JP2007296437A - Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam - Google Patents

Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam Download PDF

Info

Publication number
JP2007296437A
JP2007296437A JP2006125007A JP2006125007A JP2007296437A JP 2007296437 A JP2007296437 A JP 2007296437A JP 2006125007 A JP2006125007 A JP 2006125007A JP 2006125007 A JP2006125007 A JP 2006125007A JP 2007296437 A JP2007296437 A JP 2007296437A
Authority
JP
Japan
Prior art keywords
catalyst
caprolactam
cyclohexanone oxime
zeolite catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125007A
Other languages
Japanese (ja)
Inventor
Keisuke Sugita
啓介 杉田
Masaru Kitamura
勝 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006125007A priority Critical patent/JP2007296437A/en
Publication of JP2007296437A publication Critical patent/JP2007296437A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Other In-Based Heterocyclic Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To regenerate a zeolite catalyst used for a Beckmann rearrangement reaction of cyclohexanone oxime while effectively improving the activity of the used zeolite catalyst and to produce epsilon-caprolactam in high yield over a long period of time by reusing the zeolite catalyst thus regenerated. <P>SOLUTION: The zeolite catalyst used for the Beckmann rearrangement reaction of cyclohexanone oxime is brought into contact with a gas, in which tertiary amine and water are incorporated and carboxylic acid is not incorporated substantially, to regenerate the used zeolite catalyst. Cyclohexanone oxime is subjected to the Beckmann rearrangement reaction in the presence of the zeolite catalyst thus regenerated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ε−カプロラクタム製造用触媒を再生する方法に関するものである。また、本発明は、この再生触媒を用いてシクロヘキサノンオキシムからε−カプロラクタムを製造する方法にも関係している。   The present invention relates to a method for regenerating a catalyst for producing ε-caprolactam. The present invention also relates to a method for producing ε-caprolactam from cyclohexanone oxime using this regenerated catalyst.

ε−カプロラクタムを製造する方法の1つとして、シクロヘキサノンオキシムをゼオライト触媒の存在下にベックマン転位反応させることが知られている。この触媒は通常、使用時間の経過につれて活性が徐々に低下するため、その再生方法として、例えば、特開平5−9180号公報(特許文献1)には、使用済触媒をアンモニアで接触処理することが提案されている。また、特開2003−320260号公報(特許文献2)には、使用済触媒を4級アンモニウム化合物及び/又は低級アルキルアミンとアンモニアを含む水溶液で接触処理することが提案されている。さらに、特開2005−224752号公報(特許文献3)には、使用済触媒をアンモニア及び/又はアミンとカルボン酸と水を含むガスで接触処理することが提案されている。   As one method for producing ε-caprolactam, it is known that cyclohexanone oxime is subjected to Beckmann rearrangement reaction in the presence of a zeolite catalyst. Since the activity of this catalyst usually decreases gradually as the usage time elapses, as a regeneration method, for example, in JP-A-5-9180 (Patent Document 1), a used catalyst is contact-treated with ammonia. Has been proposed. Japanese Patent Application Laid-Open No. 2003-320260 (Patent Document 2) proposes that a used catalyst is contact-treated with an aqueous solution containing a quaternary ammonium compound and / or a lower alkylamine and ammonia. Furthermore, Japanese Patent Laying-Open No. 2005-224752 (Patent Document 3) proposes that a used catalyst is contact-treated with a gas containing ammonia and / or an amine, a carboxylic acid, and water.

特開平5−9180号公報JP-A-5-9180 特開2003−320260号公報JP 2003-320260 A 特開2005−224752号公報Japanese Patent Laid-Open No. 2005-224752

本発明者等は、上記ε−カプロラクタム製造用触媒のさらに優れた再生方法を開発すべく鋭意研究を行った結果、使用済触媒を所定のガスで接触処理することにより、具体的には、特許文献3に提案の接触処理用のガスからカルボン酸を除き、かつ該ガス中のアミンとして第3アミンを必須とし、このガスで使用済触媒を接触処理することにより、その触媒活性がより効果的に向上しうることを見出し、本発明を完成するに至った。   As a result of earnest research to develop a further excellent regeneration method for the above-mentioned catalyst for producing ε-caprolactam, the present inventors contacted the spent catalyst with a predetermined gas, specifically, a patent By removing the carboxylic acid from the gas for contact treatment proposed in Reference 3 and making a tertiary amine essential as the amine in the gas, the catalytic activity is made more effective by subjecting the spent catalyst to contact treatment with this gas. As a result, the present invention has been completed.

すなわち、本発明は、シクロヘキサノンオキシムのベックマン転位反応に使用したゼオライト触媒を、第3アミン及び水を含み、実質的にカルボン酸を含まないガスと接触させることにより、ε−カプロラクタム製造用触媒を再生する方法を提供するものである。また、本発明によれば、こうして再生した触媒の存在下に、シクロヘキサノンオキシムをベックマン転位反応させることにより、ε−カプロラクタムを製造する方法も提供される。   That is, the present invention regenerates the catalyst for producing ε-caprolactam by bringing the zeolite catalyst used for the Beckmann rearrangement reaction of cyclohexanone oxime into contact with a gas containing a tertiary amine and water and substantially no carboxylic acid. It provides a way to The present invention also provides a method for producing ε-caprolactam by subjecting cyclohexanone oxime to Beckmann rearrangement reaction in the presence of the catalyst thus regenerated.

本発明の再生方法によれば、シクロヘキサノンオキシムのベックマン転位反応に使用したゼオライト触媒の活性を、効果的に向上させることができる。そして、この方法で触媒を再生、再使用することにより、ε−カプロラクタムを長期間にわたり高収率で製造することができる。   According to the regeneration method of the present invention, the activity of the zeolite catalyst used in the Beckmann rearrangement reaction of cyclohexanone oxime can be effectively improved. By regenerating and reusing the catalyst by this method, ε-caprolactam can be produced in a high yield over a long period of time.

本発明が再生の対象とする触媒は、シクロヘキサノンオキシムをベックマン転位反応させる際に使用されるゼオライト触媒である。このゼオライト触媒は、その骨格が実質的にケイ素及び酸素のみから構成される結晶性シリカであってもよいし、骨格を構成する元素としてさらに他の元素を含む結晶性メタロシリケート等であってもよい。   The catalyst to be regenerated by the present invention is a zeolite catalyst used when cyclohexanone oxime undergoes Beckmann rearrangement reaction. This zeolite catalyst may be crystalline silica whose skeleton is substantially composed only of silicon and oxygen, or may be a crystalline metallosilicate containing other elements as elements constituting the skeleton. Good.

結晶性メタロシリケート等である場合、ケイ素及び酸素以外に存在しうる元素としては、例えば、Be、B、Al、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Sb、La、Hf、Bi等が挙げられ、これらの2種以上が含まれてもよい。これら元素に対するケイ素の原子比は、通常5以上であり、好ましくは500以上である。なお、この原子比は、原子吸光法や蛍光X線法等により測定することができる。   In the case of a crystalline metallosilicate or the like, examples of elements that can exist other than silicon and oxygen include, for example, Be, B, Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, and Zr. , Nb, Sb, La, Hf, Bi and the like, and two or more of these may be included. The atomic ratio of silicon to these elements is usually 5 or more, preferably 500 or more. This atomic ratio can be measured by an atomic absorption method or a fluorescent X-ray method.

上記ゼオライト触媒としては、ペンタシル型構造のものが好ましく、中でもMFI構造のものが好ましい。また、その粒径は、通常0.001〜5mm、好ましくは0.01〜3mmである。   As the zeolite catalyst, those having a pentasil structure are preferable, and those having an MFI structure are particularly preferable. Moreover, the particle size is 0.001-5 mm normally, Preferably it is 0.01-3 mm.

上記ゼオライト触媒の存在下に、シクロヘキサノンオキシムのベックマン転位反応を行うと、通常、炭素質物質の析出や熱劣化等により触媒の活性が徐々に低下する、すなわちシクロヘキサノンオキシムの転化率が徐々に低下する。そこで、本発明では、ベックマン転位反応に使用したゼオライト触媒を、第3アミン及び水(水蒸気)を含み、実質的にカルボン酸を含まないガスで接触処理する。かかる接触処理により、ゼオライト触媒の活性を効果的に回復させることができる。また、接触処理用のガス中に実質的にカルボン酸が含まれていないので、特許文献3に提案の方法では懸念された装置の腐食も防止できる。   When the Beckmann rearrangement reaction of cyclohexanone oxime is carried out in the presence of the above-mentioned zeolite catalyst, the activity of the catalyst gradually decreases due to precipitation of carbonaceous materials or thermal deterioration, that is, the conversion rate of cyclohexanone oxime gradually decreases. . Therefore, in the present invention, the zeolite catalyst used in the Beckmann rearrangement reaction is contact-treated with a gas containing a tertiary amine and water (water vapor) and substantially no carboxylic acid. By such contact treatment, the activity of the zeolite catalyst can be effectively recovered. Moreover, since the carboxylic acid is not substantially contained in the gas for contact treatment, corrosion of the apparatus, which is concerned by the method proposed in Patent Document 3, can be prevented.

接触処理用のガスに含まれる第3アミンは、脂肪族、脂環式又は芳香族の第3アミンであることができ、常圧における沸点が接触処理温度以下であるものが好ましい。第3アミンは必要に応じてそれらの2種以上を用いてもよい。   The tertiary amine contained in the gas for contact treatment can be an aliphatic, alicyclic or aromatic tertiary amine, and preferably has a boiling point at normal pressure or lower than the contact treatment temperature. Two or more types of tertiary amines may be used as necessary.

第3アミンの好適な例は、次の式(1)で示すことができる。
NR123 (1)
(式中、R1、R2及びR3は、それぞれ独立して、炭素数1〜4のアルキル基又はアリル基を表す。)
A suitable example of the tertiary amine can be represented by the following formula (1).
NR 1 R 2 R 3 (1)
(In formula, R < 1 >, R < 2 > and R < 3 > represent a C1-C4 alkyl group or an allyl group each independently.)

この式(1)で示される第3アミンの例としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアリルアミン等を挙げることができる。   Examples of the tertiary amine represented by the formula (1) include trimethylamine, triethylamine, tripropylamine, tributylamine, triallylamine and the like.

第3アミンと水の量比については、第3アミン1モルに対し、水が通常20〜1000モル、好ましくは30〜100モルである。   About the amount ratio of a tertiary amine and water, water is 20-1000 mol normally with respect to 1 mol of tertiary amines, Preferably it is 30-100 mol.

接触処理用のガスには、必要に応じて、例えば、窒素、二酸化炭素、ヘリウム、アルゴンの如き不活性成分や、アンモニア、第1アミン、第2アミンの如き第3アミン以外の塩基性成分等が、1種乃至2種以上含まれていてもよい。これら任意成分が含まれる場合、その合計量は、必須成分である第3アミン及び水の合計量1モルに対し、通常10モル以下、好ましくは5モル以下である。   Examples of the gas for contact treatment include inert components such as nitrogen, carbon dioxide, helium, and argon, and basic components other than tertiary amines such as ammonia, primary amine, and secondary amine as necessary. 1 type or 2 types or more may be included. When these optional components are included, the total amount is usually 10 mol or less, preferably 5 mol or less, relative to 1 mol of the total amount of the tertiary amine and water as essential components.

接触処理用のガスは、例えば、上記各成分をそれぞれガス化し、これらを混合することにより調製してもよいし、上記各成分を混合して混合液とし、これをガス化することにより調製してもよい。   The gas for contact treatment may be prepared, for example, by gasifying each of the above components and mixing them, or by mixing each of the above components into a mixed solution and gasifying it. May be.

接触処理の温度は、通常100〜450℃、好ましくは150〜300℃、さらに好ましくは150〜250℃である。また、接触処理の圧力は、通常0.005〜0.5MPa、好ましくは0.005〜0.2MPaである。接触処理の時間は適宜選択されるが、通常0.05〜50時間程度である。接触処理は、回分式で行ってもよいし、連続式で行ってもよい。また、接触処理に使用したガスは、回収して再使用してもよい。   The temperature of the contact treatment is usually 100 to 450 ° C, preferably 150 to 300 ° C, more preferably 150 to 250 ° C. Moreover, the pressure of a contact process is 0.005-0.5 MPa normally, Preferably it is 0.005-0.2 MPa. The time for the contact treatment is appropriately selected, but is usually about 0.05 to 50 hours. The contact treatment may be performed batchwise or continuously. Further, the gas used for the contact treatment may be recovered and reused.

接触処理に付すゼオライト触媒は、予め空気等の酸素含有ガスの雰囲気下に焼成しておいてもよく、この焼成処理により、触媒上に析出した炭素質物質等を燃焼除去しておくことができる。酸素含有ガス中の酸素濃度は、通常1〜30容量%、好ましくは5〜25容量%であり、残部は窒素、アルゴン、二酸化炭素等である。焼成処理の温度は、通常200〜600℃である。また、焼成処理の時間は適宜選択されるが、通常0.05〜50時間程度である。焼成法としては、例えば、特開平3−207454号公報に記載の如きアルコールを共存させる焼成法等を採用することもできる。   The zeolite catalyst to be subjected to the contact treatment may be previously calcined in an atmosphere of oxygen-containing gas such as air, and the carbonaceous material deposited on the catalyst can be burned and removed by this calcining treatment. . The oxygen concentration in the oxygen-containing gas is usually 1 to 30% by volume, preferably 5 to 25% by volume, and the balance is nitrogen, argon, carbon dioxide or the like. The temperature of the baking treatment is usually 200 to 600 ° C. Moreover, although the time of a baking process is selected suitably, it is about 0.05 to 50 hours normally. As the baking method, for example, a baking method in which alcohol is allowed to coexist as described in JP-A-3-207454 may be employed.

以上のようにして再生したゼオライト触媒は、シクロヘキサノンオキシムのベックマン転位反応に再使用することができ、このように触媒を再生、再使用することにより、ε−カプロラクタムを長期間にわたり高収率で製造することができる。   The zeolite catalyst regenerated as described above can be reused in the Beckmann rearrangement reaction of cyclohexanone oxime. By regenerating and reusing the catalyst in this way, ε-caprolactam can be produced in a high yield over a long period of time. can do.

シクロヘキサノンオキシムのベックマン転位反応は、気相条件下に、流動床方式、固定床方式、又は移動床方式で行うことができ、反応温度は通常250〜500℃、好ましくは300〜450℃であり、反応圧力は通常0.005〜0.5MPa、好ましくは0.005〜0.2MPaである。また、触媒1kgあたりの原料シクロヘキサノンオキシムの供給速度(kg/h)、すなわち原料シクロヘキサノンオキシムの空間速度WHSV(h-1)は、通常0.1〜20h-1、好ましくは0.2〜10h-1である。 The Beckmann rearrangement reaction of cyclohexanone oxime can be performed in a fluidized bed system, a fixed bed system, or a moving bed system under gas phase conditions, and the reaction temperature is usually 250 to 500 ° C, preferably 300 to 450 ° C. The reaction pressure is usually 0.005 to 0.5 MPa, preferably 0.005 to 0.2 MPa. The feed rate (kg / h) of the raw material cyclohexanone oxime per kg of the catalyst, that is, the space velocity WHSV (h −1 ) of the raw material cyclohexanone oxime is usually 0.1 to 20 h −1 , preferably 0.2 to 10 h −. 1 .

シクロヘキサノンオキシムは、例えば、単独で反応系内に導入してもよいし、窒素、アルゴン、二酸化炭素等の不活性ガスと共に導入してもよい。また、特開平2−250866号公報に記載の如きエーテルを共存させる方法、特開平2−275850号公報に記載の如き低級アルコールを共存させる方法、特開平5−201965号公報に記載の如きアルコール及び/又はエーテルと水を共存させる方法、特開平5−201966号公報に記載の如きアンモニアを共存させる方法、特開平6−107627号公報に記載の如きメチルアミンを共存させる方法等も有効である。   Cyclohexanone oxime, for example, may be introduced alone into the reaction system, or may be introduced together with an inert gas such as nitrogen, argon or carbon dioxide. Further, a method of coexisting ethers as described in JP-A-2-250866, a method of coexisting lower alcohols as described in JP-A-2-275850, alcohols as described in JP-A-5-201965, and A method of coexisting ether and water, a method of coexisting ammonia as described in JP-A No. 5-201966, a method of coexisting methylamine as described in JP-A No. 6-107627 are also effective.

なお、シクロヘキサノンオキシムは、例えば、シクロヘキサノンをヒドロキシルアミン乃至その塩でオキシム化することにより製造されたものであってもよいし、シクロヘキサノンをチタノシリケート等の触媒の存在下にアンモニア及び過酸化水素でアンモキシム化することにより製造されたものであってもよい。   The cyclohexanone oxime may be produced, for example, by oximeating cyclohexanone with hydroxylamine or a salt thereof, or cyclohexanone with ammonia and hydrogen peroxide in the presence of a catalyst such as titanosilicate. It may be produced by ammoximation.

ベックマン転位反応を流動床方式で行う場合は、反応器から連続的又は間欠的に触媒の一部を抜き出し、前記接触処理を行うための再生器に導入し、所定時間滞留させた後、これを反応器に戻す処方、すなわち反応器と再生器の間で触媒を循環させる処方が、反応工程と再生工程を併せて実施することができて、好ましい。その際、前記焼成処理も行うのであれば、反応器と再生器との間に焼成器を介在させ、反応器から抜き出された触媒が、焼成器に所定時間滞留した後、再生器に送られるようにするのがよい。   When the Beckmann rearrangement reaction is performed in a fluidized bed system, a part of the catalyst is continuously or intermittently extracted from the reactor, introduced into a regenerator for performing the contact treatment, and allowed to stay for a predetermined time. A formulation that returns to the reactor, that is, a formulation in which the catalyst is circulated between the reactor and the regenerator, is preferable because the reaction step and the regeneration step can be performed together. At that time, if the calcination treatment is also performed, a calcination device is interposed between the reactor and the regenerator, and the catalyst extracted from the reactor stays in the calcination device for a predetermined time and then sent to the regenerator. It is good to be able to.

また、ベックマン転位反応を固定床方式で行う場合は、反応器にシクロヘキサノンオキシムを供給して所定時間反応を行った後、その供給を止め、次いで、反応器に前記接触処理用のガスを供給して所定時間再生処理を行った後、その供給を止め、さらに、これら反応及び再生処理を繰り返す処方が、反応器から触媒を抜き出すことなく再生処理を行うことができて、好ましい。その際、前記焼成処理も行うのであれば、反応器に前記接触処理用のガスを供給する前に、酸素含有ガスを供給して所定時間焼成処理を行うようにするのがよい。   When the Beckmann rearrangement reaction is performed in a fixed bed system, cyclohexanone oxime is supplied to the reactor and the reaction is performed for a predetermined time, and then the supply is stopped, and then the gas for contact treatment is supplied to the reactor. After the regeneration treatment is performed for a predetermined time, the supply is stopped, and the reaction and the regeneration treatment are repeated. This is preferable because the regeneration treatment can be performed without removing the catalyst from the reactor. At that time, if the calcination treatment is also performed, it is preferable to perform the calcination treatment for a predetermined time by supplying an oxygen-containing gas before supplying the gas for contact treatment to the reactor.

また、ベックマン転位反応を移動床方式で行う場合は、流動床の場合と同様、反応器から排出される触媒を、前記接触処理を行うための再生器に導入し、所定時間滞留させた後、これを再び反応器に導入するという処方、すなわち反応器と再生器の間で触媒を循環させる処方が、反応工程と再生工程を併せて実施することができて、好ましい。その際、前記焼成処理も行うのであれば、反応器と再生器との間に焼成器を介在させ、反応器から排出された触媒が、焼成器に所定時間滞留した後、再生器に送られるようにするのがよい。   Further, when the Beckmann rearrangement reaction is carried out in a moving bed system, the catalyst discharged from the reactor is introduced into the regenerator for performing the contact treatment and retained for a predetermined time, as in the case of the fluidized bed. The prescription of introducing this into the reactor again, that is, the prescription of circulating the catalyst between the reactor and the regenerator is preferable because the reaction step and the regeneration step can be carried out together. At that time, if the calcination treatment is also performed, a calciner is interposed between the reactor and the regenerator, and the catalyst discharged from the reactor stays in the calciner for a predetermined time, and then is sent to the regenerator. It is better to do so.

なお、反応混合物からε−カプロラクタムを分離する方法としては、例えば、反応生成ガスを冷却して凝縮させ、この凝縮物を抽出、蒸留、晶析等の操作に付す方法が挙げられる。   In addition, as a method of isolate | separating (epsilon) -caprolactam from a reaction mixture, the method of cooling and condensing reaction product gas, and attaching | subjecting this condensate to operation, such as extraction, distillation, and crystallization, is mentioned, for example.

以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。なお、シクロヘキサノンオキシムの空間速度WHSV(h-1)は、シクロヘキサノンオキシムの供給速度(g/h)を触媒重量(g)で除することにより算出した。また、シクロヘキサノンオキシムの転化率及びε−カプロラクタムの選択率は、供給したシクロヘキサノンオキシムのモル数をX、未反応のシクロヘキサノンオキシムのモル数をY、生成したε−カプロラクタムのモル数をZとして、それぞれ以下の式により算出した。
・シクロヘキサノンオキシムの転化率(%)=[(X−Y)/X]×100
・ε−カプロラクタムの選択率(%)=[Z/(X−Y)]×100
Examples of the present invention will be described below, but the present invention is not limited thereto. The space velocity WHSV (h −1 ) of cyclohexanone oxime was calculated by dividing the supply rate (g / h) of cyclohexanone oxime by the catalyst weight (g). Further, the conversion ratio of cyclohexanone oxime and the selectivity of ε-caprolactam are as follows: X is the number of moles of cyclohexanone oxime supplied, Y is the number of moles of unreacted cyclohexanone oxime, and Z is the number of moles of ε-caprolactam produced. The following formula was used for calculation.
Conversion of cyclohexanone oxime (%) = [(X−Y) / X] × 100
Ε-caprolactam selectivity (%) = [Z / (XY)] × 100

参考例1
(a)劣化触媒の取得
MFI構造を有する粒径0.3mm以下の結晶性シリカを触媒として用い、この触媒を流動させた反応器を350℃に昇温し、この中に、気化させたシクロヘキサノンオキシム及びメタノールと窒素を供給しながら、反応生成ガスを抜き出すことにより、1週間反応を行った。この間、シクロヘキサノンオキシム/メタノール/窒素の供給比は、1kg/1.8kg/0.8m3とし、シクロヘキサノンオキシムのWHSVは2h-1とした。またこの間、反応器から触媒の一部を抜き出し、焼成器にて、空気流通下、430℃にて滞留時間20時間で焼成した後、反応器に戻すことにより、触媒を反応器と焼成器の間で循環させた。得られた劣化触媒を以下の例で使用した。
Reference example 1
(A) Acquisition of deteriorated catalyst Crystalline silica having a MFI structure and a particle size of 0.3 mm or less was used as a catalyst, and the reactor in which this catalyst was flowed was heated to 350 ° C., and vaporized cyclohexanone was contained therein. The reaction was carried out for 1 week by extracting the reaction product gas while supplying oxime, methanol and nitrogen. During this time, the supply ratio of cyclohexanone oxime / methanol / nitrogen was 1 kg / 1.8 kg / 0.8 m 3, and the WHSV of cyclohexanone oxime was 2 h −1 . During this time, a part of the catalyst is extracted from the reactor, calcined at 430 ° C. with a residence time of 20 hours in a calcinator, and then returned to the reactor, whereby the catalyst is removed between the reactor and the calciner. Circulated between them. The resulting degraded catalyst was used in the following examples.

(b)劣化触媒の評価
内径1cmの石英ガラス製反応管に、上記劣化触媒0.375gを充填して触媒層を形成し、また触媒層より入口側に気化部となる空間を設けた。この反応管に窒素4.2L/hを流通させ、反応管の温度を350℃にして1時間予熱処理した。次いで、窒素4.2L/hを流通させたまま、反応管の温度を340℃に下げ、シクロヘキサノンオキシム/メタノール=1/1.8(重量比)の混合物を8.4g/hの供給速度(シクロヘキサノンオキシムのWHSV=8h-1)で反応管に供給し、シクロヘキサノンオキシムのベックマン転位反応を行った。反応開始後0〜0.25時間、5〜5.25時間、及び20〜20.25時間の各間、反応ガスを捕集し、ガスクロマトグラフィーで分析した。シクロヘキサノンオキシムの転化率及びε−カプロラクタムの選択率を表1に示す。
(B) Evaluation of deteriorated catalyst A quartz glass reaction tube having an inner diameter of 1 cm was filled with 0.375 g of the deteriorated catalyst to form a catalyst layer, and a space serving as a vaporization portion was provided on the inlet side of the catalyst layer. Nitrogen of 4.2 L / h was passed through the reaction tube, the temperature of the reaction tube was set to 350 ° C., and preheat treatment was performed for 1 hour. Next, with 4.2 L / h of nitrogen flowing, the temperature of the reaction tube was lowered to 340 ° C., and a mixture of cyclohexanone oxime / methanol = 1 / 1.8 (weight ratio) was supplied at a feed rate of 8.4 g / h ( Cyclohexanone oxime WHSV = 8 h −1 ) was supplied to the reaction tube to carry out Beckmann rearrangement reaction of cyclohexanone oxime. During each of 0 to 0.25 hours, 5 to 5.25 hours, and 20 to 20.25 hours after the start of the reaction, the reaction gas was collected and analyzed by gas chromatography. Table 1 shows the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam.

実施例1
内径13mmの石英ガラス製反応管に、参考例1(a)で得られた劣化触媒1.5gを充填して触媒層を形成し、また触媒層より入口側に気化部となる空間を設けた。この反応管に窒素1.4L/hを流通させ、反応管の温度を220℃にして0.5時間予熱処理した。次いで、窒素1.4L/hを流通させ、反応管の温度を220℃としたまま、トリエチルアミン/水=1/8.9(重量比)の混合物を5.6g/hの供給速度で反応管に5時間供給した後、該混合物の供給のみを止め、1時間保持した。こうして得られた再生触媒を用いて、参考例1(b)と同様にベックマン転位反応を行って評価した。シクロヘキサノンオキシムの転化率及びε−カプロラクタムの選択率を表1に示す。
Example 1
A quartz glass reaction tube having an inner diameter of 13 mm was filled with 1.5 g of the deteriorated catalyst obtained in Reference Example 1 (a) to form a catalyst layer, and a space serving as a vaporization portion was provided on the inlet side of the catalyst layer. . Nitrogen 1.4 L / h was passed through the reaction tube, the temperature of the reaction tube was set to 220 ° C., and pre-heat treatment was performed for 0.5 hour. Then, 1.4 L / h of nitrogen was circulated and the reaction tube was kept at 220 ° C., and a mixture of triethylamine / water = 1 / 8.9 (weight ratio) was fed at a feeding rate of 5.6 g / h. After 5 hours, the mixture was stopped and held for 1 hour. Using the regenerated catalyst thus obtained, the Beckmann rearrangement reaction was performed and evaluated in the same manner as in Reference Example 1 (b). Table 1 shows the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam.

実施例2
トリエチルアミン/水=1/8.9(重量比)の混合物を5.6g/hの供給速度で反応管に供給するに変えて、トリエチルアミン/トリ−n−プロピルアミン/水=1/1.4/21(重量比)の混合物を5.6g/hの供給速度で反応管に供給した以外は、実施例1と同様の操作を行った。シクロヘキサノンオキシムの転化率及びε−カプロラクタムの選択率を表1に示す。
Example 2
The mixture of triethylamine / water = 1 / 8.9 (weight ratio) was changed to feed to the reaction tube at a feed rate of 5.6 g / h, and triethylamine / tri-n-propylamine / water = 1 / 1.4. The same operation as in Example 1 was carried out except that a mixture of / 21 (weight ratio) was supplied to the reaction tube at a supply rate of 5.6 g / h. Table 1 shows the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam.

比較例1
トリエチルアミン/水=1/8.9(重量比)の混合物を5.6g/hの供給速度で反応管に供給するに変えて、50重量%酢酸水/25重量%アンモニア水/トリ−n−プロピルアミン=1/1.5/0.002(重量比)を7.8g/hの供給速度で反応管に供給した以外は、実施例1と同様の操作を行った。シクロヘキサノンオキシムの転化率及びε−カプロラクタムの選択率を表1に示す。
Comparative Example 1
The mixture of triethylamine / water = 1 / 8.9 (weight ratio) was changed to feed into the reaction tube at a feed rate of 5.6 g / h, and 50 wt% acetic acid water / 25 wt% aqueous ammonia / tri-n- The same operation as in Example 1 was performed except that propylamine = 1 / 1.5 / 0.002 (weight ratio) was supplied to the reaction tube at a supply rate of 7.8 g / h. Table 1 shows the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam.

比較例2
トリエチルアミン/水=1/8.9(重量比)の混合物を5.6g/hの供給速度で反応管に供給するに変えて、15重量%アンモニア水を7.8g/hの供給速度で反応管に供給した以外は、実施例1と同様の操作を行った。シクロヘキサノンオキシムの転化率及びε−カプロラクタムの選択率を表1に示す。
Comparative Example 2
The mixture of triethylamine / water = 1 / 8.9 (weight ratio) was changed to feed to the reaction tube at a feed rate of 5.6 g / h, and 15 wt% aqueous ammonia was reacted at a feed rate of 7.8 g / h. The same operation as Example 1 was performed except supplying to the pipe. Table 1 shows the conversion rate of cyclohexanone oxime and the selectivity of ε-caprolactam.

Figure 2007296437
Figure 2007296437

Claims (5)

シクロヘキサノンオキシムのベックマン転位反応に使用したゼオライト触媒を、第3アミン及び水を含み、実質的にカルボン酸を含まないガスと接触させることを特徴とするε−カプロラクタム製造用触媒の再生方法。   A method for regenerating a catalyst for producing ε-caprolactam, which comprises contacting a zeolite catalyst used in a Beckmann rearrangement reaction of cyclohexanone oxime with a gas containing a tertiary amine and water and substantially free of carboxylic acid. 前記ゼオライト触媒を前記ガスと接触させる際の温度が、100〜450℃である請求項1に記載の方法。   The method according to claim 1, wherein the temperature at which the zeolite catalyst is brought into contact with the gas is 100 to 450 ° C. 前記ゼオライト触媒を前記ガスと接触させる前に、酸素含有ガスの雰囲気下に焼成する請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the zeolite catalyst is calcined in an atmosphere of an oxygen-containing gas before contacting with the gas. 前記ゼオライト触媒を酸素含有ガスの雰囲気下に焼成する際の温度が、200〜600℃である請求項3に記載の方法。   The method according to claim 3, wherein the temperature at which the zeolite catalyst is calcined in an oxygen-containing gas atmosphere is 200 to 600 ° C. 請求項1〜4のいずれかに記載の方法によりε−カプロラクタム製造用触媒を再生し、この再生触媒の存在下に、シクロヘキサノンオキシムをベックマン転位反応させることを特徴とするε−カプロラクタムの製造方法。
A method for producing ε-caprolactam, comprising regenerating a catalyst for producing ε-caprolactam by the method according to any one of claims 1 to 4, and subjecting cyclohexanone oxime to Beckmann rearrangement reaction in the presence of the regenerated catalyst.
JP2006125007A 2006-04-28 2006-04-28 Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam Pending JP2007296437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125007A JP2007296437A (en) 2006-04-28 2006-04-28 Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125007A JP2007296437A (en) 2006-04-28 2006-04-28 Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam

Publications (1)

Publication Number Publication Date
JP2007296437A true JP2007296437A (en) 2007-11-15

Family

ID=38766383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125007A Pending JP2007296437A (en) 2006-04-28 2006-04-28 Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam

Country Status (1)

Country Link
JP (1) JP2007296437A (en)

Similar Documents

Publication Publication Date Title
US7687621B2 (en) Process for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam
US6946553B2 (en) Process for producing ε-caprolactam and catalyst for the production
US7026474B2 (en) Method for producing ε-caprolactam and method for reactivating catalyst for production of ε-caprolactam
JP2012158501A (en) METHOD FOR PRODUCING ZEOLITE AND METHOD FOR PRODUCING ε-CAPROLACTAM
US7189845B2 (en) Method for producing ε-caprolactam
KR20120044880A (en) Method for manufacturing cyclohexanone oxime
JP3254753B2 (en) Method for producing ε-caprolactam
JP2011153047A (en) METHOD FOR PRODUCING ZEOLITE AND METHOD FOR PRODUCING epsi-CAPROLACTAM
JP3301092B2 (en) Method for producing ε-caprolactam
JP2008229403A (en) REGENERATION METHOD OF CATALYST FOR PRODUCING epsilon-CAPROLACTAM AND METHOD FOR MANUFACTURING epsilon-CAPROLACTAM
JP2006016220A (en) Method for production of zeolite, and production method for epsilon caprolactam
JP3726816B2 (en) Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam
JP2007296437A (en) Method for regenerating catalyst for producing epsilon-caprolactam and method for producing epsilon-caprolactam
JP6004884B2 (en) Method for producing ε-caprolactam
JP3767562B2 (en) Method for producing ε-caprolactam
JP3254751B2 (en) Method for producing ε-caprolactam
JP4687692B2 (en) Method for regenerating catalyst for producing ε-caprolactam and method for producing ε-caprolactam
JP2003236394A (en) METHOD FOR REGENERATING CATALYST FOR PRODUCTION OF epsilon- CAPROLACTAM, AND METHOD FOR PRODUCING epsilon-CAPROLACTAM
JPH05148223A (en) Production of epsilon-caprolactam
JP2013119046A (en) Reaction apparatus

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515