JP2007297227A - Quick setting spraying material and quick setting spraying method using the same - Google Patents
Quick setting spraying material and quick setting spraying method using the same Download PDFInfo
- Publication number
- JP2007297227A JP2007297227A JP2006124888A JP2006124888A JP2007297227A JP 2007297227 A JP2007297227 A JP 2007297227A JP 2006124888 A JP2006124888 A JP 2006124888A JP 2006124888 A JP2006124888 A JP 2006124888A JP 2007297227 A JP2007297227 A JP 2007297227A
- Authority
- JP
- Japan
- Prior art keywords
- quick setting
- concrete
- water
- alkali metal
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005507 spraying Methods 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 title claims abstract description 24
- 239000004567 concrete Substances 0.000 claims abstract description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000004568 cement Substances 0.000 claims abstract description 53
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 34
- 239000002585 base Substances 0.000 claims abstract description 29
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 20
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims abstract description 18
- 150000008041 alkali metal carbonates Chemical class 0.000 claims abstract description 18
- 150000007524 organic acids Chemical class 0.000 claims abstract description 18
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 claims abstract description 17
- -1 alkali metal aluminate Chemical class 0.000 claims abstract description 14
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 12
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 12
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 12
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims description 25
- 239000010440 gypsum Substances 0.000 claims description 24
- 229910052602 gypsum Inorganic materials 0.000 claims description 24
- 239000007921 spray Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 9
- 238000010276 construction Methods 0.000 claims description 5
- 230000014759 maintenance of location Effects 0.000 abstract description 14
- 239000002657 fibrous material Substances 0.000 abstract description 12
- 238000004898 kneading Methods 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000428 dust Substances 0.000 abstract 1
- 239000011505 plaster Substances 0.000 abstract 1
- 238000011161 development Methods 0.000 description 20
- 239000011378 shotcrete Substances 0.000 description 19
- 239000000835 fiber Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 235000011116 calcium hydroxide Nutrition 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000004570 mortar (masonry) Substances 0.000 description 8
- 238000009412 basement excavation Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 239000011398 Portland cement Substances 0.000 description 5
- 229920002978 Vinylon Polymers 0.000 description 5
- 239000013065 commercial product Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000011083 cement mortar Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 240000001090 Papaver somniferum Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000404 calcium aluminium silicate Substances 0.000 description 1
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 1
- WNCYAPRTYDMSFP-UHFFFAOYSA-N calcium aluminosilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WNCYAPRTYDMSFP-UHFFFAOYSA-N 0.000 description 1
- 229940078583 calcium aluminosilicate Drugs 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- KVOIJEARBNBHHP-UHFFFAOYSA-N potassium;oxido(oxo)alumane Chemical compound [K+].[O-][Al]=O KVOIJEARBNBHHP-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
Description
本発明は、例えば、道路、鉄道、及び導水路等のトンネルにおいて露出した地山面に吹付ける吹付け材料と、それを吹付ける方法に関する。 The present invention relates to a spray material sprayed on a ground surface exposed in a tunnel such as a road, a railway, and a water conduit, and a method of spraying the material.
トンネル掘削等露出した地山の崩落を防止するために特公昭60−4149号公報(特許文献1)にあるように急結剤をコンクリートに添加した急結性吹付けコンクリートを用いた吹付け工法が行われている。 In order to prevent collapse of exposed ground such as tunnel excavation, a spraying method using a quick setting sprayed concrete in which a quick setting agent is added to concrete as described in Japanese Patent Publication No. 60-4149 (Patent Document 1) Has been done.
近年、トンネル掘削断面の大型化、施工時間や掘削サイクルの短縮化に対応するため、吹付けコンクリートの強度を高める技術が開発されており、特開昭50−16717号公報(特許文献2)に示されるように、石膏とカルシウムアルミネートをあらかじめ配合することで、吹付け後の強度を高める方法や、特開平9−169557号公報(特許文献3)に示されるようなセメントモルタルにあらかじめ石膏を混合し、カルシウムアルミネートを主成分とした急結剤を添加することで、短時間から吹付けコンクリートの強度を高める方法、特開平9−256791号公報(特許文献3)に示されるように、セメントモルタル、急結剤、及び石膏を別々に圧送し、セメントモルタルの圧送途中で、合流混合して吹付けることで、急結剤の品質低下がない吹付工法(特許文献4)が実施されている。 In recent years, a technique for increasing the strength of shotcrete has been developed in order to cope with the enlargement of the tunnel excavation cross section and the shortening of the construction time and excavation cycle. As shown, gypsum and calcium aluminate are blended in advance to increase the strength after spraying, or in advance to cement mortar as disclosed in JP-A-9-169557 (Patent Document 3). A method for increasing the strength of shotcrete from a short time by adding a quick setting agent mainly composed of calcium aluminate, as disclosed in JP-A-9-256791 (Patent Document 3), Cement mortar, quick-setting agent, and gypsum are pumped separately, and during the pumping of cement mortar, they are mixed, mixed, and sprayed. No lower spraying method (Patent Document 4) have been implemented.
前述の通り、近年トンネル掘削技術の進歩などにより吹付けコンクリートの高強度化が実施されるようになっているが、強度を高めるためにモルタルコンクリートの水セメント比率を小さくすることになり、流動性の保持時間が少なくなり、作業性が低下したり、作業性を優先すると水セメント比率が大きくなり所定の強度が得にくくなるという課題があり、より流動性の保持性能を高めた作業性の良い吹付けコンクリートが期待されていた。 As mentioned above, in recent years, the strength of shotcrete has been increased due to advances in tunnel excavation technology, etc., but the water cement ratio of mortar concrete has been reduced to increase the strength, and fluidity has been increased. There is a problem that the holding time is reduced, workability is reduced, and if workability is prioritized, the water cement ratio increases and it becomes difficult to obtain a predetermined strength. Shotcrete was expected.
さらに、地山状態の悪い場合、地山圧力によりトンネル形状に大きな変形が生じることがあり、そのため吹付けコンクリートにひび割れが生じ、場合によっては剥がれ落ちるおそれがあるという課題があった。通常、掘削後比較的初期から地山圧力がかかる場合が多く、吹付けコンクリートには、流動性の保持性に優れていることが求められていた。 Furthermore, when the ground condition is bad, the tunnel shape may be greatly deformed due to the ground pressure, so that there is a problem that the shotcrete is cracked and possibly peeled off. Usually, natural pressure is often applied from a relatively early stage after excavation, and shotcrete has been required to have excellent fluidity retention.
すなわち、本発明が解決しようとする課題は、流動性の保持性能を高めた優れた吹付けコンクリートを得る技術である。 That is, the problem to be solved by the present invention is a technique for obtaining excellent shotcrete with improved fluidity retention performance.
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、特定の材料、コンクリート配合、及び練混ぜ方法を用いたベースコンクリートを用いることにより高い流動保持性を得ることを確認し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors confirmed that high fluidity retention can be obtained by using a base material using a specific material, concrete blending, and kneading method, The present invention has been completed.
すなわち、本発明は、セメントコンクリートと水を練混ぜた後に、石膏、減水剤、有機酸、及びアルカリ金属炭酸塩を添加してなるベースコンクリートに、急結剤を含有してなる急結性吹付け材料である。 That is, the present invention relates to a quick setting spray containing a quick setting agent in base concrete in which gypsum, a water reducing agent, an organic acid, and an alkali metal carbonate are added after kneading cement concrete and water. It is an attachment material.
本発明を用いることにより、流動性の保持時間が改善された急結性吹付けコンクリート施工が可能である。 By using the present invention, quick setting shotcrete construction with improved fluidity retention time is possible.
以下、本発明を詳細に説明する。本発明では、セメントペースト、セメントモルタル、セメントコンクリートの総称をセメントコンクリートという。 Hereinafter, the present invention will be described in detail. In the present invention, a general term for cement paste, cement mortar, and cement concrete is referred to as cement concrete.
本発明で使用するセメントとしては、普通、早強等の各種ポルトランドセメント、これらのポルトランドセメントに高炉スラグやフライアッシュを混合した各種混合セメントが使用できる。これらの中では、強度発現性の点から、普通ポルトランドセメント及び/又は早強ポルトランドセメントが好ましい。 As the cement used in the present invention, various portland cements such as early strength and various mixed cements obtained by mixing blast furnace slag and fly ash with these portland cements can be used. Of these, ordinary Portland cement and / or early-strength Portland cement are preferred from the standpoint of strength development.
本発明の石膏は、例えば、吹付けコンクリートを高強度化する目的で使用する。例えば、セメント中の石膏以外の石膏をいう。石膏としては、無水石膏、半水石膏、及び2水石膏等が挙げられ、これらの1種又は2種以上が使用可能である。これらの中では、強度発現性の点から、無水石膏の使用が好ましい。石膏の粒度は、通常セメントに使用される程度、例えば、ブレーン値で2500cm2/g以上が好ましく、3000cm2/g以上がより好ましい。 The gypsum of the present invention is used, for example, for the purpose of increasing the strength of shotcrete. For example, gypsum other than gypsum in cement. Examples of the gypsum include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum, and one or more of these can be used. Of these, anhydrous gypsum is preferred in terms of strength development. The particle size of the gypsum, the degree used for normal cement, for example, preferably 2500 cm 2 / g or more in Blaine value, 3000 cm 2 / g or more is more preferable.
石膏の使用量は、セメント100質量部に対して、5〜20質量部が好ましく、7〜15質量部がより好ましい。5質量部未満では強度発現性を高めることが難しい恐れがあり、20質量部を超えると長期に膨張してコンクリートが破壊し、強度発現性を阻害する恐れがある。 The amount of gypsum used is preferably 5 to 20 parts by mass and more preferably 7 to 15 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 5 parts by mass, it may be difficult to increase the strength development. If the amount exceeds 20 parts by mass, the concrete may expand for a long time and the concrete may be destroyed, thereby inhibiting the strength development.
本発明の減水剤は、例えば、ベースコンクリートの水/粉体比を小さくして強度発現性を高める目的で使用する。減水剤の種類としては、アルキルアリルスルホン酸塩、ナフタレンスルホン酸塩、及びメラミンスルホン酸塩のホルマリン縮合物、並びに、ポリカルボン酸系高分子化合物等が挙げられ、これらの1種又は2種以上が使用可能である。減水剤としては、粉末減水剤が好ましい。 The water reducing agent of the present invention is used for the purpose of, for example, reducing the water / powder ratio of the base concrete and enhancing the strength development. Examples of water reducing agents include alkylallyl sulfonates, naphthalene sulfonates, and formalin condensates of melamine sulfonates, polycarboxylic acid polymer compounds, and the like, one or more of these. Can be used. As the water reducing agent, a powder water reducing agent is preferable.
減水剤の使用量は、固形分としてセメント100質量部に対して、0.1〜2質量部が好ましく、0.3〜1質量部がより好ましい。0.1質量部未満では強度発現性を高めることが難しい恐れがあり、1質量部を超えると強度発現性を阻害する恐れがある。 0.1-2 mass parts is preferable with respect to 100 mass parts of cement as solid content, and, as for the usage-amount of a water reducing agent, 0.3-1 mass part is more preferable. If the amount is less than 0.1 parts by mass, it may be difficult to increase the strength development. If the amount exceeds 1 part by mass, the strength development may be inhibited.
本発明の有機酸は、例えば、強度発現性を高める目的で使用する。有機酸としては、グルコン酸、酒石酸、及びクエン酸等、又はこれらのナトリウム塩やカリウム塩等が挙げられ、1種又は2種以上が使用可能である。 The organic acid of the present invention is used, for example, for the purpose of enhancing strength development. Examples of the organic acid include gluconic acid, tartaric acid, citric acid, and the like, or sodium salts and potassium salts thereof, and one or more kinds can be used.
有機酸の使用量は、セメント100質量部に対して、0.05〜1質量部が好ましく、0.1〜0.5質量部がより好ましい。0.05質量部未満では強度発現性を高めることが難しい恐れがあり、1質量部を超えて使用すると、コンクリートの付着が悪化する恐れがある。 0.05-1 mass part is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of an organic acid, 0.1-0.5 mass part is more preferable. If it is less than 0.05 part by mass, it may be difficult to improve the strength development. If it exceeds 1 part by mass, the adhesion of concrete may be deteriorated.
本発明のアルカリ金属炭酸塩は、例えば、初期の強度を向上させる目的で使用する。アルカリ金属炭酸塩としては、炭酸ナトリウム、炭酸カリウム、及び重炭酸ナトリウム等が挙げられ、これらの1種又は2種以上が使用可能である。 The alkali metal carbonate of the present invention is used, for example, for the purpose of improving the initial strength. Examples of the alkali metal carbonate include sodium carbonate, potassium carbonate, sodium bicarbonate and the like, and one or more of these can be used.
アルカリ金属炭酸塩の使用量は、セメント100質量部に対して、0.05〜1質量部が好ましく、0.1〜0.5質量部がより好ましい。0.05質量部未満では初期の強度発現性を高めることが難しい恐れがあり、1質量部を超えて使用すると、ベースコンクリートのスランプ保持性が低下し、施工性が悪化する恐れがある。 0.05-1 mass part is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of alkali metal carbonate, 0.1-0.5 mass part is more preferable. If the amount is less than 0.05 parts by mass, it may be difficult to increase the initial strength development. If the amount exceeds 1 part by mass, the slump retention property of the base concrete may be lowered, and the workability may be deteriorated.
本発明の急結剤は、カルシウムアルミネートを含有するものが好ましい。カルシウムアルミネートとは、例えば、CaO原料やAl2O3原料等を混合したものをキルンで焼成したり、電気炉で溶融したりする等の熱処理をして得られるものをいい、初期にコンクリートの凝結を起こさせる急結成分である。カルシウムアルミネートの鉱物成分としては、CaOをC、Al2O3をAとすると、C3A、C12A7、CA、CA2等で示されるカルシウムアルミネート熱処理物を粉砕したもの等が挙げられる。更に、その他の成分として、SiO2を含有するアルミノ珪酸カルシウム、C12A7の1つのCaOをCaF2等のハロゲン化物で置き換えたC11A7・CaX2(Xはフッ素等のハロゲン)、SO3成分を含むC4A3・SO3、並びにナトリウム、カリウム、及びリチウム等のアルカリ金属が一部固溶したカルシウムアルミネート等が挙げられ、これらの1種又は2種以上が使用可能である。 The quick setting agent of the present invention preferably contains calcium aluminate. Calcium aluminate refers to, for example, one obtained by heat-treating a mixture of a CaO raw material, an Al 2 O 3 raw material, etc., in a kiln or melting in an electric furnace. It is a quick-setting component that causes agglomeration. As a mineral component of calcium aluminate, when CaO is C and Al 2 O 3 is A, a calcium aluminate heat treated product represented by C 3 A, C 12 A 7 , CA, CA 2 or the like is pulverized. Can be mentioned. Furthermore, as other components, calcium aluminosilicate containing SiO 2 , C 11 A 7 · CaX 2 (X is a halogen such as fluorine) in which one CaO of C 12 A 7 is replaced with a halide such as CaF 2 , C 4 A 3 · SO 3 containing SO 3 component and calcium aluminate in which alkali metals such as sodium, potassium and lithium are partly dissolved, and the like can be used. One or more of these can be used. is there.
これらの中では、反応活性の点でC12A7組成に対応する熱処理物を急冷した非晶質カルシウムアルミネートが好ましい。カルシウムアルミネートの粒度は、急結性や強度発現性の点から、ブレーン値で3000cm2/g以上が好ましく、4000cm2/g以上
がより好ましい。
Among these, amorphous calcium aluminate obtained by quenching the heat-treated product corresponding to the C 12 A 7 composition is preferable in terms of reaction activity. The particle size of the calcium aluminate, from the viewpoint of quick-setting property or development of strength, preferably 3000 cm 2 / g or more in Blaine value, 4000 cm 2 / g or more is more preferable.
本発明では、急結剤としてカルシウムアルミネートに、アルカリ金属アルミン酸塩、水酸化カルシウムを含有させることが好ましい。 In the present invention, it is preferable to contain alkali metal aluminate and calcium hydroxide in calcium aluminate as a quick setting agent.
本発明のアルカリ金属アルミン酸塩は、例えば、初期凝結を促す目的で使用する。アルカリ金属アルミン酸塩としては、アルミン酸リチウム、アルミン酸ナトリウム、及びアルミン酸カリウム等が挙げられ、これらの1種又は2種以上が使用可能である。 The alkali metal aluminate of the present invention is used, for example, for the purpose of promoting initial setting. Examples of the alkali metal aluminate include lithium aluminate, sodium aluminate, and potassium aluminate, and one or more of these can be used.
アルカリ金属アルミン酸塩の使用量は、カルシウムアルミネート100質量部に対して、1〜50質量部が好ましく、2〜25質量部がより好ましい。1質量部未満では初期凝結を起こすことが困難である恐れがあり、50質量部を超えると凝結性の低下や長期強度発現性を阻害する恐れがある。 1-50 mass parts is preferable with respect to 100 mass parts of calcium aluminates, and, as for the usage-amount of an alkali metal aluminate, 2-25 mass parts is more preferable. If it is less than 1 part by mass, it may be difficult to cause initial condensation, and if it exceeds 50 parts by mass, there is a possibility that deterioration of the coagulation property and long-term strength development may be inhibited.
本発明の水酸化カルシウムは、例えば、急結性能を補助する目的で使用する。水酸化カルシウムとしては、市販の消石灰や、カルシウムカーバイトからアセチレンを発生させる際に副生するカーバイド滓などが挙げられる。 The calcium hydroxide of the present invention is used, for example, for the purpose of assisting rapid setting performance. Examples of calcium hydroxide include commercially available slaked lime and carbide soot produced as a by-product when acetylene is generated from calcium carbide.
水酸化カルシウムの使用量は、カルシウムアルミネート100質量部に対して、1〜20質量部が好ましく、2〜10質量部がより好ましい。1質量部未満では初期凝結を起こすことが困難である恐れがあり、20質量部を超えると長期強度発現性を阻害する恐れがある。 1-20 mass parts is preferable with respect to 100 mass parts of calcium aluminate, and, as for the usage-amount of calcium hydroxide, 2-10 mass parts is more preferable. If it is less than 1 part by mass, it may be difficult to cause initial condensation, and if it exceeds 20 parts by mass, long-term strength development may be hindered.
急結剤の使用量は、特に制限されるものではないが、セメント100質量部に対して、5〜20質量部が好ましく、7〜15質量部がより好ましい。5質量部未満では、初期凝結を起すことは困難であり、20質量部を越える配管の閉塞が発生し、リバウンド率多くなり、施工性が低下する恐れがある。 Although the usage-amount of a quick setting agent is not restrict | limited in particular, 5-20 mass parts is preferable with respect to 100 mass parts of cement, and 7-15 mass parts is more preferable. If the amount is less than 5 parts by mass, it is difficult to cause initial condensation, and the piping is blocked more than 20 parts by mass, the rebound rate increases, and the workability may be reduced.
本発明では、繊維状物質を使用することが好ましい。本発明の繊維状物質は、無機質や有機質いずれも使用でき、例えば、吹付けコンクリートの耐衝撃性や靭性を向上させる効果を有する。無機質の繊維状物質としては、ガラス繊維、炭素繊維、及び金属繊維等が挙げられ、有機質繊維としては、ビニロン繊維、PET再生繊維、及びポリプロピレン繊維等が挙げられ、これらの1種又は2種以上が使用できる。これらの中では、経済性の点で、金属繊維やポリプロピレン繊維が好ましい。 In the present invention, it is preferable to use a fibrous material. The fibrous material of the present invention can be either inorganic or organic, and has an effect of improving the impact resistance and toughness of shotcrete, for example. Examples of inorganic fibrous materials include glass fibers, carbon fibers, and metal fibers. Examples of organic fibers include vinylon fibers, recycled PET fibers, and polypropylene fibers, and one or more of these. Can be used. Among these, metal fibers and polypropylene fibers are preferable from the viewpoint of economy.
繊維状物質の長さは、コンクリート圧送性や混合性の点で、100mm以下が好ましく、0.5〜60mmがより好ましい。100mmを超えると圧送途中で吹付けコンクリートが閉塞するおそれがある。 The length of the fibrous material is preferably 100 mm or less, and more preferably 0.5 to 60 mm in terms of concrete pumpability and mixing properties. If it exceeds 100 mm, the shotcrete may be clogged during the feeding.
繊維状物質の使用量は、ベースコンクリート容積に対して0.1〜2容積%が好ましく、0.5〜1.5容積%がより好ましい。0.1容積%未満では耐衝撃性が得られない恐れがあり、2容積%を超えるとベースコンクリート流動性の低下や、配管の閉塞が発生したりする恐れがある。 The amount of the fibrous substance used is preferably 0.1 to 2% by volume, more preferably 0.5 to 1.5% by volume with respect to the base concrete volume. If the amount is less than 0.1% by volume, impact resistance may not be obtained. If the amount exceeds 2% by volume, the fluidity of the base concrete may be deteriorated or the piping may be blocked.
本発明で使用するベースコンクリートのセメント量は、360〜700kg/m3であり、400〜500kg/m3がより好ましい。360kg/m3未満では、コンクリートが分離しやすくなり、施工性が低下する恐れがあり、700kg/m3を超えるとコンクリートの粘性が増大し、施工作業性が低下する恐れがある。 Cement weight of the base concrete used in the present invention is a 360~700kg / m 3, 400~500kg / m 3 and more preferably. If it is less than 360 kg / m 3 , the concrete tends to be separated and the workability may be reduced, and if it exceeds 700 kg / m 3 , the viscosity of the concrete increases and the workability of the work may be reduced.
本発明は、例えば、石膏、減水剤、有機酸、及びアルカリ金属炭酸塩を含有する混和材として使用する。石膏、減水剤、有機酸、及びアルカリ金属炭酸塩を予め混合した混和材とすることが好ましいが、石膏、減水剤、有機酸、及びアルカリ金属炭酸塩を、各材料毎に、セメントコンクリートに混合してもよい。 The present invention is used as an admixture containing, for example, gypsum, a water reducing agent, an organic acid, and an alkali metal carbonate. Gypsum, water reducing agent, organic acid, and alkali metal carbonate are preferably mixed in advance, but gypsum, water reducing agent, organic acid, and alkali metal carbonate are mixed into cement concrete for each material. May be.
水の使用量は、セメントと混和材の合計100質量部に対して、20〜60質量部が好ましく、25〜50質量部がより好ましい。20質量部未満では、セメント、石膏、急結剤等の材料が増加し経済的でなく、ポンプ圧送性等の施工性が低下する恐れがある。60質量部を超えると強度発現性が低下し、効果が得られない恐れがある。 The amount of water used is preferably 20 to 60 parts by mass and more preferably 25 to 50 parts by mass with respect to 100 parts by mass in total of cement and admixture. If the amount is less than 20 parts by mass, materials such as cement, gypsum, and quick setting agent increase, which is not economical, and there is a possibility that workability such as pumpability may be reduced. If it exceeds 60 parts by mass, strength development will be reduced and the effect may not be obtained.
細骨材率は、50容量%以上が好ましく、60〜80容量%がより好ましい。 The fine aggregate ratio is preferably 50% by volume or more, and more preferably 60 to 80% by volume.
本発明で使用される細骨材や粗骨材等の骨材は、吸水率が低く、骨材自体の強度が高いものが好ましいが、特に制限されるものではない。 The aggregate such as fine aggregate and coarse aggregate used in the present invention preferably has a low water absorption rate and a high strength of the aggregate itself, but is not particularly limited.
細骨材は、最大寸法5mm以下のものか好ましく、川砂、山砂、及び石灰砂等が挙げられる。粗骨材としては、最大寸法15mm以下のものが好ましい。 The fine aggregate is preferably one having a maximum dimension of 5 mm or less, and examples thereof include river sand, mountain sand, and lime sand. As the coarse aggregate, those having a maximum dimension of 15 mm or less are preferable.
本発明で使用するベースコンクリートのスランプは、吹付け施工が支障なく出来る様に調整すれば厳密に規定するものは無いが、水セメント比率が小さいと、スランプが小さくなり、コンクリートポンプの圧送性能が低下するため、通常は、18cm程度である。 The slump of the base concrete used in the present invention is not strictly specified if it is adjusted so that spraying can be performed without any trouble, but if the water cement ratio is small, the slump becomes small and the pumping performance of the concrete pump is reduced. Since it falls, it is usually about 18 cm.
本発明におけるベースコンクリートの混練り方法は、混和材を、水、セメント、細骨材、及び必要に応じて添加する粗骨材を含有するセメントコンクリートを練混ぜた後に添加する。 In the method for kneading the base concrete in the present invention, the admixture is added after kneading the cement concrete containing water, cement, fine aggregate, and coarse aggregate to be added as necessary.
混和材を水、セメント、細骨材、粗骨材を練混ぜる前に添加すると、練混ぜ後の時間経過とともにスランプが低下する。 If the admixture is added before water, cement, fine aggregate, and coarse aggregate are mixed, the slump decreases with the passage of time after mixing.
混和材を添加する時期は、練混ぜ機械の性能等で変わるが、水、セメント、細骨材、及び又は粗骨材を練混ぜてから、10〜60秒が好ましく、20〜50秒が好ましい。10秒未満だと流動性の保持性が得られない恐れがあり、60秒を超えると流動性の保持性が得られない恐れがある。 The timing of adding the admixture varies depending on the performance of the kneading machine, but it is preferably 10 to 60 seconds and preferably 20 to 50 seconds after mixing water, cement, fine aggregate, and / or coarse aggregate. . If it is less than 10 seconds, fluidity retention may not be obtained, and if it exceeds 60 seconds, fluidity retention may not be obtained.
繊維状物質の混合方法は、ベースコンクリート側や急結剤側へ添加する方法や、繊維状物質のみ別個に添加する方法等が挙げられ、これらを併用しても良い。繊維状物質をベースコンクリート側に添加する場合の添加時期は、混和材を添加する前であっても、後であっても良い。 Examples of the method of mixing the fibrous material include a method of adding to the base concrete side and the quick setting agent side, a method of adding only the fibrous material separately, and the like. When the fibrous substance is added to the base concrete side, it may be added before or after the admixture is added.
本発明の吹付け方法は、一般に適用されている湿式吹付け工法等により施工できる。該吹付け工法の一例を説明する。セメント、水、骨材を練混ぜてセメントコンクリートを調製し、その後、混和材を添加し、更に繊維状物質を含有したベースコンクリートをコンクリート圧送機で輸送配管内を圧送する。コンクリート圧送の途中、吹付けノズル手前においてY字管等の混合管で急結剤を添加して地山に吹付ける方法等がある。本発明で使用する吹付け設備は、吹付けが十分に行われれば、特に限定されるものではなく、従来から用いられる吹付け装置、その他の設備をそのまま利用できる。 The spraying method of the present invention can be applied by a generally applied wet spraying method or the like. An example of the spraying method will be described. Cement, water, and aggregate are mixed to prepare cement concrete. After that, an admixture is added, and further, base concrete containing fibrous substances is pumped through a transport pipe with a concrete pump. There is a method of adding a rapid setting agent with a mixing tube such as a Y-shaped tube and spraying it on a natural ground during the concrete pumping and before the spray nozzle. The spraying equipment used in the present invention is not particularly limited as long as the spraying is sufficiently performed, and a conventionally used spraying apparatus and other equipment can be used as they are.
以下、実験例により本発明を詳細に説明する。実験例は全て20℃条件で実施した。 Hereinafter, the present invention will be described in detail by experimental examples. All the experimental examples were carried out at 20 ° C.
(実験例1)
下記に示した材料を用い、セメント/細骨材質量比=1/2.5、水/粉体比(粉体はセメントと混和材の合計)=40質量%の配合で、セメント100質量部に対して、石膏9質量部、減水剤0.6質量部、有機酸0.3質量部、アルカリ金属炭酸塩0.3質量部からなる混和材の添加時期を変化させて混練りしたモルタルのモルタルフローの経時変化、急結剤添加後の凝結性状、強度発現性を測定した。
各材料を添加する方法は以下に従った。水、セメント、細骨材の練混ぜ開始後、表1に示す時期に混和材を添加して90秒練り混ぜ、その後、急結剤を添加した。
実験No.1−7は、水、セメント、細骨材、減水剤、有機酸、アルカリ金属炭酸塩の練混ぜを開始してから30秒後に、石膏からなる混和材を添加したこと以外は、上記に従った。
急結剤は、カルシウムアルミネート:アルカリ金属アルミン酸塩:水酸化カルシウム=100:10:5(質量比)の混合品を用いた。
急結剤は、セメント100質量部に対して10質量部添加した。
結果を表1に示す。
(Experimental example 1)
Using the materials shown below, cement / fine aggregate mass ratio = 1 / 2.5, water / powder ratio (powder is the sum of cement and admixture) = 40 mass%, and 100 mass parts of cement For the mortar kneaded by changing the addition timing of the admixture consisting of 9 parts by mass of gypsum, 0.6 parts by mass of the water reducing agent, 0.3 parts by mass of the organic acid, and 0.3 parts by mass of the alkali metal carbonate. Changes over time in mortar flow, setting properties after addition of a quick setting agent, and strength development were measured.
The method of adding each material was as follows. After the mixing of water, cement, and fine aggregate was started, the admixture was added and mixed for 90 seconds at the time shown in Table 1, and then the quick setting agent was added.
Experiment No. 1-7 is the same as above except that an admixture made of gypsum was added 30 seconds after the start of mixing of water, cement, fine aggregate, water reducing agent, organic acid, and alkali metal carbonate. It was.
As the quick setting agent, a mixture of calcium aluminate: alkali metal aluminate: calcium hydroxide = 100: 10: 5 (mass ratio) was used.
10 parts by mass of the quick setting agent was added to 100 parts by mass of cement.
The results are shown in Table 1.
[使用材料]
セメント:普通ポルトランドセメント、ブレーン値3200cm2/g、比重3.15
細骨材:新潟県糸魚川産姫川水系砂、表乾密度=2.62、最大寸法=5mm
石膏:無水石膏、ブレーン値4000cm2/g、市販品
減水剤:ナフタレンスルホン酸塩系粉末品、市販品
有機酸:クエン酸、市販品
アルカリ金属炭酸塩:重炭酸ナトリウム、市販品
カルシウムアルミネート:C12A7組成に対応する熱処理物を急冷した非晶質、ブレーン値5900cm2/g
アルカリ金属アルミン酸塩:アルミン酸ナトリウム、市販品
水酸化カルシウム:消石灰、市販品
[Materials used]
Cement: Ordinary Portland cement, Blaine value 3200 cm 2 / g, Specific gravity 3.15
Fine aggregate: Himekawa water sand from Itoigawa, Niigata Prefecture, surface dry density = 2.62, maximum dimension = 5mm
Gypsum: anhydrous gypsum, brain value 4000 cm 2 / g, commercial water reducing agent: naphthalene sulfonate-based powder product, commercial product organic acid: citric acid, commercial product alkali metal carbonate: sodium bicarbonate, commercial product calcium aluminate: Amorphous obtained by quenching the heat-treated product corresponding to the C 12 A 7 composition, Blaine value 5900 cm 2 / g
Alkali metal aluminate: sodium aluminate, commercial product calcium hydroxide: slaked lime, commercial product
[評価方法]
(フロー値)
モルタルフロー試験のフロー値を測定した。混練り直後と混練り後60分経過後のモルタルフロー値を測定。試験方法はJIS R 5201に準じた。
(凝結時間)
凝結試験を行った。急結剤を添加したモルタルの始発時間と終結時間を測定した。試験方法は、土木学会基準JSCE−D 102−2001 附属書 貫入抵抗によるモルタルの凝結時間測定方法に準じて実施した。
(圧縮強度)
急結剤を添加したモルタルの圧縮強度を測定した。試験方法はJIS R 5201に準じた。
[Evaluation methods]
(Flow value)
The flow value of the mortar flow test was measured. Measure mortar flow values immediately after kneading and 60 minutes after kneading. The test method conformed to JIS R 5201.
(Condensation time)
A setting test was conducted. The initial and final times of the mortar with the quick setting agent added were measured. The test method was carried out in accordance with the JSCE Standard JSCE-D 102-2001 Annex, a method for measuring the setting time of mortar by penetration resistance.
(Compressive strength)
The compressive strength of the mortar to which the quick setting agent was added was measured. The test method conformed to JIS R 5201.
表1の結果から、混和材の添加時期を、セメント、水、細骨材を練混ぜた後に設定することにより、流動性の保持性に優れ、急結性に優れ、且つ、良好な強度発現性が得られることが確認された。比較例として実施した実験No.1−1では練混ぜ後60分後の流動性が低下するので、施工性が悪化する。混和材の添加時期が遅い実験No.1−6では練混ぜ後120秒後の流動性、強度発現性が低下する。 From the results in Table 1, by setting the addition time of the admixture after mixing cement, water, and fine aggregate, it has excellent fluidity retention, excellent quick setting, and good strength development. It was confirmed that the property was obtained. Experiment No. conducted as a comparative example. In 1-1, since the fluidity | liquidity 60 minutes after kneading | mixing falls, construction property deteriorates. Experiment No. with late addition of admixture In 1-6, fluidity | liquidity and intensity | strength expression property 120 seconds after kneading fall.
(実験例2)
表2に示すセメント量、表2に示す水/粉体比、細骨材率=60容積%とした配合のコンクリートを用い、急結剤を添加して吹付けを行い、配管内の閉塞の有無、リバウンド率、吹付け圧縮強度を測定した。コンクリートに添加した混和材は、セメント100質量部に対して、石膏9質量部、減水剤0.6質量部、有機酸は0.3質量部、アルカリ金属炭酸塩は0.3質量部からなる。混和材は、水、セメント、細骨材、粗骨材を練混ぜてから30秒後に添加した。
混和材を添加したコンクリートを、コンクリートポンプ「シンテックMKW−25SMT」を使用して圧送し、圧送配管途中で設けたY字管の一方より、急結剤添加装置「デンカナトムクリートPAC250V」で空気搬送した急結剤を添加、Y字管から2mの配管を通して吹付けた。コンクリートの圧送速度は、10m3/hとした。
急結剤は、カルシウムアルミネート:アルカリ金属アルミン酸塩:水酸化カルシウム=100:10:5(質量比)の混合品を用いた。
急結剤は、セメント100質量部に対して10質量部添加した。
結果を表2に示す。
(Experimental example 2)
Using concrete with the amount of cement shown in Table 2, the water / powder ratio shown in Table 2, and the fine aggregate ratio = 60% by volume, spraying with the addition of rapid setting agent, blocking the clogging in the piping Presence / absence, rebound rate and spray compression strength were measured. The admixture added to the concrete consists of 9 parts by weight of gypsum, 0.6 parts by weight of water reducing agent, 0.3 parts by weight of organic acid, and 0.3 parts by weight of alkali metal carbonate with respect to 100 parts by weight of cement. . The admixture was added 30 seconds after mixing water, cement, fine aggregate and coarse aggregate.
Concrete with admixture added is pumped using a concrete pump “Shintech MKW-25SMT”, and air transported from one of the Y-shaped pipes provided in the middle of the pumping pipe with the “Denkatom Cleat PAC250V” The quick setting agent was added and sprayed from a Y-tube through a 2 m pipe. The pumping speed of concrete was 10 m 3 / h.
As the quick setting agent, a mixture of calcium aluminate: alkali metal aluminate: calcium hydroxide = 100: 10: 5 (mass ratio) was used.
10 parts by mass of the quick setting agent was added to 100 parts by mass of cement.
The results are shown in Table 2.
[使用材料]
粗骨材:新潟県糸魚川産6号砕石、最大寸法=15mm、表乾密度=2.64
[Materials used]
Coarse aggregate: No. 6 crushed stone from Itoigawa, Niigata Prefecture, maximum dimension = 15 mm, surface dry density = 2.64
[評価方法]
(配管内の閉塞の有無)
吹付け中、コンクリートポンプからノズル先端までのコンクリート圧送経路内での、閉塞の有無を確認した。
(リバウンド率)
コンクリートを1m3吹付けし、吹き付け終了後、付着せずに床面に敷いたビニールシートに落下したコンクリートの量を測定し、リバウンド率=(吹付けの際に付着せずに落下したコンクリートの質量)/(吹き付けに使用したコンクリートの総質量)×100(%)の式から算出した。
(吹付け圧縮強度)
材齢10分強度は、土木学会基準JSCE−G 561−1999 引き抜き方法による吹付けコンクリートの初期強度試験方法により測定した。材齢28日の圧縮強度は、幅50cm×長さ50cm×厚さ20cmの型枠にコンクリートを吹き付け、そのコンクリート塊からコア採取した直径5cm×長さ10cmの供試体を20トン耐圧機で測定し、圧縮強度を求めた。
[Evaluation methods]
(Possibility of blockage in piping)
During spraying, we checked for blockage in the concrete pumping path from the concrete pump to the nozzle tip.
(Rebound rate)
Concrete 1 m 3 spray poppy, after spraying ends, the amount of concrete that has fallen to the vinyl sheet lined on the floor without adhering to measure the rebound rate = (the concrete dropped without adhering during spray (Mass) / (total mass of concrete used for spraying) × 100 (%).
(Blowing compression strength)
The strength at the age of 10 minutes was measured by the initial strength test method of shotcrete by the JSCE-G 561-1999 drawing method. The compressive strength at the age of 28 days was measured with a 20-ton pressure machine on a specimen having a diameter of 5 cm and a length of 10 cm cored from a concrete block after spraying concrete onto a mold 50 cm wide x 50 cm long x 20 cm thick. The compressive strength was determined.
表2の結果から明らかなように、セメント量と水/粉体比を特定の範囲に設定することにより、配管の閉塞がない、リバウンド率が少ない、強度発現性が高い、吹付けコンクリートが得られた。
As is clear from the results in Table 2, by setting the cement amount and the water / powder ratio to specific ranges, there is no clogging of the pipe, the rebound rate is low, the strength expression is high, and the shotcrete is obtained. It was.
(実験例3)
ベースコンクリート容積に対して表3に示す繊維量、セメント量450kg/m3、水/粉体比=40質量%、細骨材率=60容積%とした配合のコンクリートを用い、吹付けを行い、配管内の閉塞の有無、耐衝撃性を測定したこと以外は、実験例2と同様に行った。
結果を表3に示す。
(Experimental example 3)
Spraying is performed using concrete having a composition of fiber amount, cement amount 450 kg / m 3 , water / powder ratio = 40 mass%, fine aggregate ratio = 60 volume% shown in Table 3 with respect to the base concrete volume. The test was performed in the same manner as in Experimental Example 2 except that the presence or absence of blockage in the piping and the impact resistance were measured.
The results are shown in Table 3.
[使用材料]
繊維状物質A:市販ビニロン繊維、繊維長30mm
繊維状物質B:市販鋼製繊維、繊維長30mm
繊維状物質C:市販ビニロン繊維、繊維長0.5mm
繊維状物質D:市販ビニロン繊維、繊維長60mm
繊維状物質E:市販ビニロン繊維、繊維長100mm
[Materials used]
Fibrous material A: commercial vinylon fiber, fiber length 30 mm
Fibrous material B: Commercially available steel fiber, fiber length 30 mm
Fibrous material C: commercially available vinylon fiber, fiber length 0.5 mm
Fibrous material D: commercial vinylon fiber, fiber length 60 mm
Fibrous material E: Commercial vinylon fiber, fiber length 100 mm
[評価方法]
(耐衝撃性)
吹付けてから1時間経過後の吹付けコンクリートから幅20cm、長さ200cm、厚さ1cmに切り取ったものを平らに均した砂の上に置き、重さ100gの球体を50cmの高さから落下させた。落下回数が5回以内でひびが入って破壊したものを不可とし、落下回数が5回以内でひびが少し入ったが破壊に至らなかったものを可とし、落下回数が5回を越えてもひびが入らず、破壊していないものを良とした。
[Evaluation methods]
(Impact resistance)
After 1 hour has passed since spraying, a piece of shot concrete cut to a width of 20 cm, length of 200 cm, and thickness of 1 cm is placed on a flattened sand, and a sphere weighing 100 g falls from a height of 50 cm. I let you. If the number of drops is 5 or less and cracked and destroyed, it is not allowed. If the number of drops is 5 or less and cracked a little, but it did not result in destruction, even if the number of drops exceeds 5 Those that did not crack and were not destroyed were considered good.
表3の結果から、本発明により得たコンクリートは、配管の閉塞がなく、耐衝撃性に優れていることが確認された。 From the results in Table 3, it was confirmed that the concrete obtained according to the present invention had no blockage of piping and was excellent in impact resistance.
(実験例4)
ベースコンクリート容積に対して繊維状物質A量1.0容積%、セメント量450kg/m3、水/粉体比=40質量%、細骨材率=60容積%とした配合のベースコンクリートについて、混和材の添加時期を変化させて混練りしたベースコンクリートのスランプ変化を測定した。急結剤を添加して吹付けを行い、スランプと吹付け圧縮強度を測定した。それ以外は、実験例2と同様に行った。
結果を表4に示す。
(Experimental example 4)
About the base concrete of the mixing | blending which made fibrous substance A amount 1.0 volume% with respect to the base concrete volume, cement amount 450kg / m < 3 >, water / powder ratio = 40 mass%, fine aggregate rate = 60 volume%, The slump change of the base concrete kneaded by changing the addition time of the admixture was measured. The quick setting agent was added and sprayed, and the slump and spray compressive strength were measured. Other than that was carried out similarly to Experimental Example 2.
The results are shown in Table 4.
[評価方法]
(スランプ)
急結剤を添加しないベースコンクリートのスランプは、JIS A 1101に準じて測定した。
[Evaluation methods]
(slump)
The slump of the base concrete to which no quick setting agent was added was measured according to JIS A 1101.
表4の結果から、混和材の添加時期を、セメント、水、細骨材、粗骨材を練混ぜた後に設定することにより、ベースコンクリートのスランプ保持性は改善されるので作業性の優れた吹付けコンクリートが得られ、良好な強度発現性が得られることが確認された。比較例として実施した実験No.4−1では練混ぜ後60分後の流動性が低下したので、施工性が悪化した。混和材の添加時期が遅い実験No.2−5では練混ぜ後120秒後のスランプ保持性が低下した。 From the results in Table 4, the setting time of the admixture is set after mixing the cement, water, fine aggregate, and coarse aggregate, so that the slump retention property of the base concrete is improved and the workability is excellent. It was confirmed that shotcrete was obtained and good strength development was obtained. Experiment No. conducted as a comparative example. In 4-1, since the fluidity | liquidity 60 minutes after kneading fell, workability deteriorated. Experiment No. with late addition of admixture In 2-5, the slump retention property 120 seconds after mixing decreased.
(実施例5)
表5に示す配合割合の混和材、ベースコンクリート容積に対して繊維状物質A量1.0容積%、セメント量450kg/m3、水/粉体比=40質量%、細骨材率=60容積%とした配合のベースコンクリートについて、スランプ変化を測定した。急結剤を添加して吹付けを行い、スランプ、リバウンド率、耐衝撃性、吹付け圧縮強度を測定した。それ以外は、実験例2と同様に行った。
結果を表5に示す。
(Example 5)
Admixtures with mixing ratios shown in Table 5, fibrous substance A amount 1.0 volume%, cement amount 450 kg / m 3 , water / powder ratio = 40 mass%, fine aggregate ratio = 60 with respect to base concrete volume The slump change was measured for the base concrete blended in volume%. The quick setting agent was added and sprayed to measure the slump, rebound rate, impact resistance, and spray compressive strength. Other than that was carried out similarly to Experimental Example 2.
The results are shown in Table 5.
表3の結果から、本発明による実施例では、スランプの保持性に優れ、急結性に優れ、且つ、良好な耐衝撃性と強度発現性が得られることが確認された。実験No.5−6では材齢28日時点でひび割れが発生し強度が低下し、実験No.5−7ではスランプが小さかった。実験No.5−12では材料分離が発生し、実験No.5−24ではスランプの保持性が悪かった。 From the results of Table 3, it was confirmed that in the examples according to the present invention, the slump retainability was excellent, the quick setting property was excellent, and the good impact resistance and strength development were obtained. Experiment No. In No. 5-6, cracks occurred at the age of 28 days and the strength decreased. In 5-7, the slump was small. Experiment No. 5-12, material separation occurred. In 5-24, the slump retention was poor.
(実験例6)
表6に示す配合の急結材の使用量、表6に示す配合の急結材の組成、ベースコンクリート容積に対して繊維状物質A量1.0容積%、セメント量450kg/m3、水/粉体比=40質量%、細骨材率=60容積%とした配合のコンクリートを用い、吹付けを行い、スランプ、リバウンド率、耐衝撃性、吹付け圧縮強度を測定したこと以外は、実験例2と同様に行った。
結果を表6に示す。
(Experimental example 6)
The amount of the quick setting material shown in Table 6 used, the composition of the quick setting material shown in Table 6, the amount of fibrous substance A 1.0% by volume, the amount of cement 450 kg / m 3 , water / Powder ratio = 40% by mass, fine aggregate ratio = 60% by volume, using concrete, spraying and measuring slump, rebound rate, impact resistance, spray compressive strength, It carried out similarly to Experimental example 2.
The results are shown in Table 6.
表6の結果から、本発明による急結剤を用いることで、リバウンド率が低減し、且つ、良好な耐衝撃性と強度発現性が得られた。 From the results shown in Table 6, by using the quick setting agent according to the present invention, the rebound rate was reduced, and good impact resistance and strength development were obtained.
(実施例7)
ベースコンクリート容積に対して繊維状物質A量1.0容積%、表7に示すセメント量、表7に示す水/粉体比、細骨材率=60容積%とした配合のコンクリートを用い、吹付けを行い、配管閉塞の有無、リバウンド率、耐衝撃性、吹付け圧縮強度を測定したこと以外は、実験例2と同様に行った。
結果を表7に示す。
(Example 7)
Using concrete with a composition of 1.0% by volume of fibrous substance A with respect to the base concrete volume, cement amount shown in Table 7, water / powder ratio shown in Table 7, fine aggregate ratio = 60% by volume, The experiment was performed in the same manner as in Experimental Example 2, except that the presence or absence of piping blockage, the rebound rate, the impact resistance, and the spray compression strength were measured.
The results are shown in Table 7.
表7の結果から明らかなように、本発明によるセメント量、水/粉体比に調整することで、施工性、耐衝撃性に優れ、短時間で高い強度発現性を有する吹付けコンクリートが得られた。 As is apparent from the results in Table 7, by adjusting to the cement amount and water / powder ratio according to the present invention, a shotcrete having excellent workability and impact resistance and having high strength development in a short time is obtained. It was.
吹付け工法において、地山状態の悪い場合、地山圧力によりトンネル形状に大きな変形が生じることがあり、そのため吹付けコンクリートにひび割れが生じ、場合によっては剥がれ落ちるおそれがあるという課題があった。通常、掘削後比較的初期から地山圧力がかかる場合が多く、吹付けコンクリートには、流動性の保持性に優れていること、短時間の強度発現が高いこと、耐衝撃性や靭性を持つことが求められていた。
本発明は上記課題を解決したものであり、流動性の保持性能を高め、短時間に高い強度を保持し、かつ耐衝撃性に優れた吹付けコンクリートを得るものである。
In the spraying method, when the ground condition is bad, the tunnel shape may be greatly deformed due to the ground pressure, so that there is a problem that the sprayed concrete is cracked and possibly peeled off. Usually, natural ground pressure is often applied from a relatively early stage after excavation, and shotcrete has excellent fluidity retention, high strength in a short time, impact resistance and toughness. It was demanded.
The present invention solves the above-described problems, and obtains shotcrete that improves fluidity retention performance, retains high strength in a short time, and is excellent in impact resistance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006124888A JP4805721B2 (en) | 2006-04-28 | 2006-04-28 | Quick setting spray method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006124888A JP4805721B2 (en) | 2006-04-28 | 2006-04-28 | Quick setting spray method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007297227A true JP2007297227A (en) | 2007-11-15 |
JP4805721B2 JP4805721B2 (en) | 2011-11-02 |
Family
ID=38767061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006124888A Active JP4805721B2 (en) | 2006-04-28 | 2006-04-28 | Quick setting spray method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4805721B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013177279A (en) * | 2012-02-29 | 2013-09-09 | Denki Kagaku Kogyo Kk | Spray material and spraying method using the same |
JP7058005B2 (en) | 2018-03-30 | 2022-04-21 | 住友大阪セメント株式会社 | Drywall method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59207208A (en) * | 1983-05-11 | 1984-11-24 | 相武生コン株式会社 | Manufacture of concrete |
JP2001172063A (en) * | 1999-12-17 | 2001-06-26 | Denki Kagaku Kogyo Kk | Setting regulator slurry, cement concrete, quick-setting cement concrete, method for working quick-setting cement concrete |
JP2003081668A (en) * | 2001-09-05 | 2003-03-19 | Denki Kagaku Kogyo Kk | Quick setting agent, quick setting agent slurry, spraying material, and spraying method using the same |
JP2003081665A (en) * | 2001-09-05 | 2003-03-19 | Denki Kagaku Kogyo Kk | Quick setting agent, quick setting agent slurry, spraying material, and spraying method using the same |
JP2004323355A (en) * | 2004-07-20 | 2004-11-18 | Denki Kagaku Kogyo Kk | Spraying material and spraying method using the same |
-
2006
- 2006-04-28 JP JP2006124888A patent/JP4805721B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59207208A (en) * | 1983-05-11 | 1984-11-24 | 相武生コン株式会社 | Manufacture of concrete |
JP2001172063A (en) * | 1999-12-17 | 2001-06-26 | Denki Kagaku Kogyo Kk | Setting regulator slurry, cement concrete, quick-setting cement concrete, method for working quick-setting cement concrete |
JP2003081668A (en) * | 2001-09-05 | 2003-03-19 | Denki Kagaku Kogyo Kk | Quick setting agent, quick setting agent slurry, spraying material, and spraying method using the same |
JP2003081665A (en) * | 2001-09-05 | 2003-03-19 | Denki Kagaku Kogyo Kk | Quick setting agent, quick setting agent slurry, spraying material, and spraying method using the same |
JP2004323355A (en) * | 2004-07-20 | 2004-11-18 | Denki Kagaku Kogyo Kk | Spraying material and spraying method using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013177279A (en) * | 2012-02-29 | 2013-09-09 | Denki Kagaku Kogyo Kk | Spray material and spraying method using the same |
JP7058005B2 (en) | 2018-03-30 | 2022-04-21 | 住友大阪セメント株式会社 | Drywall method |
Also Published As
Publication number | Publication date |
---|---|
JP4805721B2 (en) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5611795B2 (en) | Quick setting agent for spraying, sprayed concrete using the same, and spraying method | |
JP4020448B2 (en) | Spraying method | |
JPH10259047A (en) | Accelerator, cement composition, spraying material, and spraying method using the same | |
JP5026928B2 (en) | Quick set and spray material | |
JP2011001203A (en) | Method of spraying | |
JPH1179818A (en) | Cement admixture, cement composition, spraying material and spraying process using the same | |
JP3534586B2 (en) | Quick setting material and quick setting sprayed cement concrete | |
JP3412794B2 (en) | Spraying material and spraying method using it | |
JPH10265247A (en) | Quickly settable spraying cement concrete | |
JP3894598B2 (en) | Spray material and spray method using the same | |
JP4805721B2 (en) | Quick setting spray method | |
JP4838106B2 (en) | Method of spraying cement concrete material for spraying | |
JP4244080B2 (en) | Rapid setting sprayed cement concrete and spraying method using the same | |
JP3483105B2 (en) | Quick setting material, spraying material, and spraying method | |
JP4430038B2 (en) | Spray material and spray method using the same | |
JP2002226247A (en) | Blasting material and blasting process using the same | |
JP4248455B2 (en) | Spraying method | |
JP2002037656A (en) | Wet spraying concrete | |
JPH11199287A (en) | Setting accelerator and quick-setting spray cement concrete | |
JP4651134B2 (en) | Quick setting agent for high fluid spraying concrete | |
JP4689072B2 (en) | Cement concrete, quick setting cement concrete, and preparation method | |
JPH10194815A (en) | Spraying material and spraying construction using the same | |
JPH09255387A (en) | Spray material and spray technique using the same | |
JP2004323356A (en) | Spraying material and spray processing method using the same | |
JP4832659B2 (en) | Construction method of quick setting cement concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110809 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110811 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4805721 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |