JP2007292422A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2007292422A
JP2007292422A JP2006123252A JP2006123252A JP2007292422A JP 2007292422 A JP2007292422 A JP 2007292422A JP 2006123252 A JP2006123252 A JP 2006123252A JP 2006123252 A JP2006123252 A JP 2006123252A JP 2007292422 A JP2007292422 A JP 2007292422A
Authority
JP
Japan
Prior art keywords
defrosting
evaporator
temperature
heater
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006123252A
Other languages
Japanese (ja)
Inventor
Kazuya Nakanishi
和也 中西
Kazuyuki Hamada
和幸 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006123252A priority Critical patent/JP2007292422A/en
Publication of JP2007292422A publication Critical patent/JP2007292422A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce power consumption in defrosting an evaporator in a refrigerator. <P>SOLUTION: The refrigerator comprises a refrigerating cycle constituting an annular refrigerant passage by piping with a compressor 105, a condenser 106, a pressure reducer 107 and an evaporator 110 sequentially provided in a heat insulating box body 101; a defrosting heater 111 defrosting the evaporator 110; an evaporator temperature detecting means 112 detecting the temperature of the evaporator 110; and a control means 113 for controlling defrosting. The control means 113 terminates defrosting when the evaporator temperature detecting means 112 detects a first set temperature or higher, and reduces output to the defrosting heater 111 when the evaporator temperature detecting means 112 detects at least a second set temperature not higher than the first set temperature, thereby reducing power consumption in defrosting. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸発器の除霜時の消費電力量を低減した冷蔵庫に関するものである。   The present invention relates to a refrigerator with reduced power consumption during defrosting of an evaporator.

近年、冷蔵庫は地球環境保護の観点から省エネルギー化が進み、インバーター圧縮機による冷凍サイクルの高効率化や、真空断熱材を用い冷蔵庫本体への侵入熱量低減化などにより、消費電力量の低減を図った冷蔵庫が提供され、更なる省エネルギー化が求められている。   In recent years, refrigerators have become more energy efficient from the viewpoint of protecting the global environment, and have attempted to reduce power consumption by increasing the efficiency of the refrigeration cycle using an inverter compressor and reducing the amount of heat entering the refrigerator body using vacuum insulation. Refrigerators are provided, and further energy savings are required.

従来この種の冷蔵庫は、更なる省エネルギー化を図るために霜取りヒータへの通電方式を改善することにより、除霜時の消費電力量を低減させている(例えば、特許文献1参照)。   Conventionally, this type of refrigerator reduces the power consumption during defrosting by improving the energization method to the defrosting heater in order to further save energy (for example, refer to Patent Document 1).

図5は、特許文献1に記載された従来の冷蔵庫の構成を示すものである。   FIG. 5 shows a configuration of a conventional refrigerator described in Patent Document 1. As shown in FIG.

図5に示すように、冷蔵庫本体100には、複数の貯蔵室(たとえば、上段に冷蔵室10、中段に野菜室11、下段に冷凍室12)が設けられている。冷凍室12の背面には圧縮機1、冷却器室3が設けられ、蒸発器4、庫内ファン7、霜取りヒータ15が冷却器室3内に設けられている。また、冷却器室3から各貯蔵室(冷蔵室10、野菜室11、冷凍室12など)に冷気を供給するダクト(たとえば冷蔵室用ダクト8、冷凍室用ダクト9など)が設けられている。また、冷蔵室10の背面には制御基板16が設けられており、圧縮機のオン/オフ制御、各ダンパの開閉制御、霜取りヒータ15のオン/オフ制御、各貯蔵室の温度制御を行う。   As shown in FIG. 5, the refrigerator main body 100 is provided with a plurality of storage rooms (for example, a refrigeration room 10 in the upper stage, a vegetable room 11 in the middle stage, and a freezing room 12 in the lower stage). A compressor 1 and a cooler chamber 3 are provided on the back surface of the freezer compartment 12, and an evaporator 4, an internal fan 7, and a defrost heater 15 are provided in the cooler chamber 3. Further, ducts (for example, a refrigerator compartment duct 8 and a freezer compartment duct 9) for supplying cold air from the cooler compartment 3 to each storage compartment (the refrigerator compartment 10, the vegetable compartment 11, the freezer compartment 12, etc.) are provided. . In addition, a control board 16 is provided on the back of the refrigerator compartment 10, and performs compressor on / off control, damper open / close control, defrost heater 15 on / off control, and storage chamber temperature control.

図6は、特許文献1に記載された従来の冷蔵庫の除霜時の動作を表す制御フローチャートである。   FIG. 6 is a control flowchart showing the operation during defrosting of the conventional refrigerator described in Patent Document 1.

図6に示すように、マイコンのタイマーの時間が所定の時間に到達したかどうかなどにより除霜開始の判定を除霜判定ステップST101で実施し、除霜を開始すると判定した場合には、圧縮機停止ステップST102にて圧縮機を停止し、霜取りヒータ通電ステップST103にて霜取りヒータ9への通電を開始する。その後、蒸発器温度判定ステップST104にて、蒸発器7の温度Teが所定の第一設定温度T1以上の場合には、霜取りヒータ通電停止ステップST105にて霜取りヒータ9への通電を停止する。   As shown in FIG. 6, the defrosting start determination is performed in the defrosting determination step ST101 depending on whether or not the time of the microcomputer timer has reached a predetermined time. The compressor is stopped in the machine stop step ST102, and energization to the defrost heater 9 is started in the defrost heater energization step ST103. Thereafter, when the temperature Te of the evaporator 7 is equal to or higher than the predetermined first set temperature T1 in the evaporator temperature determination step ST104, the energization to the defrost heater 9 is stopped in the defrost heater energization stop step ST105.

そして、蒸発器温度判定第2ステップST106にて蒸発器7の温度判定を実施し、蒸発器7の温度Teが所定の第二設定温度T2以上かどうかを判断する。蒸発器7の温度Teが所定の第二設定温度T2以上の場合には、霜取りヒータ通電ステップST107にて霜取りヒータ9への通電を開始する。   Then, in the evaporator temperature determination second step ST106, the temperature of the evaporator 7 is determined, and it is determined whether or not the temperature Te of the evaporator 7 is equal to or higher than a predetermined second set temperature T2. When the temperature Te of the evaporator 7 is equal to or higher than the predetermined second set temperature T2, energization to the defrost heater 9 is started in the defrost heater energization step ST107.

さらに、蒸発器温度判定第3ステップST108にて蒸発器7の温度判定を実施し、蒸発器7の温度Teが所定の第三設定温度T3以上かどうかを判断する。蒸発器7の温度Teが所定の第三設定温度T3以上の場合には、霜取りヒータ通電停止ステップST109にて霜取りヒータ9への通電を停止し、除霜制御が完了し、通常運転制御ステップST110にて通常運転制御へと移行する。   Further, the temperature of the evaporator 7 is determined in the third evaporator temperature determination step ST108, and it is determined whether or not the temperature Te of the evaporator 7 is equal to or higher than a predetermined third set temperature T3. When the temperature Te of the evaporator 7 is equal to or higher than the predetermined third set temperature T3, the defrosting heater 9 is deenergized in the defrosting heater energization stop step ST109, the defrosting control is completed, and the normal operation control step ST110 is performed. Shifts to normal operation control at.

これにより、除霜時の最初と最後のみ霜取りヒータ9を通電し、その他(最初の通電と最後の通電との間の時間)は霜取りヒータの通電を行わずにオフサイクル除霜としているために、トータルでの霜取りヒータ通電時間の削減による消費電力量の低減を図っているものである。
特開2005−37010号公報
Accordingly, the defrosting heater 9 is energized only at the beginning and the end at the time of defrosting, and the other (the time between the first energization and the last energization) is off cycle defrosting without energizing the defrosting heater. The total power consumption is reduced by reducing the total defrosting heater energization time.
JP 2005-37010 A

しかしながら、上記従来の構成では、除霜時の最初と最後のみ霜取りヒータを通電し、その他(最初の通電と最後の通電との間の時間)は霜取りヒータの通電を行わずにオフサイクル除霜としており、除霜時の最初と最後の霜取りヒータ入力は一定であるために、除霜終盤の蒸発器温度上昇時に必要以上の熱量により、蒸発器各部の温度上昇バラツキが生じ部分的に必要以上に温度上昇し、さらに霜取りヒータ通電終了後オーバーシュート幅が大きくなり、除霜時の消費電力量増加はもちろんのこと、各貯蔵室内温度上昇による食品などの損傷や、除霜終了後の冷却運転時間が長くなり冷却運転時の消費電力量も増加する。また、除霜終盤には冷却室の周囲部品も温度上昇しており、必要以上に温度上昇するために熱による変形が発生し、アルミ箔などの変形防止用部材が必要となりコスト増加に繋がる。   However, in the above-described conventional configuration, the defrost heater is energized only at the beginning and the end at the time of defrosting, and the other (time between the first energization and the last energization) is off cycle defrost without energizing the defrost heater. Since the defrosting heater input at the beginning and end of the defrosting is constant, the temperature rise of each part of the evaporator is caused by the amount of heat more than necessary when the evaporator temperature rises at the end of the defrosting. When the temperature rises, the overshoot width increases after defrosting heaters are energized, and not only increases power consumption during defrosting, but also damages to foods due to temperature rise in each storage room, and cooling operation after defrosting ends. The time becomes longer and the power consumption during cooling operation also increases. In addition, the temperature of the peripheral parts of the cooling chamber is also rising at the end of the defrosting, and since the temperature rises more than necessary, deformation due to heat occurs, and a deformation preventing member such as an aluminum foil is required, leading to an increase in cost.

また、夏場の高温多湿で冷蔵庫の扉開閉回数が多い場合には蒸発器には均一に霜が付かず偏着霜が生じる場合があり、温度上昇バラツキがさらに大きくなり霜残りが発生する可能性があった。   Also, if the refrigerator doors are opened and closed many times in summer and high temperature and humidity, the evaporator may not be uniformly frosted, and uneven frost may occur, which may further increase the temperature rise variation and generate frost residue. was there.

また、冷媒として可燃性冷媒を用いる場合には安全面から発熱体である霜取りヒータの表面温度が重要であり、オーバーシュートによる必要以上の温度上昇により表面温度を低下させるために、霜取りヒータの容量を低下させなければならず、そのために除霜時間が長くなる。   In addition, when using a flammable refrigerant as the refrigerant, the surface temperature of the defrost heater, which is a heating element, is important from the viewpoint of safety, and the capacity of the defrost heater is reduced in order to reduce the surface temperature due to an excessive temperature increase due to overshoot. Must be reduced, which increases the defrosting time.

本発明は、上記従来の課題を解決するもので、除霜時の消費電力量を低減し、各貯蔵室の温度上昇による食品等の損傷を抑制でき、安価な除霜制御を搭載した冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, and reduces a power consumption during defrosting, can suppress food damage due to a temperature rise in each storage room, and is equipped with an inexpensive defrosting control. The purpose is to provide.

上記従来の課題を解決するために、本発明の冷蔵庫は、断熱箱体と、前記断熱箱体に備えられ少なくとも蒸発器を備えた冷凍サイクルと前記蒸発器の除霜を行う霜取りヒータと、前記蒸発器の温度を検出する蒸発器温度検知手段と、除霜を制御する制御手段とを有するものであって、前記制御手段は前記蒸発器温度検知手段が第一の設定温度以上になった場合に除霜を終了し、前記蒸発器温度検知手段が前記第一の設定温度以下の第二の設定温度以上になった場合に前記霜取りヒータの出力を低下させるものである。   In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a heat insulating box, a refrigeration cycle provided at least in the heat insulating box, and a defrost heater that performs defrosting of the evaporator, When the evaporator temperature detecting means for detecting the temperature of the evaporator and the control means for controlling the defrosting are provided, the control means is configured such that the evaporator temperature detecting means is equal to or higher than a first set temperature. The defrosting is finished, and the output of the defrosting heater is reduced when the evaporator temperature detecting means becomes equal to or higher than the second set temperature not higher than the first set temperature.

また、本発明の冷蔵庫は、断熱箱体と、前記断熱箱体に備えられ少なくとも蒸発器を備えた冷凍サイクルと、前記蒸発器の除霜を行う霜取りヒータと、前記蒸発器の温度を検出する蒸発器温度検知手段と、除霜を制御する制御手段とを有するものであって、前記制御手段は前記蒸発器温度検知手段が第一の設定温度以上になった場合に除霜を終了し、前記蒸発器温度検知手段が前記第一の設定温度以下の第二の設定温度を有し、前記制御手段は除霜開始から前記蒸発器温度検知手段が前記第二の設定温度以上となるまでの時間により前記霜取りヒータの出力を調整するものである。   Moreover, the refrigerator of the present invention detects a temperature of the heat insulating box, a refrigeration cycle provided in the heat insulating box and provided with at least an evaporator, a defrost heater for defrosting the evaporator, and the temperature of the evaporator. It has an evaporator temperature detection means and a control means for controlling defrosting, and the control means ends the defrosting when the evaporator temperature detection means becomes a first set temperature or higher, The evaporator temperature detecting means has a second set temperature that is not more than the first set temperature, and the control means is from the start of defrosting until the evaporator temperature detecting means becomes not less than the second set temperature. The output of the defrosting heater is adjusted according to time.

これによって、除霜時霜取りヒータに通電されてから蒸発器の温度は0℃に到達し、0℃付近でしばらくの間温度一定となり、その後0℃以上に温度上昇していく。0℃以上に温度上昇し始めた時に霜取りヒータへの出力を除霜終了まで低下させることにより、除霜終了後蒸発器の温度上昇のオーバーシュートを抑制することができるので、蒸発器自体のみならず冷却室周囲部品の必要以上の温度上昇を防ぎ、除霜時の消費電力量を低減でき、貯蔵室内の温度上昇も防止できる。   Thus, the temperature of the evaporator reaches 0 ° C. after the defrosting heater is energized at the time of defrosting, becomes constant for a while near 0 ° C., and then rises to 0 ° C. or more. By reducing the output to the defrosting heater until the end of the defrosting when the temperature starts to rise above 0 ° C, the overshoot of the temperature rise of the evaporator after the completion of the defrosting can be suppressed. Therefore, it is possible to prevent the temperature rise of the cooling chamber surrounding parts more than necessary, reduce the power consumption during defrosting, and prevent the temperature rise in the storage chamber.

本発明の冷蔵庫は、蒸発器の除霜能力を低下させることなく、除霜時の消費電力量を低減し、各貯蔵室の温度上昇による食品等の損傷を抑制でき、安価な除霜制御を搭載した冷蔵庫を提供することができる。   The refrigerator of the present invention can reduce power consumption at the time of defrosting without reducing the defrosting capacity of the evaporator, can suppress damage to foods and the like due to temperature rise in each storage room, and can perform defrost control at low cost. An on-board refrigerator can be provided.

請求項1に記載の発明は、断熱箱体と、前記断熱箱体に備えられ少なくとも蒸発器を備えた冷凍サイクルと前記蒸発器の除霜を行う霜取りヒータと、前記蒸発器の温度を検出する蒸発器温度検知手段と、除霜を制御する制御手段とを有するものであって、前記制御手段は前記蒸発器温度検知手段が第一の設定温度以上になった場合に除霜を終了し、前記蒸発器温度検知手段が前記第一の設定温度以下の第二の設定温度以上になった場合に前記霜取りヒータの出力を低下させるので、蒸発器の温度上昇のオーバーシュートが抑制され、必要以上の温度上昇を防止することにより、除霜効率が向上し除霜時の消費電力量を低減することができる。   The invention according to claim 1 detects the temperature of the heat insulating box, the refrigeration cycle provided at least in the heat insulating box, the defrost heater for defrosting the evaporator, and the temperature of the evaporator. It has an evaporator temperature detection means and a control means for controlling defrosting, and the control means ends the defrosting when the evaporator temperature detection means becomes a first set temperature or higher, Since the output of the defrosting heater is reduced when the evaporator temperature detecting means becomes equal to or higher than the second set temperature that is lower than the first set temperature, the overshoot of the temperature rise of the evaporator is suppressed, and more than necessary. By preventing the temperature rise, the defrosting efficiency can be improved and the power consumption during defrosting can be reduced.

請求項2に記載の発明は、断熱箱体と、前記断熱箱体に備えられ少なくとも蒸発器を備えた冷凍サイクルと、前記蒸発器の除霜を行う霜取りヒータと、前記蒸発器の温度を検出する蒸発器温度検知手段と、除霜を制御する制御手段とを有するものであって、前記制御手段は前記蒸発器温度検知手段が第一の設定温度以上になった場合に除霜を終了し、前記蒸発器温度検知手段が前記第一の設定温度以下の第二の設定温度を有し、前記制御手段は除霜開始から前記蒸発器温度検知手段が前記第二の設定温度以上となるまでの時間により前記霜取りヒータの出力を調整するので、着霜量に応じ温度昇温させることができ、適切な除霜と蒸発器の温度上昇のオーバーシュートが抑制され、必要以上の温度上昇を防止することにより、除霜効率が向上し除霜時の消費電力量を低減することができる。   Invention of Claim 2 detects the temperature of the heat insulation box body, the refrigerating cycle with which the heat insulation box body was equipped with at least the evaporator, the defrost heater which defrosts the evaporator, and the evaporator An evaporator temperature detecting means for controlling the defrosting, and a control means for controlling the defrosting, wherein the control means ends the defrosting when the evaporator temperature detecting means becomes a first set temperature or higher. The evaporator temperature detecting means has a second set temperature that is not more than the first set temperature, and the control means is from the start of defrosting until the evaporator temperature detecting means becomes not less than the second set temperature. Since the output of the defrosting heater is adjusted according to the time required, the temperature can be raised according to the amount of frost formation, overshooting of appropriate defrosting and evaporator temperature rise is suppressed, and an unnecessary temperature rise is prevented. To improve defrosting efficiency It is possible to reduce the power consumption during the defrosting.

請求項3に記載の発明は、請求項1または2に記載の発明に加えて、前記制御手段は、印加電圧を増加減させて前記霜取りヒータへの出力を調整させたので、きめ細かい制御が可能となり、使用環境条件や着霜量に応じて霜取りヒータの発熱量を増加減し除霜時の消費電力量を低減することができる。   In addition to the invention described in claim 1 or 2, the control device according to claim 3 adjusts the output to the defrosting heater by increasing or decreasing the applied voltage, so fine control is possible. Thus, the amount of heat generated by the defrosting heater can be increased or decreased in accordance with the use environment conditions or the amount of frost formation, and the power consumption during defrosting can be reduced.

請求項4に記載の発明は、請求項1または2に記載の発明に加えて、前記霜取りヒータに間欠的に電圧を印加させるので、第二の設定温度以降除霜が終了するまで霜取りヒータへの出力を低減させる手段として変圧装置が不要となり、安価で適切な除霜と蒸発器の温度上昇のオーバーシュートを抑制でき、必要以上の温度上昇を防止することにより、除霜効率が向上し除霜時の消費電力量を低減することができる。   In addition to the invention described in claim 1 or 2, the invention described in claim 4 intermittently applies a voltage to the defroster heater, so that the defroster is heated until the defrosting is finished after the second set temperature. Transformer is not required as a means to reduce the output of the battery, and it is possible to suppress the overshoot of the inexpensive and appropriate defrosting and the temperature rise of the evaporator, and the defrosting efficiency is improved by removing the temperature rise more than necessary. Power consumption during frost can be reduced.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、冷凍サイクルには可燃性冷媒が封入されたものであり、冷媒として可燃性冷媒を用いる場合には安全面から発熱体である霜取りヒータの表面温度が重要であり、オーバーシュートによる必要以上の温度上昇により表面温度を低下させるために、霜取りヒータの容量を低下させなければならず、そのために除霜時間が長くなるものにおいても、必要以上の温度上昇を防止することにより、除霜効率が向上し除霜時の消費電力量を低減することができる。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein a flammable refrigerant is enclosed in the refrigeration cycle, and when the flammable refrigerant is used as the refrigerant, From the viewpoint of safety, the surface temperature of the defrosting heater, which is a heating element, is important. In order to reduce the surface temperature due to an excessive temperature increase due to overshoot, the capacity of the defrosting heater must be reduced. Even in the case where the time is long, by preventing the temperature from rising more than necessary, the defrosting efficiency can be improved and the power consumption during defrosting can be reduced.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の断面図である。図2は本発明の実施の形態1における蒸発器の温度上昇カーブ図である。図3は本発明の実施の形態1における冷蔵庫の除霜時の制御フローチャートである。
(Embodiment 1)
FIG. 1 is a cross-sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a temperature rise curve diagram of the evaporator according to Embodiment 1 of the present invention. FIG. 3 is a control flowchart during defrosting of the refrigerator in the first embodiment of the present invention.

図1、図2、図3において、断熱箱体101は複数の断熱区画に区分されており上部を回転扉式、下部を引出し式とする構成をとってある。上から冷蔵室102、引出し式の野菜室104と引出し式の冷凍室103となっている。   1, 2, and 3, the heat insulating box 101 is divided into a plurality of heat insulating sections, and has a configuration in which the upper part is a revolving door type and the lower part is a drawer type. From the top, there are a refrigerator compartment 102, a drawer-type vegetable compartment 104 and a drawer-type freezer compartment 103.

また、冷凍サイクルは断熱箱体101の背面下部に圧縮機105と、断熱箱体101の下部に設けた凝縮器106と、減圧器であるキャピラリ107と、水分除去を行うドライヤ(図示せず)と、野菜室104と冷凍室103の背面の冷却室108内に設置された冷却ファン109を近傍にして設けた蒸発器110とを環状に接続して構成されている。   The refrigeration cycle includes a compressor 105 at the lower back of the heat insulating box 101, a condenser 106 provided at the lower part of the heat insulating box 101, a capillary 107 as a decompressor, and a dryer (not shown) for removing water. And an evaporator 110 provided in the vicinity of a cooling fan 109 installed in the cooling chamber 108 on the back of the vegetable compartment 104 and the freezing compartment 103 is connected in a ring shape.

なお、蒸発器110の下部に除霜を行う霜取りヒータ111を設け、蒸発器110には蒸発器温度検知手段である霜取りセンサー112が取り付けられている。   In addition, a defrosting heater 111 that performs defrosting is provided below the evaporator 110, and a defrosting sensor 112, which is an evaporator temperature detecting means, is attached to the evaporator 110.

また、断熱箱体101の背面には、各貯蔵室の温度制御、圧縮機105の運転、霜取りセンサー112により除霜の開始終了を制御する制御基板113が設けられている。   Further, on the back surface of the heat insulating box 101, a control board 113 is provided for controlling the temperature of each storage room, the operation of the compressor 105, and the start and end of defrosting by the defrost sensor 112.

次に除霜時の制御動作と蒸発器の温度上昇について説明する。制御基板113に搭載されているマイコンのタイマーの時間が所定の時間に達したかどうかなどにより除霜開始の判定を除霜制御開始判定ステップST121で実施し、除霜を開始すると判定した場合には、圧縮機停止ステップST122にて圧縮機105を停止し、霜取りヒータ通電開始ステップST123にて霜取りヒータ111へ通電を開始する。その後、蒸発器温度判定ステップST126にて蒸発器110に取り付けられている霜取りセンサー112と制御基板113で蒸発器110の温度検出を行い、蒸発器110の温度Teが予め設定された第一の設定温度であるT101温度以上になると、霜取りヒータ通電停止ステップST127にて除霜を終了し、通常制御ステップST128で冷却運転を開始する。   Next, the control operation during defrosting and the temperature rise of the evaporator will be described. When the defrosting start determination is performed in the defrosting control start determination step ST121 depending on whether the time of the timer of the microcomputer mounted on the control board 113 has reached a predetermined time, etc. Stops the compressor 105 in the compressor stop step ST122 and starts energizing the defrost heater 111 in the defrost heater energization start step ST123. Thereafter, the temperature of the evaporator 110 is detected by the defrosting sensor 112 attached to the evaporator 110 and the control board 113 in the evaporator temperature determination step ST126, and the temperature Te of the evaporator 110 is set in advance. When the temperature is equal to or higher than T101 temperature, defrosting is terminated in defrosting heater energization stop step ST127, and cooling operation is started in normal control step ST128.

なお、除霜中の蒸発器110の温度挙動については、蒸発器110の温度Teは除霜開始前約−30℃であり、除霜が開始されると徐々に0℃に近づき、その後約0℃付近で一定時間安定する。約0℃を維持した後温度上昇し始め、予め設定された温度、例えば10℃以上になると除霜を終了する。除霜終了後は、例えば圧縮機105の起動待ち制御などを経て冷却運転が再開され、蒸発器110の温度Teは徐々に除霜開始前の約−30℃に到達する。   Regarding the temperature behavior of the evaporator 110 during defrosting, the temperature Te of the evaporator 110 is about −30 ° C. before the start of defrosting, and gradually approaches 0 ° C. when the defrosting is started, and then about 0 Stable for a certain time around ℃ After maintaining about 0 ° C., the temperature starts to rise, and when the temperature reaches a preset temperature, for example, 10 ° C. or higher, the defrosting is finished. After completion of defrosting, the cooling operation is resumed through, for example, start-up control of the compressor 105, and the temperature Te of the evaporator 110 gradually reaches about −30 ° C. before the start of defrosting.

以上のような除霜においては、蒸発器110の温度が0℃以上になると概ね蒸発器110に付着した霜は水となり排水される。従来の場合、蒸発器110の温度が0℃になった後も一定の出力による霜取りヒータ111の発熱のために、蒸発器110の各部の温度が不均一であり、特に蒸発器110の下部は上部と比較し温度上昇度が大きいため、除霜終了時の蒸発器110平均温度は除霜を終了するT101温度と比較しはるかに大きい。また、霜取りヒータ通電を停止し除霜を終了した後も余熱のためにオーバーシュートし蒸発器110は更に温度上昇する。   In the above defrosting, when the temperature of the evaporator 110 becomes 0 ° C. or higher, the frost adhering to the evaporator 110 becomes water and is drained. In the conventional case, even after the temperature of the evaporator 110 reaches 0 ° C., the temperature of each part of the evaporator 110 is non-uniform due to the heat generated by the defrost heater 111 with a constant output. Since the degree of temperature rise is large compared to the upper part, the average temperature of the evaporator 110 at the end of defrosting is much larger than the T101 temperature at which defrosting ends. Further, even after the defrosting heater energization is stopped and the defrosting is finished, overshoot occurs due to residual heat, and the temperature of the evaporator 110 further increases.

ここで、除霜終了温度であるT101以下に設定された第二の設定温度であるT102温度を設け、T102温度は例えば1℃から5℃で設定され、霜取りヒータ通電開始ステップST123にて霜取りヒータ111へ通電を開始し、蒸発器温度判定ステップST124で蒸発器110の温度TeがT102以上を検知すると、霜取りヒータへの出力低減ステップST125で制御基板113から霜取りヒータ111への出力を低減させる。その後、蒸発器温度判定ステップST126にて蒸発器110の温度TeがT101温度以上になると、霜取りヒータ通電停止ステップST127にて除霜を終了し、通常制御ステップST128で冷却運転を開始する。   Here, a T102 temperature which is a second set temperature set below T101 which is a defrosting end temperature is provided, and the T102 temperature is set, for example, from 1 ° C to 5 ° C. In the defrosting heater energization start step ST123, the defrosting heater is set. When the temperature Te of the evaporator 110 is detected as T102 or higher in the evaporator temperature determination step ST124, the output from the control board 113 to the defrost heater 111 is reduced in the output reduction step ST125 to the defrost heater. Thereafter, when the temperature Te of the evaporator 110 becomes equal to or higher than the T101 temperature in the evaporator temperature determination step ST126, the defrosting is terminated in the defrosting heater energization stop step ST127, and the cooling operation is started in the normal control step ST128.

以上のように、除霜終了温度以下であり0℃温度以上である設定温度T102以上を検知した後、霜取りヒータ111への出力を低下させ、概ね霜が除去された状態である蒸発器110の温度上昇をさせる過程で霜取りヒータ111の発熱量を抑えることにより、蒸発器110の平均温度を均一にでき、霜取りヒータ通電を停止し除霜を終了した後の余熱によるオーバーシュートを抑えることができるために、除霜に必要な熱量を抑えられ、出力を低下させたことによる除霜時間は延長するが、除霜要する消費電力量を低減することができる。さらに発熱量が低減できるために除霜終了後の冷却運転時間も低減でき、除霜時、冷却運転時共に消費電力量低減効果を発揮できる。   As described above, after detecting the temperature equal to or higher than the set temperature T102 that is equal to or lower than the defrosting end temperature and equal to or higher than 0 ° C., the output to the defrosting heater 111 is reduced, and the evaporator 110 that is in a state in which frost is generally removed By suppressing the heat generation amount of the defrosting heater 111 in the process of increasing the temperature, the average temperature of the evaporator 110 can be made uniform, and overshoot due to residual heat after the defrosting heater energization is stopped and the defrosting is completed can be suppressed. Therefore, although the amount of heat necessary for defrosting can be suppressed and the defrosting time due to the reduction in output is extended, the power consumption required for defrosting can be reduced. Furthermore, since the amount of generated heat can be reduced, the cooling operation time after the completion of the defrosting can also be reduced, and the power consumption reduction effect can be exhibited during both the defrosting and the cooling operation.

また、余熱によるオーバーシュートを低減することにより、各貯蔵室の食品の損傷ばかりでなく、除霜終盤には冷却室108内の周囲部品も温度上昇しており、通常アルミ箔などにより変形の防止を図っているが、このような変形防止用部材も削減できるため安価に冷却室を構成できる。   In addition, by reducing overshoot due to residual heat, not only the food in each storage room is damaged, but also the surrounding parts in the cooling chamber 108 rise in temperature at the end of the defrosting, and deformation is usually prevented by aluminum foil etc. However, since such deformation preventing members can be reduced, the cooling chamber can be configured at low cost.

また、冷媒として可燃性冷媒を用いる場合には、安全面から重要である霜取りヒータの表面温度を低下させることができる。   Moreover, when using a combustible refrigerant | coolant as a refrigerant | coolant, the surface temperature of the defrost heater which is important from a safety | security side can be reduced.

なお、除霜時初期に比較的大きな出力をヒータに与え、ヒータ111の温度が所定の温度以下となるよう設定された蒸発器温度検知手段の検知によりヒータ111の出力を低下させることで、可燃性冷媒の安全性を向上できるとともに、除霜初期の加温速度を上げて除霜時間の短縮を図り、効率化を実現することができる。   In addition, a relatively large output is given to the heater at the initial stage of defrosting, and the output of the heater 111 is lowered by the detection of the evaporator temperature detecting means set so that the temperature of the heater 111 is equal to or lower than a predetermined temperature. The safety of the functional refrigerant can be improved, and the heating rate at the initial stage of defrosting can be increased to shorten the defrosting time, thereby realizing higher efficiency.

さらに、ヒータ111の安全性を向上させる為にガラス管を二重に覆ったヒータを用いると、ヒータの表面温度を低減できる上にガラス管周辺に増えた熱容量分だけ低下する除霜時の加温立ち上がりを改善することが可能である。   In addition, if a heater with a glass tube covered in order to improve the safety of the heater 111 is used, the surface temperature of the heater can be reduced and the amount of heat capacity increased around the glass tube can be reduced during defrosting. It is possible to improve the temperature rise.

またなお、ヒータの安全性を向上させる手段としてガラス管にアルミフィンを巻きつけたものや、配管に当接させたものも同様の効果が期待できる。   In addition, as a means for improving the safety of the heater, a similar effect can be expected with a glass tube wrapped with an aluminum fin or a tube abutted against the pipe.

なお、出力低下手段として、変圧装置を用いた場合は霜取りヒータ111への出力を低減させられるだけでなく出力を増加させることもできるため、例えば周囲温度が低下すると除霜時間が長くなり各貯蔵室の食品への損傷が懸念されるが、周囲温度が低下した場合には出力を増加させて除霜時間の短縮を図り、各貯蔵室の食品への損傷を抑制できる。   In addition, since the output to the defrost heater 111 can be reduced as well as the output to the defrosting heater 111 can be increased when the transformer is used as the output lowering means, for example, when the ambient temperature decreases, the defrosting time becomes longer and each storage Although there is concern about damage to the food in the room, when the ambient temperature decreases, the output can be increased to shorten the defrosting time, and damage to the food in each storage room can be suppressed.

また、変圧装置を用いた場合は出力電圧をリニアに変化させられるために安定した霜取りヒータへの通電をさせることができる。   Moreover, since the output voltage can be changed linearly when the transformer is used, it is possible to energize a stable defrost heater.

なお、出力低下手段として、メカニカルリレーなどのリレーを用いた場合は時間制御にてオン/オフさせることにより霜取りヒータ111への出力を低減させることができるが、変圧装置が不要となり安価な除霜装置を構成することができる。   When a relay such as a mechanical relay is used as the output reduction means, the output to the defrosting heater 111 can be reduced by turning it on / off by time control. A device can be configured.

(実施の形態2)
図4は本発明の実施の形態2における冷蔵庫の除霜時の制御フローチャートである。なお、実施の形態1と同一構成については同一符号を付して説明を省略する。
(Embodiment 2)
FIG. 4 is a control flowchart at the time of defrosting the refrigerator in the second embodiment of the present invention. In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図4において、制御基板113に搭載されているマイコンのタイマーの時間が所定の時間に達したかどうかなどにより除霜開始の判定を除霜制御開始判定ステップST221で実施し、除霜を開始すると判定した場合には、圧縮機停止ステップST222にて圧縮機105を停止し、霜取りヒータ通電開始ステップST223にて霜取りヒータ111へ通電を開始する。ここで、除霜終了温度であるT201以下に設定された第二の設定温度であるT202温度を設け、T202温度は例えば1℃から5℃で設定され、霜取りヒータ通電開始ステップST223にて霜取りヒータ111へ通電を開始し、蒸発器温度判定ステップST224で蒸発器110の温度TeがT2以上を検知すると、T202温度所要時間t1検出ステップST225にて霜取りヒータ通電開始ステップST223の霜取りヒータ111への通電を開始してから蒸発器温度判定ステップST224で蒸発器110の温度TeがT202以上を検知するまでのt1時間を検出し、霜取りヒータへの出力増減ステップST226にてt1時間により霜取りヒータ111への出力を増減させる。その後、蒸発器温度判定ステップST227にて蒸発器110に取り付けられている霜取りセンサー112と制御基板113で蒸発器110の温度検出を行い、蒸発器110の温度Teが予め設定された第一の設定温度であるT201温度以上になると、霜取りヒータ通電停止ステップST228にて除霜を終了し、通常制御ステップST229で冷却運転を開始する。   In FIG. 4, when the defrosting start determination is performed in the defrosting control start determination step ST <b> 221 depending on whether or not the timer of the microcomputer mounted on the control board 113 has reached a predetermined time, the defrosting is started. If it is determined, the compressor 105 is stopped in the compressor stop step ST222, and energization of the defrost heater 111 is started in the defrost heater energization start step ST223. Here, a T202 temperature which is a second set temperature set below T201 which is a defrosting end temperature is provided, and the T202 temperature is set to, for example, 1 ° C. to 5 ° C., and the defrost heater is set in the defrost heater energization start step ST223. When the temperature Te of the evaporator 110 is detected to be T2 or more in the evaporator temperature determination step ST224, the power supply to the defrost heater 111 in the defrost heater energization start step ST223 is detected in the T202 temperature required time t1 detection step ST225. Is detected in the evaporator temperature determination step ST224 until the temperature Te of the evaporator 110 is detected as T202 or more, and the output to the defrost heater is increased or decreased in step ST226. Increase or decrease the output. Thereafter, in evaporator temperature determination step ST227, the temperature of evaporator 110 is detected by defrost sensor 112 attached to evaporator 110 and control board 113, and temperature Te of evaporator 110 is set in advance. When the temperature is equal to or higher than T201 temperature, defrosting is terminated in defrosting heater energization stop step ST228, and cooling operation is started in normal control step ST229.

以上のように、除霜終了温度以下であり0℃温度以上である設定温度T202以上を検知した後、除霜開始からの霜取りヒータ111への通電時間t1により、蒸発器110の着霜量を予測し、例えば周囲温度とt1時間の組み合わせにより予め設定された時間より長くなった場合には着霜量が多いと制御基板113のマイコンで判断させ、霜取りヒータ111への出力を増減させることにより適正な除霜を行うことができると同時に、蒸発器110の温度上昇のオーバーシュートが抑制され除霜時の消費電力量を低減させることができる。   As described above, after detecting the set temperature T202 that is equal to or lower than the defrosting end temperature and equal to or higher than 0 ° C., the frosting amount of the evaporator 110 is determined by the energization time t1 to the defrosting heater 111 from the start of the defrosting. By predicting, for example, when it becomes longer than a preset time due to the combination of the ambient temperature and t1 time, the microcomputer of the control board 113 determines that the amount of frost formation is large, and by increasing or decreasing the output to the defrost heater 111 Appropriate defrosting can be performed, and at the same time, the overshoot of the temperature rise of the evaporator 110 can be suppressed and the power consumption during defrosting can be reduced.

以上のように、本発明にかかる冷蔵庫は、蒸発器の除霜時の消費電力量を低減した冷蔵庫を提供することができ、冷蔵庫以外の冷却機器にも適用できる。   As mentioned above, the refrigerator concerning this invention can provide the refrigerator which reduced the power consumption at the time of defrosting of an evaporator, and can be applied also to cooling devices other than a refrigerator.

本発明の実施の形態1における冷蔵庫の断面図Sectional drawing of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における蒸発器の温度上昇カーブ図Temperature rise curve diagram of the evaporator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の除霜時の制御フローチャートControl flowchart at the time of defrosting of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態2における冷蔵庫の除霜時の制御フローチャートControl flowchart at the time of defrosting of the refrigerator in Embodiment 2 of the present invention 従来の冷蔵庫の断面図Cross-sectional view of a conventional refrigerator 従来の冷蔵庫の除霜時の制御フローチャートControl flowchart during defrosting of conventional refrigerator

符号の説明Explanation of symbols

101 断熱箱体
105 圧縮機
106 凝縮器
107 減圧器
110 蒸発器
111 霜取りヒータ
112 霜取りセンサー(蒸発器温度検知手段)
113 制御基板(制御手段)
DESCRIPTION OF SYMBOLS 101 Heat insulation box 105 Compressor 106 Condenser 107 Decompressor 110 Evaporator 111 Defrost heater 112 Defrost sensor (Evaporator temperature detection means)
113 Control board (control means)

Claims (5)

断熱箱体と、前記断熱箱体に備えられ少なくとも蒸発器を備えた冷凍サイクルと前記蒸発器の除霜を行う霜取りヒータと、前記蒸発器の温度を検出する蒸発器温度検知手段と、除霜を制御する制御手段とを有するものであって、前記制御手段は前記蒸発器温度検知手段が第一の設定温度以上になった場合に除霜を終了し、前記蒸発器温度検知手段が前記第一の設定温度以下の第二の設定温度以上になった場合に前記霜取りヒータの出力を低下させる冷蔵庫。   A heat insulation box, a refrigeration cycle provided in the heat insulation box and provided with at least an evaporator, a defrost heater for defrosting the evaporator, an evaporator temperature detecting means for detecting the temperature of the evaporator, and a defrost The control means terminates the defrosting when the evaporator temperature detecting means reaches a first set temperature or higher, and the evaporator temperature detecting means The refrigerator which reduces the output of the said defrost heater when it becomes more than 2nd preset temperature below 1 preset temperature. 断熱箱体と、前記断熱箱体に備えられ少なくとも蒸発器を備えた冷凍サイクルと、前記蒸発器の除霜を行う霜取りヒータと、前記蒸発器の温度を検出する蒸発器温度検知手段と、除霜を制御する制御手段とを有するものであって、前記制御手段は前記蒸発器温度検知手段が第一の設定温度以上になった場合に除霜を終了し、前記蒸発器温度検知手段が前記第一の設定温度以下の第二の設定温度を有し、前記制御手段は除霜開始から前記蒸発器温度検知手段が前記第二の設定温度以上となるまでの時間により前記霜取りヒータの出力を調整する冷蔵庫。   A heat insulation box, a refrigeration cycle provided in the heat insulation box and provided with at least an evaporator, a defrosting heater for defrosting the evaporator, an evaporator temperature detecting means for detecting the temperature of the evaporator, Control means for controlling frost, wherein the control means terminates defrosting when the evaporator temperature detection means reaches or exceeds a first set temperature, and the evaporator temperature detection means The control means has a second set temperature that is equal to or lower than the first set temperature, and the control means outputs the output of the defrost heater according to the time from the start of defrosting until the evaporator temperature detection means becomes equal to or higher than the second set temperature. Refrigerator to adjust. 制御手段は、印加電圧を増加減させて霜取りヒータの出力を調整する請求項1または2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the control means adjusts the output of the defrosting heater by increasing or decreasing the applied voltage. 制御手段は、霜取りヒータに間欠的に電圧を印加させる請求項1または2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the control means intermittently applies a voltage to the defrost heater. 冷凍サイクルには可燃性冷媒が封入された請求項1から4のいずれか一項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 4, wherein a flammable refrigerant is enclosed in the refrigeration cycle.
JP2006123252A 2006-04-27 2006-04-27 Refrigerator Pending JP2007292422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123252A JP2007292422A (en) 2006-04-27 2006-04-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123252A JP2007292422A (en) 2006-04-27 2006-04-27 Refrigerator

Publications (1)

Publication Number Publication Date
JP2007292422A true JP2007292422A (en) 2007-11-08

Family

ID=38763194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123252A Pending JP2007292422A (en) 2006-04-27 2006-04-27 Refrigerator

Country Status (1)

Country Link
JP (1) JP2007292422A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048512A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Refrigerator
JP2013200084A (en) * 2012-03-26 2013-10-03 Panasonic Corp Cooling storage
JPWO2017056212A1 (en) * 2015-09-30 2018-04-26 三菱電機株式会社 refrigerator
WO2019111363A1 (en) * 2017-12-06 2019-06-13 三菱電機株式会社 Refrigerator, heater driving device, heater driving method, and program
CN109906347A (en) * 2016-11-10 2019-06-18 Lg电子株式会社 The control method of refrigerator and refrigerator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598979A (en) * 1979-01-19 1980-07-28 Itsupoushiya Yushi Kogyo Kk Dyeing of polyester synthetic fiber
JPH01123182A (en) * 1987-11-06 1989-05-16 Mitsubishi Electric Corp Proximity fuse
JPH0634259A (en) * 1992-07-21 1994-02-08 Fujitsu General Ltd Electrical refrigerator
JPH07218097A (en) * 1994-02-02 1995-08-18 Matsushita Refrig Co Ltd Antidewing controller for refrigerator
JPH1089834A (en) * 1996-09-13 1998-04-10 Toshiba Corp Refrigerator
JPH10205980A (en) * 1997-01-27 1998-08-04 Toshiba Corp Refrigerator
JP2001165552A (en) * 1999-12-08 2001-06-22 Mitsubishi Electric Corp Refrigerator
JP2002081844A (en) * 2000-09-04 2002-03-22 Toshiba Corp Refrigerator
JP2004251480A (en) * 2003-02-18 2004-09-09 Toshiba Kyaria Kk Refrigerating device
JP2005037010A (en) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp Refrigerator and method for operating the same
JP2005114266A (en) * 2003-10-09 2005-04-28 Mitsubishi Electric Corp Method for controlling defrosting heater capacity for refrigerating-freezing showcase

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598979A (en) * 1979-01-19 1980-07-28 Itsupoushiya Yushi Kogyo Kk Dyeing of polyester synthetic fiber
JPH01123182A (en) * 1987-11-06 1989-05-16 Mitsubishi Electric Corp Proximity fuse
JPH0634259A (en) * 1992-07-21 1994-02-08 Fujitsu General Ltd Electrical refrigerator
JPH07218097A (en) * 1994-02-02 1995-08-18 Matsushita Refrig Co Ltd Antidewing controller for refrigerator
JPH1089834A (en) * 1996-09-13 1998-04-10 Toshiba Corp Refrigerator
JPH10205980A (en) * 1997-01-27 1998-08-04 Toshiba Corp Refrigerator
JP2001165552A (en) * 1999-12-08 2001-06-22 Mitsubishi Electric Corp Refrigerator
JP2002081844A (en) * 2000-09-04 2002-03-22 Toshiba Corp Refrigerator
JP2004251480A (en) * 2003-02-18 2004-09-09 Toshiba Kyaria Kk Refrigerating device
JP2005037010A (en) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp Refrigerator and method for operating the same
JP2005114266A (en) * 2003-10-09 2005-04-28 Mitsubishi Electric Corp Method for controlling defrosting heater capacity for refrigerating-freezing showcase

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048512A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Refrigerator
JP2013200084A (en) * 2012-03-26 2013-10-03 Panasonic Corp Cooling storage
JPWO2017056212A1 (en) * 2015-09-30 2018-04-26 三菱電機株式会社 refrigerator
CN108139137A (en) * 2015-09-30 2018-06-08 三菱电机株式会社 Refrigerator
CN109906347A (en) * 2016-11-10 2019-06-18 Lg电子株式会社 The control method of refrigerator and refrigerator
US11143452B2 (en) 2016-11-10 2021-10-12 Lg Electronics Inc. Refrigerator and method for controlling refrigerator
WO2019111363A1 (en) * 2017-12-06 2019-06-13 三菱電機株式会社 Refrigerator, heater driving device, heater driving method, and program
JPWO2019111363A1 (en) * 2017-12-06 2020-04-09 三菱電機株式会社 Refrigerator, heater driving device, heater driving method and program
CN111417827A (en) * 2017-12-06 2020-07-14 三菱电机株式会社 Refrigerator, heater driving device, heater driving method, and program
CN111417827B (en) * 2017-12-06 2021-09-28 三菱电机株式会社 Refrigerator, heater driving device, heater driving method, and recording medium

Similar Documents

Publication Publication Date Title
KR101573538B1 (en) Control method of refrigerator
US20060218946A1 (en) Refrigeration and defrost control system
JP2007292422A (en) Refrigerator
CN107726721B (en) Refrigerator control method and refrigerator applying same
JP2009036483A (en) Refrigerator and its defrosting method
JP4630016B2 (en) Defrost control device for cooling storage
JP4545645B2 (en) Cooling storage
JP5469993B2 (en) Cooling storage
JP5722160B2 (en) Cooling storage
CN113790570B (en) Refrigerator defrosting control method and refrigerator
JP2011052935A (en) Refrigerator
JP3813372B2 (en) refrigerator
JP2006071248A (en) Cooling storage
JP2010032150A (en) Heat pump water heater
JP5262259B2 (en) refrigerator
JP4935414B2 (en) Cooling system
CN113720088A (en) Refrigerating and freezing device and control method thereof
JP2007163064A (en) Refrigerator
KR102519153B1 (en) Method for driving defrost of refrigerator
JP5137742B2 (en) refrigerator
JP5127804B2 (en) refrigerator
JP2007163065A (en) Refrigerator
JP2006220359A (en) Cooler defrosting device of bread dough fermenting and thawing chamber
JP2014145572A (en) Heat pump device
JP5073322B2 (en) Defrost control device for cooling storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A02 Decision of refusal

Effective date: 20111220

Free format text: JAPANESE INTERMEDIATE CODE: A02