JP2007297688A - FeCo BASED TARGET MATERIAL - Google Patents

FeCo BASED TARGET MATERIAL Download PDF

Info

Publication number
JP2007297688A
JP2007297688A JP2006128224A JP2006128224A JP2007297688A JP 2007297688 A JP2007297688 A JP 2007297688A JP 2006128224 A JP2006128224 A JP 2006128224A JP 2006128224 A JP2006128224 A JP 2006128224A JP 2007297688 A JP2007297688 A JP 2007297688A
Authority
JP
Japan
Prior art keywords
raw material
material powder
powder
mixed
feco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006128224A
Other languages
Japanese (ja)
Other versions
JP5037036B2 (en
Inventor
Akihiko Yanagiya
彰彦 柳谷
Yoshikazu Aikawa
芳和 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2006128224A priority Critical patent/JP5037036B2/en
Priority to US11/789,422 priority patent/US20080038145A1/en
Priority to CN200710126640.7A priority patent/CN101067199B/en
Publication of JP2007297688A publication Critical patent/JP2007297688A/en
Application granted granted Critical
Publication of JP5037036B2 publication Critical patent/JP5037036B2/en
Priority to US13/764,182 priority patent/US20130149185A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FeCo based target material for deposition of a soft magnetic thin film and also to provide its manufacturing method. <P>SOLUTION: The FeCo based target material is composed of an Fe-Co alloy characterized as follows: a raw material powder A, in which a mass ratio between Fe and Co as raw material powders satisfies Fe:Co=8:2 to 7:3, and a raw material powder B, in which the mass ratio satisfies Fe:Co=2:8 to 0:10, are used and these raw material powder A and raw material powder B are mixed in such a way that the mass ratio satisfies Fe:Co=8:2 to 2:8; and one or more elements among Nb, Zr, Ta and Hf are added to either or both of the raw material powder A and the raw material powder B so that they become, in total, 3 to 15 atomic% in a mixed state of the raw material powder A and the raw material powder B. The method for manufacturing the FeCo based target material is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軟磁性薄膜を形成するためのFeCo系ターゲット材およびその製造方法に関するものである。   The present invention relates to an FeCo target material for forming a soft magnetic thin film and a method for manufacturing the same.

近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。しかしながら、現在広く世の中で使用されている面内磁気記録方式の磁気記録媒体では、高記録密度化を実現しようとすると、記録ビットが微細化し、記録ビットで記録できないほどの高保磁力が要求される。そこで、これらの問題を解決し、記録密度を向上させる手段として垂直磁気記録方式が検討されている。   In recent years, the progress of magnetic recording technology has been remarkable, and the recording density of magnetic recording media has been increased to increase the capacity of drives. However, in the magnetic recording medium of the in-plane magnetic recording system that is currently widely used in the world, when trying to achieve a high recording density, the recording bit becomes finer, and a high coercive force that cannot be recorded by the recording bit is required. . Therefore, a perpendicular magnetic recording method has been studied as a means for solving these problems and improving the recording density.

垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する2層記録媒体が開発されている。この磁気記録膜層には一般的にCoCrPt−SiO2 系合金が用いられている。 The perpendicular magnetic recording system is a method suitable for high recording density, in which the easy magnetization axis is oriented in the perpendicular direction with respect to the medium surface in the magnetic film of the perpendicular magnetic recording medium. In the perpendicular magnetic recording system, a two-layer recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed. A CoCrPt—SiO 2 alloy is generally used for the magnetic recording film layer.

一方、2層記録媒体の軟磁性膜として、Fe−Co−B系合金の軟磁性膜を用いることが提案されており、例えば、特開2004−346423号公報(特許文献1)に開示されているように、断面ミクロ組織においてホウ化物相の存在しない領域に描ける最大内接円の直径が30μm以下であるFe−Co−B系合金ターゲット材が提案されている。
特開2004−346423号公報
On the other hand, it has been proposed to use a Fe—Co—B alloy soft magnetic film as the soft magnetic film of the two-layer recording medium, which is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-346423 (Patent Document 1). As described above, there has been proposed an Fe—Co—B alloy target material in which the diameter of the maximum inscribed circle that can be drawn in a region where a boride phase does not exist in the cross-sectional microstructure is 30 μm or less.
JP 2004-346423 A

上述した軟磁性膜の成膜には、一般にマグネトロンスパッタリング法が用いられている。このマグネトロンスパッタリング法とは、ターゲット材の背後に磁石を配置し、ターゲット材の表面に磁束を漏洩させて、その漏洩磁束領域にプラズマを収束させることにより高速成膜を可能とするスパッタリング法である。このマグネトロンスパッタリング法はターゲット材のスパッタ表面に磁束を漏洩させることに特徴があるため、ターゲット材自身の透磁率が高い場合にはターゲット材のスパッタ表面にマグネトロンスパッタリング法に必要十分な漏洩磁束を形成するのが難しくなる。そこで、ターゲット材自身の透磁率を極力低減しなければならないという要求から特許文献1が提案されている。   In general, the magnetron sputtering method is used to form the soft magnetic film. This magnetron sputtering method is a sputtering method that enables high-speed film formation by placing a magnet behind the target material, leaking magnetic flux to the surface of the target material, and converging the plasma in the leakage magnetic flux region. . This magnetron sputtering method is characterized by leakage of magnetic flux to the sputtering surface of the target material. Therefore, if the magnetic permeability of the target material itself is high, sufficient magnetic flux leakage necessary for the magnetron sputtering method is formed on the sputtering surface of the target material. It becomes difficult to do. Therefore, Patent Document 1 has been proposed because of the requirement that the magnetic permeability of the target material itself must be reduced as much as possible.

一方、ターゲット材の透磁率が低いほど、ターゲット材の厚みが厚くできる。すなわち、1枚のターゲット材からより多くの薄膜を作製できるということで生産性が向上する。しかしながら、上述した従来技術では透磁率が十分に低くないためターゲット材の厚みの限界は5mm程度で、それ以上厚くするとターゲット表面に十分な漏れ磁束が出ないため、正常なマグネトロンスパッタが行なえないという問題がある。   On the other hand, the lower the magnetic permeability of the target material, the thicker the target material. That is, productivity is improved because more thin films can be manufactured from one target material. However, in the above-described prior art, the permeability is not sufficiently low, so the limit of the thickness of the target material is about 5 mm, and if it is thicker than that, sufficient leakage magnetic flux does not appear on the target surface, and normal magnetron sputtering cannot be performed. There's a problem.

上述の問題を解消するために、発明者らは鋭意開発を進めた結果、Fe−Co系合金の中で透磁率の高い組成は、Fe,Fe50at%近傍であることを見出し、Fe20〜80CoとCoは透磁率が低いことから、この混合粉末を使用することにより、単一組成より透磁率の低下が可能となり、また、この混合粉末の両方に添加元素を含有させることにより、さらに透磁率の低下が可能となり、高密度を確保すつつ透磁率を十分に低減できる成形温度を見出した。   In order to solve the above-mentioned problems, the inventors have intensively developed, and as a result, found that a composition with high magnetic permeability in the Fe-Co alloy is in the vicinity of Fe, Fe50 at%, and Fe20-80Co and Since Co has a low magnetic permeability, the use of this mixed powder makes it possible to lower the magnetic permeability from a single composition. Further, by adding an additive element to both of this mixed powder, the permeability can be further reduced. The molding temperature was found to be able to be lowered and the magnetic permeability could be sufficiently reduced while ensuring a high density.

その発明の要旨とするところは、
(1)FeCo系合金において、原料粉末のFeとCoの質量比がFe:Co=8:2〜7:3である原料粉末Aと、同じく質量比がFe:Co=2:8〜0:10なる原料粉末Bとを用いて、質量比がFe:Co=8:2〜2:8となるように原料粉末Aおよび原料粉末Bを混合し、かつ原料粉末Aと原料粉末Bの一方または両方に、Nb,Zr,TaおよびHfの1種または2種以上を原料粉末Aと原料粉末Bの混合状態で合計3〜15at%となるように添加したことを特徴とするFeCo系ターゲット材。
(2)前記(1)記載のターゲット材であって、添加元素は原料粉末Aおよび原料粉末Bの少なくとも一方に添加量の合計で1at%以上添加されており、かつ両方の混合粉末には添加量の合計が3〜15at%添加されていることを特徴とするFeCo系ターゲット材。
(3)FeCo系合金の製造方法において、原料粉末のFeとCoの質量比がFe:Co=8:2〜7:3である原料粉末Aと、同じく質量比がFe:Co=2:8〜0:10なる原料粉末Bとを用いて、質量比がFe:Co=8:2〜2:8となるように原料粉末Aおよび原料粉末Bを混合し、かつ原料粉末Aと原料粉末Bの一方または両方に、Nb,Zr,TaおよびHfの1種または2種以上を原料粉末Aと原料粉末Bの混合状態で合計3〜15at%となるように添加した混合粉末を1073〜1473Kの温度、100〜500MPaの圧力により成形したことを特徴とするFeCo系合金の製造方法。
(4)前記(3)記載のFeCo系合金の製造方法において、添加元素は原料粉末Aおよび原料粉末Bの少なくとも一方に添加量の合計で1at%以上添加されており、かつ両方の混合粉末には添加量の合計が3〜15at%添加されている混合粉末を1073〜1473Kの温度、100〜500MPaの圧力により成形したことを特徴とするFeCo系合金の製造方法にある。
The gist of the invention is that
(1) In the FeCo-based alloy, the raw material powder A in which the mass ratio of Fe and Co in the raw material powder is Fe: Co = 8: 2 to 7: 3, and the same mass ratio is Fe: Co = 2: 8 to 0: The raw material powder A and the raw material powder B are mixed so that the mass ratio is Fe: Co = 8: 2 to 2: 8, and one of the raw material powder A and the raw material powder B is used. An FeCo-based target material characterized in that one or more of Nb, Zr, Ta and Hf are added to both in a mixed state of the raw material powder A and the raw material powder B so that the total amount is 3 to 15 at%.
(2) The target material according to (1), wherein the additive element is added to at least one of the raw material powder A and the raw material powder B in a total addition amount of 1 at% or more, and is added to both mixed powders A FeCo-based target material, wherein a total amount of 3 to 15 at% is added.
(3) In the method for producing an FeCo alloy, the mass ratio of Fe: Co in the raw material powder is Fe: Co = 8: 2 to 7: 3, and the mass ratio is Fe: Co = 2: 8. Using the raw material powder B of ˜0: 10, the raw material powder A and the raw material powder B are mixed so that the mass ratio is Fe: Co = 8: 2 to 2: 8, and the raw material powder A and the raw material powder B are mixed. A mixed powder in which one or more of Nb, Zr, Ta, and Hf are added to one or both of them so as to be a total of 3 to 15 at% in the mixed state of the raw material powder A and the raw material powder B is 1073 to 1473K. A method for producing an FeCo-based alloy, which is formed at a temperature of 100 to 500 MPa.
(4) In the method for producing an FeCo-based alloy described in (3), the additive element is added to at least one of the raw material powder A and the raw material powder B in a total amount of 1 at% or more, and both mixed powders Is a method for producing an FeCo-based alloy, characterized in that a mixed powder having a total addition amount of 3 to 15 at% is formed at a temperature of 1073 to 1473 K and a pressure of 100 to 500 MPa.

以上述べたように、本発明により透磁率を従来以上に低くでき、しかも、ターゲット材の厚みを大きくすることが出来たことにより生産性を向上させることを可能にした極めて優れた効果を奏するものである。   As described above, according to the present invention, the magnetic permeability can be lowered more than before, and the extremely excellent effect of improving the productivity by increasing the thickness of the target material can be achieved. It is.

以下、本発明についての成分組成の限定理由について詳細に説明する。   Hereinafter, the reasons for limiting the component composition of the present invention will be described in detail.

原料粉末AとしてFe:Co=8:2〜7:3と原料粉末BとしてのFe:Co=2:8〜0:10とした理由は、この両者の比率を外れると磁気特性(透磁率)が増加することが分かった。従って、この原料粉末Aおよび原料粉末BのFeとCoの混合比を定めた上での両混合粉末を使用することに特徴がある。   The reason why the raw material powder A is Fe: Co = 8: 2 to 7: 3 and the raw material powder B is Fe: Co = 2: 8 to 0:10 is that the magnetic properties (permeability) will be out of the ratio between the two. Was found to increase. Therefore, there is a feature in using both mixed powders after determining the mixing ratio of Fe and Co of the raw material powder A and the raw material powder B.

また、上記混合粉末に、Nb,Zr,TaおよびHfなる添加元素を添加するものであるが、少なくとも混合粉末に添加されたNb,Zr,TaおよびHfなる添加元素のトータルで3〜15at%添加されたターゲット材である。3at%未満ではFe−Co混合粉末に添加してもアモルファス化が困難である。また、15at%を超えると飽和磁束密度が低くなる。従って、その範囲を3〜15at%とした。好ましくは5〜10at%とする。   In addition, an additive element such as Nb, Zr, Ta and Hf is added to the mixed powder, but at least a total of 3 to 15 at% of additive elements such as Nb, Zr, Ta and Hf added to the mixed powder is added. Target material. If it is less than 3 at%, it is difficult to make it amorphous even if it is added to the Fe—Co mixed powder. Moreover, when it exceeds 15 at%, a saturation magnetic flux density will become low. Therefore, the range was made 3 to 15 at%. Preferably it is 5 to 10 at%.

しかも、混合粉末に、Nb,Zr,TaおよびHfなる添加元素を添加するにあたり、原料粉末Aおよび原料粉末Bよりなる混合粉末の少なくとも一方がトータルで1at%以上の添加で、両方の混合粉末の合計が3〜15at%混入させるものである。原料粉末Aおよび原料粉末Bよりなる混合粉末の少なくとも一方に添加する添加元素が1at%未満では添加元素による透磁率の低下の効果が少ないため、1at%以上とした。また、添加元素としては、Nb,Zr,TaおよびHfのいずれか2種とすることが好ましい。   In addition, when the additive elements Nb, Zr, Ta and Hf are added to the mixed powder, at least one of the mixed powders of the raw material powder A and the raw material powder B is added in a total of 1 at% or more. A total of 3 to 15 at% is mixed. If the additive element added to at least one of the mixed powder composed of the raw material powder A and the raw material powder B is less than 1 at%, the effect of lowering the magnetic permeability due to the added element is small, so the content was set to 1 at% or more. Further, it is preferable to use any two of Nb, Zr, Ta and Hf as additive elements.

本発明に係る成形方法は、HIP、ホットプレス等高密度に成形可能であればいずれでも構わない。粉末の作製方法としては、ガスアトマイズ、水アトマイズ、鋳造−粉砕粉のいずれにも限定されるものでない。混合粉末を1073〜1473Kの温度とした理由は、1073K未満では密度が100%にならない。また、1473Kを超えると粉末間の拡散が進行し過ぎて磁性の高い相が多く析出してしまう。さらに、100〜500MPaの圧力により成形した理由は、100MPa未満では密度が100%にならない。圧力は高ければ問題ないが、コストおよび生産性を考えて上限を500MPaとした。   The molding method according to the present invention may be any as long as it can be molded at a high density such as HIP or hot press. The method for producing the powder is not limited to any of gas atomization, water atomization, and cast-pulverized powder. The reason why the temperature of the mixed powder is 1073 to 1473K is that the density is not 100% below 1073K. On the other hand, if the temperature exceeds 1473K, the diffusion between the powders proceeds too much and many highly magnetic phases are precipitated. Further, the reason why the molding is performed with a pressure of 100 to 500 MPa is that the density does not become 100% when the pressure is less than 100 MPa. If the pressure is high, there is no problem, but the upper limit is set to 500 MPa in consideration of cost and productivity.

上述したように、軟磁性膜の成膜には、一般にマグネトロンスパッタリング法が用いられている。このマグネトロンスパッタリング法とは、ターゲット材の背後に磁石を配置し、ターゲット材の表面に磁束を漏洩させて、その漏洩磁束領域にプラズマを集束させることにより高速成膜を可能とするスパッタリング法である。このマグネトロンスパッタ装置は、2極DCグロー放電スパッタ装置の欠点を解消するため、ターゲットの裏側に磁石を置き、磁界をかけてターゲット近傍にγ電子を閉じ込めようとしたのが特徴で、γ電子は磁力線に絡みついた軌道をとるため、プラズマがターゲット近傍に集中し、基板へのダメージを低減することができる。また、同時にγ電子の運動距離が長くなるため、低ガス圧で高速なスパッタが可能となるものである。   As described above, the magnetron sputtering method is generally used for forming the soft magnetic film. This magnetron sputtering method is a sputtering method that enables high-speed film formation by disposing a magnet behind the target material, leaking magnetic flux to the surface of the target material, and focusing the plasma in the leakage magnetic flux region. . This magnetron sputtering device is characterized by placing a magnet on the back side of the target and applying a magnetic field to confine γ electrons in the vicinity of the target in order to eliminate the disadvantages of the bipolar DC glow discharge sputtering device. Since the trajectory is entangled with the magnetic field lines, the plasma is concentrated in the vicinity of the target, and damage to the substrate can be reduced. At the same time, the movement distance of γ electrons becomes longer, so that high-speed sputtering can be performed at a low gas pressure.

以下、本発明について実施例によって具体的に説明する。
表1に示すように、Fe−Co系合金をガスアトマイズ法、ないし鋳造法によって作製した。ガスアトマイズ法の場合は、ガス種類がアルゴンガス、ノズル径が6mm、ガス圧が5MPaの条件で行い、また、鋳造法の場合は、セラミックルツボ(直径200mm、長さ30mm)により溶解し、その後粉砕して粉末とする。作製した粉末を500μm以下にて分級し、それぞれの粉末をV型混合機により1時間攪拌した。
Hereinafter, the present invention will be specifically described with reference to examples.
As shown in Table 1, an Fe—Co alloy was produced by a gas atomizing method or a casting method. In the case of the gas atomizing method, the gas type is argon gas, the nozzle diameter is 6 mm, and the gas pressure is 5 MPa. In the case of the casting method, the gas is melted with a ceramic crucible (diameter 200 mm, length 30 mm) and then pulverized. To powder. The produced powder was classified at 500 μm or less, and each powder was stirred for 1 hour by a V-type mixer.

そのようにして作製したそれぞれの粉末を直径200mm、高さ100mmのSC材質からなる封入缶に充填し、到達真空度10-1Pa以上で脱気真空封入した後、HIP(熱間等方圧プレス)にて、温度1173K、圧力150MPa、保持時間5時間の条件で成形体を作製し、次いで旋盤加工によるワイヤーカットにより最終形状として外径180mm、厚み3〜10mmのターゲット材を得た。上述したターゲット材の特性を表2に示す。 Each of the powders thus produced was filled into an enclosure can made of SC material having a diameter of 200 mm and a height of 100 mm, degassed and vacuum sealed at an ultimate vacuum of 10 −1 Pa or higher, and then HIP (hot isotropic pressure). Pressed), a molded body was prepared under conditions of a temperature of 1173 K, a pressure of 150 MPa, and a holding time of 5 hours, and then a target material having an outer diameter of 180 mm and a thickness of 3 to 10 mm was obtained as a final shape by wire cutting by lathe processing. Table 2 shows the characteristics of the target material described above.

Figure 2007297688
Figure 2007297688

Figure 2007297688
作製したターゲット材の特性の評価項目としては、次にような磁気特性(透磁率)の測定を行った。
(1)透磁率測定
リング試験片作製:外径15mm、内径10mm、高さ5mm
装置:BHトレーサー
印加磁場:8kA/m
測定項目:最大透磁率(μm)
(2)密度
密度の測定方法はアルキメデス法で、また、相対密度(計算密度に対する実測密度の割合)を算出して評価した。
Figure 2007297688
As evaluation items for the characteristics of the produced target material, the following magnetic characteristics (permeability) were measured.
(1) Permeability measurement Ring test piece preparation: outer diameter 15 mm, inner diameter 10 mm, height 5 mm
Apparatus: BH tracer Applied magnetic field: 8 kA / m
Measurement item: Maximum permeability (μm)
(2) Density The density was measured by the Archimedes method, and the relative density (ratio of the measured density to the calculated density) was calculated and evaluated.

表1に示すように、No.1〜13は本発明例であり、No.14〜21は比較例である。比較例No.14は、混合後の全体でのFeとCo比が1:8とFeの含有量が低く、Coの含有量が高いために、磁気特性である透磁率が高い。比較例No.15は、混合後の全体でのFeとCo比が9:1とFeの含有量が高く、Coの含有量が低いために、磁気特性である透磁率が高い。比較例No.16は、添加元素であるZr,Nbの含有量が高いために透磁率が低い。比較例No.17は、添加元素であるTaとHfの含有量が高いために透磁率が低い。   As shown in Table 1, no. Nos. 1 to 13 are examples of the present invention. 14 to 21 are comparative examples. Comparative Example No. No. 14, the Fe / Co ratio in the whole after mixing is 1: 8, the Fe content is low, and the Co content is high, so the magnetic permeability is high. Comparative Example No. No. 15, the Fe / Co ratio in the whole after mixing is 9: 1, and the Fe content is high, and the Co content is low, so the magnetic permeability is high. Comparative Example No. No. 16 has a low magnetic permeability because the content of the additive elements Zr and Nb is high. Comparative Example No. No. 17 has a low magnetic permeability because the contents of Ta and Hf, which are additive elements, are high.

比較例No.18は、原料粉末AのFe比が高く、Co比が低いために透磁率が高い。比較例No.19は、原料粉末BのFe比が低く、Co比が高いために透磁率が高い。比較例No.20は、成形温度が高いために反応により磁気特性の高い相が析出し透磁率が高い。比較例No.21は、原料粉末AのFe比が低く、Co比が高いために透磁率が低く、また、成形温度が低いため相対密度も劣る。
これに対し、本発明例No.1〜13のいずれも本発明の条件を満たしていることから、磁気特性である透磁率に優れていることが分かる。
Comparative Example No. No. 18 has a high magnetic permeability because the raw powder A has a high Fe ratio and a low Co ratio. Comparative Example No. No. 19 has a high magnetic permeability because the raw powder B has a low Fe ratio and a high Co ratio. Comparative Example No. In No. 20, since the molding temperature is high, a phase having high magnetic properties is precipitated by the reaction, and the magnetic permeability is high. Comparative Example No. No. 21 has a low magnetic permeability because the Fe ratio of the raw material powder A is low and the Co ratio is high, and the relative density is also poor because the molding temperature is low.
In contrast, the present invention example No. Since all of 1-13 satisfy | fill the conditions of this invention, it turns out that it is excellent in the magnetic permeability which is a magnetic characteristic.

上述のように、原料粉末Aおよび原料粉末BでのFeとCoとの比率を定め、かつこれらの混合粉末に対し、添加元素を一定量添加した混合後の全体でのFeとCoの比率を最適範囲にすることで、磁気特性である透磁率を従来以上に低くすることが可能となり、ターゲット材の厚みを大きくすることができることにより、生産性の向上を図ることが出来る極めて優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the ratio of Fe and Co in the raw material powder A and the raw material powder B is determined, and the total ratio of Fe and Co after mixing after adding a certain amount of additive elements to these mixed powders. By setting the optimum range, it is possible to lower the magnetic permeability, which is a magnetic property, compared to the conventional one. By increasing the thickness of the target material, it is possible to improve productivity. It is what you play.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (4)

FeCo系合金において、原料粉末のFeとCoの質量比がFe:Co=8:2〜7:3である原料粉末Aと、同じく質量比がFe:Co=2:8〜0:10なる原料粉末Bとを用いて、質量比がFe:Co=8:2〜2:8となるように原料粉末Aおよび原料粉末Bを混合し、かつ原料粉末Aと原料粉末Bの一方または両方に、Nb,Zr,TaおよびHfの1種または2種以上を原料粉末Aと原料粉末Bの混合状態で合計3〜15at%となるように添加したことを特徴とするFeCo系ターゲット材。 In the FeCo-based alloy, the raw material powder A in which the mass ratio of Fe to Co in the raw material powder is Fe: Co = 8: 2 to 7: 3, and the raw material in which the mass ratio is Fe: Co = 2: 8 to 0:10 Using the powder B, the raw material powder A and the raw material powder B are mixed so that the mass ratio is Fe: Co = 8: 2 to 2: 8, and one or both of the raw material powder A and the raw material powder B are mixed. A FeCo-based target material, wherein one or more of Nb, Zr, Ta, and Hf are added so as to be a total of 3 to 15 at% in a mixed state of the raw material powder A and the raw material powder B. 請求項1記載のターゲット材であって、添加元素は原料粉末Aおよび原料粉末Bの少なくとも一方に添加量の合計で1at%以上添加されており、かつ両方の混合粉末には添加量の合計が3〜15at%添加されていることを特徴とするFeCo系ターゲット材。 2. The target material according to claim 1, wherein the additive element is added to at least one of the raw material powder A and the raw material powder B in a total addition amount of 1 at% or more, and the total addition amount is added to both the mixed powders. An FeCo-based target material added with 3 to 15 at%. FeCo系合金の製造方法において、原料粉末のFeとCoの質量比がFe:Co=8:2〜7:3である原料粉末Aと、同じく質量比がFe:Co=2:8〜0:10なる原料粉末Bとを用いて、質量比がFe:Co=8:2〜2:8となるように原料粉末Aおよび原料粉末Bを混合し、かつ原料粉末Aと原料粉末Bの一方または両方に、Nb,Zr,TaおよびHfの1種または2種以上を原料粉末Aと原料粉末Bの混合状態で合計3〜15at%となるように添加した混合粉末を1073〜1473Kの温度、100〜500MPaの圧力により成形したことを特徴とするFeCo系合金の製造方法。 In the FeCo-based alloy manufacturing method, the raw material powder A in which the mass ratio of Fe and Co in the raw material powder is Fe: Co = 8: 2 to 7: 3, and the same mass ratio is Fe: Co = 2: 8 to 0: The raw material powder A and the raw material powder B are mixed so that the mass ratio is Fe: Co = 8: 2 to 2: 8, and one of the raw material powder A and the raw material powder B is used. A mixed powder obtained by adding one or more of Nb, Zr, Ta, and Hf to both in a mixed state of the raw material powder A and the raw material powder B so as to be 3 to 15 at% in total is a temperature of 1073 to 1473 K, 100 A method for producing an FeCo-based alloy, which is formed at a pressure of ˜500 MPa. 請求項3記載のFeCo系合金の製造方法において、添加元素は原料粉末Aおよび原料粉末Bの少なくとも一方に添加量の合計で1at%以上添加されており、かつ両方の混合粉末には添加量の合計が3〜15at%添加されている混合粉末を1073〜1473Kの温度、100〜500MPaの圧力により成形したことを特徴とするFeCo系合金の製造方法。 In the method for producing an FeCo-based alloy according to claim 3, the additive element is added to at least one of the raw material powder A and the raw material powder B in a total addition amount of 1 at% or more, and both of the mixed powders have an addition amount. A method for producing an FeCo-based alloy, characterized in that a mixed powder to which a total of 3 to 15 at% is added is molded at a temperature of 1073 to 1473 K and a pressure of 100 to 500 MPa.
JP2006128224A 2006-05-02 2006-05-02 FeCo-based target material Expired - Fee Related JP5037036B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006128224A JP5037036B2 (en) 2006-05-02 2006-05-02 FeCo-based target material
US11/789,422 US20080038145A1 (en) 2006-05-02 2007-04-24 Fe-Co based target material and method for producing the same
CN200710126640.7A CN101067199B (en) 2006-05-02 2007-04-27 Fe-Co series target material and manufacturing method thereof
US13/764,182 US20130149185A1 (en) 2006-05-02 2013-02-11 Fe-Co Based Target Material and Method for Producing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128224A JP5037036B2 (en) 2006-05-02 2006-05-02 FeCo-based target material

Publications (2)

Publication Number Publication Date
JP2007297688A true JP2007297688A (en) 2007-11-15
JP5037036B2 JP5037036B2 (en) 2012-09-26

Family

ID=38767425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128224A Expired - Fee Related JP5037036B2 (en) 2006-05-02 2006-05-02 FeCo-based target material

Country Status (3)

Country Link
US (2) US20080038145A1 (en)
JP (1) JP5037036B2 (en)
CN (1) CN101067199B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115461A (en) * 2006-10-10 2008-05-22 Hitachi Metals Ltd Co-Fe-Zr-BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP2008127588A (en) * 2006-11-17 2008-06-05 Sanyo Special Steel Co Ltd (CoFe)ZrNb/Ta/Hf-BASED TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
WO2009104509A1 (en) * 2008-02-18 2009-08-27 日立金属株式会社 Fe-co alloy sputtering target material for forming soft magnetic film
JP2009203537A (en) * 2008-02-29 2009-09-10 Hitachi Metals Ltd Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2010005627A (en) * 2008-06-24 2010-01-14 Daido Steel Co Ltd Die for die casting, target material for film, and film formation method
JP2010024548A (en) * 2008-06-17 2010-02-04 Hitachi Metals Ltd Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL FOR FORMING SOFT MAGNETIC FILM
US7942985B2 (en) * 2007-05-29 2011-05-17 Sanyo Special Steel Co., Ltd. Alloy for soft magnetic layer in perpendicular magnetic recording medium
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
JP2015190017A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Softly magnetic thin film forming sputtering target
JP2016084538A (en) * 2015-11-30 2016-05-19 山陽特殊製鋼株式会社 Alloy for soft magnetic thin film layer and sputtering target material in perpendicular magnetic recording medium and perpendicular magnetic recording medium having soft magnetic thin film layer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121071A (en) * 2006-11-13 2008-05-29 Sanyo Special Steel Co Ltd SOFT MAGNETIC FeCo BASED TARGET MATERIAL
JP5253781B2 (en) * 2007-09-18 2013-07-31 山陽特殊製鋼株式会社 Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
JP5596118B2 (en) * 2010-07-23 2014-09-24 Jx日鉱日石金属株式会社 Magnetic material sputtering target with grooves on the back of the target
CN102485948A (en) * 2010-12-06 2012-06-06 北京有色金属研究总院 FeCoTaZr alloy sputtering target material and manufacture method thereof
CN102211188B (en) * 2011-06-03 2013-01-09 厦门虹鹭钨钼工业有限公司 Reparation method of tungsten titanium alloy target material used in semiconductor and solar sputtering target material industries
CN111957579A (en) * 2019-05-20 2020-11-20 米亚索乐装备集成(福建)有限公司 Powder screening method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139707A (en) * 1990-10-01 1992-05-13 Kawasaki Steel Corp Soft magnetic thin film having high saturation magnetic flux density
JPH0574643A (en) * 1991-09-13 1993-03-26 Kawasaki Steel Corp Manufacture of soft magnetic thin film
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935698C2 (en) * 1988-10-26 1995-06-22 Sumitomo Metal Mining Co Alloy target for the production of a magneto-optical recording medium
KR960002611B1 (en) * 1991-09-30 1996-02-23 가부시키가이샤 도시바 Magnetic film
JPH08311642A (en) * 1995-03-10 1996-11-26 Toshiba Corp Magnetron sputtering method and sputtering target
US5780175A (en) * 1996-02-02 1998-07-14 Lucent Technologies Inc. Articles comprising magnetically soft thin films and methods for making such articles
KR100348920B1 (en) * 1998-09-03 2002-08-14 마쯔시다덴기산교 가부시키가이샤 Magnetic film and method for producing the same
US20020058159A1 (en) * 2000-11-15 2002-05-16 Yukiko Kubota Soft magnetic underlayer (SUL) for perpendicular recording medium
JP2002309353A (en) * 2001-04-13 2002-10-23 Fujitsu Ltd Soft-magnetic membrane and magnetic head for recording using the membrane
US7141208B2 (en) * 2003-04-30 2006-11-28 Hitachi Metals, Ltd. Fe-Co-B alloy target and its production method, and soft magnetic film produced by using such target, and magnetic recording medium and TMR device
US20060042938A1 (en) * 2004-09-01 2006-03-02 Heraeus, Inc. Sputter target material for improved magnetic layer
US7566508B2 (en) * 2005-03-02 2009-07-28 Seagate Technology Llc Perpendicular media with Cr-doped Fe-alloy-containing soft underlayer (SUL) for improved corrosion performance
US20070017803A1 (en) * 2005-07-22 2007-01-25 Heraeus, Inc. Enhanced sputter target manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139707A (en) * 1990-10-01 1992-05-13 Kawasaki Steel Corp Soft magnetic thin film having high saturation magnetic flux density
JPH0574643A (en) * 1991-09-13 1993-03-26 Kawasaki Steel Corp Manufacture of soft magnetic thin film
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115461A (en) * 2006-10-10 2008-05-22 Hitachi Metals Ltd Co-Fe-Zr-BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP2008127588A (en) * 2006-11-17 2008-06-05 Sanyo Special Steel Co Ltd (CoFe)ZrNb/Ta/Hf-BASED TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
US8066825B2 (en) * 2006-11-17 2011-11-29 Sanyo Special Steel Co., Ltd. (CoFe)Zr/Nb/Ta/Hf based target material
US7942985B2 (en) * 2007-05-29 2011-05-17 Sanyo Special Steel Co., Ltd. Alloy for soft magnetic layer in perpendicular magnetic recording medium
JP5359890B2 (en) * 2008-02-18 2013-12-04 日立金属株式会社 Fe-Co alloy sputtering target material for soft magnetic film formation
WO2009104509A1 (en) * 2008-02-18 2009-08-27 日立金属株式会社 Fe-co alloy sputtering target material for forming soft magnetic film
JP2013242962A (en) * 2008-02-18 2013-12-05 Hitachi Metals Ltd Fe-Co BASED ALLOY SPUTTERING TARGET MATERIAL FOR FORMING SOFT MAGNETIC FILM
JP2009203537A (en) * 2008-02-29 2009-09-10 Hitachi Metals Ltd Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2010024548A (en) * 2008-06-17 2010-02-04 Hitachi Metals Ltd Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL FOR FORMING SOFT MAGNETIC FILM
JP2010005627A (en) * 2008-06-24 2010-01-14 Daido Steel Co Ltd Die for die casting, target material for film, and film formation method
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
JP2015190017A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Softly magnetic thin film forming sputtering target
JP2016084538A (en) * 2015-11-30 2016-05-19 山陽特殊製鋼株式会社 Alloy for soft magnetic thin film layer and sputtering target material in perpendicular magnetic recording medium and perpendicular magnetic recording medium having soft magnetic thin film layer

Also Published As

Publication number Publication date
JP5037036B2 (en) 2012-09-26
US20130149185A1 (en) 2013-06-13
CN101067199A (en) 2007-11-07
US20080038145A1 (en) 2008-02-14
CN101067199B (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP5037036B2 (en) FeCo-based target material
JP4331182B2 (en) Soft magnetic target material
JP2008121071A (en) SOFT MAGNETIC FeCo BASED TARGET MATERIAL
JP5605787B2 (en) Sputtering target material for forming an alloy for a soft magnetic film layer in a perpendicular magnetic recording medium and its manufacturing method
JP5111835B2 (en) (CoFe) ZrNb / Ta / Hf-based target material and method for producing the same
JP2006265653A (en) Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP4699194B2 (en) Method for producing FeCoB-based sputtering target material
JP4907259B2 (en) FeCoB-based target material with Cr added
JP4919162B2 (en) Fe-Co alloy sputtering target material and method for producing Fe-Co alloy sputtering target material
JP2010222639A (en) METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
JP5348661B2 (en) Soft magnetic target material
JP6581780B2 (en) Ni-based target material with excellent sputtering properties
JP6254295B2 (en) Ni-based sputtering target material and magnetic recording medium
JP2013161497A (en) Alloy for soft magnetic film layer having low saturation magnetic flux density to be used for magnetic recording medium, and sputtering target material
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2014037569A (en) Fe-Co BASED ALLOY SPUTTERING TARGET MATERIAL, METHOD FOR PRODUCING THE SAME, SOFT MAGNETIC THIN FILM LAYER, AND VERTICAL MAGNETIC RECORDING MEDIUM USING THE SAME
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP6128417B2 (en) Soft magnetic underlayer
JP5037542B2 (en) Soft magnetic target material
JP5418897B2 (en) Method for producing Co-Fe alloy sputtering target material
JP2006265656A (en) Fe-Ni-Co ALLOY TARGET MATERIAL FOR FORMING SOFT MAGNETIC ALLOY FILM AND ITS MANUFACTURING METHOD
JP5248000B2 (en) CoW-based target material and method for manufacturing the same
JP2013143156A (en) Co-Fe ALLOY SOFT MAGNETIC BASE LAYER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees