JP2007291897A - Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine - Google Patents

Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine Download PDF

Info

Publication number
JP2007291897A
JP2007291897A JP2006118679A JP2006118679A JP2007291897A JP 2007291897 A JP2007291897 A JP 2007291897A JP 2006118679 A JP2006118679 A JP 2006118679A JP 2006118679 A JP2006118679 A JP 2006118679A JP 2007291897 A JP2007291897 A JP 2007291897A
Authority
JP
Japan
Prior art keywords
gas
reformed fuel
liquid
fuel
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006118679A
Other languages
Japanese (ja)
Inventor
Akinori Hayashi
明典 林
Shinichi Inage
真一 稲毛
Koji Nishida
浩二 西田
Nobuyuki Hokari
信幸 穂刈
Osamu Yokota
修 横田
Hirokazu Takahashi
宏和 高橋
Shinsuke Kokubo
慎介 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006118679A priority Critical patent/JP2007291897A/en
Publication of JP2007291897A publication Critical patent/JP2007291897A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient heavy oil reformed fuel burning gas turbine reducing draining of gas reformed fuel supplied to a combustor and a method for operating the heavy oil reformed fuel burning gas turbine. <P>SOLUTION: The heavy oil reformed fuel burning gas turbine is provided with a means separating liquid and gas at saturated vapor temperature or higher in a first gas liquid separating device 14a and supplying steam 19 of temperature higher than temperature of a gas reformed fuel 15 in gas reformed fuel system provided between the first gas liquid separating device 14a and the combustor 22. Consequently, draining of gas reformed fuel supplied to the combustor is reduced and efficiency can be kept at high. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法に関する。   The present invention relates to a heavy oil reformed fuel-fired gas turbine and a method for operating a heavy oil reformed fuel-fired gas turbine.

重質油等の低品位燃料は、発電用ガスタービンに悪影響を与える重金属類,硫黄分,窒素分,灰分等の不純物を多量に含んでいる。このような低品位燃料を改質するため、300〜500℃,20〜30MPaといった高温高圧水の水熱反応を用いた技術が知られている。高温高圧水は重質油等の有機物を容易に溶解させ、有機物を熱分解,加水分解、または酸化剤の存在下で酸化分解する反応溶媒として働く。近年、このような高温高圧水の水熱反応により重質油を改質した改質燃料で運用する重質油改質燃料焚きガスタービンが開発されている。   Low-grade fuel such as heavy oil contains a large amount of impurities such as heavy metals, sulfur, nitrogen and ash that adversely affect the gas turbine for power generation. In order to reform such a low-grade fuel, a technique using a hydrothermal reaction of high-temperature and high-pressure water such as 300 to 500 ° C. and 20 to 30 MPa is known. High-temperature high-pressure water easily dissolves organic substances such as heavy oil, and acts as a reaction solvent that thermally decomposes, hydrolyzes, or oxidatively decomposes in the presence of an oxidizing agent. In recent years, heavy oil reformed fuel-fired gas turbines have been developed that operate with a reformed fuel obtained by reforming heavy oil by the hydrothermal reaction of such high-temperature and high-pressure water.

この重質油改質燃料焚きガスタービンの一例として、高温高圧条件下(例えば300〜500℃,20〜30MPa程度)で重質油を水と混合させて改質し、改質された燃料を減圧・冷却するとともに分離器内で静置して、ガス成分と液成分(油分及び水分)とに分離する。そして、油分は蒸留して沸点の低い留出分(軽質分)と沸点の高い残分に分離し、ガス成分及び留出分は燃焼器にそれぞれ供給して燃焼し、発生した燃焼ガスによりタービンを駆動して発電する。一方、残分はボイラに供給して燃焼し、ボイラで生成した蒸気により蒸気タービンを駆動して発電する技術が開示されている(例えば、特許文献1参照)。   As an example of this heavy oil reformed fuel-fired gas turbine, heavy oil is mixed with water under high temperature and high pressure conditions (for example, about 300 to 500 ° C., about 20 to 30 MPa) to reform the reformed fuel. While reducing the pressure and cooling, it is allowed to stand in a separator to separate into a gas component and a liquid component (oil and moisture). The oil is distilled to separate a distillate having a low boiling point (light component) and a residue having a high boiling point, and the gas component and distillate are respectively supplied to the combustor and burned. To generate electricity. On the other hand, a technique is disclosed in which the remainder is supplied to a boiler and combusted, and a steam turbine is driven by steam generated in the boiler to generate electric power (see, for example, Patent Document 1).

特開平11−80750号公報Japanese Patent Laid-Open No. 11-80750

特許文献1において、改質燃料を減圧するとともに常温(飽和水以下)まで冷却して分離器内で静置することにより、ガス成分と液成分である油分及び水分とに分離させる。但し、重質油は高温高圧水に溶解しているため、改質燃料を減圧・冷却させると極微細な油滴と水滴が混合状態で生成される。そのため、油分と水分の分離は困難となる。また、改質燃料を常温まで冷却する必要があるため、システム全体の効率という観点からは好ましくない。   In Patent Document 1, the reformed fuel is decompressed, cooled to room temperature (saturated water or less), and allowed to stand in a separator to be separated into a gas component and liquid components such as oil and moisture. However, since heavy oil is dissolved in high-temperature and high-pressure water, when the reformed fuel is decompressed and cooled, ultrafine oil droplets and water droplets are generated in a mixed state. Therefore, it becomes difficult to separate oil and moisture. Moreover, since it is necessary to cool the reformed fuel to room temperature, it is not preferable from the viewpoint of the efficiency of the entire system.

そこで改質燃料を常温まで冷却せずに、改質燃料の冷却温度を飽和蒸気温度以上とし、水蒸気を含むガス成分と油分とに分離する方法が考えられる。ところが、水蒸気を含むガス成分を燃焼器へ供給する配管において、自然放熱して温度が低下し、ドレンが発生する可能性を有する。ドレンの発生により気液が混在した燃料を燃焼器の気体改質燃料用ノズルに供給すると、ガス噴孔の詰まり、間欠燃焼による振動やタービン負荷変動が起きる可能性もある。   Therefore, a method is considered in which the reformed fuel is not cooled to room temperature, but the reformed fuel is cooled to a temperature equal to or higher than the saturated steam temperature and separated into a gas component containing water vapor and an oil component. However, in a pipe that supplies a gas component containing water vapor to the combustor, there is a possibility that the temperature is lowered due to natural heat dissipation and drainage is generated. When fuel mixed with gas and liquid due to the generation of drain is supplied to the gas reforming fuel nozzle of the combustor, the gas injection holes may be clogged, vibrations due to intermittent combustion, and turbine load fluctuations may occur.

本発明の目的は、燃焼器に供給される気体改質燃料のドレン化を低減し、効率が高い重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法を提供することにある。   An object of the present invention is to provide a heavy oil reformed fuel-fired gas turbine and a method of operating a heavy oil reformed fuel-fired gas turbine that reduce drainage of gas reformed fuel supplied to a combustor and have high efficiency. There is to do.

本発明は、第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けたことを特徴とする。   In the first gas-liquid separator, the gas and liquid are separated into a liquid and a gas at a temperature equal to or higher than the saturated vapor temperature, and the gas reformed fuel system provided between the first gas-liquid separator and the combustor is gas-modified. A means for supplying water vapor having a temperature higher than that of the quality fuel is provided.

本発明によれば、燃焼器に供給される気体改質燃料のドレン化を低減し、効率が高い重質油改質燃料焚きガスタービン及び重質油改質燃料焚きガスタービンの運転方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the draining of the gas reformed fuel supplied to a combustor is reduced, and the heavy oil reformed fuel-fired gas turbine with high efficiency and the operation method of the heavy oil reformed fuel-fired gas turbine are provided. can do.

本発明の実施例1では、第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けている。   In Embodiment 1 of the present invention, the first gas-liquid separation device separates the liquid and gas at a temperature equal to or higher than the saturated vapor temperature, and the gas reformed fuel provided between the first gas-liquid separation device and the combustor. Means is provided for supplying steam with a temperature higher than that of the gas reforming fuel to the system.

第1の気液分離装置の内部温度を飽和蒸気温度以上とすることで、液体改質燃料へ水分が混入することを抑制することができる。また、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けることで、気体改質燃料中の軽質有機物の温度を上昇させ、気体改質燃料が自然放熱して冷却によるドレン化を極力抑制することができる。更に、気体改質燃料中の水蒸気混入量を増加させると、蒸気の熱エネルギーを燃焼器で回収できると共に、燃焼器内部の燃焼室でNOxが生成されることを抑制できる。なお、水蒸気は燃焼器からの排ガスに含まれ、タービンの駆動流体として働き、タービン出力が増加するため水蒸気による熱損失を少なくすることもできる。   By making the internal temperature of the first gas-liquid separation device equal to or higher than the saturated vapor temperature, it is possible to prevent water from being mixed into the liquid reformed fuel. Further, by providing means for supplying water vapor having a temperature higher than the temperature of the gas reformed fuel to the gas reformed fuel system provided between the first gas-liquid separator and the combustor, the gas reformed fuel is provided. The temperature of the light organic matter in the inside is raised, and the gas reformed fuel naturally dissipates heat, and draining due to cooling can be suppressed as much as possible. Further, when the amount of water vapor mixed in the gas reformed fuel is increased, the thermal energy of the steam can be recovered by the combustor and NOx can be suppressed from being generated in the combustion chamber inside the combustor. Note that the steam is contained in the exhaust gas from the combustor and serves as a driving fluid for the turbine. Since the turbine output increases, the heat loss due to the steam can be reduced.

また、本発明の実施例1では、第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させるとともに、気体改質燃料を供給するマニホールドと第1の気液分離器との間に気体改質燃料の温度より高い温度の水蒸気を供給する手段を設け、気体改質燃料のマニホールドの下側に第1の気液分離器を設けている。   Further, in the first embodiment of the present invention, the first gas-liquid separator separates the liquid and the gas at a temperature equal to or higher than the saturated vapor temperature, and between the manifold that supplies the gas reformed fuel and the first gas-liquid separator. A means for supplying steam having a temperature higher than that of the gas reformed fuel is provided, and a first gas-liquid separator is provided below the manifold of the gas reformed fuel.

液体改質燃料と気体改質燃料を燃焼器に供給するマニホールドをそれぞれ設けることで、燃焼器の各々に対して、気体と液体が混合した改質燃料が供給されることを抑制できる。そのため、気体改質燃料と液体改質燃料の供給流量偏差を低減できる。   By providing each of the manifolds for supplying the liquid reformed fuel and the gas reformed fuel to the combustor, it is possible to suppress the supply of the reformed fuel in which the gas and the liquid are mixed to each of the combustors. Therefore, the supply flow rate deviation between the gas reforming fuel and the liquid reforming fuel can be reduced.

また、気体改質燃料用マニホールドの下側に第1の気液分離器を設けることで、気体改質燃料用マニホールドでドレンが発生しても、重力降下で第1の気液分離装置にそのドレンが降下し、気体改質燃料を燃焼させる燃料ノズルにドレンが流入することを抑制できる。   Also, by providing the first gas-liquid separator on the lower side of the gas reforming fuel manifold, even if drain is generated in the gas reforming fuel manifold, the first gas-liquid separation device will be able to It is possible to suppress the drain from falling and flowing into the fuel nozzle that burns the gas reformed fuel.

更に、気体改質燃料用マニホールドと第1の気液分離装置との間に気体改質燃料より高い温度の水蒸気を供給する手段を設けることで、ドレン化を抑制できる。液体改質燃料は第1の気液分離装置から液体改質燃料用マニホールドに直接供給することで、液体改質燃料をタンクへ一時的に貯留する必要がなくなる。また、タンクから燃焼器へ供給するための圧縮ポンプ等の補機を不要とし、コストが低減できる。   Furthermore, by providing means for supplying water vapor having a temperature higher than that of the gas reformed fuel between the gas reformed fuel manifold and the first gas-liquid separator, draining can be suppressed. By supplying the liquid reformed fuel directly from the first gas-liquid separator to the liquid reformed fuel manifold, it is not necessary to temporarily store the liquid reformed fuel in the tank. In addition, an auxiliary machine such as a compression pump for supplying from the tank to the combustor is unnecessary, and the cost can be reduced.

また、本発明の実施例1では、第1の気液分離装置に液体改質燃料の量を監視可能な手段を設けている。   In the first embodiment of the present invention, the first gas-liquid separator is provided with means capable of monitoring the amount of liquid reformed fuel.

第1の気液分離装置に液体改質燃料の量を監視可能な手段を設けることで、液体改質燃料の量とガスタービン負荷に応じた液体改質燃料流量の制御をすることが出来る。当該手段は、液体改質燃料の量を検知できるセンサーを用いることが可能である。このような液体改質燃料の監視手段により、気液分離装置の気体・液体量を一定に保持でき、気体改質燃料の供給量変動を抑制することができる。   By providing the first gas-liquid separation device with means capable of monitoring the amount of the liquid reformed fuel, the liquid reformed fuel flow rate can be controlled in accordance with the amount of the liquid reformed fuel and the gas turbine load. The means can use a sensor capable of detecting the amount of liquid reformed fuel. By such a liquid reforming fuel monitoring means, the gas / liquid amount of the gas-liquid separator can be kept constant, and fluctuations in the supply amount of the gas reforming fuel can be suppressed.

また、本発明の実施例1において、第1の気液分離装置と燃焼器との間に設けられた気体改質燃料の系統に水蒸気を供給する手段は、水を加熱する加熱装置と燃料改質装置との間の系統であって、この系統から分岐されて気体改質燃料の系統に連通させている。   In the first embodiment of the present invention, the means for supplying water vapor to the gas reformed fuel system provided between the first gas-liquid separator and the combustor includes a heating device for heating water and a fuel reformer. The system is connected to a gas reformer, and is branched from this system and communicated with a system of gas reformed fuel.

このように第1の燃料改質装置と気体改質燃料に供給する水蒸気の供給源であるポンプ,加熱器を共有することで、コストが低減できる。また、当該加熱装置をタービン排ガスが供給される排熱回収ボイラとすることにより、タービン排ガスの熱を利用することができ、ガスタービン全体の熱効率が向上する。   Thus, the cost can be reduced by sharing the first fuel reformer and the pump and heater, which are the supply sources of the steam supplied to the gas reformed fuel. Moreover, by making the said heating apparatus into the exhaust heat recovery boiler to which turbine exhaust gas is supplied, the heat of turbine exhaust gas can be utilized and the thermal efficiency of the whole gas turbine improves.

また、本発明の実施例2では、燃料改質装置と第1の気液分離装置との間の系統に圧力を制御する制御弁を設け、制御弁の上流側に第2の気液分離装置を設け、第2の気液分離装置で分離された液体改質燃料を第1の気液分離装置に供給するよう構成している。   Further, in Embodiment 2 of the present invention, a control valve for controlling pressure is provided in a system between the fuel reformer and the first gas-liquid separator, and the second gas-liquid separator is provided upstream of the control valve. And the liquid reformed fuel separated by the second gas-liquid separator is supplied to the first gas-liquid separator.

改質燃料の軽質化が不十分である場合、燃料減圧後の制御弁に気液混相流体が供給され、燃料制御が不安定になることが考えられる。そこで、各々の制御弁の上流側に第2の気液分離装置を設置する。当該気液分離装置で分離された液体改質燃料を第1の気液分離装置に供給することで、制御弁に液体改質燃料が流入することを抑制できる。   When lightening of the reformed fuel is insufficient, it is conceivable that the gas-liquid mixed phase fluid is supplied to the control valve after depressurizing the fuel, and the fuel control becomes unstable. Therefore, a second gas-liquid separator is installed on the upstream side of each control valve. By supplying the liquid reformed fuel separated by the gas-liquid separator to the first gas-liquid separator, the liquid reformed fuel can be prevented from flowing into the control valve.

また、本発明の実施例3と実施例4では、気液分離装置により分離した液体改質燃料を加圧するためのポンプと、ポンプの下流側であって、加圧した液体改質燃料の加熱手段とを設置し、燃料改質装置と気液分離器との間の系統に、加熱手段により加熱された液体改質燃料を供給している。   In the third and fourth embodiments of the present invention, a pump for pressurizing the liquid reformed fuel separated by the gas-liquid separator, and heating the pressurized liquid reformed fuel downstream of the pump. The liquid reformed fuel heated by the heating means is supplied to the system between the fuel reformer and the gas-liquid separator.

このような構造により、ガスタービンへの燃料供給は気体改質燃料のみで可能となり、制御を簡略化し、コストの低減と制御信頼性を向上させる。また、液体改質燃料の加熱手段に、ガスタービンの廃熱を利用する場合には、システム効率を向上させることができる。   With such a structure, the fuel supply to the gas turbine is possible only with the gas reformed fuel, the control is simplified, the cost is reduced, and the control reliability is improved. Further, when the waste heat of the gas turbine is used as the heating means for the liquid reformed fuel, the system efficiency can be improved.

本発明を用いた実施例として、重質油改質燃料焚きガスタービンのシステム構成を図1に示す。当該システムは、重質油と水の供給系統,改質器,気液分離器,燃焼器,圧縮器,タービン,発電機,廃熱回収ボイラ,起動用燃料系統を有する。   As an embodiment using the present invention, a system configuration of a heavy oil reforming fuel-fired gas turbine is shown in FIG. The system has a heavy oil and water supply system, a reformer, a gas-liquid separator, a combustor, a compressor, a turbine, a generator, a waste heat recovery boiler, and a startup fuel system.

重質油タンク2と水タンク1にそれぞれ貯蓄された重質油7と水6は、油ポンプ4,水ポンプ3で加圧された後、加熱装置である廃熱回収ボイラ5で昇温される。そして、昇温された水と重質油は、燃料改質装置である改質器8へ供給される。この際、高温高圧水により重質油7を改質する場合は、改質器8に供給される重質油7と水6の圧力を22MPa、温度条件を374℃とするか、当該圧力・温度条件に近い高温高圧水とすることが好ましい。   Heavy oil 7 and water 6 stored in the heavy oil tank 2 and the water tank 1 are pressurized by the oil pump 4 and the water pump 3, respectively, and then heated by the waste heat recovery boiler 5 which is a heating device. The The heated water and heavy oil are supplied to a reformer 8 that is a fuel reformer. At this time, when the heavy oil 7 is reformed with the high-temperature and high-pressure water, the pressure of the heavy oil 7 and the water 6 supplied to the reformer 8 is set to 22 MPa and the temperature condition is set to 374 ° C. It is preferable to use high-temperature high-pressure water close to temperature conditions.

燃料改質装置である改質器8では、重質油7が軽質化され、更に重金属,硫黄等の不純物9を取り除き、改質燃料10を生成する。改質燃料10は保圧弁11で減圧されて、燃料流量調整用の圧力調整弁12と流量調整弁13を通過する。これらの調整弁を介することで、ガスタービン負荷に応じて流量制御が成された改質燃料10は、冷却器21において飽和蒸気温度近傍まで冷却され、第1の気液分離装置である気液分離器14aに供給される。   In the reformer 8 that is a fuel reformer, the heavy oil 7 is lightened, and impurities 9 such as heavy metals and sulfur are further removed to produce a reformed fuel 10. The reformed fuel 10 is decompressed by the pressure-holding valve 11 and passes through the pressure regulating valve 12 and the flow regulating valve 13 for regulating the fuel flow rate. By passing through these regulating valves, the reformed fuel 10 whose flow rate is controlled in accordance with the gas turbine load is cooled to the vicinity of the saturated steam temperature in the cooler 21 and is the gas-liquid that is the first gas-liquid separator. It is supplied to the separator 14a.

気液分離器14aでは飽和蒸気温度近傍まで改質燃料が冷却されているため、気体改質燃料15と液体改質燃料16に分離する。気液分離器14aと燃焼器22との間には、気体改質燃料と液体改質燃料がそれぞれ流れる2つの系統が設けられており、気体改質燃料と液体改質燃料は別々に燃焼器22へ供給される。   In the gas-liquid separator 14 a, the reformed fuel is cooled to near the saturated steam temperature, so that it is separated into the gas reformed fuel 15 and the liquid reformed fuel 16. Between the gas-liquid separator 14a and the combustor 22, two systems through which the gas reformed fuel and the liquid reformed fuel respectively flow are provided, and the gas reformed fuel and the liquid reformed fuel are separately combustor. 22 is supplied.

気液分離器14aには液体改質燃料16の貯蔵量を監視するための手段が設置されている。当該手段として液位を判断するセンサー36を使用することができる。改質器8と燃焼器22との間に設けられた液体改質燃料の流路には、気液分離器14aに貯蔵された液体改質燃料の貯蔵量を制御すると共に、燃焼器22に供給する液体改質燃料の供給量を調整するための液体改質燃料制御弁18が設置されている。当該制御弁は、気液分離器14aに設けられたセンサー出力17に応じて開度が制御される。   The gas-liquid separator 14a is provided with means for monitoring the storage amount of the liquid reformed fuel 16. As the means, a sensor 36 for determining the liquid level can be used. The flow path of the liquid reformed fuel provided between the reformer 8 and the combustor 22 controls the storage amount of the liquid reformed fuel stored in the gas-liquid separator 14a and A liquid reforming fuel control valve 18 for adjusting the supply amount of the liquid reforming fuel to be supplied is installed. The opening degree of the control valve is controlled according to the sensor output 17 provided in the gas-liquid separator 14a.

また、気液分離器14aで分離された気体改質燃料15は、気体改質燃料の温度より高い温度の水蒸気を供給する手段からの水蒸気19と混合されて燃焼器22に供給される。気液分離器14aと燃焼器22との間に設けられた気体改質燃料15の系統に水蒸気を供給する手段として、外部から水蒸気を供給することも可能である。しかし、本実施例のように廃熱回収ボイラ5で加熱された水蒸気を供給することで、設備数を低減させることが可能である。水蒸気19は、水蒸気流量制御弁20によって流量を制御されて、気体改質燃料に供給される。   The gas reformed fuel 15 separated by the gas-liquid separator 14a is mixed with the steam 19 from the means for supplying steam at a temperature higher than the temperature of the gas reformed fuel and supplied to the combustor 22. As means for supplying water vapor to the gas reformed fuel 15 system provided between the gas-liquid separator 14a and the combustor 22, it is also possible to supply water vapor from the outside. However, the number of facilities can be reduced by supplying the steam heated by the waste heat recovery boiler 5 as in this embodiment. The flow rate of the steam 19 is controlled by the steam flow rate control valve 20 and is supplied to the gas reformed fuel.

燃焼器22では、圧縮機23からの圧縮空気24と気体・液体改質燃料、若しくは起動用燃料29とを燃焼させて燃焼ガス25を生成する。燃料と圧縮空気とを燃焼させる燃焼室では局所高温燃焼領域が生じるとNOxが生成される。しかし、本実施例では、気体改質燃料15と共に供給される水蒸気19によって、燃焼室における高温領域の温度を低減しNOxの発生を抑制することが可能である。   In the combustor 22, the compressed air 24 from the compressor 23 and the gas / liquid reformed fuel or the starting fuel 29 are burned to generate the combustion gas 25. In the combustion chamber that burns fuel and compressed air, NOx is generated when a local high-temperature combustion region occurs. However, in the present embodiment, the steam 19 supplied together with the gas reforming fuel 15 can reduce the temperature in the high temperature region in the combustion chamber and suppress the generation of NOx.

生成された燃焼ガス25は、タービン26を回転させて発電機27を駆動する。タービン26から排出された排ガスは、廃熱回収ボイラ5に排ガス28として供給される。廃熱回収ボイラ5では、タービン26からの排ガス28によって改質器8に供給する重質油・水を加熱する役割を果たす。   The generated combustion gas 25 rotates the turbine 26 and drives the generator 27. The exhaust gas discharged from the turbine 26 is supplied to the waste heat recovery boiler 5 as the exhaust gas 28. The waste heat recovery boiler 5 plays a role of heating heavy oil / water supplied to the reformer 8 by the exhaust gas 28 from the turbine 26.

ここで、燃焼器22が複数缶で構成されるガスタービンにおける、マニホールドと気液分離器14aの詳細な構造を図2に示す。冷却器21において飽和蒸気温度まで冷却された改質燃料10は、第1の気液分離器である気液分離器14aに供給される。気液分離器14aにおいて、改質燃料10は気体改質燃料15と液体改質燃料16に分離される。そして、気体改質燃料15は気液分離器14aの上側に設けられた気体改質燃料用マニホールド33へ流入し、液体改質燃料16は気液分離器14aの下側に設けられた液体改質燃料用マニホールド34へ流入する。各々のマニホールドには燃焼器缶数分の枝管35が設けられ、それぞれの枝管35に燃焼器22が接続されている。なお、本実施例では、気体改質燃料用マニホールド33の枝管35には気体改質燃料に適した燃焼器が接続されており、液体改質燃料用マニホールド34の枝管35には液体改質燃料に適した燃焼器が接続されている。このように、各燃焼器22には、マニホールドの枝管35を介して気体改質燃料15及び液体改質燃料16が供給可能である。   Here, FIG. 2 shows a detailed structure of the manifold and the gas-liquid separator 14a in the gas turbine in which the combustor 22 includes a plurality of cans. The reformed fuel 10 cooled to the saturated vapor temperature in the cooler 21 is supplied to a gas-liquid separator 14a that is a first gas-liquid separator. In the gas-liquid separator 14 a, the reformed fuel 10 is separated into a gas reformed fuel 15 and a liquid reformed fuel 16. Then, the gas reformed fuel 15 flows into the gas reformed fuel manifold 33 provided on the upper side of the gas-liquid separator 14a, and the liquid reformed fuel 16 is supplied to the liquid reformer provided on the lower side of the gas-liquid separator 14a. It flows into the manifold 34 for quality fuel. Each manifold is provided with as many branch pipes 35 as the number of combustor cans, and the combustors 22 are connected to the respective branch pipes 35. In this embodiment, a combustor suitable for gas reformed fuel is connected to the branch pipe 35 of the gas reformed fuel manifold 33, and the liquid reformer is connected to the branch pipe 35 of the liquid reformed fuel manifold 34. A combustor suitable for quality fuel is connected. In this way, the gas reforming fuel 15 and the liquid reforming fuel 16 can be supplied to each combustor 22 via the branch pipe 35 of the manifold.

また、気液分離器14aの内部には液体改質燃料16の貯蓄量を監視可能なセンサー
36が設置されており、このセンサー36の出力17と信号処理器37の制御出力39により、液体改質燃料用マニホールド34と気液分離器14aの間の配管に設置された液体改質燃料制御弁18を制御し、液体改質燃料16の貯蓄量を一定に保つことができる。更に、この液体改質燃料制御弁18は、負荷運転時の燃料切替等に燃料制御指令38を受けて運用条件に応じた制御が可能となっている。
Further, a sensor 36 capable of monitoring the storage amount of the liquid reformed fuel 16 is installed in the gas-liquid separator 14a. The liquid reforming is performed by the output 17 of the sensor 36 and the control output 39 of the signal processor 37. The liquid reformed fuel control valve 18 installed in the pipe between the quality fuel manifold 34 and the gas-liquid separator 14a can be controlled to keep the stored amount of the liquid reformed fuel 16 constant. Further, the liquid reforming fuel control valve 18 receives a fuel control command 38 for fuel switching at the time of load operation and can be controlled according to the operation conditions.

図3は、図1及び図2のシステムを用いたガスタービンにおいて、ガスタービン負荷の変化に対する起動用燃料29,気体改質燃料15,液体改質燃料16、及び気体改質燃料15を加熱する加熱用水蒸気19の流量変化を示した図である。図3の上部に示す図では、縦軸に温度を示し、横軸にガスタービン負荷を示す。また、図3の下部に示す図では、縦軸に流量を示し、横軸にガスタービン負荷を示す。   FIG. 3 shows a gas turbine using the system of FIGS. 1 and 2 that heats the starting fuel 29, the gas reforming fuel 15, the liquid reforming fuel 16, and the gas reforming fuel 15 in response to changes in the gas turbine load. It is the figure which showed the flow volume change of the water vapor | steam 19 for a heating. In the figure shown in the upper part of FIG. 3, the vertical axis indicates the temperature, and the horizontal axis indicates the gas turbine load. Moreover, in the figure shown at the lower part of FIG. 3, the flow rate is shown on the vertical axis, and the gas turbine load is shown on the horizontal axis.

ガスタービン負荷が図3の区間1の場合について説明する。ガスタービン起動時は、起動用燃料ポンプ30によって昇圧された軽油等の起動用燃料29を、起動用燃料流量制御弁31で燃料流量を調整して燃焼器22へ供給し、着火する。起動用燃料29は、燃焼器22の着火からガスタービンの起動昇速である部分負荷運転時に使用される。このガスタービン負荷運転時では、ガスタービンから排出される排ガス28の温度は低いため、廃熱回収ボイラ5で加熱された重質油7と水6は改質反応に必要な温度よりも低い温度である。   A case where the gas turbine load is in section 1 in FIG. 3 will be described. When starting the gas turbine, the starting fuel 29 such as light oil boosted by the starting fuel pump 30 is supplied to the combustor 22 by adjusting the fuel flow rate by the starting fuel flow rate control valve 31 and ignited. The starting fuel 29 is used during partial load operation, which is the starting acceleration of the gas turbine from the ignition of the combustor 22. During this gas turbine load operation, the temperature of the exhaust gas 28 discharged from the gas turbine is low, so the heavy oil 7 and the water 6 heated by the waste heat recovery boiler 5 are at a temperature lower than the temperature required for the reforming reaction. It is.

図3の区間2では、ガスタービン出口の排ガス28温度が上昇し、廃熱回収ボイラ5による重質油7と水6の十分な昇温が可能となった時点で、水6を改質器8に供給し、高温水若しくは蒸気として改質燃料10の燃料配管を暖める。この際、各配管で液化した水はドレンとして外部に排出し、気体改質燃料15を供給する配管から水蒸気のみを燃焼器
22へ供給する。
In section 2 of FIG. 3, when the temperature of the exhaust gas 28 at the gas turbine outlet rises and the heavy oil 7 and water 6 can be sufficiently heated by the waste heat recovery boiler 5, the water 6 is reformed. The fuel pipe of the reformed fuel 10 is warmed as hot water or steam. At this time, water liquefied in each pipe is discharged to the outside as a drain, and only water vapor is supplied to the combustor 22 from a pipe that supplies the gas reformed fuel 15.

図3の区間3では、重質油7の供給を開始し、改質器8の温度・圧力が所定の改質条件に達した段階で、加熱用水蒸気19を供給すると共に燃焼器22に改質燃料を供給する。改質燃料10を供給する初期段階では、燃焼器22に気体改質燃料15のみを供給する。   In section 3 of FIG. 3, the supply of heavy oil 7 is started, and when the temperature and pressure of the reformer 8 reach predetermined reforming conditions, the heating steam 19 is supplied and the combustor 22 is modified. Supply quality fuel. In the initial stage of supplying the reformed fuel 10, only the gas reformed fuel 15 is supplied to the combustor 22.

図3の区間4では、気液分離器14aに液体改質燃料16が十分に貯蓄され、貯蓄量監視用のセンサー36が作動可能となった段階で、燃焼器22に液体改質燃料16の供給を開始する。気体改質燃料と液体改質燃料の供給量増加とガスタービン負荷の上昇に応じて、起動用燃料29を減少させる。   In the section 4 of FIG. 3, when the liquid reformed fuel 16 is sufficiently stored in the gas-liquid separator 14 a and the storage amount monitoring sensor 36 becomes operable, the combustor 22 receives the liquid reformed fuel 16. Start supplying. The start-up fuel 29 is decreased in accordance with an increase in the supply amount of the gas reforming fuel and the liquid reforming fuel and an increase in the gas turbine load.

図3の区間5では、所定のガスタービン負荷から改質燃料10のみの運用とする。ガスタービン負荷の増加に伴い、改質燃料の流量と気体改質燃料15を昇温させる水蒸気19の供給量を増加させる。   In section 5 of FIG. 3, only the reformed fuel 10 is operated from a predetermined gas turbine load. As the gas turbine load increases, the flow rate of the reformed fuel and the supply amount of the steam 19 for raising the temperature of the gas reformed fuel 15 are increased.

本発明の実施例2における、ガスタービンのシステム構成を図4に示す。本システムは図1のシステムに対し、保圧弁11の下流側であって圧力調整弁12の上流側に気液分離器14bを設置し、圧力調整弁12の下流側であって流量調整弁13の上流側に気液分離器14cを設置している。そして、第2の気液分離装置である気液分離器14b,14cにより分離された液体改質燃料16を気体改質燃料用マニホールド33の上流側に設置している第1の気液分離装置である気液分離器14aに供給する構造としている。   FIG. 4 shows a system configuration of the gas turbine in Embodiment 2 of the present invention. This system is different from the system shown in FIG. 1 in that a gas-liquid separator 14b is installed on the downstream side of the pressure holding valve 11 and on the upstream side of the pressure regulating valve 12, and on the downstream side of the pressure regulating valve 12 The gas-liquid separator 14c is installed on the upstream side. And the 1st gas-liquid separator which has installed the liquid reformed fuel 16 isolate | separated by the gas-liquid separators 14b and 14c which are 2nd gas-liquid separators in the upstream of the manifold 33 for gas reformed fuels It is set as the structure supplied to the gas-liquid separator 14a which is.

本実施例は、改質器8の改質条件によって十分に重質油7が軽質化されていない場合に有効である。その場合は、改質燃料10の圧力低下、及び配管等の熱損失による温度低下のために、改質器8と気液分離器14aとの間の系統で気液分離する可能性がある。特に、改質器8と気液分離器14aとの間の系統に改質燃料の圧力を変化させる弁を設けている場合、弁を通過した改質燃料が気液分離する可能性もある。そのため、改質燃料10が通過する弁の上流側配管に気液分離器14b,14cを設けることで、気液混相の燃料によって圧力調整弁12と流量調整弁13の制御に不具合が生じることを回避できる。   This embodiment is effective when the heavy oil 7 is not sufficiently lightened by the reforming conditions of the reformer 8. In that case, there is a possibility of gas-liquid separation in the system between the reformer 8 and the gas-liquid separator 14a due to a pressure drop of the reformed fuel 10 and a temperature drop due to heat loss of piping and the like. In particular, when a valve for changing the pressure of the reformed fuel is provided in the system between the reformer 8 and the gas-liquid separator 14a, the reformed fuel that has passed through the valve may be gas-liquid separated. Therefore, by providing the gas-liquid separators 14b and 14c in the upstream pipe of the valve through which the reformed fuel 10 passes, there is a problem in controlling the pressure regulating valve 12 and the flow regulating valve 13 by the gas-liquid mixed phase fuel. Can be avoided.

また、保圧弁11の下流側に設置された気液分離器14b、及び圧力調整弁12の下流側に設置された気液分離器14cから分離された液体改質燃料16を、気体改質燃料用マニホールド33の上流側に設けられた気液分離器14aに供給することにより、燃焼器
22へ供給する液体改質燃料16の量を制御することができる。
Further, the gas-liquid separator 14b installed on the downstream side of the pressure holding valve 11 and the liquid reformed fuel 16 separated from the gas-liquid separator 14c installed on the downstream side of the pressure regulating valve 12 are used as the gas-reformed fuel. By supplying the gas-liquid separator 14 a provided on the upstream side of the manifold 33, the amount of the liquid reformed fuel 16 supplied to the combustor 22 can be controlled.

本発明を用いた実施例3として、ガスタービンのシステム構成を図5に示す。本実施例は、図1に示した実施例に対し気液分離器14aから分離した液体改質燃料16を一旦貯蔵するための液体改質燃料タンク41を設けている。そして、液体改質燃料タンク41に貯められた液体改質燃料16をポンプ42により加圧し、加熱手段で再加熱して気化させた後に、圧力調整弁12の上流側に供給できる構造となっている。また、ポンプ42の下流側系統から分岐して、液体改質燃料タンク41へ液体改質燃料16を送る戻し系統を備え、当該系統に流量を調整する戻り弁43を設置している。液体改質燃料タンク41から加熱手段に供給する液体改質燃料の流量は、ポンプ42の吐出圧力により制御する。そして、加熱手段の下流側には流量制御弁44を設置し、気化改質燃料45の流量を制御する。   As a third embodiment using the present invention, a system configuration of a gas turbine is shown in FIG. This embodiment is provided with a liquid reforming fuel tank 41 for temporarily storing the liquid reforming fuel 16 separated from the gas-liquid separator 14a in the embodiment shown in FIG. The liquid reformed fuel 16 stored in the liquid reformed fuel tank 41 is pressurized by the pump 42, reheated by the heating means and vaporized, and then supplied to the upstream side of the pressure regulating valve 12. Yes. Further, a return system that branches from the downstream system of the pump 42 and sends the liquid reformed fuel 16 to the liquid reformed fuel tank 41 is provided, and a return valve 43 that adjusts the flow rate is installed in the system. The flow rate of the liquid reformed fuel supplied from the liquid reformed fuel tank 41 to the heating means is controlled by the discharge pressure of the pump 42. A flow rate control valve 44 is installed downstream of the heating means to control the flow rate of the vaporized reformed fuel 45.

このようなシステムとすることで、燃焼器22には気体改質燃料15のみが供給可能であり、燃焼器22の構造及び制御の簡略化が可能である。また、液体改質燃料16を再加熱し気化するための加熱手段として廃熱回収ボイラ5を利用することにより、システム効率を向上させることができる。   By setting it as such a system, only the gas reforming fuel 15 can be supplied to the combustor 22, and the structure and control of the combustor 22 can be simplified. Further, the system efficiency can be improved by using the waste heat recovery boiler 5 as a heating means for reheating and vaporizing the liquid reformed fuel 16.

液体改質燃料タンク41において液体改質燃料16を貯蔵する際、液体改質燃料タンク41内で燃料密度に応じて燃料が上下に分離する可能性がある。そのため、好ましくは攪拌器等を液体改質燃料タンク41の内部に設置し、液体改質燃料16の成分を一定に保つことが望ましい。また改質条件によっては、図4に示すように保圧弁11の下流側、及び圧力調整弁12の下流側にそれぞれ気液分離器14b,14cを設置し、分離された液体改質燃料16を液体改質燃料タンク41に供給しても良い。   When the liquid reformed fuel 16 is stored in the liquid reformed fuel tank 41, there is a possibility that the fuel will be separated vertically in the liquid reformed fuel tank 41 according to the fuel density. Therefore, it is preferable to install a stirrer or the like in the liquid reforming fuel tank 41 and keep the components of the liquid reforming fuel 16 constant. Depending on the reforming conditions, as shown in FIG. 4, gas-liquid separators 14b and 14c are installed on the downstream side of the pressure-holding valve 11 and on the downstream side of the pressure regulating valve 12, respectively. The liquid reforming fuel tank 41 may be supplied.

本発明を用いた実施例4として、ガスタービンのシステム構成を図6に示す。本実施例は、図5に示した実施例に対して加熱手段としてヒータ46を設置し、ポンプ42で加圧した液体改質燃料16を加熱・気化させるシステムとしている。   FIG. 6 shows a system configuration of a gas turbine as Example 4 using the present invention. In the present embodiment, a heater 46 is installed as a heating means with respect to the embodiment shown in FIG. 5, and the liquid reformed fuel 16 pressurized by the pump 42 is heated and vaporized.

廃熱回収ボイラ5の排ガス28が液体改質燃料の温度上昇に不十分な場合においても、液体改質燃料16を加熱することができる。また、液体改質燃料タンク41の容量を小さくできると共に、燃料供給制御の応答性が向上する。   Even when the exhaust gas 28 of the waste heat recovery boiler 5 is insufficient for increasing the temperature of the liquid reformed fuel, the liquid reformed fuel 16 can be heated. Further, the capacity of the liquid reforming fuel tank 41 can be reduced and the responsiveness of the fuel supply control is improved.

本発明を用いた燃料供給システムの実施例1を示した図。The figure which showed Example 1 of the fuel supply system using this invention. 図1のシステムにおける気液分離器の配置と構造を示した図。The figure which showed arrangement | positioning and structure of the gas-liquid separator in the system of FIG. 図1のシステムの負荷と燃料等の流量・温度を示した図。The figure which showed flow volume and temperature, such as a load of the system of FIG. 1, and fuel. 本発明を用いたシステムの実施例2を示した図。The figure which showed Example 2 of the system using this invention. 本発明を用いたシステムの実施例3を示した図。The figure which showed Example 3 of the system using this invention. 本発明を用いたシステムの実施例4を示した図。The figure which showed Example 4 of the system using this invention.

符号の説明Explanation of symbols

1…水タンク、2…重質油タンク、3…水ポンプ、4…油ポンプ、5…廃熱回収ボイラ、6…水、7…重質油、8…改質器、9…不純物、10…改質燃料、11…保圧弁、12…圧力調整弁、13…流量調整弁、14a,14b,14c…気液分離器、15…気体改質燃料、16…液体改質燃料、17…出力、18…液体改質燃料制御弁、19…水蒸気、20…水蒸気流量制御弁、21…冷却器、22…燃焼器、23…圧縮機、24…圧縮空気、25…燃焼ガス、26…タービン、27…発電機、28…排ガス、29…起動用燃料、30…起動用燃料ポンプ、31…起動用燃料流量制御弁、33…気体改質燃料用マニホールド、34…液体改質燃料用マニホールド、35…枝管、36…センサー、37…信号処理器、38…燃料制御指令、39…制御出力、41…液体改質燃料タンク、42…ポンプ、43…戻り弁、44…流量制御弁、45…気化改質燃料、46…ヒータ。
DESCRIPTION OF SYMBOLS 1 ... Water tank, 2 ... Heavy oil tank, 3 ... Water pump, 4 ... Oil pump, 5 ... Waste heat recovery boiler, 6 ... Water, 7 ... Heavy oil, 8 ... Reformer, 9 ... Impurity, 10 ... reformed fuel, 11 ... holding pressure valve, 12 ... pressure regulating valve, 13 ... flow regulating valve, 14a, 14b, 14c ... gas-liquid separator, 15 ... gas reformed fuel, 16 ... liquid reformed fuel, 17 ... output , 18 ... Liquid reforming fuel control valve, 19 ... Steam, 20 ... Steam flow control valve, 21 ... Cooler, 22 ... Combustor, 23 ... Compressor, 24 ... Compressed air, 25 ... Combustion gas, 26 ... Turbine, 27 ... Generator, 28 ... Exhaust gas, 29 ... Starting fuel, 30 ... Starting fuel pump, 31 ... Starting fuel flow rate control valve, 33 ... Gas reforming fuel manifold, 34 ... Liquid reforming fuel manifold, 35 ... branch pipe, 36 ... sensor, 37 ... signal processor, 38 ... fuel control command, 3 ... control output 41 ... liquid reformed fuel tank, 42 ... pump, 43 ... return valve, 44 ... flow control valve, 45 ... vaporized reformed fuel, 46 ... heater.

Claims (7)

空気を圧縮し圧縮空気を生成する圧縮機と、
重質油と水とを混合させて改質燃料を生成する燃料改質装置と、
該燃料改質装置からの改質燃料を液体と気体とに分離する第1の気液分離装置と、
該第1の気液分離装置で分離された液体改質燃料と気体改質燃料を前記圧縮空気とともに燃焼させる燃焼器と、
前記第1の気液分離装置と前記燃焼器との間に液体改質燃料と気体改質燃料とをそれぞれ供給する2つの系統と、
前記燃焼器からの燃焼ガスにより駆動するタービンとを備えた重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、前記第1の気液分離装置と前記燃焼器との間に設けられた前記気体改質燃料の系統に前記気体改質燃料の温度より高い温度の水蒸気を供給する手段を設けたことを特徴とする重質油改質燃料焚きガスタービン。
A compressor that compresses air to generate compressed air;
A fuel reformer that mixes heavy oil and water to produce reformed fuel;
A first gas-liquid separator for separating the reformed fuel from the fuel reformer into a liquid and a gas;
A combustor for burning the liquid reformed fuel and the gas reformed fuel separated by the first gas-liquid separator together with the compressed air;
Two systems respectively supplying liquid reformed fuel and gas reformed fuel between the first gas-liquid separator and the combustor;
A heavy oil reformed fuel-fired gas turbine comprising a turbine driven by combustion gas from the combustor,
In the first gas-liquid separator, the gas is separated into liquid and gas at a saturated vapor temperature or higher, and the gas is supplied to the gas reformed fuel system provided between the first gas-liquid separator and the combustor. A heavy oil reformed fuel-fired gas turbine comprising means for supplying steam having a temperature higher than that of the reformed fuel.
空気を圧縮し圧縮空気を生成する圧縮機と、
重質油と水とを混合させて改質燃料を生成する燃料改質装置と、
該燃料改質装置からの改質燃料を液体と気体とに分離する第1の気液分離装置と、
該第1の気液分離装置で分離された液体改質燃料と気体改質燃料を前記圧縮空気とともに燃焼させる複数の燃焼器と、
前記第1の気液分離装置と前記燃焼器との間に液体改質燃料と気体改質燃料とをそれぞれ供給するマニホールドと、
前記燃焼器からの燃焼ガスにより駆動するタービンとを備えた重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させるとともに、前記気体改質燃料を供給するマニホールドと前記第1の気液分離器との間に前記気体改質燃料の温度より高い温度の水蒸気を供給する手段を設け、気体改質燃料のマニホールドの下側に前記第1の気液分離器を設けたことを特徴とする重質油改質燃料焚きガスタービン。
A compressor that compresses air to generate compressed air;
A fuel reformer that mixes heavy oil and water to produce reformed fuel;
A first gas-liquid separator for separating the reformed fuel from the fuel reformer into a liquid and a gas;
A plurality of combustors for combusting the liquid reformed fuel and the gas reformed fuel separated by the first gas-liquid separator together with the compressed air;
A manifold for supplying a liquid reformed fuel and a gas reformed fuel between the first gas-liquid separator and the combustor,
A heavy oil reformed fuel-fired gas turbine comprising a turbine driven by combustion gas from the combustor,
In the first gas-liquid separation device, liquid and gas are separated at a temperature equal to or higher than a saturated vapor temperature, and the gas-reformed fuel is separated between a manifold that supplies the gas-reformed fuel and the first gas-liquid separator. A heavy oil reformed fuel-fired gas turbine characterized in that means for supplying steam at a temperature higher than the temperature is provided, and the first gas-liquid separator is provided below the manifold of the gas reformed fuel.
請求項1に記載の重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置に前記液体改質燃料の量を監視可能な手段を設けた重油改質燃料焚きガスタービン。
A heavy oil reformed fuel-fired gas turbine according to claim 1,
A heavy oil reformed fuel-fired gas turbine provided with means capable of monitoring the amount of the liquid reformed fuel in the first gas-liquid separator.
請求項1記載の重質油改質燃料焚きガスタービンであって、
前記第1の気液分離装置と前記燃焼器との間に設けられた前記気体改質燃料の系統に水蒸気を供給する手段は、水を加熱する加熱装置と前記燃料改質装置との間の系統であって、該系統から分岐されて前記気体改質燃料の系統に連通することを特徴とする重質油改質燃料焚きガスタービン。
A heavy oil reformed fuel-fired gas turbine according to claim 1,
Means for supplying water vapor to the gas reformed fuel system provided between the first gas-liquid separator and the combustor is provided between a heating device for heating water and the fuel reformer. A heavy oil reformed fuel-fired gas turbine, characterized in that the system is branched from the system and communicates with the gas reformed fuel system.
請求項1記載の重質油改質燃料焚きガスタービンであって、
前記燃料改質装置と前記第1の気液分離装置との間の系統に圧力を制御する制御弁を設け、
該制御弁の上流側に第2の気液分離装置を設け、
該第2の気液分離装置で分離された液体改質燃料を前記第1の気液分離装置に供給するよう構成された重質油改質燃料焚きガスタービン。
A heavy oil reformed fuel-fired gas turbine according to claim 1,
A control valve for controlling pressure is provided in a system between the fuel reformer and the first gas-liquid separator;
A second gas-liquid separator is provided upstream of the control valve;
A heavy oil reformed fuel-fired gas turbine configured to supply the liquid reformed fuel separated by the second gas-liquid separator to the first gas-liquid separator.
請求項1記載の重質油改質燃料焚きガスタービンであって、
前記気液分離装置により分離した液体改質燃料を加圧するためのポンプと、該ポンプの下流側であって、該加圧した液体改質燃料の加熱手段とを設置し、燃料改質装置と気液分離器との間の系統に、該加熱手段により加熱された液体改質燃料を供給することを特徴とする重質油改質燃料焚きガスタービン。
A heavy oil reformed fuel-fired gas turbine according to claim 1,
A pump for pressurizing the liquid reformed fuel separated by the gas-liquid separator and a heating means for the pressurized liquid reformed fuel downstream from the pump; A heavy oil reformed fuel-fired gas turbine, characterized in that the liquid reformed fuel heated by the heating means is supplied to a system between the gas-liquid separator.
空気を圧縮し圧縮空気を生成する圧縮機と、
重質油と水とを混合させて改質燃料を生成する燃料改質装置と、
該燃料改質装置からの改質燃料を液体と気体とに分離する第1の気液分離装置と、
該第1の気液分離装置で分離された液体改質燃料と気体改質燃料を前記圧縮空気とともに燃焼させる燃焼器と、
前記第1の気液分離装置と前記燃焼器との間に液体改質燃料と気体改質燃料とをそれぞれ供給する2つの系統と、
前記燃焼器からの燃焼ガスにより駆動するタービンとを備えた重質油改質燃料焚きガスタービンの運転方法であって、
前記第1の気液分離装置において飽和蒸気温度以上で液体と気体に分離させ、前記第1の気液分離装置と前記燃焼器との間に設けられた前記気体改質燃料の系統に、前記燃料改質装置の改質反応が所定の状態になった後に、前記気体改質燃料の温度より高い温度の水蒸気を供給することを特徴とする重質油改質燃料焚きガスタービンの運転方法。
A compressor that compresses air to generate compressed air;
A fuel reformer that mixes heavy oil and water to produce reformed fuel;
A first gas-liquid separator for separating the reformed fuel from the fuel reformer into a liquid and a gas;
A combustor for burning the liquid reformed fuel and the gas reformed fuel separated by the first gas-liquid separator together with the compressed air;
Two systems respectively supplying liquid reformed fuel and gas reformed fuel between the first gas-liquid separator and the combustor;
A method of operating a heavy oil reformed fuel-fired gas turbine comprising a turbine driven by combustion gas from the combustor,
In the first gas-liquid separation device, the gas reformed fuel system provided between the first gas-liquid separation device and the combustor is separated into liquid and gas at a saturated vapor temperature or higher, A method for operating a heavy oil reformed fuel-fired gas turbine, comprising supplying steam at a temperature higher than the temperature of the gas reformed fuel after the reforming reaction of the fuel reformer reaches a predetermined state.
JP2006118679A 2006-04-24 2006-04-24 Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine Pending JP2007291897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118679A JP2007291897A (en) 2006-04-24 2006-04-24 Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118679A JP2007291897A (en) 2006-04-24 2006-04-24 Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine

Publications (1)

Publication Number Publication Date
JP2007291897A true JP2007291897A (en) 2007-11-08

Family

ID=38762766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118679A Pending JP2007291897A (en) 2006-04-24 2006-04-24 Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine

Country Status (1)

Country Link
JP (1) JP2007291897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133339A (en) * 2008-12-05 2010-06-17 Hitachi Ltd Operating method of gas turbine and gas turbine combustor
JP2012087786A (en) * 2010-10-18 2012-05-10 General Electric Co <Ge> System and method for supplying fuel to gas turbine
CN103291460A (en) * 2012-02-27 2013-09-11 通用电气公司 Fuel purging system for a turbine assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133339A (en) * 2008-12-05 2010-06-17 Hitachi Ltd Operating method of gas turbine and gas turbine combustor
JP2012087786A (en) * 2010-10-18 2012-05-10 General Electric Co <Ge> System and method for supplying fuel to gas turbine
CN103291460A (en) * 2012-02-27 2013-09-11 通用电气公司 Fuel purging system for a turbine assembly

Similar Documents

Publication Publication Date Title
AU2009259589B2 (en) Method and device for operating a steam power station comprising a steam turbine and a process steam consumer
JP4495004B2 (en) Heavy oil reformed fuel-fired gas turbine system and operation method thereof
JP2009187756A (en) Electric power system and starting method of electric power system
EA010401B1 (en) Method of operating a gas engine plant and fuel feeding system of a gas engine
JP2009185813A (en) Device and method for starting of power generation plant
US6370880B1 (en) Fuel gas moisturization control system for start-up, high load operation and shutdown
JP3676022B2 (en) Combined power generation facility
JP2007291897A (en) Heavy oil reformed fuel burning gas turbine and method for operating heavy oil reformed fuel burning gas turbine
CN105899875A (en) Method and plant for co-generation of heat and power
JP6549342B1 (en) POWER PLANT AND ITS OPERATION METHOD
RU2395696C1 (en) Thermal steam turbine power plant with steam-generating hydrogen-oxygen plant (versions)
CN105980773B (en) Method and apparatus for cogeneration of heat and power
JP7374159B2 (en) Thermal power plants and control methods for thermal power plants
JP2006046132A (en) Gas turbine system, reformed fuel combustion gas turbine system, and reformed fuel supply method for gas turbine system
EP1009951B1 (en) Method for operating a boiler with forced circulation and boiler for its implementation
JP4512506B2 (en) Reformed fuel-fired gas turbine equipment
JP2008075966A (en) Once-through exhaust heat recovery boiler
JPH0571362A (en) Coal gasifying plant and operation method thereof
JP2007107396A (en) Reformed fuel burning gas turbine installation
WO2022176846A1 (en) Thermal power plant and method for controlling thermal power plant
JP2003128401A (en) Apparatus for generating hydrogen and it&#39;s operating method
JP4550702B2 (en) Reformed fuel-fired gas turbine system
JP3223434U (en) Coal gasification combined power generation facility
JP4685644B2 (en) Heavy oil reformer, heavy oil reformer shutdown method, and gas turbine equipped with heavy oil reformer
JP2017133701A (en) Combustion gas supply system