JP2007290918A - Method for producing ammonium cryolite - Google Patents

Method for producing ammonium cryolite Download PDF

Info

Publication number
JP2007290918A
JP2007290918A JP2006121905A JP2006121905A JP2007290918A JP 2007290918 A JP2007290918 A JP 2007290918A JP 2006121905 A JP2006121905 A JP 2006121905A JP 2006121905 A JP2006121905 A JP 2006121905A JP 2007290918 A JP2007290918 A JP 2007290918A
Authority
JP
Japan
Prior art keywords
ammonium
fluoride
cryolite
tetrafluoroaluminum
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006121905A
Other languages
Japanese (ja)
Other versions
JP4978051B2 (en
Inventor
Isamu Mori
勇 毛利
Yuta Takeda
雄太 武田
Tomonori Umezaki
智典 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2006121905A priority Critical patent/JP4978051B2/en
Publication of JP2007290918A publication Critical patent/JP2007290918A/en
Application granted granted Critical
Publication of JP4978051B2 publication Critical patent/JP4978051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ammonium cryolite being a raw material for producing nitrogen trifluoride useful as a cleaning gas. <P>SOLUTION: The method comprises reacting solid ammonium aluminum tetrafluoride with gaseous ammonia and gaseous hydrogen fluoride, reacting solid aluminum fluoride with gaseous ammonia and gaseous hydrogen fluoride, or reacting solid ammonium aluminum tetrafluoride and aluminum fluoride with gaseous ammonia and gaseous hydrogen fluoride. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、クリーニングガスとして有用な三フッ化窒素の製造原料であるアンモニウム氷晶石の製造方法に関する。   The present invention relates to a method for producing ammonium cryolite which is a raw material for producing nitrogen trifluoride useful as a cleaning gas.

従来、アンモニウム氷晶石((NH)AlF)の製造方法としては、水酸化アルミニウム、フッ酸(フッ化水素水溶液)、アンモニア水溶液を原料として湿式法で製造する方法や、テトラフルオロアルミニウムアンモニウム(NHAlF)のフッ酸スラリーとアンモニアから製造する方法(特許文献1〜5)やヘキサフルオロアルミン酸(HAlF)とアンモニア水溶液から溶液反応で製造する方法(特許文献6)などが知られている。しかし、これらの方法は何れも水溶液系での反応であり、フッ酸を使用するため設備が煩雑であることや安全確保が困難という問題があった。特に乾燥機などの付帯設備が必要であり設備コストが乾式法より高くなる問題があった。 Conventionally, as a method for producing ammonium cryolite ((NH 4 ) 3 AlF 6 ), a method in which aluminum hydroxide, hydrofluoric acid (hydrogen fluoride aqueous solution), an aqueous ammonia solution are used as raw materials, or a tetrafluoroaluminum is used. A method of producing ammonium (NH 4 AlF 4 ) from a hydrofluoric acid slurry and ammonia (Patent Documents 1 to 5) or a method of producing a solution from hexafluoroaluminic acid (H 3 AlF 6 ) and an aqueous ammonia solution (Patent Document 6) Etc. are known. However, each of these methods is a reaction in an aqueous solution system, and there are problems that facilities are complicated and it is difficult to ensure safety because hydrofluoric acid is used. In particular, there is a problem that incidental equipment such as a dryer is necessary and the equipment cost is higher than that of the dry method.

乾式法によるアンモニウム氷晶石の合成法については、アルミナ粉とフッ化アンモニウム(NHF)との固−固反応に関する示差熱重量分析の結果から、180℃でアンモニウム氷晶石が生成することがA.M.ABDEL REHIMによって報告されている(非特許文献1)。また300℃での熱分解により、アンモニウム氷晶石からより安定なテトラフルオロアルミニウムアンモニウムが生成することが記載されている。A.K.TYAGIは、金属Alの削り屑もしくは板と、二フッ化水素アンモニウム(NHHF)とを140℃、8時間あるいは室温で、4日間反応させると白色のアンモニウム氷晶石皮膜が生成すると報告している(非特許文献2)。 As for the synthesis method of ammonium cryolite by dry method, ammonium cryolite is formed at 180 ° C from the results of differential thermogravimetric analysis on solid-solid reaction between alumina powder and ammonium fluoride (NH 4 F). Has been reported by A.M.ABDEL REHIM (Non-Patent Document 1). Further, it is described that more stable tetrafluoroaluminum ammonium is produced from ammonium cryolite by thermal decomposition at 300 ° C. AKTYYAGI is a white ammonium cryolite film obtained by reacting metal Al shavings or plate with ammonium hydrogen difluoride (NH 4 HF 2 ) at 140 ° C. for 8 hours or at room temperature for 4 days. Has been reported (Non-patent Document 2).

これらの研究では、固体同士の反応でアンモニウム氷晶石の生成が報告されているが、収率その他については不明であり工業的に適応可能な純度、収率でアンモニウム氷晶石が選択的に得られるか否かは不明であった。   In these studies, the formation of ammonium cryolite was reported by the reaction between solids, but the yield and other matters are unknown, and ammonium cryolite is selectively used in industrially applicable purity and yield. It was unclear whether it could be obtained.

またアンモニウム氷晶石は三フッ化窒素(NF)の合成に利用できることが開示されている(特許文献7)。しかし三フッ化窒素の製造にアンモニウム氷晶石を用いるとテトラフルオロアルミニウムアンモニウムが反応残渣として生成する。さらに反応温度が170℃以上になるとフッ化アルミ(AlF)も残渣として生成する。現在、これらの残渣は廃棄物として処理されているのみで有効利用がされていない。環境負荷の低減のためにも廃棄物量の削減、すなわち残渣の有効利用が望まれる。
特許第2856636号公報 特許第3187544号公報 特開2002―121020号公報 特開2001―048531号公報 特開2000―169141号公報 米国特許第3773905号明細書 特開昭60―071503号公報 THERMAl ANALYSIS., 6th, 1, 357-362(1980) Synth. React. Inorg. Met.org. Chem., 26(1), 139-146(1996)
Further, it is disclosed that ammonium cryolite can be used for the synthesis of nitrogen trifluoride (NF 3 ) (Patent Document 7). However, when ammonium cryolite is used to produce nitrogen trifluoride, tetrafluoroaluminum ammonium is produced as a reaction residue. Further, when the reaction temperature is 170 ° C. or higher, aluminum fluoride (AlF 3 ) is also generated as a residue. At present, these residues are only treated as waste and are not effectively used. In order to reduce the environmental burden, it is desired to reduce the amount of waste, that is, to effectively use the residue.
Japanese Patent No. 2856636 Japanese Patent No. 3187544 JP 2002-121020 A JP 2001-048531 A JP 2000-169141 A US Pat. No. 3,773,905 Japanese Patent Application Laid-Open No. 60-071503 THERMAl ANALYSIS., 6th, 1, 357-362 (1980) Synth. React. Inorg. Met.org. Chem., 26 (1), 139-146 (1996)

本発明は、三フッ化窒素の製造で使用されたアンモニウム氷晶石の残渣であるテトラフルオロアルミニウムアンモニウム、フッ化アルミニウムからアンモニウム氷晶石を簡便にかつ容易に再生させることを目的としている。   An object of the present invention is to easily and easily regenerate ammonium cryolite from tetrafluoroaluminum ammonium and aluminum fluoride, which are residues of ammonium cryolite used in the production of nitrogen trifluoride.

本発明者らは、上記の問題点に鑑み鋭意検討の結果、固体状のテトラフルオロアルミニウムアンモニウムもしくはフッ化アルミニウムと、ガス状アンモニアとガス状フッ化水素を反応させるだけで収率良く簡便にアンモニウム氷晶石を製造できることを見出し本発明に至った。   As a result of intensive studies in view of the above-mentioned problems, the inventors of the present invention have made it possible to easily produce ammonium in a high yield simply by reacting solid tetrafluoroaluminum ammonium or aluminum fluoride with gaseous ammonia and gaseous hydrogen fluoride. The inventors have found that cryolite can be produced and have reached the present invention.

すなわち本発明は、固体状のテトラフルオロアルミニウムアンモニウムと、ガス状アンモニアとガス状フッ化水素を反応させること、または固体状のフッ化アルミニウムと、ガス状アンモニアとガス状フッ化水素を反応させること、または固体状のテトラフルオロアルミニウムアンモニウムとフッ化アルミニウムと、ガス状アンモニアとガス状フッ化水素を反応させることを特徴とするアンモニウム氷晶石の製造方法を提供するものである。   That is, the present invention reacts solid tetrafluoroaluminum ammonium with gaseous ammonia and gaseous hydrogen fluoride, or reacts solid aluminum fluoride with gaseous ammonia and gaseous hydrogen fluoride. Or a method for producing ammonium cryolite characterized by reacting solid tetrafluoroaluminum ammonium and aluminum fluoride, gaseous ammonia and gaseous hydrogen fluoride.

本発明の方法により、三フッ化窒素の製造原料になるアンモニウム氷晶石を簡便に合成することができる。また、不要物として廃棄されていたテトラフルオロアルミニウムアンモニウムまたはフッ化アルミニウムを、アンモニウム氷晶石に再生することにより、廃棄物を削減し環境保全に役立つ。   By the method of the present invention, ammonium cryolite that is a raw material for producing nitrogen trifluoride can be easily synthesized. In addition, by regenerating tetrafluoroaluminum ammonium or aluminum fluoride, which has been discarded as unnecessary materials, into ammonium cryolite, it is possible to reduce waste and help protect the environment.

本発明において、テトラフルオロアルミニウムアンモニウムまたはフッ化アルミニウムと、アンモニアとフッ化水素を加える比率は、ガス封入法で有れば反応がほぼ化学量論的に進行するため1当量加えるだけでよい。反応させる時の温度に特に制限はないが、15℃以上250℃以下が好ましく、より好ましくは50℃以上200℃未満が良い。15℃未満では反応が進むのに時間がかかり、250℃を超える温度では、アンモニウム氷晶石の分解が顕著になり、また、金属製反応器の腐蝕が顕著になるため好ましくない。   In the present invention, the ratio of adding tetrafluoroaluminum ammonium or aluminum fluoride and ammonia and hydrogen fluoride is only one equivalent because the reaction proceeds almost stoichiometrically in the gas sealing method. Although there is no restriction | limiting in particular in the temperature at the time of making it react, 15 to 250 degreeC is preferable, More preferably, 50 to less than 200 degreeC is good. If it is less than 15 ° C., it takes time for the reaction to proceed, and if it exceeds 250 ° C., the decomposition of ammonium cryolite becomes remarkable and the corrosion of the metal reactor becomes remarkable, which is not preferable.

また、本発明において、テトラフルオロアルミニウムアンモニウムまたはフッ化アルミニウムに加えるアンモニアとフッ化水素の量が1当量を超えると、副生成物としてフッ化アンモニウムまたは二フッ化水素アンモニウムが生成する。フッ化アンモニウムまたは二フッ化水素アンモニウムが存在したアンモニウム氷晶石を原料として三フッ化窒素を製造すると、三フッ化窒素中の窒素量が増加するため好ましくない。そのため、これら原料中の副生成物を除く必要がある。発明者らは鋭意検討の結果、50℃〜190℃の温度範囲で真空引きすることにより、フッ化アンモニウムもしくは二フッ化水素アンモニウムを除去できることを見出した。真空引きの圧力条件は、大気圧以下で有れば、特に限定されない。   In the present invention, when the amount of ammonia and hydrogen fluoride added to tetrafluoroaluminum ammonium or aluminum fluoride exceeds 1 equivalent, ammonium fluoride or ammonium difluoride is generated as a by-product. Producing nitrogen trifluoride using ammonium cryolite containing ammonium fluoride or ammonium difluoride as a raw material is not preferable because the amount of nitrogen in nitrogen trifluoride increases. Therefore, it is necessary to remove by-products in these raw materials. As a result of intensive studies, the inventors have found that ammonium fluoride or ammonium hydrogen difluoride can be removed by evacuation in the temperature range of 50 ° C to 190 ° C. The pressure condition for evacuation is not particularly limited as long as it is below atmospheric pressure.

さらに、本発明におけるアンモニアとフッ化水素の投入量の詳細について、テトラフルオロアルミニウムアンモニウムの場合、加えるアンモニアとフッ化水素の投入量はテトラフルオロアルミニウムアンモニウムに対するモル比で、1.8以上3.0以下が好ましく、より好ましくは2.0以上2.2以下が良い。アンモニアとフッ化水素の投入量が、テトラフルオロアルミニウムアンモニウムに対するモル比で1.8未満であれば、本発明で製造されるアンモニウム氷晶石の純度が低くなる為、これを原料とした三フッ化窒素の製造に支障をきたす。さらに、アンモニアとフッ化水素の投入量が、テトラフルオロアルミニウムアンモニウムに対するモル比で3.0を超えると、副生成物として生じるフッ化アンモニウムまたは二フッ化水素アンモニウムの量が増える為、この副生物の除去に時間がかかり効率的でない。   Furthermore, regarding the details of the input amounts of ammonia and hydrogen fluoride in the present invention, in the case of tetrafluoroaluminum ammonium, the input amount of ammonia and hydrogen fluoride to be added is 1.8 to 3.0 in terms of a molar ratio with respect to tetrafluoroaluminum ammonium. The following is preferable, and more preferably 2.0 or more and 2.2 or less. If the input ratio of ammonia and hydrogen fluoride is less than 1.8 in terms of a molar ratio with respect to tetrafluoroaluminum ammonium, the purity of ammonium cryolite produced in the present invention will be low. This interferes with the production of nitrogen fluoride. Further, when the amount of ammonia and hydrogen fluoride input exceeds 3.0 in terms of molar ratio to tetrafluoroaluminum ammonium, the amount of ammonium fluoride or ammonium difluoride generated as a by-product increases, so this by-product It takes time to remove and is not efficient.

また、フッ化アルミニウムの場合、加えるアンモニアとフッ化水素の投入量はフッ化アルミニウムに対するモル比で、2.7以上4.5以下が好ましく、より好ましくは3.0以上3.2以下が良い。アンモニアとフッ化水素の投入量が、テトラフルオロアルミニウムアンモニウムに対するモル比で2.7未満であれば、本発明で製造されるアンモニウム氷晶石の純度が低くなる為、これを原料とした三フッ化窒素の製造に支障をきたす。さらに、アンモニアとフッ化水素の投入量が、テトラフルオロアルミニウムアンモニウムに対するモル比で4.5を超えると、副生成物として生じるフッ化アンモニウムまたは二フッ化水素アンモニウムの量が増える為、この副生物の除去に時間がかかり効率的でない。   In the case of aluminum fluoride, the amount of ammonia and hydrogen fluoride added is preferably 2.7 or more and 4.5 or less, more preferably 3.0 or more and 3.2 or less in terms of molar ratio to aluminum fluoride. . If the input amount of ammonia and hydrogen fluoride is less than 2.7 in terms of molar ratio to tetrafluoroaluminum ammonium, the purity of the ammonium cryolite produced in the present invention will be low. This interferes with the production of nitrogen fluoride. Furthermore, if the amount of ammonia and hydrogen fluoride input exceeds 4.5 by molar ratio with respect to tetrafluoroaluminum ammonium, the amount of ammonium fluoride or ammonium difluoride produced as a by-product increases, so this by-product It takes time to remove and is not efficient.

尚、テトラフルオロアルミニウムアンモニウムとフッ化アルミニウムの混合物を用いる場合、好ましいアンモニアとフッ化水素の投入量の上限と下限は、混合物中のテトラフルオロアルミニウムアンモニウムとフッ化アルミニウムの比率に応じて変動する。
以下、実施例により本発明を詳細に説明する。
When a mixture of tetrafluoroaluminum ammonium and aluminum fluoride is used, the upper and lower limits of the preferable amounts of ammonia and hydrogen fluoride vary depending on the ratio of tetrafluoroaluminum ammonium and aluminum fluoride in the mixture.
Hereinafter, the present invention will be described in detail by way of examples.

実施例1〜4
1000CCのPTFE製容器内に、テトラフルオロアルミニウムアンモニウム粉体を0.04mol、フッ化水素ガスを0.08mol、アンモニアガスを0.08mol入れ、14時間放置した後、粉体のX線回折分析を行いアンモニウム氷晶石の反応収率を算出した。表1に反応条件と収率の算出結果を記す。表1の結果より、アンモニウム氷晶石が生成できていることが解る。
Examples 1-4
In a 1000 cc PTFE container, 0.04 mol of tetrafluoroaluminum ammonium powder, 0.08 mol of hydrogen fluoride gas, and 0.08 mol of ammonia gas are placed and left for 14 hours, and then X-ray diffraction analysis of the powder is performed. The reaction yield of ammonium cryolite was calculated. Table 1 shows the reaction conditions and the calculation results of the yield. From the results in Table 1, it can be seen that ammonium cryolite has been generated.

Figure 2007290918
Figure 2007290918

実施例5、6
アンモニウム氷晶石とフッ素(F)との反応で三フッ化窒素を製造した後の固体残渣を採取し、この残渣のX線回折分析を行ったところ、テトラフルオロアルミニウムアンモニウム100wt%の紛体であった。この粉末500gを、温度を130℃(実施例5)もしくは150℃(実施例6)に固定した直径30cmの蓋付きパン型造粒器に入れた。さらに、いずれの場合も、パン型造粒器の回転数を45rpmに固定し、パン型造粒器内の紛体にフッ化水素ガスを850SCCM、窒素ガスを100SCCM、アンモニアガスを850SCCMの流量で220分間吹き付けた結果、パン型造粒器内部の紛体は100wt%のアンモニウム氷晶石になっていることをX線回折分析により確認できた。
Examples 5 and 6
A solid residue after producing nitrogen trifluoride by the reaction of ammonium cryolite and fluorine (F 2 ) was collected and subjected to X-ray diffraction analysis. As a result, a powder of 100 wt% tetrafluoroaluminum ammonium was obtained. there were. 500 g of this powder was placed in a pan-type granulator with a lid having a diameter of 30 cm and fixed at a temperature of 130 ° C. (Example 5) or 150 ° C. (Example 6). Furthermore, in any case, the rotation speed of the bread granulator is fixed at 45 rpm, and the powder in the bread granulator is hydrogen fluoride gas at 850 SCCM, nitrogen gas at 100 SCCM, and ammonia gas at 850 SCCM at a flow rate of 220. As a result of spraying for a minute, it was confirmed by X-ray diffraction analysis that the powder in the bread granulator was 100 wt% ammonium cryolite.

実施例7
フッ化アルミニウム粉体0.04molを1000CCのPTFE製容器内に入れ、フッ化水素ガスを0.12mol、アンモニアガスを0.12mol入れて混合し、100℃で14時間放置した後、粉体のX線回折分析を行ったところ、アンモニウム氷晶石が75wt%生成していた。残りはフッ化アルミニウムが24wt%、テトラフルオロアルミニウムアンモニウムが1wt%であった。
Example 7
Put 0.04 mol of aluminum fluoride powder in a 1000 cc PTFE container, mix 0.12 mol of hydrogen fluoride gas and 0.12 mol of ammonia gas, and leave it at 100 ° C. for 14 hours. As a result of X-ray diffraction analysis, 75 wt% ammonium cryolite was produced. The remainder was 24 wt% aluminum fluoride and 1 wt% tetrafluoroaluminum ammonium.

実施例8
アンモニウム氷晶石とフッ素との反応で三フッ化窒素を製造した後の固体残渣を採取し、この残渣のX線回折分析を行ったところ、テトラフルオロアルミニウムアンモニウムが97.6wt%、フッ化アルミニウムが2.4wt% であった。この残渣500gを100℃に加熱したステンレス製の粉体攪拌機付き反応器に入れた。さらに、攪拌機の回転数を10rpmに固定し、反応器内部の圧力を圧力制御弁で大気圧に調整しながら反応器内にフッ化水素ガスを850SCCM、窒素ガスを100SCCM、アンモニアガスを850SCCMの流量で300分間供給した。その後、反応器内部の粉体を取り出し、X線回折で分析したところアンモニウム氷晶石が57wt%とフッ化アンモニウムが40wt%、二フッ化水素アンモニウムが3wt%の混合物であった。次に、この混合物粉体を反応器内で攪拌しながら、150℃に加熱し、0.1kPa〜1.4kPaの間の圧力で2時間真空引きした後、反応器内部の粉体を取り出し、X線回折で分析したところ、ほぼ100%のアンモニウム氷晶石であることを確認できた。
Example 8
The solid residue after producing nitrogen trifluoride by the reaction of ammonium cryolite and fluorine was collected and subjected to X-ray diffraction analysis. As a result, tetrafluoroaluminum ammonium was 97.6 wt%, aluminum fluoride. Was 2.4 wt%. 500 g of this residue was put into a stainless steel reactor equipped with a powder stirrer heated to 100 ° C. Furthermore, the rotation speed of the stirrer is fixed at 10 rpm, and the flow rate of hydrogen fluoride gas is 850 SCCM, nitrogen gas is 100 SCCM, and ammonia gas is 850 SCCM while adjusting the pressure inside the reactor to atmospheric pressure by the pressure control valve. For 300 minutes. Thereafter, the powder inside the reactor was taken out and analyzed by X-ray diffraction. As a result, it was found to be a mixture of 57 wt% ammonium cryolite, 40 wt% ammonium fluoride, and 3 wt% ammonium difluoride. Next, the mixture powder is heated to 150 ° C. while being stirred in the reactor, evacuated at a pressure between 0.1 kPa and 1.4 kPa for 2 hours, and then the powder inside the reactor is taken out. An analysis by X-ray diffraction confirmed that it was almost 100% ammonium cryolite.

さらに、この粉体を攪拌機付き反応器に入れ、150℃でフッ素を100SCCMの流量で2時間流通させたところ、ガスは赤外吸収分析とガスクロマトグラフィ分析により、三フッ化窒素、フッ化水素および窒素の生成が、残渣はX線回折分析によりテトラフルオロアルミニウムアンモニウムとアンモニウム氷晶石の混合物が確認できた。   Furthermore, when this powder was put into a reactor equipped with a stirrer and fluorine was circulated at a flow rate of 100 SCCM at 150 ° C. for 2 hours, the gas was analyzed by infrared absorption analysis and gas chromatography analysis, and nitrogen trifluoride, hydrogen fluoride and Generation of nitrogen was confirmed, and the residue was confirmed to be a mixture of tetrafluoroaluminum ammonium and ammonium cryolite by X-ray diffraction analysis.

実施例9、比較例1
水酸化アルミニウム、アンモニア水溶液、フッ化水素水溶液から合成したアンモニウム氷晶石とフッ素との反応で、三フッ化窒素を製造した後の固体残渣を回収した。この残渣のX線回折分析を行ったところ、テトラフルオロアルミニウムアンモニウムが99wt%、フッ化アルミニウムが1wt%であった。この残渣121gを150℃に加熱したPFA製容器内に入れ、この器内にフッ化水素ガスを100SCCM、窒素ガスを25SCCM、アンモニアガスを100SCCMの流量で5時間流通した。その後、70℃に加熱し、圧力0.13kPaで10分間真空引きした後、内部の粉体をX線回折で分析したところ、ほぼ100%のアンモニウム氷晶石であることを確認できた。(実施例9)しかし、乾燥温度を260℃に上げ、圧力0.13kPaで10分間真空引きを行うと、アンモニア氷晶石の分解が進みテトラフルオロアルミニウムアンモニウムが16wt%混合した状態でしか得られなかった。(比較例1)
Example 9, Comparative Example 1
The solid residue after producing nitrogen trifluoride was recovered by the reaction of ammonium cryolite synthesized from aluminum hydroxide, aqueous ammonia and aqueous hydrogen fluoride with fluorine. As a result of X-ray diffraction analysis of this residue, 99 wt% of tetrafluoroaluminum ammonium and 1 wt% of aluminum fluoride were found. 121 g of this residue was placed in a PFA container heated to 150 ° C., and hydrogen fluoride gas was circulated at a flow rate of 100 SCCM, nitrogen gas at 25 SCCM, and ammonia gas at a flow rate of 100 SCCM for 5 hours. Then, after heating to 70 ° C. and evacuating at a pressure of 0.13 kPa for 10 minutes, the internal powder was analyzed by X-ray diffraction, and it was confirmed that it was almost 100% ammonium cryolite. (Example 9) However, when the drying temperature is raised to 260 ° C. and evacuation is carried out at a pressure of 0.13 kPa for 10 minutes, the decomposition of ammonia cryolite proceeds and it can be obtained only in a state where 16 wt% of tetrafluoroaluminum ammonium is mixed. There wasn't. (Comparative Example 1)

Claims (3)

テトラフルオロアルミニウムアンモニウム(NHAlF)と、ガス状フッ化水素(HF)とガス状アンモニア(NH)を反応させることを特徴とするアンモニウム氷晶石((NH)AlF)の製造方法。 Tetrafluoroaluminum ammonium (NH 4 AlF 4 ), ammonium cryolite ((NH 4 ) 3 AlF 6 ) characterized by reacting gaseous hydrogen fluoride (HF) and gaseous ammonia (NH 3 ) Production method. フッ化アルミ(AlF)とガス状フッ化水素(HF)とガス状アンモニア(NH)を反応させることを特徴とするアンモニウム氷晶石((NH)AlF)の製造方法。 A method for producing ammonium cryolite ((NH 4 ) 3 AlF 6 ), comprising reacting aluminum fluoride (AlF 3 ), gaseous hydrogen fluoride (HF), and gaseous ammonia (NH 3 ). テトラフルオロアルミニウムアンモニウム(NHAlF)とフッ化アルミ(AlF)と、ガス状フッ化水素(HF)とガス状アンモニア(NH)を反応させることを特徴とするアンモニウム氷晶石((NH)AlF)の製造方法。
Ammonium cryolite characterized by reacting tetrafluoroaluminum ammonium (NH 4 AlF 4 ), aluminum fluoride (AlF 3 ), gaseous hydrogen fluoride (HF) and gaseous ammonia (NH 3 ) (( NH 4 ) 3 AlF 6 ) production method.
JP2006121905A 2006-04-26 2006-04-26 Method for producing ammonium cryolite Expired - Fee Related JP4978051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121905A JP4978051B2 (en) 2006-04-26 2006-04-26 Method for producing ammonium cryolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121905A JP4978051B2 (en) 2006-04-26 2006-04-26 Method for producing ammonium cryolite

Publications (2)

Publication Number Publication Date
JP2007290918A true JP2007290918A (en) 2007-11-08
JP4978051B2 JP4978051B2 (en) 2012-07-18

Family

ID=38761926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121905A Expired - Fee Related JP4978051B2 (en) 2006-04-26 2006-04-26 Method for producing ammonium cryolite

Country Status (1)

Country Link
JP (1) JP4978051B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345421A (en) * 1993-06-02 1994-12-20 Central Glass Co Ltd Production of ammonium cryolite
JP2000169141A (en) * 1998-12-10 2000-06-20 Central Glass Co Ltd Production of ammonium hexafluoroaluminate
JP2001048531A (en) * 1999-08-10 2001-02-20 Central Glass Co Ltd Production of ammonium hexafluoroaluminate
JP2002121020A (en) * 2000-10-12 2002-04-23 Central Glass Co Ltd Method for producing hexafluoro-aluminum ammonium
JP2006312570A (en) * 2005-05-09 2006-11-16 Central Glass Co Ltd Producing method of ammonium cryolite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345421A (en) * 1993-06-02 1994-12-20 Central Glass Co Ltd Production of ammonium cryolite
JP2000169141A (en) * 1998-12-10 2000-06-20 Central Glass Co Ltd Production of ammonium hexafluoroaluminate
JP2001048531A (en) * 1999-08-10 2001-02-20 Central Glass Co Ltd Production of ammonium hexafluoroaluminate
JP2002121020A (en) * 2000-10-12 2002-04-23 Central Glass Co Ltd Method for producing hexafluoro-aluminum ammonium
JP2006312570A (en) * 2005-05-09 2006-11-16 Central Glass Co Ltd Producing method of ammonium cryolite

Also Published As

Publication number Publication date
JP4978051B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
US7524480B2 (en) Process for producing manganese fluoride
KR102010466B1 (en) The advanced preparation method and apparatus for trifluoroamine oxide
JP6876864B2 (en) How to prepare trifluoroamine oxide
WO2010092894A1 (en) Process for the preparation of fluorine compound
JP4978051B2 (en) Method for producing ammonium cryolite
JP4984426B2 (en) Method for producing ammonium cryolite
JP5421088B2 (en) Method for producing valuable materials and hydrochloric acid from waste liquid
JP5495392B2 (en) Method for producing valuable materials from waste liquid
KR102493899B1 (en) The preparation method for trifluoroamine oxide including the reuse of SbF5
JP2013060387A (en) Method for producing aluminum alkoxide
JP5489766B2 (en) Method for producing alkali metal silicofluoride and nitric acid from waste liquid
KR102493908B1 (en) The preparation method for trifluoroamine oxide
JP6330064B1 (en) Method for producing hydroiodic acid and method for producing aqueous metal iodide solution
TWI703114B (en) Manufacturing method of fluorinated methane
JPS61268641A (en) Production of 3,3&#39;,5,5&#39;-tetramethyl-4,4&#39;-dihydroxydiphenyl
JP3880301B2 (en) Method for producing hexafluoroaluminum ammonium
JP3752530B2 (en) Method for producing silicon alkoxide using a mixture of alcohol and carbonate
JP3123698B2 (en) Manufacturing method of fluorinated silane
JP2007055932A (en) Method for producing borazine compound
TW200932681A (en) Method for preparing manganese tetrafluoride
JP2003221214A (en) Method for producing carbonyl difluoride
JPH06345421A (en) Production of ammonium cryolite
JP2004203630A (en) Method for producing silicon tetrafluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees