
また、本発明は、含窒素系溶剤を含む有機溶剤と、該有機溶剤中に溶解した前記ニトリル系共重合体と、該有機溶剤中に分散した前記α−オレフィン−α,β−不飽和カルボン酸共重合体とを含む、非水電解液系エネルギーデバイス電極用バインダ樹脂組成物に関する。
The present invention also relates to a binder resin composition for non-aqueous electrolyte energy device electrodes, wherein the α-olefin is ethylene and the α, β-unsaturated carboxylic acid is acrylic acid.
In the present invention, the α-olefin-α, β-unsaturated carboxylic acid copolymer has a molecular weight corresponding to a melt flow rate (ASTM D 1238) of 5 to 150 g / 10 min and an acid value of 50. It is related with the binder resin composition for non-aqueous electrolyte system energy device electrodes which are -250KOHmg / g.
The present invention also provides an organic solvent containing a nitrogen-containing solvent, the nitrile copolymer dissolved in the organic solvent, and the α-olefin-α, β-unsaturated carboxylic acid dispersed in the organic solvent. The present invention relates to a binder resin composition for non-aqueous electrolyte-based energy device electrodes, which contains an acid copolymer.

また、本発明は、集電体と、該集電体の少なくとも1面に設けられた合剤層とを有し、該合剤層が、活物質及び任意の導電性フィラを含む上記非水電解液系エネルギーデバイス電極用バインダ樹脂組成物からなる、非水電解液系エネルギーデバイス電極に関する。
また、本発明は、非水電解液系エネルギーデバイス電極を含む、非水電解液系エネルギーデバイスに関する。
さらに、本発明は、非水電解液系エネルギーデバイスがリチウム電池である、非水電解液系エネルギーデバイスに関する。
The present invention also includes a current collector and a mixture layer provided on at least one surface of the current collector, wherein the mixture layer includes an active material and an optional conductive filler. The present invention relates to a non-aqueous electrolyte system energy device electrode comprising a binder resin composition for an electrolyte system energy device electrode.
The present invention also relates to a nonaqueous electrolytic solution energy device including a nonaqueous electrolytic solution energy device electrode.
Furthermore, this invention relates to the non-aqueous electrolyte type energy device whose non-aqueous electrolyte type energy device is a lithium battery.

本発明のバインダ樹脂組成物は、集電体に対する接着性及び電解液に対する耐膨潤性に優れたニトリル基の含有量が多いニトリル系重合体と、電極の柔軟性・可とう性を補うα−オレフィンとα,β−不飽和カルボン酸の共重合体とを含むブレンド物からなっているので、電極の集電体との接着性及び電解液に対する耐膨潤性に優れ、なおかつ、電極の柔軟性・可とう性が良好である。このため、本発明のバインダ樹脂組成物を用いて作製される非水電解液系エネルギーデバイス電極を使用した非水電解液系エネルギーデバイスであるリチウム電池は、高容量で、なおかつ、充放電サイクルにおける容量低下が小さい。   The binder resin composition of the present invention comprises a nitrile polymer having a high nitrile group content and excellent adhesion to the current collector and swelling resistance to the electrolyte, and α- which supplements the flexibility and flexibility of the electrode. Because it is made of a blend containing an olefin and a copolymer of α, β-unsaturated carboxylic acid, it has excellent adhesion to the current collector of the electrode and resistance to swelling with respect to the electrolyte, and flexibility of the electrode. -Good flexibility. For this reason, a lithium battery that is a non-aqueous electrolyte system energy device using a non-aqueous electrolyte system energy device electrode produced using the binder resin composition of the present invention has a high capacity and is in a charge / discharge cycle. The capacity drop is small.

(1)非水電解液系エネルギーデバイス用バインダ樹脂組成物
本発明の非水電解液系エネルギーデバイス用バインダ樹脂組成物は、ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体と、α−オレフィン−α,β−不飽和カルボン酸共重合体とを含むことを特徴とする。
(1) Binder resin composition for non-aqueous electrolyte system energy device The binder resin composition for non-aqueous electrolyte system energy device of the present invention is a nitrile system containing 80% by mass or more of a repeating unit derived from a nitrile group-containing monomer. It contains a polymer and an α-olefin-α, β-unsaturated carboxylic acid copolymer.

(1−1)ニトリル系重合体
本発明におけるニトリル系重合体としては、電解液に対する耐膨潤性等の点から、ニトリル基含有単量体由来の繰り返し単位を、ニトリル系重合体に含まれる全繰り返し単位100質量%に対して、80質量%以上含むものであれば、特に制限はなく、ニトリル基含有単量体の単独重合体をはじめ、20質量%未満の割合で他の単量体由来の繰り返し単位を含む共重合体が挙げられる。例えば、ニトリル系重合体に含まれる全繰り返し単位の質量を100とする場合、ニトリル基含有単量体由来の繰り返し単位/他の単量体由来の繰り返し単位の質量比は、80/20〜100/0、好ましくは、85/15〜99/1、より好ましくは、90/10〜95/5であることが適当である。
(1-1) Nitrile Polymer The nitrile polymer in the present invention includes all repeating units derived from a nitrile group-containing monomer from the viewpoint of swelling resistance to an electrolytic solution. As long as it contains 80% by mass or more with respect to 100% by mass of the repeating unit, there is no particular limitation, including homopolymers of nitrile group-containing monomers and other monomers derived at a rate of less than 20% by mass. The copolymer containing the repeating unit of these is mentioned. For example, when the mass of all repeating units contained in the nitrile polymer is 100, the mass ratio of the repeating unit derived from the nitrile group-containing monomer / the repeating unit derived from another monomer is 80/20 to 100. / 0, preferably 85/15 to 99/1, more preferably 90/10 to 95/5.

(1−1−1)ニトリル基含有単量体
本発明におけるニトリル基含有単量体としては、特に制限はないが、例えば、アクリロニトリル及びメタクリロニトリルのようなアクリル系ニトリル基含有単量体、α−シアノアクリレート及びジシアノビニリデンのようなシアン系ニトリル基含有単量体、フマロニトリルのようなフマル系ニトリル基含有単量体などが挙げられる。これらの中では、重合のし易さ、コストパフォーマンス、電極の柔軟性・可とう性等の点で、アクリロニトリルが好ましい。
(1-1-1) Nitrile group-containing monomer The nitrile group-containing monomer in the present invention is not particularly limited. For example, an acrylic nitrile group-containing monomer such as acrylonitrile and methacrylonitrile, Examples thereof include cyan nitrile group-containing monomers such as α-cyanoacrylate and dicyanovinylidene, and fumaric nitrile group-containing monomers such as fumaronitrile. Among these, acrylonitrile is preferable from the viewpoint of ease of polymerization, cost performance, flexibility and flexibility of the electrode, and the like.

これらのニトリル基含有単量体は、単独で又は二種類以上組み合わせて用いられる。本発明のニトリル基含有単量体としてアクリロニトリルとメタクリロニトリルとを使用する場合、ニトリル基含有単量体の全量に対して、アクリロニトリルを、例えば、5〜95質量%、好ましくは、50〜95質量%含むことが適当である。   These nitrile group-containing monomers are used alone or in combination of two or more. When acrylonitrile and methacrylonitrile are used as the nitrile group-containing monomer of the present invention, acrylonitrile is, for example, 5 to 95% by mass, preferably 50 to 95% with respect to the total amount of the nitrile group-containing monomer. It is suitable to contain the mass%.

(1−1−2)他の単量体
本発明における他の単量体としては、ニトリル基を含まない単量体であれば特に制限はないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の短鎖(好ましくは炭素数1〜10、より好ましくは炭素数1〜5)の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸及びその塩などの単量体が挙げられる。
特に、本発明における他の単量体としては、ニトリル基を含まないカルボキシル基含有単量体及び下記一般式(I)で表される単量体などが好ましく用いられる。
(1-1-2) Other monomer The other monomer in the present invention is not particularly limited as long as it is a monomer not containing a nitrile group. For example, methyl (meth) acrylate, ethyl ( Short chain (preferably having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms) (meth) acrylates such as meth) acrylate and propyl (meth) acrylate, vinyl chloride, vinyl bromide, vinylidene chloride, etc. Vinyl halides, maleic imide, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate, sodium styrenesulfonate , Monomers such as 2-acrylamido-2-methylpropanesulfonic acid and salts thereof.
In particular, as the other monomer in the present invention, a carboxyl group-containing monomer not containing a nitrile group, a monomer represented by the following general formula (I), and the like are preferably used.

Figure 2007299738
(式中、R1はH又はCH3、R2は、H又は1価の炭化水素基、nは1〜50の整数である)
これらの中では、電極の集電体との接着性の向上等の点でカルボキシル基含有単量体が好ましく、電極の柔軟性・可とう性の向上等の点から前記一般式(I)で表される単量体が好ましい。これらの他の単量体は、単独又は二種類以上組み合わせて用いることができる。他の単量体として上記カルボキシル基含有単量体及び式(I)で表される単量体を組み合わせて使用するときは、例えば、他の単量体由来の繰り返し単位全体の質量を100とする場合、カルボキシル基含有単量体由来の繰り返し単位/式(I)で表される単量体由来の繰り返し単位の質量比は、99/1〜1/99、好ましくは、80/20〜20/80、より好ましくは、50/50であることが適当である。
Figure 2007299738
(Wherein R 1 is H or CH 3 , R 2 is H or a monovalent hydrocarbon group, and n is an integer of 1 to 50)
Among these, a carboxyl group-containing monomer is preferable from the viewpoint of improving the adhesion of the electrode to the current collector, and the general formula (I) from the viewpoint of improving the flexibility and flexibility of the electrode. The monomer represented is preferred. These other monomers can be used alone or in combination of two or more. When the above carboxyl group-containing monomer and the monomer represented by the formula (I) are used in combination as the other monomer, for example, the mass of the entire repeating unit derived from the other monomer is 100. In this case, the mass ratio of the repeating unit derived from the carboxyl group-containing monomer / the repeating unit derived from the monomer represented by formula (I) is 99/1 to 1/99, preferably 80/20 to 20 / 80, more preferably 50/50 is appropriate.

本発明におけるカルボキシル基含有単量体としては、ニトリル基を含まないものであれば特に制限はないが、例えば、アクリル酸及びメタクリル酸のようなアクリル系カルボキシル基含有単量体、クロトン酸のようなクロトン系カルボキシル基含有単量体、マレイン酸及びその無水物のようなマレイン系カルボキシル基含有単量体、イタコン酸及びその無水物のようなイタコン系カルボキシル基含有単量体、シトラコン酸及びその無水物のようなシトラコン系カルボキシル基含有単量体などが挙げられる。   The carboxyl group-containing monomer in the present invention is not particularly limited as long as it does not contain a nitrile group, but examples thereof include acrylic carboxyl group-containing monomers such as acrylic acid and methacrylic acid, and crotonic acid. Croton carboxyl group-containing monomers, maleic carboxyl group-containing monomers such as maleic acid and its anhydride, itaconic carboxyl group-containing monomers such as itaconic acid and its anhydride, citraconic acid and its Examples include citraconic carboxyl group-containing monomers such as anhydrides.

これらの中では、重合のし易さ、コストパフォーマンス、電極の柔軟性・可とう性等の点で、アクリル酸が好ましい。これらのカルボキシル基含有単量体は、単独で又は二種類以上組み合わせて用いることができる。本発明のカルボキシル基含有単量体としてアクリル酸とメタクリル酸とを使用する場合、カルボキシル基含有単量体の全量に対して、アクリル酸を、例えば、5〜95質量%、好ましくは、50〜95質量%含むことが適当である。   Among these, acrylic acid is preferable from the viewpoints of ease of polymerization, cost performance, flexibility and flexibility of the electrode, and the like. These carboxyl group-containing monomers can be used alone or in combination of two or more. When acrylic acid and methacrylic acid are used as the carboxyl group-containing monomer of the present invention, acrylic acid is, for example, 5 to 95% by mass, preferably 50 to 50% with respect to the total amount of the carboxyl group-containing monomer. It is appropriate to contain 95% by mass.

本発明における前記一般式(I)で表される単量体としては、ニトリル基及びカルボキシル基を含まないものであれば、特に限定はない。
前記一般式(I)におけるnは1〜50、好ましくは、2〜30、より好ましくは2〜10の整数である。R2は、H又はニトリル基及びカルボキシル基を含まない1価の炭化水素基であり、例えば、炭素数1〜50、好ましくは炭素数1〜25、より好ましくは炭素数1〜12である1価の炭化水素基であることが適当である。炭素数が50以下であれば、電解液に対する十分な耐膨潤性を得ることができる。
The monomer represented by the general formula (I) in the present invention is not particularly limited as long as it does not contain a nitrile group and a carboxyl group.
N in the general formula (I) is an integer of 1 to 50, preferably 2 to 30, and more preferably 2 to 10. R 2 is a monovalent hydrocarbon group that does not contain H or a nitrile group and a carboxyl group, for example, 1 to 50 carbon atoms, preferably 1 to 25 carbon atoms, more preferably 1 to 12 carbon atoms. A valent hydrocarbon group is suitable. When the number of carbon atoms is 50 or less, sufficient swelling resistance to the electrolytic solution can be obtained.

ここで、炭化水素基としては、例えば、アルキル基、フェニル基が適当である。R2は、特に、炭素数1〜12のアルキル基、フェニル基であることが適当である。このアルキル基は、直鎖あるいは分岐鎖であってもよい。またこのアルキル基やフェニル基は、一部フッ素、塩素、臭素、ヨウ素等のハロゲンや、窒素、リン、芳香環、炭素数3〜10のシクロアルカン等で置換されていてもよい。 Here, as the hydrocarbon group, for example, an alkyl group and a phenyl group are suitable. R 2 is particularly preferably an alkyl group having 1 to 12 carbon atoms or a phenyl group. This alkyl group may be linear or branched. Further, this alkyl group or phenyl group may be partially substituted with halogen such as fluorine, chlorine, bromine or iodine, nitrogen, phosphorus, aromatic ring, C3-C10 cycloalkane or the like.

具体的には、例えば市販の、エトキシジエチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレートEC−A)、メトキシトリエチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレートMTG−A,新中村化学工業(株)製、商品名:NKエステルAM−30G)、メトキシポリ(n=9)エチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレート130−A,新中村化学工業(株)製、商品名:NKエステルAM−90G)、メトキシポリ(n=13)エチレングリコールアクリレート(商品名:NKエステルAM−130G)、メトキシポリ(n=23)エチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルAM−230G)、オクトキシポリ(n=18)エチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルA−OC−18E)、フェノキシジエチレングリコールアクリレート(共栄社化学(株)製、商品名:ライトアクリレートP−200A,新中村化学工業(株)製、商品名:NKエステルAMP−20GY)、フェノキシポリ(n=6)エチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルAMP−60G)、ノニルフェノールEO付加物(n=4)アクリレート(共栄社化学(株)製、商品名:ライトアクリレートNP−4EA)、ノニルフェノールEO付加物(n=8)アクリレート(共栄社化学(株)製、商品名:ライトアクリレートNP−8EA)、メトキシジエチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステルMC,新中村化学工業(株)製、商品名:NKエステルM−20G)、メトキシトリエチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステルMTG)、メトキシポリ(n=9)エチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステル130MA,新中村化学工業(株)製、商品名:NKエステルM−90G)、メトキシポリ(n=23)エチレングリコールメタクリレート(新中村化学工業(株)製、商品名:NKエステルM−230G)、メトキシポリ(n=30)エチレングリコールメタクリレート(共栄社化学(株)製、商品名:ライトエステル041MA)等が挙げられる。   Specifically, for example, commercially available ethoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate EC-A), methoxytriethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate MTG-) A, manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AM-30G), methoxypoly (n = 9) ethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate 130-A, Shin-Nakamura Chemical) Manufactured by Kogyo Co., Ltd., trade name: NK ester AM-90G), methoxypoly (n = 13) ethylene glycol acrylate (trade name: NK ester AM-130G), methoxypoly (n = 23) ethylene glycol acrylate (Shin Nakamura Chemical Co., Ltd.) Product name: NK ester AM-230 ), Octoxypoly (n = 18) ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-OC-18E), phenoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate P) -200A, manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AMP-20GY), phenoxypoly (n = 6) ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AMP-60G) ), Nonylphenol EO adduct (n = 4) acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate NP-4EA), nonylphenol EO adduct (n = 8) acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name) : Light acrylate NP-8EA), methoxydiethylene glycol Tacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Ester MC, Shin-Nakamura Chemical Co., Ltd., trade name: NK Ester M-20G), methoxytriethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name) : Light ester MTG), Methoxypoly (n = 9) ethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light ester 130MA, Shin-Nakamura Chemical Co., Ltd., trade name: NK ester M-90G), Methoxypoly (N = 23) ethylene glycol methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester M-230G), methoxypoly (n = 30) ethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light ester) 041MA).

これらの中では、アクリロニトリルと共重合させる場合の反応性等の点から、メトキシトリエチレングリコールアクリレート(前記一般式(I)のR1がH、R2がCH3、nが3)がより好ましい。これらの前記一般式(I)で表される単量体は、単独又は二種類以上組み合わせて用いることができる。 Among these, methoxytriethylene glycol acrylate (R 1 in the general formula (I) is H, R 2 is CH 3 , and n is 3) is more preferable from the viewpoint of reactivity when copolymerized with acrylonitrile. . These monomers represented by the general formula (I) can be used alone or in combination of two or more.

(1−1−3)各単量体繰り返し単位の含有量
ニトリル基含有単量体由来の繰り返し単位と、カルボキシル基含有単量体由来の繰り返し単位と、前記一般式(I)で表される単量体由来の繰り返し単位とのモル比は、例えば、ニトリル基含有単量体由来の繰り返し単位1モルに対して、カルボキシル基含有単量体由来の繰り返し単位が存在するときは、この単位が0.01〜0.2モル、好ましくは0.02〜0.1、より好ましくは、0.03〜0.06モルであり、前記一般式(I)で表される単量体由来の繰り返し単位が存在するときは、この単位が0.001〜0.2モル、好ましくは0.003〜0.05モル、より好ましくは0.005〜0.02モルである。
(1-1-3) Content of each monomer repeating unit The repeating unit derived from a nitrile group-containing monomer, the repeating unit derived from a carboxyl group-containing monomer, and the general formula (I) The molar ratio with the repeating unit derived from the monomer is, for example, when there is a repeating unit derived from the carboxyl group-containing monomer with respect to 1 mol of the repeating unit derived from the nitrile group-containing monomer. 0.01-0.2 mol, preferably 0.02-0.1, more preferably 0.03-0.06 mol, repeating from the monomer represented by the general formula (I) When a unit is present, this unit is 0.001 to 0.2 mol, preferably 0.003 to 0.05 mol, more preferably 0.005 to 0.02 mol.

カルボキシル基含有単量体由来の繰り返し単位が0.01〜0.2モル、式(I)で表される単量体由来の繰り返し単位が0.001〜0.2モルであれば、電解液に対する耐膨潤性を維持した状態で、集電体との接着性の向上、並びに電極の柔軟性・可とう性の向上を図ることができる。   If the repeating unit derived from the carboxyl group-containing monomer is 0.01 to 0.2 mol and the repeating unit derived from the monomer represented by the formula (I) is 0.001 to 0.2 mol, the electrolyte solution In the state where the swelling resistance against the current is maintained, the adhesion to the current collector can be improved, and the flexibility and flexibility of the electrode can be improved.

(1−2)α−オレフィン−α,β−不飽和カルボン酸共重合体
本発明におけるα−オレフィン−α,β−不飽和カルボン酸共重合体は、α−オレフィン由来の繰り返し単位とα,β−不飽和カルボン酸由来の繰り返し単位とを含む共重合体であって、前記ニトリル系重合体と異なるものであれば特に制限はない。α−オレフィンとしては、例えば、エチレン、プロピレン等の炭素数2〜20、好ましくは、2〜10のα−オレフィンが挙げられる。α,β−不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、マレイン酸、フマル酸、無水マレイン酸等が挙げられる。本発明におけるα−オレフィン−α,β−不飽和カルボン酸共重合体としては、例えば、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体等が挙げられる。
α−オレフィン−α,β−不飽和カルボン酸共重合体の中では、バインダ樹脂中又は合剤スラリー中への均一配合性や配合した後の経時安定性といった取扱い性、電解液に対する耐性(以下、耐電解液性という)に優れ、リチウム二次電池の長寿命化に寄与する等の点で、α−オレフィンがエチレンであり、α,β−不飽和カルボン酸がアクリル酸であるエチレン−アクリル酸共重合体が好ましい。これらのα−オレフィン−α,β−不飽和カルボン酸共重合体は、単独又は二種類以上組み合わせて用いられる。
(1-2) α-Olefin-α, β-Unsaturated Carboxylic Acid Copolymer The α-olefin-α, β-unsaturated carboxylic acid copolymer in the present invention comprises a repeating unit derived from an α-olefin, α, If it is a copolymer containing the repeating unit derived from (beta) -unsaturated carboxylic acid, Comprising: It differs from the said nitrile polymer, there will be no restriction | limiting in particular. Examples of the α-olefin include α-olefins having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms such as ethylene and propylene. Examples of the α, β-unsaturated carboxylic acid include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, maleic anhydride and the like. Examples of the α-olefin-α, β-unsaturated carboxylic acid copolymer in the present invention include an ethylene-acrylic acid copolymer and an ethylene-methacrylic acid copolymer.
Among α-olefin-α, β-unsaturated carboxylic acid copolymers, handling properties such as uniform compoundability in binder resin or mixture slurry and stability over time after compounding, resistance to electrolyte Ethylene-acrylic, in which α-olefin is ethylene and α, β-unsaturated carboxylic acid is acrylic acid, for example, in that it is excellent in electrolyte resistance) and contributes to the extension of the life of lithium secondary batteries. An acid copolymer is preferred. These α-olefin-α, β-unsaturated carboxylic acid copolymers are used alone or in combination of two or more.

α−オレフィン−α,β−不飽和カルボン酸共重合体に含まれるα−オレフィン由来の繰り返し単位とα,β−不飽和カルボン酸由来の繰り返し単位との質量比は、90/10〜10/90、好ましくは、80/20〜20/80、より好ましくは、50/50であることが適当である。α−オレフィン由来の繰り返し単位とα,β−不飽和カルボン酸由来の繰り返し単位との合計量は、α−オレフィン−α,β−不飽和カルボン酸共重合体に含まれる全繰り返し単位100質量%に対し、80質量%以上、より好ましくは90質量%以上であることが好ましい。α−オレフィン−α,β−不飽和カルボン酸共重合体は、α−オレフィン−α,β−不飽和カルボン酸共重合体に含まれる全繰り返し単位100質量%に対し、例えば、20質量%以下、好ましくは、10質量%以下の割合でフッ化ビニリデン、フッ化ビニル、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル、アリルグリシジルエーテル、クロトン酸グリシジルエステル、不飽和二塩基酸モノエステル、ビニレンカーボネート等の、α−オレフィン及びα,β−不飽和カルボン酸以外の単量体由来の繰り返し単位を含んでもよい。これらの共重合体を構成する繰り返し単位成分は、二種類以上を組み合わせて用いることができる。例えば、α−オレフィン−α,β−不飽和カルボン酸共重合体に含まれる全繰り返し単位の質量を100とする場合、[α−オレフィン由来の繰り返し単位とα,β−不飽和カルボン酸由来の繰り返し単位]/[α−オレフィン由来の繰り返し単位とα,β−不飽和カルボン酸由来の繰り返し単位以外の単量体由来の繰り返し単位]の質量比は、80/20〜100/0、好ましくは、85/15〜99/1、より好ましくは、90/10〜95/5であることが適当である。
本発明のα−オレフィン−α,β−不飽和カルボン酸共重合体は、メルトフローレート(ASTM D 1238)で5〜150g/10min、好ましくは、5〜100g/10min、より好ましくは、10〜30g/10minに相当する分子量を有することが適当である。
ASTM D 1238は、125℃、荷重21.2N(2.16kgf)で10分間、試料を押し出したときに得られる量(g)を意味する試料のメルトフローレートの測定基準である。
また、本発明のα−オレフィン−α,β−不飽和カルボン酸共重合体は、酸価が50〜250KOHmg/g、好ましくは、100〜200KOHmg/g、より好ましくは、120〜170KOHmg/gであることが適当である。
The mass ratio of the repeating unit derived from α-olefin and the repeating unit derived from α, β-unsaturated carboxylic acid contained in the α-olefin-α, β-unsaturated carboxylic acid copolymer is 90/10 to 10 / 90, preferably 80/20 to 20/80, more preferably 50/50 is appropriate. The total amount of the repeating unit derived from α-olefin and the repeating unit derived from α, β-unsaturated carboxylic acid is 100% by mass of all repeating units contained in the α-olefin-α, β-unsaturated carboxylic acid copolymer. On the other hand, it is preferably 80% by mass or more, more preferably 90% by mass or more. The α-olefin-α, β-unsaturated carboxylic acid copolymer is, for example, 20% by mass or less with respect to 100% by mass of all repeating units contained in the α-olefin-α, β-unsaturated carboxylic acid copolymer. Preferably, vinylidene fluoride, vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether, allyl glycidyl ether, crotonic acid glycidyl ester, It may contain repeating units derived from monomers other than α-olefin and α, β-unsaturated carboxylic acid, such as saturated dibasic acid monoester and vinylene carbonate. Two or more repeating unit components constituting these copolymers can be used in combination. For example, when the mass of all repeating units contained in the α-olefin-α, β-unsaturated carboxylic acid copolymer is 100, [the α-olefin-derived repeating unit and α, β-unsaturated carboxylic acid-derived [Repeating unit] / [Repeating unit derived from monomer other than repeating unit derived from α-olefin and α, β-unsaturated carboxylic acid] is 80/20 to 100/0, preferably 85/15 to 99/1, more preferably 90/10 to 95/5.
The α-olefin-α, β-unsaturated carboxylic acid copolymer of the present invention has a melt flow rate (ASTM D 1238) of 5 to 150 g / 10 min, preferably 5 to 100 g / 10 min, more preferably 10 to 10 g. It is suitable to have a molecular weight corresponding to 30 g / 10 min.
ASTM D 1238 is a measure of the melt flow rate of a sample which means the amount (g) obtained when the sample is extruded for 10 minutes at 125 ° C. and a load of 21.2 N (2.16 kgf).
The α-olefin-α, β-unsaturated carboxylic acid copolymer of the present invention has an acid value of 50 to 250 KOHmg / g, preferably 100 to 200 KOHmg / g, more preferably 120 to 170 KOHmg / g. It is appropriate to be.

(1−3)ニトリル系重合体とα−オレフィン−α,β−不飽和カルボン酸共重合体とのブレンド比
本発明の非水電解液系エネルギーデバイス用バインダ樹脂組成物におけるニトリル系重合体とα−オレフィン−α,β−不飽和カルボン酸共重合体とのブレンド比は、特に制約はないが、例えば、質量比でニトリル系重合体/α−オレフィン−α,β−不飽和カルボン酸共重合体が5/95〜95/5、好ましくは20/80〜90/10、より好ましくは40/60〜80/20であることが適当である。
(1-3) Blend ratio of nitrile polymer and α-olefin-α, β-unsaturated carboxylic acid copolymer The nitrile polymer in the binder resin composition for non-aqueous electrolyte energy devices of the present invention and The blend ratio with the α-olefin-α, β-unsaturated carboxylic acid copolymer is not particularly limited. For example, the nitrile polymer / α-olefin-α, β-unsaturated carboxylic acid copolymer may be used in a mass ratio. Suitably the polymer is 5/95 to 95/5, preferably 20/80 to 90/10, more preferably 40/60 to 80/20.

(2)非水電解液系エネルギーデバイス用バインダ樹脂組成物の調製法
(2−1)バインダ樹脂組成物の形態
本発明のバインダ樹脂組成物は、通常、ニトリル系重合体とα−オレフィン−α,β−不飽和カルボン酸共重合体を個別に又は両方一緒に、含窒素系溶剤を含む有機溶剤に溶解又は分散したワニスの形態で使用される。
(2) Preparation method of binder resin composition for non-aqueous electrolyte based energy device (2-1) Form of binder resin composition The binder resin composition of the present invention is usually a nitrile polymer and an α-olefin-α. , Β-unsaturated carboxylic acid copolymers are used individually or together in the form of a varnish dissolved or dispersed in an organic solvent containing a nitrogen-containing solvent.

含窒素系溶剤を含む有機溶剤としては、特に制限はない。含窒素系溶剤としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等のアミド系溶剤、N,N−ジメチルエチレンウレア、N,N−ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶剤などが挙げられる。これらのうちではα−オレフィンとα,β−不飽和カルボン酸の共重合体の分散安定性向上等の点でアミド系溶剤が好ましく、中でもN−メチル−2−ピロリドンがより好ましい。これらの含窒素系溶剤は、単独又は二種類以上組合せて用いられる。   There is no restriction | limiting in particular as an organic solvent containing a nitrogen-containing solvent. Examples of the nitrogen-containing solvent include amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, and N, N-dimethylpropylene. Examples include urea-based solvents such as urea and tetramethylurea. Of these, amide solvents are preferable from the viewpoint of improving the dispersion stability of the copolymer of α-olefin and α, β-unsaturated carboxylic acid, and N-methyl-2-pyrrolidone is more preferable. These nitrogen-containing solvents are used alone or in combination of two or more.

一方、含窒素系溶剤と併用できる他の有機溶剤としては、γ−ブチロラクトン、γ−カプロラクトン等のラクトン系溶剤、プロピレンカーボネート等のカーボネート系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸n−ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶剤、ジグライム、トリグライム、テトラグライム等のグライム系溶剤、エチレングリコール、プロピレングリコール等のグリコール系溶剤、トルエン、キシレン、シクロヘキサン等の炭化水素系溶剤、スルホラン等のスルホン系溶剤などが挙げられる。これらの有機溶剤は、単独又は二種類以上組合せて用いることができる。   On the other hand, as other organic solvents that can be used in combination with nitrogen-containing solvents, lactone solvents such as γ-butyrolactone and γ-caprolactone, carbonate solvents such as propylene carbonate, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, Ester solvents such as ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate and ethyl carbitol acetate, glyme solvents such as diglyme, triglyme and tetraglyme, glycols such as ethylene glycol and propylene glycol And solvents such as hydrocarbon solvents such as toluene, xylene and cyclohexane, and sulfone solvents such as sulfolane. These organic solvents can be used alone or in combination of two or more.

有機溶剤中の含窒素系溶剤の配合割合は、有機溶剤の総量に対して、例えば、20〜100質量%であることが好ましく、50〜100質量%であることがより好ましく、80〜100質量%であることが特に好ましい。有機溶剤中の含窒素系溶剤の配合割合が20質量%以上であれば、α−オレフィン−α,β−不飽和カルボン酸共重合体の分散安定性が保持できるので好ましい。   The blending ratio of the nitrogen-containing solvent in the organic solvent is, for example, preferably 20 to 100% by mass, more preferably 50 to 100% by mass, and 80 to 100% by mass with respect to the total amount of the organic solvent. % Is particularly preferred. A blending ratio of the nitrogen-containing solvent in the organic solvent of 20% by mass or more is preferable because the dispersion stability of the α-olefin-α, β-unsaturated carboxylic acid copolymer can be maintained.

上記溶剤の使用量は、常温でバインダ樹脂組成物を構成する重合体が分散状態を保てる必要最低限の量以上であれば、特に制限はないが、後の非水電解液系エネルギーデバイスの電極作製におけるスラリー調製工程で、通常、溶剤を加えながら粘度調節を行うため、必要以上に希釈し過ぎない任意の量とすることが好ましい。   The amount of the solvent used is not particularly limited as long as the polymer constituting the binder resin composition is at least a necessary minimum amount capable of maintaining a dispersed state at room temperature, but the electrode of the later non-aqueous electrolyte energy device In the slurry preparation step in the production, since the viscosity is usually adjusted while adding a solvent, it is preferable that the amount is not excessively diluted.

(2−2)その他の添加剤
本発明のバインダ樹脂組成物には、必要に応じて他の材料、例えば、電解液に対する耐膨潤性を補完するための架橋成分、電極の柔軟性・可とう性を補完するためのゴム成分、スラリーの電極塗工性を向上させるための増粘剤、沈降防止剤、消泡剤、レベリング剤といった各種添加剤などを配合することもできる。
(2-2) Other Additives The binder resin composition of the present invention includes, as necessary, a crosslinking component for complementing swelling resistance to other materials, for example, an electrolytic solution, flexibility and flexibility of electrodes. Various additives such as a rubber component for complementing the property, a thickener for improving the electrode coating property of the slurry, an anti-settling agent, an antifoaming agent, and a leveling agent can be blended.

(3)本発明のバインダ樹脂組成物の用途
本発明のバインダ樹脂組成物は、エネルギーデバイス、特に非水電解液系のエネルギーデバイスに好適に利用される。
非水電解液系エネルギーデバイスとは、水以外の電解液を用いる蓄電又は発電デバイス(装置)をいう。非水電解液系エネルギーデバイスとしては、例えば、リチウム電池、電気二重層キャパシタ、太陽電池等があげられる。
(3) Use of binder resin composition of this invention The binder resin composition of this invention is utilized suitably for an energy device, especially the energy device of a nonaqueous electrolyte system.
A non-aqueous electrolyte-based energy device refers to a power storage or power generation device (apparatus) that uses an electrolyte other than water. Examples of the non-aqueous electrolyte based energy device include a lithium battery, an electric double layer capacitor, and a solar battery.

本発明のバインダ樹脂組成物は、水以外の有機溶剤のような非水電解液に対する耐膨潤性が高い。従って、特にリチウム電池の電極において好ましく使用される。なお、本発明のバインダ樹脂組成物は、非水電解液系エネルギーデバイスのみならず、塗料、接着剤、硬化剤、印刷インキ、ソルダレジスト、研磨剤、電子部品の封止剤、半導体の表面保護膜や層間絶縁膜、電気絶縁用ワニス、バイオマテリアル等の各種コーティングレジンや成形材料、繊維等に幅広く利用できる。
以下、非水電解液系エネルギーデバイス用電極及びこの電極を用いたリチウム電池を例にとって説明する。
The binder resin composition of the present invention has high swelling resistance against non-aqueous electrolytes such as organic solvents other than water. Therefore, it is preferably used particularly for an electrode of a lithium battery. The binder resin composition of the present invention is not limited to non-aqueous electrolyte-based energy devices, but also paints, adhesives, curing agents, printing inks, solder resists, abrasives, electronic component sealants, and semiconductor surface protection. It can be widely used for various coating resins such as films, interlayer insulation films, varnishes for electrical insulation, and biomaterials, molding materials, and fibers.
Hereinafter, an electrode for a non-aqueous electrolyte based energy device and a lithium battery using this electrode will be described as an example.

(a)非水電解液系エネルギーデバイス用電極
本発明の非水電解液系エネルギーデバイス用電極は、集電体と、該集電体の少なくとも1面に設けられた合剤層を有するものである。
本発明のバインダ樹脂組成物は、この合剤層を構成する材料として使用され得る。
(A) Electrode for Nonaqueous Electrolyte Energy Device The nonaqueous electrolyte energy device electrode of the present invention has a current collector and a mixture layer provided on at least one surface of the current collector. is there.
The binder resin composition of this invention can be used as a material which comprises this mixture layer.

(a−1)集電体
本発明における集電体は、導電性を有する物質であればよく、例えば、金属が使用できる。具体的な金属としては、アルミニウム、銅及びニッケル等が使用できる。
さらに、集電体の形状は、特に限定はないが、非水電解液系エネルギーデバイスであるリチウム電池の高エネルギー密度化という点から、薄膜状が好ましい。集電体の厚みは、例えば、5〜30μm、好ましくは、8〜25μmである。
(A-1) Current Collector The current collector in the present invention may be a substance having conductivity, and for example, a metal can be used. Specific examples of metals that can be used include aluminum, copper, and nickel.
Furthermore, the shape of the current collector is not particularly limited, but a thin film is preferable from the viewpoint of increasing the energy density of a lithium battery that is a non-aqueous electrolyte energy device. The thickness of a collector is 5-30 micrometers, for example, Preferably, it is 8-25 micrometers.

(a−2)合剤層
本発明における合剤層は、活物質及び任意の導電性フィラ等を含む上記バインダ樹脂組成物からなる。
合剤層は、例えば、本発明のバインダ樹脂組成物と、溶剤及び活物質及び任意の導電性フィラとを溶剤に溶解してスラリーを調製し、このスラリーを前記集電体に塗布し、溶剤を乾燥除去することによって得られる。
(A-2) Mixture layer The mixture layer in this invention consists of the said binder resin composition containing an active material, arbitrary electroconductive fillers, etc.
For example, the mixture layer is prepared by dissolving the binder resin composition of the present invention, the solvent, the active material, and any conductive filler in a solvent to prepare a slurry, and applying the slurry to the current collector. Can be obtained by dry removal.

(a−2−1)活物質
本発明で使用される活物質は、例えば、非水電解液系エネルギーデバイスであるリチウム電池の充放電により可逆的にリチウムイオンを挿入・放出できるものであれば特に制限はない。
しかしながら、正極は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを受け取るという機能を有する一方、負極は、充電時にリチウムイオンを受け取り、放電時にリチウムイオンを放出するという正極とは逆の機能を有するので、正極及び負極で使用される活物質は、通常、それぞれの有する機能にあわせて、異なる材料が使用される。
(A-2-1) Active material The active material used in the present invention is, for example, any material that can reversibly insert and release lithium ions by charging and discharging a lithium battery that is a non-aqueous electrolyte energy device. There is no particular limitation.
However, the positive electrode has a function of releasing lithium ions at the time of charging and receiving lithium ions at the time of discharging, while the negative electrode has a function opposite to that of the positive electrode of receiving lithium ions at the time of charging and releasing lithium ions at the time of discharging. Therefore, different active materials are usually used for the active material used in the positive electrode and the negative electrode in accordance with the respective functions.

負極活物質としては、例えば、黒鉛、非晶質炭素、炭素繊維、コークス、活性炭等の炭素材料が好ましく、このような炭素材料とシリコン、すず、銀等の金属又はこれらの酸化物との複合物なども使用できる。
一方、正極活物質としては、例えば、リチウム及び鉄、コバルト、ニッケル、マンガンから選ばれる1種類以上の金属を少なくとも含有するリチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物としては、例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等が挙げられる。これらの活物質は単独で又は二種以上組み合わせて用いられる。
As the negative electrode active material, for example, carbon materials such as graphite, amorphous carbon, carbon fiber, coke, activated carbon and the like are preferable, and a composite of such a carbon material and a metal such as silicon, tin, silver, or an oxide thereof. Things can also be used.
On the other hand, as the positive electrode active material, for example, a lithium-containing metal composite oxide containing at least one metal selected from lithium and iron, cobalt, nickel, and manganese is preferable. Examples of the lithium-containing metal composite oxide include lithium cobaltate, lithium manganate, and lithium nickelate. These active materials are used alone or in combination of two or more.

(a−2−2)導電性フィラ
導電性フィラは、電極の合剤層における電子の伝導性を向上するために任意に使用される。本発明で使用される導電性フィラとしては、特に制限はないが、例えば、黒鉛、カーボンブラック、アセチレンブラック等が挙げられ、通常、正極側において、導電助剤として使用される。これらの導電性フィラは、単独で又は二種類以上組み合わせて使用してもよい。
(A-2-2) Electrically conductive filler An electrically conductive filler is arbitrarily used in order to improve the electronic conductivity in the mixture layer of an electrode. The conductive filler used in the present invention is not particularly limited, and examples thereof include graphite, carbon black, acetylene black, and the like. Usually, the conductive filler is used as a conductive aid on the positive electrode side. These conductive fillers may be used alone or in combination of two or more.

(a−2−3)溶剤
合剤層の形成に用いられる溶剤としては、特に制限はなく、バインダ樹脂組成物を均一に溶解または分散できる溶剤であればよい。このような溶剤としては、バインダ樹脂組成物を溶解または分散してワニスを調製する際に用いられる溶剤がそのまま使用される。これらのうちでは、アミド類、ウレア類又はラクトン類又はそれを含む混合溶剤が好ましく、これらの中でもN−メチル−2−ピロリドン又はそれを含む混合溶剤がより好ましい。
これらの溶剤は、単独又は二種類以上組み合わせて用いてもよい。
(A-2-3) Solvent The solvent used for forming the mixture layer is not particularly limited as long as it can dissolve or disperse the binder resin composition uniformly. As such a solvent, the solvent used when preparing a varnish by melt | dissolving or disperse | distributing a binder resin composition is used as it is. Of these, amides, ureas or lactones or mixed solvents containing them are preferred, and among these, N-methyl-2-pyrrolidone or mixed solvents containing it are more preferred.
These solvents may be used alone or in combination of two or more.

(a−3)電極の製法
本発明の非水電解液系エネルギーデバイス用電極の製造方法に、特に制限はなく公知の電極の製造方法を利用して製造することができる。例えば、上記バインダ樹脂組成物、溶剤及び活物質及び任意の導電性フィラなどを含むスラリーを集電体の少なくとも1面に塗布し、次いで溶剤を乾燥除去し、必要に応じて圧延して集電体表面に合剤層を形成することにより製造することができる。
(A-3) Electrode production method The method for producing an electrode for a non-aqueous electrolyte-based energy device of the present invention is not particularly limited and can be produced using a known electrode production method. For example, a slurry containing the binder resin composition, solvent, active material, and optional conductive filler is applied to at least one surface of the current collector, then the solvent is dried and removed, and the current is collected by rolling as necessary. It can be produced by forming a mixture layer on the body surface.

ここで、塗布は、例えば、マイクロアプリケーター、コンマコーターなどを用いて行うことができる。塗布は、対向する電極において、単位面積あたりの負極/正極理論容量比が1以上、好ましくは、1〜1.1、より好ましくは、1〜1.05になるように行うことが適当である。ここで、「単位面積あたりの負極/正極理論容量比」は、下記式:
[(負極理論容量mA/g)×(負極塗布量g/cm2)]÷[(正極理論容量mA/g)×(正極塗布量g/cm2)]
から求めることができる。単位面積あたりの負極/正極理論容量比が1以上であれば、最初の充電で負極に取り込まれたまま放電で放出されないLiイオンを補うことができる。
スラリーの塗布量は、例えば、合剤層の乾燥質量が、例えば、2〜30mg/cm2、好ましくは8〜15mg/cm2となる量である。
溶剤の除去は、例えば50〜150℃、好ましくは80〜120℃で、1〜20分間、より好ましくは、3〜10分間乾燥することによって行われる。
Here, application | coating can be performed using a micro applicator, a comma coater, etc., for example. It is appropriate that the application is performed so that the negative electrode / positive electrode theoretical capacity ratio per unit area is 1 or more, preferably 1 to 1.1, and more preferably 1 to 1.05, in the facing electrode. . Here, `` the negative electrode / positive electrode theoretical capacity ratio per unit area '' is the following formula:
[(The negative electrode theoretical capacity mA / g) × (the negative electrode application amount g / cm 2 )] ÷ [(the positive electrode theoretical capacity mA / g) × (the positive electrode application amount g / cm 2 )]
Can be obtained from When the negative electrode / positive electrode theoretical capacity ratio per unit area is 1 or more, Li ions that are taken into the negative electrode during the first charge and are not released by discharge can be supplemented.
The amount of slurry applied is, for example, such that the dry weight of the mixture layer is, for example, 2 to 30 mg / cm 2 , preferably 8 to 15 mg / cm 2 .
The removal of the solvent is performed, for example, by drying at 50 to 150 ° C., preferably 80 to 120 ° C., for 1 to 20 minutes, more preferably 3 to 10 minutes.

圧延は、例えばロールプレス機を用いて行われ、合剤層のかさ密度が、負極の合剤層の場合、例えば、1〜2g/cm3、好ましくは、1.2〜1.8g/cm3となるように、正極の合剤層の場合、例えば、2〜5g/cm3、好ましくは、3〜4g/cm3となるようにプレスされる。さらに、電極内の残留溶剤、吸着水の除去等のため、例えば、100〜150℃で1〜20時間真空乾燥してもよい。 Rolling is performed using, for example, a roll press machine, and the bulk density of the mixture layer is, for example, 1 to 2 g / cm 3 , preferably 1.2 to 1.8 g / cm when the mixture layer of the negative electrode is used. In the case of the positive electrode material mixture layer, it is pressed so as to be, for example, 2 to 5 g / cm 3 , preferably 3 to 4 g / cm 3 . Further, in order to remove residual solvent and adsorbed water in the electrode, for example, vacuum drying may be performed at 100 to 150 ° C. for 1 to 20 hours.

(b)リチウム電池
本発明の非水電解液系エネルギーデバイス用電極は、さらに電解液と組み合わせることにより、非水電解液系エネルギーデバイスであるリチウム電池を製造することができる。
(B) Lithium battery The electrode for non-aqueous electrolyte energy devices of the present invention can be further combined with an electrolyte to produce a lithium battery that is a non-aqueous electrolyte energy device.

(b−1)電解液
本発明で使用する電解液としては、例えば、非水電解液系エネルギーデバイスであるリチウム電池としての機能を発揮させるものであれば特に制限はない。電解液としては、水以外の電解液、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類、γ−ブチロラクトン等のラクトン類、トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類、アセトニトリル、ニトロメタン、N−メチル−2−ピロリドン等の含窒素類、ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、スルホラン等のスルホン類、3−メチル−2−オキサゾリジノン等のオキサゾリジノン類、1,3−プロパンスルトン、4−ブタンスルトン、ナフタスルトン等のスルトン類などの有機溶剤に、LiClO4、LiBF、LiI、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、LiCl、LiBr、LiB(C254、LiCH3SO3、LiC49SO3、Li(CF3SO22N、Li[(CO222B等の電解質を溶解した溶液などが挙げられる。
(B-1) Electrolytic Solution The electrolytic solution used in the present invention is not particularly limited as long as it functions as a lithium battery that is a nonaqueous electrolytic solution energy device, for example. As the electrolytic solution, an electrolytic solution other than water, for example, carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, lactones such as γ-butyrolactone, trimethoxymethane, 1, Ethers such as 2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran, sulfoxides such as dimethylsulfoxide, oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane , Nitrogen-containing compounds such as acetonitrile, nitromethane, N-methyl-2-pyrrolidone, esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester , Glymes such as diglyme, triglyme and tetraglyme, ketones such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone, sulfones such as sulfolane, oxazolidinones such as 3-methyl-2-oxazolidinone, 1,3-propane sultone, 4-butane sultone, in an organic solvent such as sultones such Nafutasuruton, LiClO 4, LiBF, LiI, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, A solution in which an electrolyte such as LiB (C 2 H 5 ) 4 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li [(CO 2 ) 2 ] 2 B is dissolved is used. Can be mentioned.

これらの中では、カーボネート類にLiPF6を溶解した溶液が好ましい。電解液は、例えば上記有機溶剤と電解質を、それぞれ単独で又は二種類以上組み合わせて調製し、用いられる。 Among these, solution is preferred in which LiPF 6 was dissolved in carbonates. The electrolytic solution is prepared by using, for example, the organic solvent and the electrolyte alone or in combination of two or more.

(b−2) リチウム電池の製法
本発明の非水電解液系エネルギーデバイスであるリチウム電池の製造方法については特に制約はないが、いずれも公知の方法を利用できる。例えば、ステンレス製コイン外装容器に正極と負極の2つの電極を、ポリエチレン微多孔膜からなるセパレータを介して重ね合わせ、ポリプロピレン製のパッキンを介して、ステンレス製のキャップを被せ、コイン電池作製用のかしめ器で密閉してコイン型電池を得る。このとき、各電極は、合剤層側が電解液と接するように配置する。
(B-2) Manufacturing Method of Lithium Battery Although there is no particular limitation on the manufacturing method of the lithium battery that is the non-aqueous electrolyte energy device of the present invention, any known method can be used. For example, two electrodes, a positive electrode and a negative electrode, are superposed on a stainless steel coin outer packaging container via a separator made of polyethylene microporous film, covered with a stainless steel cap via a polypropylene packing, and used for coin cell production. Seal with a caulking device to obtain a coin-type battery. At this time, each electrode is arrange | positioned so that the mixture layer side may contact | connect electrolyte solution.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらによって制限するものではない。
<バインダ樹脂組成物の調製>
合成例1
[ニトリル系重合体1]
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに、精製水1804gを仕込み、窒素ガス通気量200ml/分の条件下、撹拌しながら、74℃まで昇温した後、窒素ガスの通気を止めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these.
<Preparation of binder resin composition>
Synthesis example 1
[Nitrile polymer 1]
1804 g of purified water is charged into a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, and the temperature is raised to 74 ° C. while stirring under a nitrogen gas flow rate of 200 ml / min. After that, the ventilation of nitrogen gas was stopped.

次いで、重合開始剤の過硫酸アンモニウム0.968gを精製水76gに溶かした水溶液を添加し、直ちに、ニトリル基含有単量体のアクリロニトリル188.0g、カルボキシル基含有単量体のアクリル酸12.0g(アクリロニトリル1モルに対して0.047モルの割合)の混合液を、系の温度を74±2℃に保ちながら、2時間かけて滴下した。同温度で1時間反応を進めた後、懸濁した反応系に、過硫酸アンモニウム1.935gを精製水13gに溶かした水溶液を追加添加し、同温度で更に1時間反応を進めた。   Next, an aqueous solution obtained by dissolving 0.968 g of a polymerization initiator ammonium persulfate in 76 g of purified water was added, and immediately, 188.0 g of nitrile group-containing monomer acrylonitrile and 12.0 g of acrylic acid of carboxyl group-containing monomer ( The mixture was added dropwise over 2 hours while maintaining the system temperature at 74 ± 2 ° C. After proceeding the reaction at the same temperature for 1 hour, an aqueous solution obtained by dissolving 1.935 g of ammonium persulfate in 13 g of purified water was further added to the suspended reaction system, and the reaction was further proceeded at the same temperature for 1 hour.

次いで、90℃まで昇温し、系の温度を90±2℃に保ちながら、1時間反応を進めた後、過硫酸アンモニウム0.968gを精製水8gに溶かした水溶液を追加添加し、同温度で更に1時間反応を進めた。その後、1時間かけて40℃まで冷却した後、攪拌を止めて一晩室温で放冷し、本発明におけるニトリル系重合体が沈殿した反応液を得た。   Next, the temperature was raised to 90 ° C., and the reaction was allowed to proceed for 1 hour while maintaining the temperature of the system at 90 ± 2 ° C. Then, an aqueous solution in which 0.968 g of ammonium persulfate was dissolved in 8 g of purified water was further added. The reaction was further continued for 1 hour. Then, after cooling to 40 degreeC over 1 hour, stirring was stopped and it stood to cool at room temperature overnight, and the reaction liquid in which the nitrile polymer in this invention precipitated was obtained.

この反応液を吸引ろ過し、回収した湿潤状態の沈殿を精製水1800gで3回洗浄した後、80℃で10時間真空乾燥して、単離・精製し、ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体1(ニトリル基含有単量体由来の繰り返し単位:94質量%)の精製粉末を得た。   The reaction solution was filtered by suction, and the collected wet precipitate was washed 3 times with 1800 g of purified water, dried in vacuo at 80 ° C. for 10 hours, isolated and purified, and repeatedly derived from a nitrile group-containing monomer. A purified powder of a nitrile polymer 1 containing 80% by mass or more of units (repeating unit derived from a nitrile group-containing monomer: 94% by mass) was obtained.

合成例2
[ニトリル系重合体2]
ニトリル基含有単量体のアクリロニトリルを183.8g、カルボキシル基含有単量体のアクリル酸を9.7g(アクリロニトリル1モルに対して0.039モルの割合)及び前記一般式(I)で表される単量体のメトキシトリエチレングリコールアクリレート(新中村化学工業(株)製、商品名:NKエステルAM−30G)を6.5g(アクリロニトリル1モルに対して0.0085モルの割合)使用する以外は、合成例1と同様にして、ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体2(ニトリル基含有単量体由来の繰り返し単位:92質量%)の精製粉末を得た。
Synthesis example 2
[Nitrile polymer 2]
183.8 g of acrylonitrile as a nitrile group-containing monomer, 9.7 g of acrylic acid as a carboxyl group-containing monomer (ratio of 0.039 mol with respect to 1 mol of acrylonitrile) and the above general formula (I) Except that 6.5 g of methoxytriethylene glycol acrylate (trade name: NK ester AM-30G, manufactured by Shin-Nakamura Chemical Co., Ltd.) is used (a ratio of 0.0085 mol to 1 mol of acrylonitrile). Is a purified powder of nitrile polymer 2 (repeat unit derived from nitrile group-containing monomer: 92% by weight) containing 80% by weight or more repeat unit derived from nitrile group-containing monomer in the same manner as in Synthesis Example 1. Got.

合成例3
[ニトリル系重合体3]
ニトリル基含有単量体のアクリロニトリルを150.0g、カルボキシル基含有単量体のアクリル酸を25.0g(アクリロニトリル1モルに対して0.123モルの割合)及び前記一般式(I)で表される単量体のメトキシトリエチレングリコールアクリレートを25.0g(アクリロニトリル1モルに対して0.041モルの割合)使用する以外は、合成例1と同様にして、ニトリル基含有単量体由来の繰り返し単位の含有量が80質量%未満のニトリル系重合体3(ニトリル基含有単量体由来の繰り返し単位:75質量%)の精製粉末を得た。
Synthesis example 3
[Nitrile polymer 3]
150.0 g of nitrile group-containing monomer acrylonitrile, 25.0 g of carboxyl group-containing monomer acrylic acid (a ratio of 0.123 mol to 1 mol of acrylonitrile) and the above general formula (I) In the same manner as in Synthesis Example 1, except that 25.0 g of the monomer methoxytriethylene glycol acrylate (a ratio of 0.041 mol with respect to 1 mol of acrylonitrile) is used, the nitrile group-containing monomer-derived repeat A purified powder of nitrile polymer 3 having a unit content of less than 80% by mass (repeating unit derived from a nitrile group-containing monomer: 75% by mass) was obtained.

実施例1
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに合成例1で得られたニトリル系重合体1の精製粉末70g、α−オレフィン−α,β−不飽和カルボン酸共重合体としてエチレン−アクリル酸共重合体(ダウ・ケミカル社製、商品名:PRIMACOR5980I、メルトフローレート(ASTM D 1238):15g/10min、酸価:156KOHmg/g)のペレット30g、N−メチル−2−ピロリドン(以下、NMPという)1567gを仕込み、極微量(5ml/分以下)の窒素ガス通気下(窒素雰囲気下)、攪拌しながら140℃に昇温した。
Example 1
70 g of purified powder of nitrile polymer 1 obtained in Synthesis Example 1 in a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, α-olefin-α, β-unsaturated As a carboxylic acid copolymer, ethylene-acrylic acid copolymer (manufactured by Dow Chemical Co., Ltd., trade name: PRIMACOR 5980I, melt flow rate (ASTM D 1238): 15 g / 10 min, acid value: 156 KOH mg / g) pellets 30 g, N -1567 g of methyl-2-pyrrolidone (hereinafter referred to as NMP) was charged, and the temperature was raised to 140 ° C. with stirring under a trace amount (5 ml / min or less) of nitrogen gas (in a nitrogen atmosphere).

同温度で2時間保持して、ニトリル系重合体及びエチレン−アクリル酸共重合体をNMPに溶解させた後、常温まで冷却し、ニトリル系重合体/α−オレフィン−α,β−不飽和カルボン酸共重合体=70/30(質量比)のワニス(樹脂分6質量%)を調製した。常温まで冷却したところ、樹脂が微粒子となって析出し分散状態になっていた。   After maintaining at the same temperature for 2 hours, the nitrile polymer and the ethylene-acrylic acid copolymer are dissolved in NMP, and then cooled to room temperature, nitrile polymer / α-olefin-α, β-unsaturated carboxylic acid. An acid copolymer = 70/30 (mass ratio) varnish (resin content 6 mass%) was prepared. When cooled to room temperature, the resin precipitated as fine particles and was in a dispersed state.

実施例2
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに合成例2で得られたニトリル系重合体2の精製粉末80g、α−オレフィン−α,β−不飽和カルボン酸共重合体としてエチレン−アクリル酸共重合体(ダウ・ケミカル社製、商品名:PRIMACOR5980I、メルトフローレート(ASTM D 1238):15g/10min、酸価:156KOHmg/g)のペレット20g、NMP1567gを仕込み、極微量(5ml/分以下)の窒素ガス通気下(窒素雰囲気下)、攪拌しながら140℃に昇温した。
Example 2
80 g of purified powder of nitrile polymer 2 obtained in Synthesis Example 2 in a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, α-olefin-α, β-unsaturated As the carboxylic acid copolymer, ethylene-acrylic acid copolymer (manufactured by Dow Chemical Co., Ltd., trade name: PRIMACOR 5980I, melt flow rate (ASTM D 1238): 15 g / 10 min, acid value: 156 KOH mg / g) pellets 20 g, NMP 1567 g The mixture was heated to 140 ° C. with stirring under a very small amount (5 ml / min or less) of nitrogen gas (under nitrogen atmosphere).

同温度で2時間保持して、ニトリル系重合体及びエチレン−アクリル酸共重合体をNMPに溶解させた後、常温まで冷却し、ニトリル系重合体/α−オレフィン−α,β−不飽和カルボン酸共重合体=80/20(質量比)のワニス(樹脂分6質量%)を調製した。常温まで冷却したところ、樹脂が微粒子となって析出し分散状態になっていた。   After maintaining at the same temperature for 2 hours, the nitrile polymer and the ethylene-acrylic acid copolymer are dissolved in NMP, and then cooled to room temperature, nitrile polymer / α-olefin-α, β-unsaturated carboxylic acid. An acid copolymer = 80/20 (mass ratio) varnish (resin content 6 mass%) was prepared. When cooled to room temperature, the resin precipitated as fine particles and was in a dispersed state.

比較例1
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに合成例2で得られたニトリル系重合体2の精製粉末100g、NMP1567gを仕込み、極微量(5ml/分以下)の窒素ガス通気下(窒素雰囲気下)、攪拌しながら70℃に昇温した。
Comparative Example 1
A 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe was charged with 100 g of the purified powder of nitrile polymer 2 obtained in Synthesis Example 2 and 1567 g of NMP, and a very small amount (5 ml / min) The temperature was raised to 70 ° C. with stirring under nitrogen gas ventilation (under nitrogen atmosphere).

同温度で6時間保持して、ニトリル系重合体をNMPに溶解させた後、常温まで冷却し、ニトリル系重合体2のワニス(樹脂分6質量%)を調製した。常温まで冷却しても樹脂の析出はなく、溶液状態のままであった。   The mixture was kept at the same temperature for 6 hours to dissolve the nitrile polymer in NMP and then cooled to room temperature to prepare a varnish of nitrile polymer 2 (resin content: 6% by mass). Even when cooled to room temperature, the resin did not precipitate and remained in solution.

比較例2
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに合成例3で得られたニトリル系重合体3の精製粉末80g、α−オレフィン−α,β−不飽和カルボン酸共重合体としてエチレン−アクリル酸共重合体(ダウ・ケミカル社製、商品名:PRIMACOR5980I、メルトフローレート(ASTM D 1238):15g/10min、酸価:156KOHmg/g)のペレット20g、NMP1567gを仕込み、極微量(5ml/分以下)の窒素ガス通気下(窒素雰囲気下)、攪拌しながら140℃に昇温した。
同温度で2時間保持して、ニトリル系重合体及びエチレン−アクリル酸共重合体をNMPに溶解させた後、常温まで冷却し、ニトリル系重合体/α−オレフィン−α,β−不飽和カルボン酸共重合体=80/20(質量比)のワニス(樹脂分6質量%)を調製した。常温まで冷却したところ、樹脂が微粒子となって析出し分散状態になっていた。
Comparative Example 2
80 g of purified powder of nitrile polymer 3 obtained in Synthesis Example 3 in a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, α-olefin-α, β-unsaturated As the carboxylic acid copolymer, ethylene-acrylic acid copolymer (manufactured by Dow Chemical Co., Ltd., trade name: PRIMACOR 5980I, melt flow rate (ASTM D 1238): 15 g / 10 min, acid value: 156 KOH mg / g) pellets 20 g, NMP 1567 g The mixture was heated to 140 ° C. with stirring under a very small amount (5 ml / min or less) of nitrogen gas (under nitrogen atmosphere).
After maintaining at the same temperature for 2 hours, the nitrile polymer and the ethylene-acrylic acid copolymer are dissolved in NMP, and then cooled to room temperature, nitrile polymer / α-olefin-α, β-unsaturated carboxylic acid. An acid copolymer = 80/20 (mass ratio) varnish (resin content 6 mass%) was prepared. When cooled to room temperature, the resin precipitated as fine particles and was in a dispersed state.

比較例3
撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコにα−オレフィン−α,β−不飽和カルボン酸共重合体としてエチレン−アクリル酸共重合体(ダウ・ケミカル社製、商品名:PRIMACOR5980I、メルトフローレート:15g/10分間、酸価:156KOHmg/g)のペレット70g、NMP1680gを仕込み、極微量(5ml/分以下)の窒素ガス通気下(窒素雰囲気下)、攪拌しながら140℃に昇温した。
Comparative Example 3
Ethylene-acrylic acid copolymer (Dow Chemical Co., Ltd.) as an α-olefin-α, β-unsaturated carboxylic acid copolymer in a 3 liter separable flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe Product name: PRIMACOR 5980I, melt flow rate: 15 g / 10 min, acid value: 156 KOH mg / g) 70 g of pellets and NMP 1680 g are charged, and trace amount (5 ml / min or less) of nitrogen gas is passed (under nitrogen atmosphere) The temperature was raised to 140 ° C. with stirring.

同温度で2時間保持して、エチレン−アクリル酸共重合体をNMPに溶解させた後、常温まで冷却し、α,β−不飽和カルボン酸の共重合体のワニス(樹脂分4質量%)を調製した。常温まで冷却したところ、樹脂が微粒子となって析出し分散状態になっていた。   Holding at the same temperature for 2 hours, the ethylene-acrylic acid copolymer was dissolved in NMP, then cooled to room temperature, and a varnish of a copolymer of α, β-unsaturated carboxylic acid (resin content 4 mass%) Was prepared. When cooled to room temperature, the resin precipitated as fine particles and was in a dispersed state.

比較例4
NMP溶剤系のバインダとして拡く使われているポリフッ化ビニリデン(PVDF)のワニス(呉羽化学工業(株)製、商品名:KF9130、NMP溶液、樹脂分13質量%)を用意した。
実施例1〜2及び比較例1〜4で得られた重合体の組成は以下の通りである。

Figure 2007299738
Comparative Example 4
A polyvinylidene fluoride (PVDF) varnish (manufactured by Kureha Chemical Industry Co., Ltd., trade name: KF9130, NMP solution, resin content 13 mass%), which is widely used as an NMP solvent-based binder, was prepared.
The compositions of the polymers obtained in Examples 1-2 and Comparative Examples 1-4 are as follows.
Figure 2007299738

<バインダ樹脂組成物の評価>
(1)電解液に対する耐膨潤性
実施例1〜2、比較例1〜4の各ワニスを、ポリエチレンテレフタレート(以下、PETという)シートにキャストし、100℃のホットプレート上で5時間乾燥した。その後、乾燥した残部をPETシートから剥がして、120℃の真空乾燥機で5時間真空熱処理し、樹脂フィルムを得た。
<Evaluation of binder resin composition>
(1) Swelling resistance with respect to electrolyte solution Each varnish of Examples 1-2 and Comparative Examples 1-4 was cast on a polyethylene terephthalate (hereinafter referred to as PET) sheet and dried on a hot plate at 100 ° C for 5 hours. Thereafter, the dried residue was peeled off from the PET sheet and subjected to vacuum heat treatment with a vacuum dryer at 120 ° C. for 5 hours to obtain a resin film.

次いで、得られたフィルムを1.5cm角で4枚切り出し、アルゴンガス充填雰囲気下のグローブボックス中に移して乾燥質量を測定した後、電解液(キシダ化学(株)製、1Mの濃度でLiPF6を溶解したエチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートの等体積混合溶液、以下同様)に2つの条件下(23℃で24時間、50℃で24時間)で浸漬した。 Next, the obtained film was cut into four 1.5 cm square pieces, transferred into a glove box under an atmosphere filled with argon gas, and the dry mass was measured. Then, an electrolyte (made by Kishida Chemical Co., Ltd., LiPF at a concentration of 1M) was used. 6 was dissolved in an equal volume mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate (the same applies hereinafter) under two conditions (23 ° C. for 24 hours, 50 ° C. for 24 hours).

その後、フィルムを電解液から引き上げ、乾燥タオルペーパーで表面に付着した電解液を拭きとり、直ちに質量を測定した。電解液に対する耐膨潤性は、次式から算出した膨潤度で評価した。なお、次式において、膨潤度が小さい程、電解液に対する耐膨潤性に優れると判断できる。   Thereafter, the film was pulled up from the electrolytic solution, the electrolytic solution adhering to the surface was wiped off with dry towel paper, and the mass was immediately measured. The swelling resistance to the electrolytic solution was evaluated by the degree of swelling calculated from the following formula. In the following formula, it can be judged that the smaller the degree of swelling, the better the swelling resistance against the electrolytic solution.

膨潤度(質量%)=[(浸漬後の質量−浸漬前の乾燥質量)/浸漬前の乾燥質量]×100 Swelling degree (mass%) = [(mass after soaking−dry weight before soaking) / dry weight before soaking] × 100

(2)負極集電体との接着性、電極の柔軟性・可とう性
実施例1〜2、比較例1〜4の各ワニスと、負極活物質(日立化成工業(株)製、商品名:MAG、塊状人造黒鉛、平均粒径20μm)を、ワニス中の固形分(樹脂成分)が3質量部、負極活物質が97質量部となるように配合した後、NMPを全固形分が45質量%となるように加えて混練し、スラリーを調製した。
(2) Adhesiveness with negative electrode current collector, flexibility / flexibility of electrode Each varnish of Examples 1-2 and Comparative Examples 1-4, and negative electrode active material (trade name, manufactured by Hitachi Chemical Co., Ltd.) : MAG, massive artificial graphite, average particle size 20 μm) were blended so that the solid content (resin component) in the varnish was 3 parts by mass and the negative electrode active material was 97 parts by mass, and then NMP was 45 in total solids. A slurry was prepared by adding and kneading to a mass%.

次いで、得られた各スラリーを合剤層の乾燥質量がそれぞれ7、7.5、8、8.5、9、9.5、10、10.5、11mg/cm2となるように負極集電体(日立電線(株)製、圧延銅箔、厚み10μm、寸法200×100mm)の片側表面にマイクロアプリケーターで均一に塗布した。 Then, the obtained slurry was mixed with the negative electrode so that the dry weight of the mixture layer was 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11 mg / cm 2 , respectively. It apply | coated uniformly with the microapplicator on the one side surface of the electric conductor (Hitachi Cable Co., Ltd. product, rolled copper foil, thickness 10 micrometers, dimension 200x100 mm).

続いて、塗工物を、90℃の熱風乾燥機で1時間乾燥して合剤層を形成した後、長さ10cm×幅2cmの寸法で短冊状に切り出した。負極集電体との接着性は、上記短冊状の試験片(合剤層の乾燥質量7mg/cm2)について、両端を合剤層形成面を外側にして合わせ、かつ、試験片の中心から両端に向かって各1cm離れた部分を、集電体の面が接するように挟持した際、合剤層が負極集電体から剥がれない場合を良好、剥がれる場合を不良と評価した。 Subsequently, the coated material was dried with a hot air dryer at 90 ° C. for 1 hour to form a mixture layer, and then cut into strips with dimensions of 10 cm long × 2 cm wide. Adhesiveness with the negative electrode current collector was determined by aligning both ends of the strip-shaped test piece (mixture layer dry mass 7 mg / cm 2 ) with the mixture layer-forming surface facing outward, and from the center of the test piece. When the portions separated by 1 cm toward the both ends were sandwiched so that the surface of the current collector was in contact, the case where the mixture layer was not peeled off from the negative electrode current collector was evaluated as good, and the case where it was peeled off was evaluated as bad.

一方、電極の柔軟性・可とう性は、上記短冊状の試験片(合剤層の乾燥質量がそれぞれ7、7.5、8、8.5、9、9.5、10、10.5、11mg/cm2)について、合剤層の乾燥質量が少ない試験片から順に、試験片の両端を合剤層形成面を外側にして合わせ、かつ、試験片の中心から両端に向かって各1cm離れた部分を、集電体の面が接するように挟持した際、合剤層にひび割れ等の外観不良が発生するときの試験片の合剤層乾燥質量で評価した。試験片の合剤層乾燥質量が大きい程、電極の柔軟性・可とう性に優れると判断できる。 On the other hand, the flexibility / flexibility of the electrode is determined by the strip-shaped test piece (the dry weight of the mixture layer is 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, respectively). 11 mg / cm 2 ), in order from the test piece with the dry mass of the mixture layer having a small dry mass, both ends of the test piece are aligned with the mixture layer forming surface on the outside, and 1 cm each from the center of the test piece toward both ends. When the separated portion was sandwiched so that the surface of the current collector was in contact, the mixture layer was evaluated by the dry weight of the mixture layer of the test piece when an appearance defect such as a crack occurred in the mixture layer. It can be judged that the larger the mixture layer dry mass of the test piece, the better the flexibility and flexibility of the electrode.

<電池の評価>
(1)負極評価用コイン電池の作製
上記の実施例1〜2及び比較例1〜4で得たバインダ樹脂組成物のワニスを用いて調製したスラリーを(「(2)負極集電体との接着性、電極の柔軟性・可とう性」参照)、それぞれ、合剤層の乾燥質量がそれぞれ12.5mg/cm2となるように負極集電体(日立電線(株)製、圧延銅箔、厚み14μm、200×100mm)の片側表面にマイクロアプリケーターで均一に塗布した。
<Battery evaluation>
(1) Production of Coin Battery for Negative Electrode Evaluation Slurry prepared using the binder resin composition varnish obtained in Examples 1-2 and Comparative Examples 1-4 above ("(2) Anode current collector and Adhesiveness, electrode flexibility / flexibility ”), and negative electrode current collector (Hitachi Cable Ltd., rolled copper foil) so that the dry weight of the mixture layer is 12.5 mg / cm 2 , respectively. , A thickness of 14 μm, 200 × 100 mm) was uniformly applied with a microapplicator.

次いで、塗工物を、90℃の熱風乾燥機で1時間乾燥して合剤層を形成した後、ロールプレス機で合剤層のかさ密度が1.5g/cm3となるように圧縮成形し、直径0.9cmの円形に切断した。
続いて、これを120℃の真空乾燥機で5時間真空熱処理し、作用極を準備した。
Next, the coated material is dried with a hot air dryer at 90 ° C. for 1 hour to form a mixture layer, and then compression molded so that the bulk density of the mixture layer is 1.5 g / cm 3 with a roll press. And cut into a circle having a diameter of 0.9 cm.
Then, this was vacuum-heat-treated for 5 hours with a 120 degreeC vacuum dryer, and the working electrode was prepared.

これとは別に、表面を軽く磨いた厚さ1mmの金属リチウム(三井金属工業(株)製)を直径1.5cmの円形に切断して対極として準備した。
また、作用極と対極とを分離するための絶縁体として、セパレータ(東燃タピルス(株)製、ポリエチレン微多孔膜、厚み25μm、以下同様)を直径1.8cmの円形に切り出して準備した。
Separately, 1 mm thick metal lithium (manufactured by Mitsui Kinzoku Co., Ltd.) whose surface was lightly polished was cut into a circle having a diameter of 1.5 cm and prepared as a counter electrode.
Further, as an insulator for separating the working electrode and the counter electrode, a separator (manufactured by Tonen Tapirs Co., Ltd., polyethylene microporous membrane, thickness 25 μm, the same applies hereinafter) was cut into a circle having a diameter of 1.8 cm and prepared.

アルゴンガス充填雰囲気下のグローブボックス中で、直径2.0cmのステンレス製コイン外装容器に、上記作用極と対極を、作用極−セパレータ−対極の順に積層した。このときセパレータを積層する前後で電解液を数滴垂らした。
さらに、スペーサーとして直径1.5cmの円形に切断した銅箔を用いてスペーサー部分の合計が240μmになるように重ね合わせ、ポリプロピレン製のパッキンを介して、ステンレス製のキャップを被せ、コイン電池作製用のかしめ器で密封して負極評価用電池を作製した。このとき、作用極は、合剤層側が電解液と接するように配置した。
In a glove box under an atmosphere filled with argon gas, the working electrode and the counter electrode were laminated in the order of working electrode-separator-counter electrode on a stainless steel coin outer container having a diameter of 2.0 cm. At this time, several drops of the electrolytic solution were dropped before and after the separators were stacked.
Furthermore, using a copper foil cut into a circle having a diameter of 1.5 cm as a spacer, the spacer portions are stacked so that the total of the spacer portions is 240 μm, and a stainless steel cap is put on via a polypropylene packing, for coin cell production. Sealed with a caulking device to produce a negative electrode evaluation battery. At this time, the working electrode was disposed so that the mixture layer side was in contact with the electrolytic solution.

(2)コイン電池の初回充放電特性
上記で作製したコイン電池について、充放電装置(東洋システム(株)製、TOSCAT3100)を用い、25℃の恒温槽中、充電電流0.2mA(0.08C)で0Vまで定電流充電を行った。なお、この定電流充電は、対極がリチウム金属であるので、電位の関係上、作用極が正極になるため、正確には放電である。しかし、ここでは、作用極の黒鉛へのリチウムイオンの挿入反応を“充電”と定義する。
(2) Initial charge / discharge characteristics of coin battery Using the charge / discharge device (TOSCAT3100, manufactured by Toyo System Co., Ltd.), the charge current of 0.2 mA (0.08C) in a constant temperature bath at 25 ° C. ) And constant current charging to 0V. The constant current charging is precisely a discharge because the counter electrode is a lithium metal and the working electrode is a positive electrode due to the potential. However, here, the lithium ion insertion reaction into the working electrode graphite is defined as “charging”.

電圧が0Vに達した時点で定電圧充電に切り替え、さらに電流値が0.02mAに減衰するまで充電を続けた後、放電電流0.2mA(0.08C)で放電終止電圧1.5Vに達するまで定電流放電を行った。この時の黒鉛1g当りの充電容量と放電容量を測定し、さらに不可逆容量及び充放電効率を算出し、負極評価用コイン電池の初回充放電特性を評価した。   When the voltage reaches 0 V, switching to constant voltage charging is continued until the current value decays to 0.02 mA, and then the discharge end voltage reaches 1.5 V at a discharge current of 0.2 mA (0.08 C). Until constant current discharge. At this time, the charge capacity and discharge capacity per gram of graphite were measured, and the irreversible capacity and charge / discharge efficiency were calculated, and the initial charge / discharge characteristics of the coin battery for negative electrode evaluation were evaluated.

初回充放電時の不可逆容量は、[初回充電容量−初回放電容量]から求められ、不可逆容量は小さいほど良い。
また、初回充放電時の充放電効率(%)は、
[充放電効率(%)=(初回放電容量/初回充電容量)×100]
から求められ、初回充放電時の充放電効率は大きいほど良い。
放電容量が、345mAh/g以上、好ましくは、350mAh/g以上であり、不可逆容量が、35mAh/g以下、好ましくは、30mAh/g以下であり、充放電効率が、90%以上、好ましくは、92%以上であれば、単極セルの初回充放電特性は良好と評価される。
The irreversible capacity at the time of the first charge / discharge is obtained from [initial charge capacity−initial discharge capacity], and the smaller the irreversible capacity, the better.
In addition, the charge / discharge efficiency (%) at the first charge / discharge is
[Charge / discharge efficiency (%) = (initial discharge capacity / initial charge capacity) × 100]
The charge / discharge efficiency at the time of the first charge / discharge is better as it is obtained.
The discharge capacity is 345 mAh / g or more, preferably 350 mAh / g or more, the irreversible capacity is 35 mAh / g or less, preferably 30 mAh / g or less, and the charge / discharge efficiency is 90% or more, preferably If it is 92% or more, the first-time charge / discharge characteristic of a single electrode cell will be evaluated as favorable.

(3)コイン電池の放電レート特性の評価
初回充放電特性と同様の条件で、充放電を1サイクル行った後、定電流放電時の終止電圧を1Vに変えること以外は初回充放電と同様の条件で更に3サイクル行った(放電0.08C)。
(3) Evaluation of discharge rate characteristic of coin battery Under the same conditions as the initial charge / discharge characteristic, after one cycle of charge / discharge, the same as the initial charge / discharge except that the final voltage at constant current discharge is changed to 1V. Three more cycles were performed under the same conditions (discharge 0.08C).

その後、定電流放電時の放電電流を0.7mA(0.27C)に上げた以外は先の3サイクルと同様の条件で1サイクル行った。次に放電電流を1.3mA(0.5C)、2.6mA(1.0C)、3.9mA(1.5C)、5.2mA(2.0C)と上げていき、各1サイクルずつ充放電を繰り返した。4サイクル目の0.08Cでの放電容量に対する8サイクル目の2.0Cでの放電容量の割合を百分率で表し、放電レート特性を評価した。値が大きいほど放電レート特性が良いことを示す。
上記、実施例及び比較例の結果を表1、表2に示す。
Thereafter, one cycle was performed under the same conditions as the previous three cycles except that the discharge current during constant current discharge was increased to 0.7 mA (0.27 C). Next, the discharge current was increased to 1.3 mA (0.5 C), 2.6 mA (1.0 C), 3.9 mA (1.5 C), and 5.2 mA (2.0 C), and each cycle was charged. The discharge was repeated. The ratio of the discharge capacity at 2.0C in the eighth cycle to the discharge capacity at 0.08C in the fourth cycle was expressed as a percentage, and the discharge rate characteristics were evaluated. A larger value indicates better discharge rate characteristics.
The results of Examples and Comparative Examples are shown in Tables 1 and 2.

Figure 2007299738
Figure 2007299738







Figure 2007299738
Figure 2007299738

表1及び表2に示されるように、本発明のバインダ樹脂組成物(実施例1及び2)は、比較例1に比べ電極の柔軟性・可とう性に優れ、比較例2に比べ電解液に対する耐膨潤性に優れ、比較例2、3に比べコイン電池の初回充放電特性が良好(放電容量及び充放電効率が大きく、不可逆容量が小さい)でありレート特性も優れ、比較例4に比べ接着性に優れていることが明らかである。以上のことから本発明のバインダ樹脂組成物(実施例1及び2)は比較例1〜4に比べ特性バランスに優れているといえる。   As shown in Tables 1 and 2, the binder resin compositions (Examples 1 and 2) of the present invention are superior in flexibility and flexibility of the electrode as compared with Comparative Example 1 and are more electrolytic than Comparative Example 2. Compared with Comparative Examples 2 and 3, the initial charge / discharge characteristics of the coin battery are good (the discharge capacity and charge / discharge efficiency are large and the irreversible capacity is small), and the rate characteristics are also excellent. It is clear that the adhesiveness is excellent. From the above, it can be said that the binder resin compositions (Examples 1 and 2) of the present invention are excellent in the property balance as compared with Comparative Examples 1 to 4.

Claims (12)

ニトリル基含有単量体由来の繰り返し単位を80質量%以上含むニトリル系重合体及びα−オレフィン由来の繰り返し単位とα,β−不飽和カルボン酸由来の繰り返し単位とを含むα−オレフィン−α,β−不飽和カルボン酸共重合体を含有してなる非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   A nitrile polymer containing 80% by mass or more of a repeating unit derived from a nitrile group-containing monomer and an α-olefin-α containing a repeating unit derived from an α-olefin and a repeating unit derived from an α, β-unsaturated carboxylic acid. A binder resin composition for non-aqueous electrolyte-based energy device electrodes, comprising a β-unsaturated carboxylic acid copolymer. 前記ニトリル基含有単量体が、アクリロニトリルである、請求項1記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The binder resin composition for non-aqueous electrolyte-type energy device electrodes according to claim 1, wherein the nitrile group-containing monomer is acrylonitrile. 前記ニトリル系重合体が、ニトリル基含有単量体由来の繰り返し単位と、カルボキシル基含有単量体由来の繰り返し単位及び/又は下記一般式(I)
Figure 2007299738
(式中、R1はH又はCH3、R2はH又は1価の炭化水素基、nは1〜50の整数である)
で表される単量体由来の繰り返し単位とを含むことを特徴とする請求項1又は2記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。
The nitrile polymer is a repeating unit derived from a nitrile group-containing monomer, a repeating unit derived from a carboxyl group-containing monomer, and / or the following general formula (I)
Figure 2007299738
(Wherein R 1 is H or CH 3 , R 2 is H or a monovalent hydrocarbon group, and n is an integer of 1 to 50)
The binder resin composition for non-aqueous electrolyte system energy device electrodes of Claim 1 or 2 characterized by including the repeating unit derived from the monomer represented by these.
前記カルボキシル基含有単量体が、アクリル酸である、請求項3記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The binder resin composition for non-aqueous electrolyte-type energy device electrodes according to claim 3, wherein the carboxyl group-containing monomer is acrylic acid. 前記一般式(I)で表される単量体が、メトキシトリエチレングリコールアクリレートである、請求項3記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The binder resin composition for nonaqueous electrolyte type energy device electrodes according to claim 3, wherein the monomer represented by the general formula (I) is methoxytriethylene glycol acrylate. 前記ニトリル基含有単量体由来の繰り返し単位1モルに対して、前記カルボキシル基含有単量体由来の繰り返し単位が0.01〜0.2モル及び/又は前記一般式(I)で表される単量体由来の繰り返し単位が0.001〜0.2モルである請求項3〜5のいずれかに記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The repeating unit derived from the carboxyl group-containing monomer is represented by 0.01 to 0.2 mol and / or the general formula (I) with respect to 1 mol of the repeating unit derived from the nitrile group-containing monomer. The repeating unit derived from a monomer is 0.001 to 0.2 mol, The binder resin composition for non-aqueous electrolyte system energy device electrodes according to any one of claims 3 to 5. 前記α−オレフィンが、エチレンであり、前記α,β−不飽和カルボン酸が、アクリル酸である請求項1〜6のいずれかに記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The binder resin composition for a non-aqueous electrolyte-based energy device electrode according to any one of claims 1 to 6, wherein the α-olefin is ethylene and the α, β-unsaturated carboxylic acid is acrylic acid. 前記α−オレフィン−α,β−不飽和カルボン酸共重合体が、メルトフローレート(ASTM D 1238)で5〜150g/10minに相当する分子量を有し、酸価が50〜250KOHmg/gである請求項7記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   The α-olefin-α, β-unsaturated carboxylic acid copolymer has a molecular weight corresponding to a melt flow rate (ASTM D 1238) of 5 to 150 g / 10 min and an acid value of 50 to 250 KOHmg / g. The binder resin composition for non-aqueous electrolyte system energy device electrodes according to claim 7. 含窒素系溶剤を含む有機溶剤と、該有機溶剤中に溶解した前記ニトリル系共重合体と、該有機溶剤中に分散した前記α−オレフィン−α,β−不飽和カルボン酸共重合体とを含む、請求項1〜8のいずれかに記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物。   An organic solvent containing a nitrogen-containing solvent, the nitrile copolymer dissolved in the organic solvent, and the α-olefin-α, β-unsaturated carboxylic acid copolymer dispersed in the organic solvent. The binder resin composition for non-aqueous electrolyte system energy device electrodes in any one of Claims 1-8 containing. 集電体と、該集電体の少なくとも1面に設けられた合剤層とを有し、該合剤層が、活物質を含む請求項1〜9のいずれかに記載の非水電解液系エネルギーデバイス電極用バインダ樹脂組成物からなる、非水電解液系エネルギーデバイス電極。   The nonaqueous electrolytic solution according to claim 1, comprising a current collector and a mixture layer provided on at least one surface of the current collector, wherein the mixture layer contains an active material. A non-aqueous electrolyte type energy device electrode comprising a binder resin composition for a system energy device electrode. 請求項10記載の非水電解液系エネルギーデバイス電極を含む、非水電解液系エネルギーデバイス。   A nonaqueous electrolytic solution energy device comprising the nonaqueous electrolytic solution energy device electrode according to claim 10. 非水電解液系エネルギーデバイスがリチウム電池である、請求項11記載の非水電解液系エネルギーデバイス。   The nonaqueous electrolytic solution energy device according to claim 11, wherein the nonaqueous electrolytic solution energy device is a lithium battery.
JP2007085179A 2006-04-07 2007-03-28 Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device Expired - Fee Related JP5136946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085179A JP5136946B2 (en) 2006-04-07 2007-03-28 Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006106194 2006-04-07
JP2006106194 2006-04-07
JP2007085179A JP5136946B2 (en) 2006-04-07 2007-03-28 Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device

Publications (2)

Publication Number Publication Date
JP2007299738A true JP2007299738A (en) 2007-11-15
JP5136946B2 JP5136946B2 (en) 2013-02-06

Family

ID=38769045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085179A Expired - Fee Related JP5136946B2 (en) 2006-04-07 2007-03-28 Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device

Country Status (1)

Country Link
JP (1) JP5136946B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513911A (en) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド Negative electrode material composition comprising polyacrylonitrile-acrylic acid copolymer binder, method for producing the same, and lithium secondary battery comprising the negative electrode material composition
WO2012090669A1 (en) * 2010-12-28 2012-07-05 Jsr株式会社 Binder composition for electrodes, electrode slurry, electrode, electrochemical device, and production method and storage method of binder composition for electrodes
KR20150067016A (en) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery
JP2018120674A (en) * 2017-01-23 2018-08-02 日立化成株式会社 Electrode for energy device, and energy device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282061A (en) * 2002-03-20 2003-10-03 Nippon Zeon Co Ltd Slurry composite for secondary-battery electrode, secondary-battery electrode, and secondary battery
JP2004247292A (en) * 2003-01-21 2004-09-02 Hitachi Chem Co Ltd Binder resin, mix slurry, electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2006033173A1 (en) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282061A (en) * 2002-03-20 2003-10-03 Nippon Zeon Co Ltd Slurry composite for secondary-battery electrode, secondary-battery electrode, and secondary battery
JP2004247292A (en) * 2003-01-21 2004-09-02 Hitachi Chem Co Ltd Binder resin, mix slurry, electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2006033173A1 (en) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513911A (en) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド Negative electrode material composition comprising polyacrylonitrile-acrylic acid copolymer binder, method for producing the same, and lithium secondary battery comprising the negative electrode material composition
US9012088B2 (en) 2008-04-16 2015-04-21 Lg Chem, Ltd. Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition
WO2012090669A1 (en) * 2010-12-28 2012-07-05 Jsr株式会社 Binder composition for electrodes, electrode slurry, electrode, electrochemical device, and production method and storage method of binder composition for electrodes
KR20150067016A (en) * 2013-12-09 2015-06-17 삼성에스디아이 주식회사 Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery
KR102317780B1 (en) 2013-12-09 2021-10-25 삼성에스디아이 주식회사 Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery
KR20210131934A (en) * 2013-12-09 2021-11-03 삼성에스디아이 주식회사 Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery
KR102425511B1 (en) 2013-12-09 2022-07-26 삼성에스디아이 주식회사 Negative electrode aqueous slurry for rechargeable lithium battery, negative electrode active materials layer including the same and rechargeable lithium battery
JP2018120674A (en) * 2017-01-23 2018-08-02 日立化成株式会社 Electrode for energy device, and energy device

Also Published As

Publication number Publication date
JP5136946B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4636444B2 (en) Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device
JP5428126B2 (en) Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same
JP6226355B2 (en) Binder for lithium ion secondary battery, negative electrode active material layer for lithium ion secondary battery, and lithium ion secondary battery
JP5803070B2 (en) Binder resin composition, electrode for energy device and energy device
JP2010092719A (en) Adhesion additive for nonaqueous electrolyte energy device electrode, binder resin composition for nonaqueous electrolyte energy device electrode using the same, nonaqueous electrolyte energy device electrode using the same, and nonaqueous electrolyte energy device
WO2010060348A1 (en) Silicon negative electrode, lithium ion battery and method of preparing the same
WO2011002097A1 (en) Slurry for electrode mixture of lithium secondary cell, electrode using the slurry, and lithium secondary cell
JPWO2010092977A1 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
CN108140842B (en) Binder for secondary battery electrode, secondary battery electrode composition comprising same, and secondary battery using same
JP5428464B2 (en) Lithium secondary battery
JP2011134492A (en) Binder resin composition for nonaqueous electrolytic energy device electrode, nonaqueous electrolytic energy device electrode, and nonaqueous electrolytic energy device
JP2021082584A (en) Conductive carbon material dispersant for lithium ion battery, slurry for lithium ion battery electrode, electrode for lithium ion battery, and lithium ion battery
CN114122400A (en) Negative pole piece and lithium ion battery containing same
JP5790193B2 (en) Binder resin material for energy device electrode, energy device electrode and energy device
JP2008311217A (en) Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
JP6789498B2 (en) Compositions for forming energy device electrodes, positive electrodes for energy devices and energy devices
JP5136946B2 (en) Binder resin composition for non-aqueous electrolyte system energy device electrode, electrode for non-aqueous electrolyte system energy device using the same, and non-aqueous electrolyte system energy device
JP6908102B2 (en) Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
JP2016213027A (en) Binder resin composition for electrodes of nonaqueous electrolyte energy devices, nonaqueous electrolyte energy device electrode arranged by use thereof, and nonaqueous electrolyte energy device
WO2018155715A1 (en) Composition for forming energy device electrode, positive electrode for energy device, and energy device
JP2008270142A (en) Binder resin composition for nonaqueous electrolyte system energy device electrode, nonaqueous electrolyte system energy device electrode using this resin composition, and nonaqueous electrolyte system energy device
JP6020615B2 (en) Electrode for energy device, energy device and lithium ion secondary battery
JP2005327630A (en) Binder resin composite for lithium cell electrodes, electrode for lithium cells and lithium cell
JP2015003998A (en) Acrylic polymer particle production method, and acrylic polymer particles obtained thereby
JP2872223B2 (en) Vinyl acetate copolymer, gel polymer electrolyte composition containing the same, and lithium polymer secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 5136946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees