JP2007290901A - Heat exchange type reformer - Google Patents

Heat exchange type reformer Download PDF

Info

Publication number
JP2007290901A
JP2007290901A JP2006119751A JP2006119751A JP2007290901A JP 2007290901 A JP2007290901 A JP 2007290901A JP 2006119751 A JP2006119751 A JP 2006119751A JP 2006119751 A JP2006119751 A JP 2006119751A JP 2007290901 A JP2007290901 A JP 2007290901A
Authority
JP
Japan
Prior art keywords
reforming
heat exchange
gas
fuel
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006119751A
Other languages
Japanese (ja)
Other versions
JP4809113B2 (en
Inventor
Tomohisa Wakasugi
知寿 若杉
Takashi Shimazu
孝 志満津
Kenji Kimura
憲治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2006119751A priority Critical patent/JP4809113B2/en
Priority to US12/297,653 priority patent/US20090064579A1/en
Priority to EP07734374A priority patent/EP2013141A2/en
Priority to PCT/IB2007/001056 priority patent/WO2007122497A2/en
Priority to CN2007800145437A priority patent/CN101426720B/en
Publication of JP2007290901A publication Critical patent/JP2007290901A/en
Application granted granted Critical
Publication of JP4809113B2 publication Critical patent/JP4809113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Gas Burners (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange type reformer which is good in the heat exchange efficiency between a heating part and a reforming part. <P>SOLUTION: In the heat exchange type reformer 10, a reforming flow passage 18, on which a reforming catalyst for a reforming reaction is supported, and a combustion flow passage 20, on which an oxidation catalyst for combustion is supported, are adjacent to each other through a plate part 52. In the reforming flow passage 18 for forming a hydrogen-containing reformed gas from a supplied reforming raw material and the combustion flow passage 20 for supplying heat generated by the catalytic combustion of a supplied fuel to the reforming flow passage 18, the gas flow directions are both set to be in the direction as indicated by the arrow F, and thereby, a parallel-flow type heat exchanger is constituted in heat exchange flow passages 58A, 64A. At the upstream in the gas flow direction of the heat exchange flow passages 58A, 64A, a reforming gas guide flow passage 58B for guiding the reforming raw material to the heat exchange flow passage 58A along a predetermined direction and a mixed gas guide flow passage 64B for guiding the fuel to the heat exchange flow passage 64A along the direction crossing with the gas flow direction in the reforming gas guide flow passage 58B are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば炭化水素等の改質原料から水素含有の改質ガスを得るための改質反応を、改質部において加熱部からの熱供給を受けつつ行う熱交換型改質器に関する。   The present invention relates to a heat exchange type reformer that performs a reforming reaction for obtaining a reformed gas containing hydrogen from a reforming raw material such as a hydrocarbon while receiving heat supply from a heating unit in the reforming unit.

積層された複数のプレート間に、炭化水素原料を改質して水素含有ガスを生成するための改質流路と、改質流路に改質反応用の熱を供給するために燃料ガスを燃焼させる燃焼流路とを形成した直交流熱交換型の燃料改質器が知られている(例えば、特許文献1参照)。特許文献1には、プレート間の各部における燃焼反応の発熱分布と改質反応の吸熱分布とが調整されるように、プレート間に触媒の非担持領域を設定する技術が記載されている。
特開2004−244230明細書
A reforming channel for reforming a hydrocarbon raw material to generate a hydrogen-containing gas between a plurality of stacked plates, and a fuel gas for supplying heat for reforming reaction to the reforming channel A cross flow heat exchange type fuel reformer having a combustion flow path for combustion is known (see, for example, Patent Document 1). Patent Document 1 describes a technique for setting a non-supported region of a catalyst between plates so that an exothermic distribution of a combustion reaction and an endothermic distribution of a reforming reaction at each part between the plates are adjusted.
Japanese Patent Application Laid-Open No. 2004-244230

上記従来の直交流熱交換型の燃料改質器では、燃焼反応による高発熱部位と改質反応による高吸熱部位とを一致させるための工夫を行っているが、吸発熱部位を一致させて熱交換効率を向上させる点について改善の余地があった。   In the conventional cross-flow heat exchange type fuel reformer described above, a device has been devised to make the high heat generation part due to the combustion reaction coincide with the high heat absorption part due to the reforming reaction. There was room for improvement in terms of improving exchange efficiency.

本発明は、上記事実を考慮して、加熱部と改質部との熱交換効率が良好な熱交換型改質器を得ることが目的である。   In view of the above facts, an object of the present invention is to obtain a heat exchange type reformer having good heat exchange efficiency between the heating section and the reforming section.

上記目的を達成するために請求項1記載の発明に係る熱交換型改質器は、改質反応用の改質触媒が担持され、水蒸気改質反応を含む改質反応によって供給された改質原料から水素を含有する改質ガスを生成するための改質部と、前記改質部のガス流と同じ方向のガス流を生じさせるように隔壁を介して前記改質部に隣接されると共に触媒燃焼用の酸化触媒が担持され、供給された燃料の触媒燃焼に伴って生じた熱を前記改質部に供給するための加熱部と、一端側が前記改質原料の供給口とされると共に他端側が前記改質部における前記改質原料の流入側に連続した改質原料導入部と、一端側が前記燃料の供給口とされると共に他端側が前記加熱部における前記燃料の流入側に連続し、前記改質原料導入部による改質原料の流れ方向とは異なる流れ方向で前記燃料を前記加熱部に導く燃料導入部と、を備えている。   In order to achieve the above object, a heat exchange type reformer according to the invention described in claim 1 carries a reforming catalyst for reforming reaction and is supplied by a reforming reaction including a steam reforming reaction. A reforming section for generating reformed gas containing hydrogen from the raw material, and adjacent to the reforming section via a partition so as to generate a gas flow in the same direction as the gas flow of the reforming section; An oxidation catalyst for catalytic combustion is carried, a heating unit for supplying heat generated by catalytic combustion of the supplied fuel to the reforming unit, and one end side serving as a supply port for the reforming raw material The reformed raw material introduction part is connected to the reforming raw material inflow side in the reforming part, and the other end is connected to the fuel inflow side in the heating part. However, it is different from the flow direction of the reforming material by the reforming material introducing section. Re includes a fuel inlet portion for guiding the fuel to the heating unit in the direction.

請求項1記載の熱交換型改質器では、改質部において加熱部から燃焼による熱供給を受けつつ、供給された改質ガスを改質触媒に接触させて改質反応を生じさせ(促進し)、水素を含有する改質ガスを得る。改質反応は、改質触媒の担持範囲における上流側(改質原料供給側)の端部近傍に高吸熱部位を生じさせ、燃焼反応は、酸化触媒の担持範囲における上流側(燃料供給側)の端部近傍に高発熱部位を生じさせる。   In the heat exchange type reformer according to claim 1, while the reforming unit receives heat supply from the heating unit through combustion, the supplied reformed gas is brought into contact with the reforming catalyst to cause a reforming reaction (acceleration). And a reformed gas containing hydrogen is obtained. The reforming reaction generates a high endothermic site in the vicinity of the upstream end (reforming raw material supply side) in the reforming catalyst support range, and the combustion reaction is the upstream side (fuel supply side) in the oxidation catalyst support range. A highly exothermic part is generated in the vicinity of the end of the plate.

ここで、改質部における改質原料(改質ガス)の流れ方向と、加熱部における燃料又は燃焼ガスの流れ方向とが一致しているため、換言すれば、加熱部と改質部とで並行流熱交換型の改質器を構成しているため、加熱部における燃焼反応による高発熱部位と改質部における改質反応による高吸熱部位とを、それぞれの触媒担持範囲におけるガス流方向の同じ側(上流側)で生じさせることができる。すなわち、吸熱要求の大きい部分に発熱の大きい部分を近づける(吸発熱の分布傾向を一致させる)ことができる。   Here, since the flow direction of the reforming raw material (reformed gas) in the reforming section and the flow direction of the fuel or combustion gas in the heating section are the same, in other words, in the heating section and the reforming section. Since a parallel flow heat exchange type reformer is configured, a high heat generation site due to a combustion reaction in the heating unit and a high heat absorption site due to the reforming reaction in the reforming unit are arranged in the direction of gas flow in each catalyst support range. It can occur on the same side (upstream side). That is, it is possible to bring a portion where heat generation is large close to a portion where the endothermic demand is large (matching the distribution tendency of heat absorption and heat generation).

そして、本熱交換型改質器では、改質部の上流端に連続する改質原料導入部と、改質部と並行流を成す(熱交換器としての媒体入口を略一致させている)加熱部の上流端に連続する燃料導入部とが、互いに異なる方向に媒体の流れを生じさせるように構成されているため、換言すれば、改質原料導入部と燃料導入部とで擬似的に交差流部を構成しているため、改質原料の供給口と燃料の供給口とを独立して開口させることができる。これにより、改質原料、燃料をそれぞれ独立して改質部、加熱部の同じ側に供給することができ、上記の通り吸熱要求の大きい部分に発熱の大きい部分を近づけた並行流型の熱交換型改質器を構成することができる。   And in this heat exchange type | mold reformer, the reforming raw material introducing | transducing part continuous in the upstream end of a reforming part and the reforming part are made into a parallel flow (medium inlet as a heat exchanger is made to correspond substantially). Since the fuel introduction section that is continuous with the upstream end of the heating section is configured to cause the flow of the medium in different directions, in other words, in a pseudo manner between the reforming raw material introduction section and the fuel introduction section. Since the cross flow portion is configured, the reforming material supply port and the fuel supply port can be opened independently. As a result, the reforming raw material and fuel can be supplied independently to the same side of the reforming section and the heating section. An exchange type reformer can be constructed.

このように、請求項1記載の熱交換型改質器では、加熱部と改質部との熱交換効率が良好である。また、改質原料導入部を流れる改質原料と燃料導入部を流れる燃料との熱交換が行われるため、運転の安定性(ロバスト性)が向上し、変動(例えば改質原料の温度変化)に対し安定な運転が可能となる。   Thus, in the heat exchange type | mold reformer of Claim 1, the heat exchange efficiency of a heating part and a reforming part is favorable. In addition, since heat exchange between the reformed raw material flowing through the reformed raw material introduction section and the fuel flowing through the fuel introduction section is performed, operational stability (robustness) is improved and fluctuations (for example, temperature change of the reformed raw material). In contrast, stable operation is possible.

請求項2記載の発明に係る熱交換型改質器は、請求項1記載の熱交換型改質器において、前記燃料導入部は、全体が前記酸化触媒の非担持領域とされている。   A heat exchange type reformer according to a second aspect of the present invention is the heat exchange type reformer according to the first aspect, wherein the entire fuel introduction part is a non-supporting region of the oxidation catalyst.

請求項2記載の熱交換型改質器では、燃料導入部には酸化触媒が担持されないので、該燃料導入部では触媒燃焼を生じることがない。これにより、触媒燃焼に伴う発熱が改質部によって消費されずに局所的な高温部が生じてしまうことが防止される。特に、改質原料導入部に改質触媒を担持した構成においても、改質原料導入部とで上記した擬似的な交差流部を形成する燃料導入部に酸化触媒を担持した場合には、高発熱部位と高吸熱部位との不一致による局所的な高温部が生じ得るが、燃料導入部に酸化触媒を担持しないことによって、局所的な高温部が生じることが効果的に防止される。   In the heat exchange type reformer of the second aspect, since the oxidation catalyst is not supported on the fuel introduction part, catalytic combustion does not occur in the fuel introduction part. Thereby, it is prevented that the heat generated by the catalytic combustion is not consumed by the reforming unit and a local high-temperature part is generated. In particular, even in the configuration in which the reforming catalyst is supported on the reforming raw material introduction part, when the oxidation catalyst is supported on the fuel introduction part that forms the above-described pseudo cross flow part with the reforming raw material introduction part, the high Although a local high temperature part may be generated due to a mismatch between the heat generation part and the high heat absorption part, the local high temperature part is effectively prevented by not supporting the oxidation catalyst in the fuel introduction part.

請求項3記載の発明に係る熱交換型改質器は、請求項1又は請求項2記載の熱交換型改質器において、前記改質部と加熱部とは、それぞれ複数設けられて少なくとも一部が隣接するように積層されており、前記改質原料導入部は、前記改質部の各層に設けられて前記改質原料の供給口の開口面を一致させており、燃料導入部は、前記加熱部の各層に設けられて前記燃料の供給口の開口面を一致させている。   A heat exchange type reformer according to a third aspect of the present invention is the heat exchange type reformer according to the first or second aspect, wherein a plurality of the reforming sections and heating sections are provided. The reforming raw material introduction section is provided in each layer of the reforming section to match the opening surface of the reforming raw material supply port, and the fuel introduction section is Provided in each layer of the heating unit, the opening surfaces of the fuel supply ports are matched.

請求項3記載の熱交換型改質器では、複数の改質部と加熱部とが積層されることで、少なくとも一部の改質部と加熱部とが隣接している。なお、加熱部は、改質部と同数かそれよりも少なく設けられ、それらの全てが積層方向の両側でそれぞれ改質部に隣接することが好ましい。ここで、各層の改質部にそれぞれ一致した開口面で開口する改質原料導入部が設けられ、かつ各層の加熱部にそれぞれ一致した開口面で開口する燃料導入部が設けられているため、改質原料、燃料をそれぞれ独立して各改質部、加熱部の同じ側に供給することができ、上記の通り吸熱要求の大きい部分に発熱の大きい部分を近づけた並行流型の熱交換型改質器を、熱交換効率の良好な積層構造で構成することができる。   In the heat exchange type reformer according to claim 3, at least a part of the reforming unit and the heating unit are adjacent to each other by stacking the plurality of reforming units and the heating unit. In addition, it is preferable that the heating unit is provided in the same number or fewer than the reforming unit, and all of them are adjacent to the reforming unit on both sides in the stacking direction. Here, a reforming raw material introduction portion that opens at an opening surface that matches each reforming portion of each layer is provided, and a fuel introduction portion that opens at an opening surface that matches each heating portion of each layer is provided, The reforming raw material and fuel can be supplied independently to the same side of each reforming unit and heating unit, and as described above, a parallel flow type heat exchange type in which a part with large heat generation is brought close to a part with large heat absorption requirements A reformer can be comprised by the laminated structure with favorable heat exchange efficiency.

請求項4記載の発明に係る熱交換型改質器は、請求項3記載の熱交換型改質器において、平板状に形成された平板部に、他の平板部との間に前記改質部を構成する熱交換部と、前記熱交換部に対する前記改質原料の供給側において該改質原料を所定方向に案内する立壁が立設され前記他の平板部との間に前記改質原料導入部を構成する改質原料ガイド部とが形成されている改質部形成用プレート部材と、平板状に形成された平板部に、一方側の面に前記酸化触媒が担持されて他の平板部との間に前記加熱部を構成する熱交換部と、前記熱交換部に対する前記燃料の供給側において該燃料を前記改質部形成用プレート部材の所定方向と交差する方向に案内する立壁が立設され前記他の平板部との間に前記燃料導入部を構成する燃料ガイド部とが形成されている加熱部形成用プレート部材と、を所定のパターンで積層することで構成されている。   A heat exchange type reformer according to a fourth aspect of the present invention is the heat exchange type reformer according to the third aspect, wherein the reformer is formed between a flat plate portion formed in a flat plate shape and another flat plate portion. The reforming material is provided between the heat exchanging portion that constitutes a portion and a standing wall that guides the reforming material in a predetermined direction on the supply side of the reforming material with respect to the heat exchanging portion. The reforming part forming plate member in which the reforming material guide part constituting the introduction part is formed, and the flat plate part formed in a flat plate shape, and the other side of the flat plate portion is loaded with the oxidation catalyst. And a standing wall for guiding the fuel in a direction intersecting a predetermined direction of the reforming portion forming plate member on the fuel supply side with respect to the heat exchange portion. A fuel guide portion which is erected and constitutes the fuel introduction portion between the other flat plate portion and It is constructed by laminating a heating unit forming plate member that is made, in a predetermined pattern.

請求項4記載の熱交換型改質器では、改質部形成用プレート部材と加熱部形成用プレート部材とを所定のパターンで積層することで、各平板部の熱交換部間に改質部、加熱部が形成されると共に、各平板部の改質原料ガイド部と燃料ガイド部との間に改質原料導入部、燃料導入部がそれぞれ形成される。すなわち、改質部形成用プレート部材と加熱部形成用プレート部材とを所定のパターンで積層することで、並行流型の熱交換部の上流側にそれぞれ独立して開口する改質原料の供給口、燃料の供給口を有する改質原料導入部、燃料導入部が一体に構成される。   5. The heat exchange type reformer according to claim 4, wherein the reforming section forming plate member and the heating section forming plate member are laminated in a predetermined pattern, so that the reforming section is provided between the heat exchange sections of each flat plate section. A heating part is formed, and a reforming material introduction part and a fuel introduction part are formed between the reforming material guide part and the fuel guide part of each flat plate part. That is, a reforming material supply port that opens independently on the upstream side of the parallel flow type heat exchange unit by laminating the reforming unit forming plate member and the heating unit forming plate member in a predetermined pattern. The reforming raw material introduction unit having the fuel supply port and the fuel introduction unit are integrally configured.

請求項5記載の発明に係る熱交換型改質器は、請求項3又は請求項4記載の熱交換型改質器において、前記複数の改質原料導入部の改質原料の供給口が開口する集合空間を形成し、該複数の改質原料導入部に改質原料を分散して供給するための改質原料用マニホルドと、前記複数の燃料導入部の燃料の供給口が開口する集合空間を形成し、該複数の燃料導入部に燃料を分散して供給するための燃料用マニホルドと、をさらに備えた。   A heat exchange type reformer according to a fifth aspect of the present invention is the heat exchange type reformer according to the third or fourth aspect, wherein the reforming raw material supply ports of the plural reforming raw material introduction sections are open. And a reforming material manifold for distributing and supplying the reforming materials to the plurality of reforming material introduction portions, and a gathering space in which the fuel supply ports of the plurality of fuel introduction portions are opened. And a manifold for fuel for supplying fuel to the plurality of fuel introduction portions in a distributed manner.

請求項5記載の熱交換型改質器では、各層の改質部に改質原料を導入するための改質原料導入部の各供給口が改質原料用マニホルドで開口すると共に、各層の加熱部に燃料を導入するための燃料導入部の各供給口が燃料用マニホルドで開口している。このため、改質原料用マニホルドから各層の改質原料導入部を経由して各層の改質部に改質原料を均等に分配することができ、同様に、燃料用マニホルドから各層の燃料導入部を経由して各層の加熱部に燃料を均等に分配することが可能になる。特に、燃料用マニホルドに燃料と支燃ガスとの混合器を設けることで、各層の加熱部の直上流で予混合した混合ガスを該各層の加熱部に供給することが可能となる。この場合、局所的に燃料濃度の高い部分が生じることが防止され、加熱部内で局所的な高温部が発生することが防止される。   In the heat exchange type reformer according to claim 5, each supply port of the reforming material introduction section for introducing the reforming material into the reforming section of each layer is opened by a manifold for reforming material, and heating of each layer is performed. Each supply port of the fuel introduction part for introducing fuel into the part is opened by a fuel manifold. For this reason, the reforming material can be evenly distributed from the reforming material manifold to the reforming part of each layer via the reforming material introduction part of each layer, and similarly, the fuel introduction part of each layer from the fuel manifold. It becomes possible to distribute fuel evenly to the heating parts of the respective layers via the. In particular, by providing a fuel manifold with a mixer of fuel and supporting gas, it is possible to supply the mixed gas premixed immediately upstream of the heating section of each layer to the heating section of each layer. In this case, a portion having a high fuel concentration is prevented from being locally generated, and a local high temperature portion is prevented from being generated in the heating portion.

請求項6記載の発明に係る熱交換型改質器は、請求項1乃至請求項5の何れか1項記載の熱交換型改質器において、一端側が前記改質ガスの排出口とされると共に他端側が前記改質部における前記改質ガスの流出側に連続した改質ガス導出部と、一端側が前記加熱部の燃焼排ガスの排出口とされると共に他端側が前記加熱部における前記燃焼排ガスの排出側に連続し、前記改質ガス導出部による改質ガスの流れ方向とは異なる流れ方向で前記燃焼排ガスを前記燃焼排ガスの排出口に導く燃焼排ガス排出部と、をさらに備えた。   A heat exchange type reformer according to a sixth aspect of the present invention is the heat exchange type reformer according to any one of the first to fifth aspects, wherein one end side is an outlet for the reformed gas. And the other end side is a reformed gas outlet portion continuous to the reformed gas outflow side in the reforming portion, and one end side is a combustion exhaust gas discharge port of the heating portion, and the other end side is the combustion in the heating portion. A combustion exhaust gas discharge unit that is continuous with the exhaust gas discharge side and guides the combustion exhaust gas to the combustion exhaust gas discharge port in a flow direction different from a flow direction of the reformed gas by the reformed gas deriving unit;

請求項6記載の熱交換型改質器では、改質部の下流端に連続する改質ガス導出部と、改質部と並行流を成す(熱交換器としての媒体出口を略一致させている)加熱部の下流端に連続する燃焼排ガス排出部とが、互いに異なる方向に媒体の流れを生じさせるように構成されているため、換言すれば、改質ガス導出部と燃焼排ガス排出部とで擬似的に交差流部を構成しているため、改質ガスの排出口と燃焼排ガスの排出口とを独立して開口させることができる。これにより、改質ガス、燃焼排ガスをそれぞれ独立して改質部、加熱部の同じ側から排出させることができ、上記の通り吸熱要求の大きい部分に発熱の大きい部分を近づけた並行流型の熱交換型改質器を構成することができる。   In the heat exchange type reformer according to claim 6, the reformed gas lead-out section continuous to the downstream end of the reforming section and a parallel flow with the reforming section (with the medium outlet as the heat exchanger being substantially coincident with each other) In other words, the combustion exhaust gas discharge section that is continuous with the downstream end of the heating section is configured to generate a medium flow in different directions. In other words, the reformed gas discharge section and the combustion exhaust gas discharge section Therefore, the reformed gas discharge port and the combustion exhaust gas discharge port can be opened independently. As a result, the reformed gas and the combustion exhaust gas can be discharged independently from the same side of the reforming unit and the heating unit. A heat exchange type reformer can be constructed.

なお、複数の改質部と複数の加熱部とを少なくとも一部の改質部と加熱部とが隣接するように積層した構成においては、各層の改質部に改質ガス導出部を設けると共に、各層の加熱部に燃焼排ガス排出部を設けることが好ましい。特に、改質部形成用プレート部材と加熱部形成用プレート部材とを所定パターンで積層する構成においては、改質部形成用プレート部材の平板部における熱交換部に対し改質原料ガイド部と反対側に、改質ガスを別途所定方向に案内する立壁が立設され他の平板部との間に改質ガス導出部を構成する改質ガスガイド部が形成されると共に、加熱部形成用プレート部材の平板部における熱交換部に対し燃料ガイド部とは反対側に、燃焼排ガスを前記改質部形成用プレート部材の別途所定方向と交差する方向に案内する立壁が立設され他の平板部との間に燃料導入部を構成する排ガスガイド部が形成された構成とすることが好ましい。この構成では、改質部形成用プレート部材と加熱部形成用プレート部材とを所定パターンで積層することで、並行流型の熱交換器に対する各媒体の出入口を独立して設けることができる。   In a configuration in which a plurality of reforming units and a plurality of heating units are stacked so that at least a part of the reforming units and the heating unit are adjacent to each other, a reforming gas deriving unit is provided in the reforming unit of each layer. It is preferable to provide a combustion exhaust gas discharge part in the heating part of each layer. In particular, in the configuration in which the reforming part forming plate member and the heating part forming plate member are laminated in a predetermined pattern, the heat exchange part in the flat plate part of the reforming part forming plate member is opposite to the reforming material guide part. On the side, a standing wall for separately guiding the reformed gas in a predetermined direction is erected, and a reformed gas guide portion constituting a reformed gas lead-out portion is formed between the other flat plate portion, and a heating portion forming plate On the opposite side of the heat exchanging portion of the flat plate portion of the member from the fuel guide portion, another flat plate portion is provided with a standing wall for guiding the combustion exhaust gas in a direction crossing a predetermined direction of the reforming portion forming plate member. It is preferable that the exhaust gas guide part constituting the fuel introduction part is formed between the two. In this configuration, by laminating the reforming part forming plate member and the heating part forming plate member in a predetermined pattern, the inlets and outlets of the respective media with respect to the parallel flow type heat exchanger can be provided independently.

以上説明したように本発明に係る熱交換型改質器は、加熱部と改質部との熱交換効率が良好である。   As described above, the heat exchange type reformer according to the present invention has good heat exchange efficiency between the heating section and the reforming section.

本発明の第1の実施形態に係る熱交換型改質器10について、図1乃至図6に基づいて説明する。先ず、熱交換型改質器10が適用された燃料電池システム11の全体システム構成を説明し、次いで、熱交換型改質器10の詳細構造を説明することとする。   A heat exchange type reformer 10 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 6. First, the overall system configuration of the fuel cell system 11 to which the heat exchange reformer 10 is applied will be described, and then the detailed structure of the heat exchange reformer 10 will be described.

(燃料電池システムの全体構成)
図4には、燃料電池システム11のシステム構成図(プロセスフローシート)が示されている。この図に示される如く、燃料電池システム11は、水素を消費して発電を行う燃料電池12と、燃料電池12に供給するための水素含有の改質ガスを生成するための熱交換型改質器(改質器)10とを主要構成要素として構成されている。
(Overall configuration of fuel cell system)
FIG. 4 shows a system configuration diagram (process flow sheet) of the fuel cell system 11. As shown in this figure, the fuel cell system 11 includes a fuel cell 12 that generates power by consuming hydrogen, and a heat exchange reforming process for generating hydrogen-containing reformed gas to be supplied to the fuel cell 12. The reactor (reformer) 10 is a main component.

燃料電池12は、アノード電極(燃料極)14とカソード電極(空気極)16との間に、図示しない電解質を挟んで構成されており、主にアノード電極に供給される水素とカソード電極16に供給される酸素とを電気化学反応させて発電を行う構成とされている。燃料電池12としては、種々の形式のものを採用することができるが、この実施形態では、中温域(300℃〜600℃程度)で運転されると共に、発電に伴ってカソード電極16で水が生成されるプロトン伝導型の電解質を有する燃料電池(例えば、固体高分子型や水素分離膜型の燃料電池)が採用されている。   The fuel cell 12 is configured by sandwiching an electrolyte (not shown) between an anode electrode (fuel electrode) 14 and a cathode electrode (air electrode) 16. The fuel cell 12 mainly includes hydrogen supplied to the anode electrode and the cathode electrode 16. It is configured to generate electricity by electrochemical reaction with supplied oxygen. Although various types of fuel cells 12 can be employed, in this embodiment, the fuel cell 12 is operated in an intermediate temperature range (about 300 ° C. to 600 ° C.) and water is generated at the cathode electrode 16 along with power generation. A fuel cell (for example, a solid polymer type or a hydrogen separation membrane type fuel cell) having a produced proton-conducting electrolyte is employed.

熱交換型改質器10は、図4に示される如く、燃料電池12のアノード電極14に供給するための水素含有の改質ガスを生成する改質部としての改質流路18と、改質流路18が改質反応を行うための熱を供給するための加熱部として燃焼流路20とを含んで構成されている。改質流路18には、改質触媒22が担持されており、供給される炭化水素ガス(ガソリン、メタノール、天然ガス等)と改質用ガス(水蒸気)を触媒反応させることで、水素ガスを含む改質ガスを生成する(改質反応を行う)ようになっている。   As shown in FIG. 4, the heat exchange type reformer 10 includes a reforming flow path 18 as a reforming section that generates a hydrogen-containing reformed gas to be supplied to the anode electrode 14 of the fuel cell 12, and a reformer. The mass flow path 18 includes a combustion flow path 20 as a heating unit for supplying heat for performing the reforming reaction. A reforming catalyst 22 is supported in the reforming channel 18, and hydrogen gas is produced by catalytic reaction of the supplied hydrocarbon gas (gasoline, methanol, natural gas, etc.) and reforming gas (steam). Is generated (reforming reaction is performed).

改質流路18における改質反応には、以下の式(1)乃至(4)で表されるように、式(1)で示す水蒸気改質反応を含む各反応が含まれる。したがって、改質工程で得た改質ガスには、水素(H)、一酸化炭素(CO)、メタン(CH)、分解炭化水素や未反応の原料炭化水素(C)等の可燃性ガス、及び二酸化炭素(CO)、水(HO)等の不燃性ガスを含むようになっている。 The reforming reaction in the reforming channel 18 includes each reaction including the steam reforming reaction represented by the formula (1) as represented by the following formulas (1) to (4). Therefore, the reformed gas obtained in the reforming process includes hydrogen (H 2 ), carbon monoxide (CO), methane (CH 4 ), cracked hydrocarbons, unreacted raw material hydrocarbons (C x H y ), etc. Combustible gas and carbon dioxide (CO 2 ), water (H 2 O), and other non-flammable gases.

+nHO → nCO +(n+m/2)H … (1)
+n/2O → nCO + m/2H … (2)
CO+HO ⇔ CO+H … (3)
CO+3H ⇔ CH+HO … (4)
この改質反応の中で主となる式(1)の水蒸気改質反応は吸熱反応であり、かつ改質流路18は、上記の通り中温又は高温で運転される燃料電池12に改質ガスを供給するため所定温度以上の温度で運転されるようになっている。燃焼流路20は、この改質流路18における改質反応、運転温度を維持するための熱の供給する構成とされている。燃焼流路20は、酸化触媒24を担持して改質流路18に隣接して設けられており、供給された燃料を酸素と共に酸化触媒24接触させて触媒燃焼を生じさせる構成とされている。また、式(2)の部分酸化反応は発熱反応であり、この部分酸化反応による発熱は、燃焼流路20からの熱と併せて水蒸気改質反応に供されるようになっている。
C n H m + nH 2 O → nCO + (n + m / 2) H 2 ... (1)
C n H m + n / 2O 2 → nCO + m / 2H 2 ... (2)
CO + H 2 O⇔CO 2 + H 2 (3)
CO + 3H 2 CHCH 4 + H 2 O (4)
The main steam reforming reaction of the formula (1) in the reforming reaction is an endothermic reaction, and the reforming channel 18 is supplied to the fuel cell 12 operated at an intermediate temperature or a high temperature as described above. Is supplied at a temperature higher than a predetermined temperature. The combustion channel 20 is configured to supply heat for maintaining the reforming reaction and operating temperature in the reforming channel 18. The combustion flow path 20 is provided adjacent to the reforming flow path 18 carrying the oxidation catalyst 24, and is configured to cause catalytic combustion by bringing the supplied fuel into contact with the oxidation catalyst 24 together with oxygen. . Further, the partial oxidation reaction of the formula (2) is an exothermic reaction, and the heat generated by this partial oxidation reaction is used for the steam reforming reaction together with the heat from the combustion channel 20.

熱交換型改質器10は、燃焼流路20で燃料を触媒燃焼させて得た燃焼熱を後述するプレート部52を介して改質流路18に供給するようになっている。このため、燃焼ガス等の熱媒(流体)を介して改質流路18を加熱する構成のように熱量を温度に変換することなく、改質流路18に熱量を直接的に付与することができる構成とされている。   The heat exchange reformer 10 supplies combustion heat obtained by catalytic combustion of fuel in the combustion channel 20 to the reforming channel 18 via a plate portion 52 described later. For this reason, the amount of heat is directly applied to the reforming channel 18 without converting the amount of heat into temperature as in the configuration in which the reforming channel 18 is heated via a heat medium (fluid) such as combustion gas. It can be configured.

そして、燃料電池システム11は、改質流路18に炭化水素原料を供給するための原料ポンプ26を備えており、原料ポンプ26の吐出部は原料供給ライン28を介して改質流路18の原料入口18Aに接続されている。炭化水素原料は、上記した改質反応には寄与しない硫黄成分(硫黄化合物)をわずかに含んでいる。この炭化水素原料は、例えば蒸発器やインジェクション等図示しない気化手段等によって、気相又は微粒化状態で改質流路18に供給されるようになっている。   The fuel cell system 11 includes a raw material pump 26 for supplying a hydrocarbon raw material to the reforming flow path 18, and a discharge portion of the raw material pump 26 is connected to the reforming flow path 18 via a raw material supply line 28. It is connected to the raw material inlet 18A. The hydrocarbon raw material slightly contains a sulfur component (sulfur compound) that does not contribute to the above reforming reaction. This hydrocarbon raw material is supplied to the reforming flow path 18 in a gas phase or atomized state, for example, by a vaporizing means (not shown) such as an evaporator or an injection.

また、改質流路18の改質ガス出口18Bは、下流端がアノード電極14の燃料入口14Aに接続された改質ガス供給ライン30の上流端に接続されている。これにより、改質流路18で生成された改質ガスが燃料電池12のアノード電極14に供給されるようになっている。一方、アノード電極14のオフガス出口14Bには、アノードオフガスライン32の上流端が接続されており、アノードオフガスライン32の下流端はガス混合器33の燃料入口33Aに接続されている。ガス混合器33は、後述する支燃ガス供給ライン46から供給された冷却オフガスとアノードオフガスとを略均一に混合するようになっている。ガス混合器33の混合ガス出口33Bは、燃焼流路20の燃料(混合ガス)入口20Aに接続されている。   The reformed gas outlet 18 </ b> B of the reforming channel 18 is connected to the upstream end of the reformed gas supply line 30 whose downstream end is connected to the fuel inlet 14 </ b> A of the anode electrode 14. Thereby, the reformed gas generated in the reforming channel 18 is supplied to the anode electrode 14 of the fuel cell 12. On the other hand, the upstream end of the anode offgas line 32 is connected to the offgas outlet 14B of the anode electrode 14, and the downstream end of the anode offgas line 32 is connected to the fuel inlet 33A of the gas mixer 33. The gas mixer 33 is configured to substantially uniformly mix a cooling off gas and an anode off gas supplied from a support gas supply line 46 described later. A mixed gas outlet 33 </ b> B of the gas mixer 33 is connected to a fuel (mixed gas) inlet 20 </ b> A of the combustion flow path 20.

以上により、燃料電池システム11では、改質流路18で生成された改質ガス中の水素が燃料電池12で消費され、この消費された水素を除く残余成分がアノードオフガスとして燃焼流路20に導入され、そのうちの可燃成分(水素(H)、一酸化炭素(CO)、炭化水素(HC)、メタン(CH)、二酸化炭素(CO))が燃焼流路20で燃料として消費されるようになっている。この燃焼流路20の排ガス出口20Bには、燃焼排ガスを系外に排出するための排気ガスライン34が接続されている。 As described above, in the fuel cell system 11, the hydrogen in the reformed gas generated in the reforming channel 18 is consumed in the fuel cell 12, and the remaining components other than the consumed hydrogen are supplied to the combustion channel 20 as anode offgas. Combustible components (hydrogen (H 2 ), carbon monoxide (CO), hydrocarbon (HC), methane (CH 4 ), carbon dioxide (CO 2 )) are consumed as fuel in the combustion channel 20. It has become so. An exhaust gas line 34 for discharging combustion exhaust gas to the outside of the system is connected to the exhaust gas outlet 20B of the combustion flow path 20.

また、燃料電池システム11は、カソード電極16にカソード用空気を供給するためのカソード用空気ポンプ36を備えており、カソード用空気ポンプ36の吐出部は、下流端がカソード電極16の空気入口16Aに接続されたカソード用空気供給ライン38の上流端が接続されている。さらに、カソード電極16のオフガス出口16Bには、水蒸気供給ライン40の上流端が接続されており、水蒸気供給ライン40の下流端は、改質流路18の水蒸気入口18C接続されている。これにより、カソード電極16で生成された水蒸気、該カソード電極16で消費されなかった酸素を含むカソードオフガスが改質流路18に供給される構成である。そして、カソードオフガス中の水蒸気が式(1)の水蒸気改質反応に利用され、酸素が式(2)の部分酸化反応に利用されるようになっている。すなわち本実施形態に係る熱交換型改質器10は、酸素を含有するカソードオフガスを改質流路18に供給することで、炭化水素減量中の炭素量に対する供給酸素量の割合であるO/C比がある特定の条件で運転される構成とされている。   The fuel cell system 11 also includes a cathode air pump 36 for supplying cathode air to the cathode electrode 16, and the discharge portion of the cathode air pump 36 has an air inlet 16 </ b> A at the downstream end of the cathode electrode 16. The upstream end of the cathode air supply line 38 connected to is connected. Further, the upstream end of the steam supply line 40 is connected to the off-gas outlet 16B of the cathode electrode 16, and the downstream end of the steam supply line 40 is connected to the steam inlet 18C of the reforming flow path 18. As a result, the cathode off gas containing water vapor generated at the cathode electrode 16 and oxygen not consumed at the cathode electrode 16 is supplied to the reforming channel 18. Then, water vapor in the cathode off-gas is used for the steam reforming reaction of the formula (1), and oxygen is used for the partial oxidation reaction of the formula (2). That is, the heat exchange type reformer 10 according to the present embodiment supplies the cathode offgas containing oxygen to the reforming flow path 18, so that the ratio of the supplied oxygen amount to the carbon amount in the hydrocarbon weight loss is O /. The C ratio is configured to be operated under a specific condition.

さらに、燃料電池システム11は、燃料電池12に冷却空気を供給するための冷却用空気ポンプ42を備えており、冷却用空気ポンプ42の吐出部は、下流端が燃料電池12の冷媒流路(図示省略)の入口12Aに接続された冷却用空気ライン44の上流端に接続されている。この冷媒流路の出口12Bは、支燃ガス供給ライン46の上流端に接続されている。支燃ガス供給ライン46は、ガス混合器33の支燃ガス入口33Cに接続されており、ガス混合器33に燃焼支燃ガスとしての酸素を含む冷却オフガスを供給するようになっている。これにより、燃焼流路20では、アノードオフガスライン32からのアノードオフガスと支燃ガス供給ライン46からの冷却オフガスとがガス混合器33にて混合された混合ガスを内蔵した酸化触媒24に接触させて、触媒燃焼を生じさせる構成とされている。   Further, the fuel cell system 11 includes a cooling air pump 42 for supplying cooling air to the fuel cell 12, and the discharge part of the cooling air pump 42 has a refrigerant flow path ( It is connected to the upstream end of the cooling air line 44 connected to the inlet 12A (not shown). The refrigerant flow path outlet 12 </ b> B is connected to the upstream end of the combustion support gas supply line 46. The combustion support gas supply line 46 is connected to the support gas inlet 33C of the gas mixer 33, and supplies a cooling off gas containing oxygen as a combustion support gas to the gas mixer 33. Thereby, in the combustion flow path 20, the anode off gas from the anode off gas line 32 and the cooling off gas from the combustion support gas supply line 46 are brought into contact with the oxidation catalyst 24 containing the mixed gas mixed in the gas mixer 33. Thus, it is configured to cause catalytic combustion.

なお、燃料電池システム11は、例えば、水蒸気供給ライン40にカソードオフガス中の水蒸気のみを選択的に透過させる分離膜(ポリイミドやセラミック等の多孔体分離膜)を設けたり、改質用の水蒸気を系外から導入したりすることで、改質流路18に酸素が供給されない構成又は炭化水素原料中の炭素に対する供給酸素量(O/C比)が小さくなる構成とすることができる。これらの構成では、熱交換型改質器10における改質反応の主反応が水蒸気改質反応となり、部分酸化反応が行われないか又は部分酸化反応による発熱量が極めて小さくなる。   In the fuel cell system 11, for example, a separation membrane (a porous material separation membrane such as polyimide or ceramic) that selectively transmits only water vapor in the cathode offgas is provided in the water vapor supply line 40, or reforming water vapor is supplied. By introducing it from outside the system, a configuration in which oxygen is not supplied to the reforming flow path 18 or a configuration in which the amount of oxygen supplied (O / C ratio) to carbon in the hydrocarbon raw material is reduced can be achieved. In these configurations, the main reaction of the reforming reaction in the heat exchange reformer 10 is a steam reforming reaction, and the partial oxidation reaction is not performed or the heat generation amount due to the partial oxidation reaction becomes extremely small.

(熱交換型改質器の構成)
図1には、熱交換型改質器10の積層コア部65が分解斜視図にて示されている。この図に示される如く、熱交換型改質器10は、積層された複数の改質部形成用プレート部材、加熱部形成用プレート部材としての単位プレート部材50、51間に改質部としての改質流路18、加熱部としての燃焼流路20が、単位プレート部材50、51の平板部としてのプレート部52を隔壁として隔てられた独立したガス流路として形成されている。この実施形態では、改質流路18と燃焼流路20とは積層方向(プレート部52の厚み方向)に交互に配置されており、プレート部52を介して隣接している。以下、具体的に説明する。
(Configuration of heat exchange type reformer)
FIG. 1 shows an exploded perspective view of the laminated core portion 65 of the heat exchange type reformer 10. As shown in this figure, the heat exchange type reformer 10 includes a plurality of stacked reforming portion forming plate members and unit plate members 50 and 51 as heating portion forming plate members as reforming portions. The reforming flow path 18 and the combustion flow path 20 as a heating part are formed as independent gas flow paths separated by a plate part 52 as a flat plate part of the unit plate members 50 and 51 as a partition wall. In this embodiment, the reforming flow path 18 and the combustion flow path 20 are alternately arranged in the stacking direction (thickness direction of the plate portion 52), and are adjacent to each other via the plate portion 52. This will be specifically described below.

単位プレート部材50は、平板状に形成されたプレート部52を備えている。プレート部52は、平面視で、長方形状とされた熱交換部としての並行流部52Aの長手方向両側に、それぞれ流れ方向変換部52B、52Cが連設されて構成されている。この実施形態では、流れ方向変換部52B、52Cは、それぞれ並行流部52A(長方形)の短辺に底辺を一致させた如き三角形状に形成されており、このためプレート部52は全体として略六角形状に形成されている。各単位プレート部材50は、プレート部52の周縁から改質流路18の形成側に立設された外壁54を備えている。   The unit plate member 50 includes a plate portion 52 formed in a flat plate shape. The plate part 52 is configured such that flow direction conversion parts 52B and 52C are continuously provided on both sides in the longitudinal direction of a parallel flow part 52A serving as a rectangular heat exchange part in a plan view. In this embodiment, the flow direction conversion parts 52B and 52C are each formed in a triangular shape such that the bottom side coincides with the short side of the parallel flow part 52A (rectangular shape). It is formed into a shape. Each unit plate member 50 includes an outer wall 54 erected from the periphery of the plate portion 52 on the side where the reforming flow path 18 is formed.

外壁54は、方向変換部52B、52Cの各一辺部分を除きプレート部52の全周から立設されることで、積層された単位プレート部材50、51間に改質流路18を形成するスペーサ機能、改質流路18からのガス流出を防止する外壁機能を果たすと共に、流れ方向変換部52B側のガス入口50A、流れ方向変換部52C側のガス出口50Bを形成している。ガス入口50A、ガス出口50Bは、プレート部52の図心に対し対称に形成されており、それぞれ流れ方向変換部52B、52Cにおける外壁54の長手方向に沿った並行流部52Aとは反対向きの矢印C1方向、矢印C2方向を向いて開口している。   The outer wall 54 is a spacer that forms the reforming flow path 18 between the stacked unit plate members 50 and 51 by being erected from the entire circumference of the plate portion 52 except for each side portion of the direction changing portions 52B and 52C. In addition to fulfilling the function and the outer wall function of preventing gas outflow from the reforming flow path 18, the gas inlet 50A on the flow direction changing portion 52B side and the gas outlet 50B on the flow direction changing portion 52C side are formed. The gas inlet 50A and the gas outlet 50B are formed symmetrically with respect to the centroid of the plate part 52, and are opposite to the parallel flow part 52A along the longitudinal direction of the outer wall 54 in the flow direction conversion parts 52B and 52C, respectively. Opening is directed in the direction of arrow C1 and arrow C2.

また、単位プレート部材50のプレート部52における改質流路18の形成側からは、改質流路18を複数の平行流路に区画する複数の立壁(隔壁)56が立設されている。各立壁56は、ガス入口50Aからガス出口50Bまで、外壁54と略平行とされており、改質流路18を複数の分割流路(マイクロチャンネル)58に区画する構成とされている。各分割流路58は、上記したガス入口50A、ガス出口50Bの対称配置によって、ガス入口50Aからガス出口50Bまでの流路長が略一定となるクランク状に形成されている。   A plurality of standing walls (partition walls) 56 that divide the reforming channel 18 into a plurality of parallel channels are provided upright from the side of the plate portion 52 of the unit plate member 50 where the reforming channel 18 is formed. Each standing wall 56 is substantially parallel to the outer wall 54 from the gas inlet 50 </ b> A to the gas outlet 50 </ b> B, and is configured to partition the reforming channel 18 into a plurality of divided channels (microchannels) 58. Each divided flow path 58 is formed in a crank shape in which the flow path length from the gas inlet 50A to the gas outlet 50B is substantially constant by the symmetrical arrangement of the gas inlet 50A and the gas outlet 50B.

そして、各分割流路58における並行流部52Aにおいて該並行流部52Aの長手方向に沿う各立壁56の隔壁部56Aにて区画された部分は、それぞれ熱交換流路58Aとされている。一方、各分割流路58における流れ方向変換部52Bから各立壁56のうち矢印C1方向に沿う入口ガイド壁56Bが立設された部分は、改質原料ガイド部としての改質原料ガイド流路58Bとされている。さらに、各分割流路58における流れ方向変換部52Cから各立壁56のうち矢印C2方向に沿う出口ガイド壁56Cが立設された部分は、改質ガスガイド部としての改質ガスガイド流路58Cとされている。   And in the parallel flow part 52A in each division | segmentation flow path 58, the part divided by the partition part 56A of each standing wall 56 along the longitudinal direction of this parallel flow part 52A is set as the heat exchange flow path 58A, respectively. On the other hand, the portion where the inlet guide wall 56B along the direction of the arrow C1 among the standing walls 56 is erected from the flow direction conversion portion 52B in each divided flow channel 58 is a reforming material guide flow channel 58B as a reforming material guide portion. It is said that. Further, the portion of each standing channel 56 where the outlet guide wall 56C is provided in the direction of the arrow C2 from the flow direction changing portion 52C in each divided channel 58 is a reformed gas guide channel 58C as a reformed gas guide unit. It is said that.

単位プレート部材51は、単位プレート部材50を構成するプレート部52と同じ形状のプレート部52を備えており、またプレート部52の周縁から燃焼流路20の形成側に立設された外壁60を備えている。外壁60は、方向変換部52B、52Cにおける各一辺部分を除きプレート部52の全周から立設されることで、積層された単位プレート部材51、50間に燃焼流路20を形成するスペーサ機能、燃焼流路20からのガス流出を防止する外壁機能を果たすと共に、流れ方向変換部52B側のガス入口51A、流れ方向変換部52C側のガス出口51Bを形成している。   The unit plate member 51 includes a plate portion 52 having the same shape as the plate portion 52 constituting the unit plate member 50, and an outer wall 60 standing on the formation side of the combustion flow path 20 from the periphery of the plate portion 52. I have. The outer wall 60 is erected from the entire circumference of the plate portion 52 except for each one side portion in the direction changing portions 52B and 52C, thereby forming a combustion channel 20 between the stacked unit plate members 51 and 50. In addition to fulfilling the outer wall function of preventing gas outflow from the combustion flow path 20, a gas inlet 51A on the flow direction changing portion 52B side and a gas outlet 51B on the flow direction changing portion 52C side are formed.

ガス入口51Aは、並行流部52Aに対し単位プレート部材50のガス入口50Aと長手方向の同じ側(図1の矢印A側)において、ガス入口50Aが開口する矢印C1方向とは異なる(並行流部52Aの長手方向に対し対称となる)矢印D1方向を向いて開口するように形成されている。また、ガス出口51Bは、並行流部52Aに対し単位プレート部材50のガス出口50Bと長手方向の同じ側(図1の矢印B側)において、ガス出口50Bが開口する矢印C2方向とは異なる(並行流部52Aの長手方向に対し対称となる)矢印D2方向を向いて開口するように形成されている。   The gas inlet 51A is different from the direction of the arrow C1 in which the gas inlet 50A opens on the same side in the longitudinal direction as the gas inlet 50A of the unit plate member 50 (arrow A side in FIG. 1) with respect to the parallel flow portion 52A (parallel flow). It is formed so as to open in the direction of the arrow D1 (symmetric to the longitudinal direction of the portion 52A). Further, the gas outlet 51B is different from the direction of the arrow C2 in which the gas outlet 50B is opened on the same side of the parallel outlet 52A as the gas outlet 50B of the unit plate member 50 in the longitudinal direction (arrow B side in FIG. 1) ( It is formed so as to open in the direction of the arrow D2 (symmetric with respect to the longitudinal direction of the parallel flow portion 52A).

また、単位プレート部材51のプレート部52における改質流路18の形成側からは、燃焼流路20を複数の平行流路に区画する複数の立壁(隔壁)62が立設されている。各立壁62は、ガス入口51Aからガス出口51Bまで、外壁60と略平行とされており、燃焼流路20を複数の分割流路(マイクロチャンネル)64に区画する構成とされている。各分割流路64は、上記したガス入口51A、ガス出口51Bの対称配置によって、ガス入口51Aからガス出口51Bまでの流路長が略一定となるクランク状に形成されている。   A plurality of standing walls (partition walls) 62 that divide the combustion channel 20 into a plurality of parallel channels are provided upright from the side of the plate portion 52 of the unit plate member 51 where the reforming channel 18 is formed. Each standing wall 62 is substantially parallel to the outer wall 60 from the gas inlet 51 </ b> A to the gas outlet 51 </ b> B, and is configured to partition the combustion channel 20 into a plurality of divided channels (microchannels) 64. Each divided flow path 64 is formed in a crank shape in which the flow path length from the gas inlet 51A to the gas outlet 51B is substantially constant due to the symmetrical arrangement of the gas inlet 51A and the gas outlet 51B.

そして、各分割流路64における並行流部52Aにおいて該並行流部52Aの長手方向に沿う各立壁56の隔壁部62Aにて区画された部分は、それぞれ熱交換流路64Aとされている。一方、各分割流路64における流れ方向変換部52Bから各立壁62のうち矢印D1方向に沿う入口ガイド壁62Bが立設された部分は、燃料ガイド部としての混合ガスガイド流路64Bとされている。さらに、各分割流路64における流れ方向変換部52Cから各立壁62のうち矢印D2方向に沿う出口ガイド壁62Cが立設された部分は、燃焼排ガスガイド部としての燃焼排ガスガイド流路64Cとされている。   And in the parallel flow part 52A in each division | segmentation flow path 64, the part divided by the partition part 62A of each standing wall 56 along the longitudinal direction of this parallel flow part 52A is set as the heat exchange flow path 64A, respectively. On the other hand, the portion of each standing wall 62 where the inlet guide wall 62B is erected along the direction of the arrow D1 from the flow direction conversion section 52B in each divided flow path 64 is a mixed gas guide flow path 64B as a fuel guide section. Yes. Furthermore, the part where the outlet guide wall 62C along the direction of the arrow D2 among the standing walls 62 is erected from the flow direction conversion part 52C in each divided flow path 64 is a combustion exhaust gas guide flow path 64C as a combustion exhaust gas guide part. ing.

以上説明した熱交換型改質器10は、上記の通りガス入口50A、51Aが並行流部52A(熱交換流路58A、64A)に対する同じ側(矢印A側)に位置すると共に、ガス出口50B、51Bが並行流部52Aに対する同じ側(矢印B側)に位置することで、各層の熱交換流路58A、熱交換流路64Aでのガス流れ方向がそれぞれ同じ方向(矢印F方向)とされている。   In the heat exchange type reformer 10 described above, the gas inlets 50A and 51A are located on the same side (arrow A side) with respect to the parallel flow part 52A (heat exchange flow paths 58A and 64A) as described above, and the gas outlet 50B. , 51B are located on the same side (arrow B side) with respect to the parallel flow portion 52A, the gas flow directions in the heat exchange flow path 58A and the heat exchange flow path 64A of each layer are the same direction (arrow F direction). ing.

また、以上説明した単位プレート部材50、単位プレート部材51は、例えばステンレス鋼などの金属材や中実の(多孔体ではない)セラミック材にて、各部(プレート部52・外壁54・立壁56、又はプレート部52・外壁60・立壁62)が一体的に形成されている。また、それぞれ複数の単位プレート部材50と単位プレート部材51とは、積層された状態でプレート部52と外壁54又は外壁60(各立壁56、62)とが、例えばロウ材を用いたろう付けや拡散接合によって気密に接合されて、熱交換型改質器10の積層コア部65を構成している。なお、図2に示される如く、熱交換型改質器10は、この実施形態では、最上部には外壁54等が立設されない平板状のプレート部52(カバー)が積層されて、改質流路18を閉止している。   The unit plate member 50 and the unit plate member 51 described above are made of, for example, a metal material such as stainless steel or a solid (not porous) ceramic material, and each part (plate portion 52, outer wall 54, standing wall 56, Alternatively, the plate portion 52, the outer wall 60, and the standing wall 62) are integrally formed. Further, each of the plurality of unit plate members 50 and the unit plate members 51 is laminated, and the plate portion 52 and the outer wall 54 or the outer wall 60 (respective standing walls 56 and 62) are brazed or diffused using, for example, a brazing material. The laminated core portion 65 of the heat exchange reformer 10 is configured to be airtightly joined by joining. As shown in FIG. 2, in this embodiment, the heat exchange type reformer 10 is reformed by laminating a flat plate portion 52 (cover) on which the outer wall 54 or the like is not erected on the top. The flow path 18 is closed.

図2に示される如く、積層コア部65には、各層のガス入口50Aが開口する集合空間を形成する改質入口マニホルド66が接続されている。また、積層コア部65には、各層のガス出口50Bが開口する集合空間を形成する改質出口マニホルド68が接続されている。さらに、積層コア部65には、各層のガス入口51Aが開口する集合空間を形成する燃焼入口マニホルド70が接続されている。さらにまた、積層コア部65には、各層のガス出口51Bが開口する集合空間を形成する燃焼出口マニホルド72が接続されている。各マニホルド66、68、70、72は、それぞれ矩形筒状に形成され、一方の開口端が最上下層のプレート部52及び各層の外壁54、外壁60の端部にロウ付け等によって接合されている。   As shown in FIG. 2, the laminated core portion 65 is connected to a reforming inlet manifold 66 that forms a collective space in which gas inlets 50 </ b> A of the respective layers are opened. Also, the laminated core portion 65 is connected to a reforming outlet manifold 68 that forms a collective space in which the gas outlets 50B of the respective layers are opened. Further, a combustion inlet manifold 70 that forms a collective space in which the gas inlet 51A of each layer opens is connected to the laminated core portion 65. Furthermore, the laminated core portion 65 is connected to a combustion outlet manifold 72 that forms a collective space in which the gas outlets 51B of the respective layers are opened. Each manifold 66, 68, 70, 72 is formed in a rectangular cylinder shape, and one open end is joined to the uppermost lower plate portion 52 and the outer wall 54 of each layer, and the end of the outer wall 60 by brazing or the like. Yes.

改質入口マニホルド66には、改質原料(炭化水素)及び水蒸気(カソードオフガス)を導入するための原料入口18A及び水蒸気入口18Cが設けられており、改質出口マニホルド68には、改質ガスを放出するための改質ガス出口18Bが設けられている。また、燃焼入口マニホルド70には、ガス混合器33からの混合ガスを導入するための燃料入口20Aが設けられており、燃焼出口マニホルド72には、燃焼排ガスを排出するための排ガス出口20Bが設けられている。   The reforming inlet manifold 66 is provided with a raw material inlet 18A and a steam inlet 18C for introducing a reforming raw material (hydrocarbon) and steam (cathode off-gas), and the reforming outlet manifold 68 has a reformed gas. Is provided with a reformed gas outlet 18B. The combustion inlet manifold 70 is provided with a fuel inlet 20A for introducing the mixed gas from the gas mixer 33, and the combustion outlet manifold 72 is provided with an exhaust gas outlet 20B for discharging combustion exhaust gas. It has been.

そして、以上説明した熱交換型改質器10(積層コア部65)は、単位プレート部材50における分割流路58の内面に改質触媒22が担持されており、単位プレート部材51における分割流路64の内面に酸化触媒24が担持されている。各立壁56、62の図示を省略した分解平面図である図3に示される如く、改質触媒22は、分割流路58(改質流路18)におけるガス入口50A側の一部を除く所定範囲に亘って担持されており、酸化触媒24は、分割流路64(燃焼流路20)におけるガス入口51A側の一部を除く所定範囲に亘って担持されている。   In the heat exchange type reformer 10 (laminated core portion 65) described above, the reforming catalyst 22 is carried on the inner surface of the divided flow path 58 in the unit plate member 50, and the divided flow path in the unit plate member 51. An oxidation catalyst 24 is supported on the inner surface of 64. As shown in FIG. 3 which is an exploded plan view in which the standing walls 56 and 62 are not shown, the reforming catalyst 22 is a predetermined excluding a part of the divided channel 58 (reforming channel 18) on the gas inlet 50A side. The oxidation catalyst 24 is supported over a predetermined range excluding a part of the divided flow path 64 (combustion flow path 20) on the gas inlet 51A side.

より具体的には、図3に示される如く、改質触媒22は、改質原料が供給されるガス流れ方向の上流側(矢印A側)の端部である上流側担持端22Aが、各分割流路58における熱交換流路58A(並行流部52A)と改質ガスガイド流路58B(流れ方向変換部52B)との境界部に略一致している。一方、酸化触媒24は、燃料が供給されるガス流れ方向の上流側(矢印A側)の端部である上流側担持端24Aが、各分割流路64における熱交換流路64A(並行流部52A)と混合ガスガイド流路64B(流れ方向変換部52B)との境界部に略一致している。なお、酸化触媒24の上流側担持端24Aは、改質触媒22の上流側担持端22Aと一致するか、該上流側担持端22Aよりも若干下流側に位置している。   More specifically, as shown in FIG. 3, the reforming catalyst 22 includes upstream support ends 22 </ b> A that are upstream (arrow A side) ends in the gas flow direction to which the reforming raw material is supplied. This substantially coincides with the boundary between the heat exchange channel 58A (parallel flow part 52A) and the reformed gas guide channel 58B (flow direction changing part 52B) in the divided channel 58. On the other hand, in the oxidation catalyst 24, the upstream carrying end 24A, which is the upstream end (arrow A side) in the gas flow direction to which fuel is supplied, has a heat exchange flow path 64A (parallel flow section) in each divided flow path 64. 52A) and the mixed gas guide channel 64B (flow direction changing portion 52B) substantially coincide with each other. The upstream carrying end 24A of the oxidation catalyst 24 coincides with the upstream carrying end 22A of the reforming catalyst 22 or is located slightly downstream from the upstream carrying end 22A.

熱交換型改質器10では、図5(A)及び図5(B)に示される如く、積層コア部65をガス出口50B、ガス出口51B側からスラリ状の触媒担体75を貯留した貯槽76に浸漬することで、改質流路18の分割流路58と燃焼流路20の分割流路64とに触媒担体を設置し、その後各分割流路58、64に設置された触媒担体75に改質触媒22、酸化触媒24を担持させている。上流側担持端22A、上流側担持端24A(制御ライン)で触媒担体を停止させるために、各分割流路58、64の代表的な一部又は全部に配置され触媒担体を検出する触媒センサ74の検出信号を用いている。この熱交換型改質器10の製造方法を具体的に説明する。   In the heat exchange type reformer 10, as shown in FIGS. 5A and 5B, the laminated core portion 65 is stored in the gas outlet 50B, and the storage tank 76 storing the slurry-like catalyst carrier 75 from the gas outlet 51B side. So that the catalyst carrier is installed in the divided flow channel 58 of the reforming flow channel 18 and the divided flow channel 64 of the combustion flow channel 20, and then the catalyst carrier 75 installed in each divided flow channel 58, 64. A reforming catalyst 22 and an oxidation catalyst 24 are supported. In order to stop the catalyst carrier at the upstream carrier end 22A and the upstream carrier end 24A (control line), a catalyst sensor 74 is disposed in a representative part or all of the divided flow paths 58 and 64 and detects the catalyst carrier. This detection signal is used. A method for manufacturing the heat exchange reformer 10 will be specifically described.

熱交換型改質器10を製造するに当たっては、図2に示される如く単位プレート部材50、51を交互に積層し、各外壁54、60の自由端を隣接する単位プレート部材50、51のプレート部52に接合する。これにより、積層コア部65が形成される。次いで、図5(A)に示される如く、積層コア部65の各分割流路58、64に触媒担持位置センサ74をセットする。触媒担持位置センサ74は、その先端に設けられたスラリ検知部74Aに触媒担体が接触すると図示しない報知手段(表示装置や報知音発生装置等)にON信号を出力するようになっている。したがって、触媒担持位置センサ74は、スラリ検知部74Aが各分割流路58、64における改質触媒22の上流側担持端22A、酸化触媒24の上流側担持端24Aの制御目標位置に位置するように、ガス入口50A、51A側から代表的な一部の分割流路58、64に挿入される。   In manufacturing the heat exchange type reformer 10, as shown in FIG. 2, the unit plate members 50 and 51 are alternately laminated, and the free end of each outer wall 54 and 60 is the plate of the adjacent unit plate members 50 and 51. Bonded to the part 52. Thereby, the laminated core part 65 is formed. Next, as shown in FIG. 5A, the catalyst carrying position sensor 74 is set in each of the divided flow paths 58 and 64 of the laminated core portion 65. The catalyst carrying position sensor 74 outputs an ON signal to not-shown notification means (display device, notification sound generating device, etc.) when the catalyst carrier comes into contact with a slurry detection unit 74A provided at the tip thereof. Therefore, in the catalyst carrying position sensor 74, the slurry detection unit 74A is positioned at the control target positions of the upstream carrying end 22A of the reforming catalyst 22 and the upstream carrying end 24A of the oxidation catalyst 24 in each of the divided flow paths 58 and 64. In addition, the gas is inserted into the representative partial flow paths 58 and 64 from the gas inlets 50A and 51A side.

このように触媒担持位置センサ74がセットされた積層コア部65をガス出口50B、ガス出口51B側から貯槽76内の触媒担体75に浸漬する。マイクロチャンネル構造の積層コア部65では、毛管現象によって各分割流路58、64内の触媒担体75の表面が貯槽76内の表面よりも高位になることを考慮して、報知手段からの報知があるまで(触媒担持位置センサ74が触媒担体75を検知するまで)、図5(A)及び図5(B)に示される如く、徐々に(低速で)積層コア部65を触媒担体75に浸漬させる。報知手段の作動後は、積層コア部65を貯槽76から引き上げ、余剰の触媒担体75をガス入口50A、51からのエアブロー等によって各分割流路58、64から除去する。   The laminated core portion 65 in which the catalyst carrying position sensor 74 is set in this way is immersed in the catalyst carrier 75 in the storage tank 76 from the gas outlet 50B and gas outlet 51B side. In the laminated core portion 65 having the microchannel structure, notification from the notification means is performed in consideration of the fact that the surface of the catalyst carrier 75 in each of the divided flow paths 58 and 64 is higher than the surface in the storage tank 76 due to capillary action. Until there is (until the catalyst carrying position sensor 74 detects the catalyst carrier 75), as shown in FIGS. 5A and 5B, the laminated core portion 65 is gradually immersed in the catalyst carrier 75 (at a low speed). Let After the operation of the notification means, the laminated core portion 65 is pulled up from the storage tank 76, and the excess catalyst carrier 75 is removed from each of the divided flow paths 58 and 64 by air blow or the like from the gas inlets 50A and 51.

次いで、図5(C)に示される如く、ガス出口50Bから各分割流路58内に改質触媒22を供給して、各分割流路58内の触媒担体75に改質触媒22を担持させる。また、ガス出口51Bから各分割流路64内に酸化触媒24を供給して、各分割流路64内の触媒担体75に酸化触媒24を担持させる。これにより、各分割流路58における熱交換流路58A、改質ガスガイド流路58Cに改質触媒22が担持されると共に改質ガスガイド流路58Bには改質触媒22が担持されず、かつ各分割流路64における熱交換流路64A、燃焼排ガスガイド流路64Cに酸化触媒24が担持されると共に混合ガスガイド流路64Bには酸化触媒24が担持されない積層コア部65が構成されている。   Next, as shown in FIG. 5C, the reforming catalyst 22 is supplied from the gas outlet 50 </ b> B into each divided flow path 58, and the reforming catalyst 22 is supported on the catalyst carrier 75 in each divided flow path 58. . Further, the oxidation catalyst 24 is supplied from the gas outlet 51 </ b> B into each divided flow path 64, and the oxidation catalyst 24 is supported on the catalyst carrier 75 in each divided flow path 64. Thereby, the reforming catalyst 22 is supported on the heat exchange channel 58A and the reformed gas guide channel 58C in each divided channel 58, and the reforming catalyst 22 is not supported on the reformed gas guide channel 58B. In addition, the oxidation catalyst 24 is supported on the heat exchange flow path 64A and the combustion exhaust gas guide flow path 64C in each divided flow path 64, and the laminated core portion 65 that does not support the oxidation catalyst 24 is configured on the mixed gas guide flow path 64B. Yes.

そして、積層コア部65における各層のガス入口50A、51A、ガス出口50B、51Bの開口部に、改質入口マニホルド66、燃焼入口マニホルド70、改質出口マニホルド68、燃焼出口マニホルド72を接合する。これにより、図2に示される如き熱交換型改質器10の製造が完了する。   The reforming inlet manifold 66, the combustion inlet manifold 70, the reforming outlet manifold 68, and the combustion outlet manifold 72 are joined to the openings of the gas inlets 50A and 51A and the gas outlets 50B and 51B of each layer in the laminated core portion 65. Thereby, the manufacture of the heat exchange type reformer 10 as shown in FIG. 2 is completed.

次に、実施形態の作用を説明する。   Next, the operation of the embodiment will be described.

上記構成の燃料電池システム11では、原料ポンプ26、カソード用空気ポンプ36の作動によって、原料供給ライン28から熱交換型改質器10の改質流路18に炭化水素原料、水蒸気(カソードオフガス)が導入される。熱交換型改質器10の改質流路18内では、燃焼流路20からの熱供給を受けつつ導入された炭化水素原料を水蒸気と共に改質触媒22に接触させることで式(1)の水蒸気改質反応、式(2)の部分酸化反応を含む改質反応(上式(1)〜(4)参照)が行われ、水素を高濃度で含有する改質ガスが生成される。   In the fuel cell system 11 having the above-described configuration, the hydrocarbon raw material, water vapor (cathode offgas) is supplied from the raw material supply line 28 to the reforming passage 18 of the heat exchange reformer 10 by the operation of the raw material pump 26 and the cathode air pump 36. Is introduced. In the reforming flow path 18 of the heat exchange type reformer 10, the hydrocarbon raw material introduced while receiving heat supply from the combustion flow path 20 is brought into contact with the reforming catalyst 22 together with water vapor to satisfy the equation (1). A reforming reaction (see the above formulas (1) to (4)) including a steam reforming reaction and a partial oxidation reaction of the formula (2) is performed, and a reformed gas containing hydrogen at a high concentration is generated.

改質流路18で生成された改質ガスは、アノード電極14の燃料入口14Aからアノード電極14に供給される。燃料電池12では、アノード電極14に供給された改質ガス中の水素がプロトン化され、このプロトンが電解質を経由してカソード電極16に移動して該カソード電極16に導入された空気中の酸素と反応する。このプロトンの移動に伴って電子がアノード電極14から外部導体を通じてカソード電極に向けて流れ、発電が行われる。   The reformed gas generated in the reforming channel 18 is supplied to the anode electrode 14 from the fuel inlet 14 </ b> A of the anode electrode 14. In the fuel cell 12, hydrogen in the reformed gas supplied to the anode electrode 14 is protonated, and this proton moves to the cathode electrode 16 through the electrolyte and is introduced into the cathode electrode 16. React with. As the protons move, electrons flow from the anode electrode 14 toward the cathode electrode through the external conductor, and power generation is performed.

この発電によって燃料電池12では、アノード電極14に供給された改質ガス中の水素、カソード電極16に供給されたカソード用空気中の酸素が発電量(負荷の電力消費量)に応じて消費され、カソード電極16では水(運転温度において水蒸気)が生成される。この水蒸気を含むガスは、上記の通りカソードオフガスとしてカソード電極16から水蒸気供給ライン40に押し出され、水蒸気入口18Cから改質流路18に導入される。   With this power generation, in the fuel cell 12, hydrogen in the reformed gas supplied to the anode electrode 14 and oxygen in the cathode air supplied to the cathode electrode 16 are consumed according to the power generation amount (load power consumption). The cathode electrode 16 generates water (water vapor at the operating temperature). The gas containing water vapor is pushed out from the cathode electrode 16 to the water vapor supply line 40 as the cathode off gas as described above, and is introduced into the reforming flow path 18 from the water vapor inlet 18C.

一方、発電に伴って改質ガス中の水素が発電量に応じて消費された後のガスは、アノードオフとしてアノード電極14から排出され、このアノードオフガスは、アノードオフガスライン32を経由して、熱交換型改質器10の燃焼流路20に供給される。また、燃焼流路20には、支燃ガス供給ライン46から燃料電池12を冷却した後の冷却オフガスが供給される。この燃焼流路20では、燃料であるアノードオフガス中の可燃成分を、冷却オフガス中の酸素を支燃ガスと共に酸化触媒24に接触させることで触媒燃焼が生じる。この触媒燃焼によって生じた熱は、プレート部52を介して改質流路18に供給される。この熱によって改質流路18では、吸熱反応である改質反応を維持すると共に運転温度(改質ガス温)を改質反応に必要な温度に保つ。   On the other hand, the gas after the hydrogen in the reformed gas is consumed according to the amount of power generated along with the power generation is discharged from the anode electrode 14 as the anode off, and this anode off gas passes through the anode off gas line 32, It is supplied to the combustion flow path 20 of the heat exchange type reformer 10. The combustion flow path 20 is supplied with the cooling off gas after cooling the fuel cell 12 from the combustion support gas supply line 46. In the combustion flow path 20, catalytic combustion occurs when the combustible component in the anode off-gas, which is fuel, is brought into contact with the oxidation catalyst 24 together with the oxygen in the cooling off-gas together with the combustion support gas. The heat generated by this catalytic combustion is supplied to the reforming flow path 18 via the plate portion 52. With this heat, the reforming flow path 18 maintains the reforming reaction, which is an endothermic reaction, and maintains the operating temperature (reformed gas temperature) at a temperature necessary for the reforming reaction.

以上により、燃料電池システム11では、熱交換型改質器10に炭化水素原料を供給すると共に、燃料電池12の各排出ガス(水蒸気を含むカソードオフガス、可燃成分を含むアノードオフガス、酸素を含む冷却オフガス)を有効利用して、該燃料電池12に供給する水素を生成する熱交換型改質器10の運転を維持する。   As described above, in the fuel cell system 11, the hydrocarbon raw material is supplied to the heat exchange type reformer 10, and each exhaust gas of the fuel cell 12 (cathode off-gas containing water vapor, anode off-gas containing combustible components, cooling containing oxygen). The operation of the heat exchange reformer 10 that generates hydrogen to be supplied to the fuel cell 12 is maintained by effectively using off gas).

ところで、改質流路18における改質反応は、改質原料の入口側すなわち改質触媒22担持範囲の上流側担持端22A側で吸熱のピークを生じる。また、燃焼流路20における燃焼反応は、燃料の入口側すなわち酸化触媒24担持範囲の上流側担持端24A側で発熱のピークを生じる。このため、例えば、直交流型の熱交換型改質器では、改質部と加熱部とでガス流れ方向が交差するので、構造上、局所的な高温部が発生してしまう問題がある。また例えば、対向流型の熱交換型改質器は、改質部と加熱部との吸発熱のピークが熱交換部におけるガス流方向反対側の端部で生じるので、改質器における熱交換器としては不向きである。   By the way, the reforming reaction in the reforming channel 18 generates an endothermic peak on the reforming raw material inlet side, that is, on the upstream supporting end 22A side of the reforming catalyst 22 supporting range. Further, the combustion reaction in the combustion flow path 20 generates a peak of heat generation on the fuel inlet side, that is, on the upstream carrying end 24A side of the oxidation catalyst 24 carrying range. For this reason, for example, in the cross-flow type heat exchange type reformer, the gas flow direction intersects between the reforming section and the heating section, so that there is a problem that a local high temperature section is generated due to the structure. Further, for example, in the counter flow type heat exchange type reformer, since the peak of the endothermic heat generation between the reforming part and the heating part occurs at the end of the heat exchange part opposite to the gas flow direction, the heat exchange in the reformer It is unsuitable as a vessel.

ここで、熱交換型改質器10では、改質流路18の熱交換流路58Aと燃焼流路20の熱交換流路64Aとでガス流れ方向が同じである並行流型熱交換器を構成しているため、換言すれば、改質反応において改質原料が供給されるガス入口50A側で生じる吸熱のピークと、燃焼反応において燃料が供給されるガス入口51A側で生じる発熱のピークとをガス流れ方向の同じ側に制御することができるため、改質流路18と燃焼流路20との間の熱交換効率が向上する。これにより、熱交換型改質器10では、燃焼流路20での発熱を有効に利用して効率的に改質による水素生成を行うことができる。   Here, in the heat exchange type reformer 10, a parallel flow type heat exchanger having the same gas flow direction in the heat exchange channel 58A of the reforming channel 18 and the heat exchange channel 64A of the combustion channel 20 is used. In other words, in other words, the endothermic peak generated on the gas inlet 50A side where the reforming raw material is supplied in the reforming reaction, and the exothermic peak generated on the gas inlet 51A side where the fuel is supplied in the combustion reaction. Therefore, the heat exchange efficiency between the reforming flow path 18 and the combustion flow path 20 is improved. Thereby, in the heat exchange type reformer 10, it is possible to efficiently generate hydrogen by reforming by effectively using the heat generated in the combustion flow path 20.

このように、第1の実施形態に係る熱交換型改質器10では、燃焼流路20と改質流路18との熱交換効率が良好である。   Thus, in the heat exchange type reformer 10 according to the first embodiment, the heat exchange efficiency between the combustion channel 20 and the reforming channel 18 is good.

またここで、熱交換型改質器10では、実質的に並行流型熱交換器を構成する熱交換流路58A、64Aの上流側に位置する改質ガスガイド流路58Bと混合ガスガイド流路64Bとが交差流熱交換部を構成しているため、この熱交換によって変動に対し安定した運転が可能になる(ロバスト性が向上する)。図6に実験例を示す。図6は、供給される混合ガスの温度が400℃で一定である場合の分割流路64のガス流れ方向各部温度分布を示す線図であって、実線は分割流路58に供給される改質原料の温度が600℃の場合、破線は分割流路58に供給される改質原料の温度が400℃の場合を示している。この図から、分割流路58への流入ガス温度が200℃変化しても、分割流路64の最高温度の上昇は30℃に抑えられることが判る。すなわち、熱交換型改質器10では、ガス入口温度に依存した反応場温度の急変を効果的に抑制することができる。   Further, here, in the heat exchange type reformer 10, the reformed gas guide channel 58B and the mixed gas guide flow located on the upstream side of the heat exchange channels 58A and 64A that substantially constitute a parallel flow type heat exchanger. Since the path 64B constitutes a cross-flow heat exchanging section, this heat exchange enables stable operation against fluctuations (improves robustness). FIG. 6 shows an experimental example. FIG. 6 is a diagram showing the temperature distribution of each part in the gas flow direction of the divided flow path 64 when the temperature of the supplied mixed gas is constant at 400 ° C. The solid line is a modified line supplied to the divided flow path 58. When the temperature of the raw material is 600 ° C., the broken line indicates the case where the temperature of the reforming material supplied to the divided flow path 58 is 400 ° C. From this figure, it can be seen that even if the temperature of the gas flowing into the divided flow path 58 changes by 200 ° C., the increase in the maximum temperature of the divided flow path 64 can be suppressed to 30 ° C. That is, in the heat exchange type reformer 10, a sudden change in the reaction field temperature depending on the gas inlet temperature can be effectively suppressed.

さらに、熱交換型改質器10では、改質ガスガイド流路58Bと混合ガスガイド流路64Bとが構成する交差流熱交換部に改質触媒22、酸化触媒24が担持されていないため、改質ガスガイド流路58B、混合ガスガイド流路64Bで改質反応、燃焼反応が生じることがない。このため、直交流型の熱交換型改質装置では問題となる吸発熱位置のアンバランスに起因する局所的な高温部位の発生が防止される。改質ガスガイド流路58B、混合ガスガイド流路64Bに改質触媒22、酸化触媒24を担持した構成では、各分割流路58(改質出口マニホルド68)から排出される改質ガスの温度が650℃に制御した場合の改質ガスガイド流路58Bの最高温度が略800℃であったのに対し、熱交換型改質器10では、同条件で改質ガスガイド流路58Bの最高温度が略180℃である実験結果が得られた。   Furthermore, in the heat exchange type reformer 10, since the reforming catalyst 22 and the oxidation catalyst 24 are not supported on the cross-flow heat exchange section formed by the reformed gas guide channel 58B and the mixed gas guide channel 64B, The reforming reaction and the combustion reaction do not occur in the reformed gas guide channel 58B and the mixed gas guide channel 64B. For this reason, generation | occurrence | production of the local high temperature site | part resulting from the imbalance of the heat | fever absorption / exothermic position which becomes a problem in a cross-flow type heat exchange type reformer is prevented. In the configuration in which the reforming catalyst 22 and the oxidation catalyst 24 are supported on the reformed gas guide channel 58B and the mixed gas guide channel 64B, the temperature of the reformed gas discharged from each divided channel 58 (reforming outlet manifold 68). The maximum temperature of the reformed gas guide channel 58B when the temperature is controlled to 650 ° C. was approximately 800 ° C., whereas in the heat exchange type reformer 10, the maximum temperature of the reformed gas guide channel 58B was the same. Experimental results with a temperature of approximately 180 ° C. were obtained.

以上により、熱交換流路58Aと熱交換流路64Aとで構成する並行流熱交換部の上流に改質ガスガイド流路58B、混合ガスガイド流路64Bで構成する交差流熱交換部(擬似直交流部)を設けることで、改質流路18と燃焼流路20との理想的な反応場(熱バランス)を形成することができ、しかもシステムとしてのロバスト性を向上することが実現された。   As described above, the cross-flow heat exchange unit (pseudo-pseudo) configured by the reformed gas guide channel 58B and the mixed gas guide channel 64B is disposed upstream of the parallel flow heat exchange unit configured by the heat exchange channel 58A and the heat exchange channel 64A. By providing the cross flow portion, an ideal reaction field (heat balance) between the reforming flow path 18 and the combustion flow path 20 can be formed, and robustness as a system can be improved. It was.

また、触媒担持位置センサ74を用いて触媒担体75の設置範囲すなわち改質触媒22、酸化触媒24の担持範囲を制御するため、改質触媒22、酸化触媒24の上流側担持端22A、24Aを精度良く形成することができる。すなわち、多数の単位プレート部材50、51を積層した積層コア部65では、各分割流路58、64の内部を目視することができないが、触媒担持位置センサ74を用いることで、図7(A)に示される如く改質ガスガイド流路58B、混合ガスガイド流路64Bに触媒が担持されてしまったり、図7(B)に示される如く熱交換流路58A、64Aへの触媒担持量が不足したり、図7(C)に示される如く改質触媒22と酸化触媒24との担持範囲が大きく異なってしまうことが防止される。   Further, in order to control the installation range of the catalyst carrier 75, that is, the support range of the reforming catalyst 22 and the oxidation catalyst 24, using the catalyst support position sensor 74, the upstream support ends 22A and 24A of the reforming catalyst 22 and the oxidation catalyst 24 are provided. It can be formed with high accuracy. That is, in the laminated core portion 65 in which a large number of unit plate members 50 and 51 are laminated, the inside of each of the divided flow paths 58 and 64 cannot be visually observed, but by using the catalyst carrying position sensor 74, FIG. As shown in FIG. 7B, the catalyst is supported on the reformed gas guide channel 58B and the mixed gas guide channel 64B, or the amount of catalyst supported on the heat exchange channels 58A and 64A is as shown in FIG. It is possible to prevent a shortage or a significant difference in the supported ranges of the reforming catalyst 22 and the oxidation catalyst 24 as shown in FIG.

また、熱交換型改質器10の積層コア部65では、実質的に並行流型熱交換器を構成する熱交換流路58A、64Aの上流側に位置する改質ガスガイド流路58Bと混合ガスガイド流路64Bとが交差流(擬似直交流)部を構成しているため、各層で開口面を一致させたガス入口50Aと各層で開口面を一致させたガス入口51Aとを、開口方向が異なる独立した開口部として構成することができた。これにより、上記の如く吸発熱のバランスが良好な並行流型でありながら、各層のガス入口50Aが開口する集合空間を形成する改質入口マニホルド66、各層のガス入口51Aが開口する集合空間を形成する燃焼入口マニホルド70を接続する構成が実現された。このため、各層のガス入口50A、51Aに個別に改質原料、混合ガス(燃料としてのアノードオフガス)を供給する構成と比較して、各分割流路58、64への流量分配の均一性を向上することができる。   In addition, the laminated core portion 65 of the heat exchange type reformer 10 is mixed with the reformed gas guide channel 58B positioned substantially upstream of the heat exchange channels 58A and 64A constituting the parallel flow type heat exchanger. Since the gas guide channel 64B constitutes a cross flow (pseudo-cross flow) portion, the gas inlet 50A having the same opening surface in each layer and the gas inlet 51A having the same opening surface in each layer are provided in the opening direction. Could be configured as different independent openings. As a result, the reforming inlet manifold 66 that forms the collecting space in which the gas inlet 50A of each layer opens and the collecting space in which the gas inlet 51A of each layer opens are formed in the parallel flow type with a good balance of heat absorption and heat generation as described above. A configuration for connecting the combustion inlet manifold 70 to be formed was realized. For this reason, compared with the configuration in which the reforming raw material and the mixed gas (anode off gas as fuel) are individually supplied to the gas inlets 50A and 51A of each layer, the uniformity of the flow distribution to the divided flow paths 58 and 64 is improved. Can be improved.

特に、燃焼入口マニホルド70を設けることで、各分割流路64(燃焼流路20)に混合ガスを供給するガス混合器33をガス入口51Aの直前に配置することが可能となる。このようなガス混合器33を、単位プレート部材50、51から流れ方向変換部52C、出口ガイド壁56C、62Cを取り除いた如き単位プレートを交互に積層して構成されたマイクロチャンネル構造の下流に設けた混合空間として構成すれば、該ガス混合器33を燃焼入口マニホルド70(に連続する矩形断面配管)内に配設(構成)することが可能となる。   In particular, by providing the combustion inlet manifold 70, the gas mixer 33 for supplying the mixed gas to each divided flow path 64 (combustion flow path 20) can be disposed immediately before the gas inlet 51A. Such a gas mixer 33 is provided downstream of a microchannel structure formed by alternately stacking unit plates such that the flow direction changing portion 52C and the outlet guide walls 56C and 62C are removed from the unit plate members 50 and 51. If configured as a mixed space, the gas mixer 33 can be disposed (configured) in the combustion inlet manifold 70 (a rectangular cross-section pipe continuous with the combustion inlet manifold 70).

さらに、熱交換型改質器10の積層コア部65では、実質的に並行流型熱交換器を構成する熱交換流路58A、64Aの下流側に位置する改質ガスガイド流路58Cと燃焼排ガスガイド流路64Cとが交差流(擬似直交流)部を構成しているため、ガス出口50B、51Bを開口方向が異なる独立した開口部として構成することができた。これにより、上記の如く吸発熱のバランスが良好な並行流型でありながら、各層のガス出口50Bが開口する集合空間を形成する改質出口マニホルド68、各層のガス出口51Bが開口する集合空間を形成する燃焼出口マニホルド72を接続する構成が実現された。このため、上記した改質入口マニホルド66、燃焼入口マニホルド70の設置効果をと併せて、各層のガス出口50B、51Bから個別に改質ガス、燃焼排ガスを排出する構成と比較して、各分割流路58、64への流量分配の均一性を一層向上することができる。   Further, in the laminated core portion 65 of the heat exchange type reformer 10, the combustion and the reformed gas guide flow channel 58C located on the downstream side of the heat exchange channels 58A and 64A that substantially constitute the parallel flow type heat exchanger and the combustion are performed. Since the exhaust gas guide channel 64C forms a cross flow (pseudo-cross flow) portion, the gas outlets 50B and 51B can be configured as independent openings having different opening directions. As a result, the reforming outlet manifold 68 that forms the collecting space in which the gas outlet 50B of each layer opens and the collecting space in which the gas outlet 51B of each layer opens are formed in a parallel flow type with a good balance of heat absorption and heat generation as described above. A configuration for connecting the combustion outlet manifold 72 to be formed was realized. For this reason, in combination with the above-described effects of installing the reforming inlet manifold 66 and the combustion inlet manifold 70, each reformed gas and combustion exhaust gas are individually discharged from the gas outlets 50B and 51B of each layer. The uniformity of flow distribution to the flow paths 58 and 64 can be further improved.

なお、上記各実施形態では、熱交換型改質器10が燃料電池システム11に適用された例を示したが、本発明はこれに限定されず、改質原料から水素含有ガスを得るための各種熱交換型改質器であれば足り、用途によって限定されることはない。   In each of the above embodiments, the example in which the heat exchange type reformer 10 is applied to the fuel cell system 11 has been shown. However, the present invention is not limited to this, and is for obtaining a hydrogen-containing gas from a reforming raw material. Various heat exchange type reformers are sufficient, and are not limited by the application.

また、上記各実施形態では、改質流路18を形成するための単位プレート部材50と燃焼流路20を形成するための単位プレート部材51とを交互に積層して熱交換型改質器10、70、80、90を構成する例を示したが、本発明はこれに限定されず、例えば、2層の改質流路18に対し1層の燃焼流路20が配置されるように単位プレート部材50、単位プレート部材51を積層しても良い。   Further, in each of the above embodiments, the unit plate member 50 for forming the reforming flow path 18 and the unit plate member 51 for forming the combustion flow path 20 are alternately stacked to form the heat exchange reformer 10. , 70, 80, and 90 are shown, but the present invention is not limited to this. For example, the unit in which the one-layer combustion flow path 20 is arranged with respect to the two-layer reforming flow path 18 is shown. The plate member 50 and the unit plate member 51 may be laminated.

さらに、上記各実施形態では、略矩形状の並行流部52A(熱交換流路58A、64A)に対し略三角形状の流れ方向変換部52B、52C(ガスガイド流路58B、64B、58C、64C)が一体化された単位プレート部材50、51を備えた例を示したが、本発明はこれに限定されず、各種形状の流れ方向変換部52B、52Cを設けることができる。また、これら流れ方向変換部52B等と共にガスガイド流路58B等を構成するガイド壁56B等は、直線形状ある構成には限定されず、例えば湾曲形状等としても良い。   Further, in each of the above-described embodiments, the flow direction changing sections 52B and 52C (gas guide flow paths 58B, 64B, 58C, and 64C) having a substantially triangular shape with respect to the parallel flow section 52A (the heat exchange flow paths 58A and 64A) having a substantially rectangular shape. However, the present invention is not limited to this, and flow direction changing portions 52B and 52C having various shapes can be provided. In addition, the guide wall 56B and the like that configure the gas guide flow path 58B and the like together with the flow direction conversion unit 52B and the like are not limited to a configuration having a linear shape, and may be, for example, a curved shape.

本発明の実施形態に係る熱交換型改質器の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the heat exchange type | mold reformer which concerns on embodiment of this invention. 本発明の実施形態に係る熱交換型改質器の斜視図である。It is a perspective view of the heat exchange type reformer concerning the embodiment of the present invention. 本発明の実施形態に係る熱交換型改質器の要部を示す分解平面図である。It is a disassembled plan view which shows the principal part of the heat exchange type | mold reformer which concerns on embodiment of this invention. 本発明の実施形態に係る熱交換型改質器が適用された燃料電池システムの概略システムフロー図である。1 is a schematic system flow diagram of a fuel cell system to which a heat exchange type reformer according to an embodiment of the present invention is applied. 本発明の実施形態に係る熱交換型改質器の触媒担持過程を示す図であって、(A)は触媒担体の流入状態を示す模式図、(B)は触媒担体の流入停止状態の模式図、(C)は触媒導入状態の模式図である。It is a figure which shows the catalyst carrying | support process of the heat exchange type | mold reformer which concerns on embodiment of this invention, Comprising: (A) is a schematic diagram which shows the inflow state of a catalyst carrier, (B) is a schematic diagram of the inflow stop state of a catalyst carrier. FIG. 4C is a schematic diagram of the catalyst introduction state. 本発明の実施形態に係る熱交換型改質器の燃焼流路の温度分布を示す線図である。It is a diagram which shows the temperature distribution of the combustion flow path of the heat exchange type | mold reformer which concerns on embodiment of this invention. (A)〜(C)のそれぞれは、触媒担持の不具合例を示す模式図である。Each of (A) to (C) is a schematic diagram showing a failure example of catalyst support.

符号の説明Explanation of symbols

10 熱交換型改質器
18 改質流路(改質部)
20 燃焼流路(加熱部)
22 改質触媒
24 酸化触媒
50 単位プレート部材(改質部形成用プレート部材)
50A ガス入口(改質原料の供給口)
50B ガス出口(改質ガスの排出口)
51 単位プレート部材(加熱部形成用プレート部材)
51B ガス出口(燃料の供給口)
51A ガス入口(燃焼排ガスの排出口)
52 プレート部(平板部)
56 立壁
58 分割流路(改質部)
58A 熱交換流路(熱交換部)
58B 改質原料ガイド流路(改質原料ガイド部)
62 立壁
64 分割流路(加熱部)
64A 熱交換流路(熱交換部)
64B 混合ガスガイド流路(燃料ガイド部)
65 積層コア部
66 改質入口マニホルド(改質原料用マニホルド)
70 燃焼入口マニホルド(燃料用マニホルド)
10 Heat Exchange Type Reformer 18 Reforming Channel (Reforming Section)
20 Combustion flow path (heating part)
22 reforming catalyst 24 oxidation catalyst 50 unit plate member (plate member for reforming portion formation)
50A gas inlet (reforming raw material supply port)
50B Gas outlet (reformed gas outlet)
51 Unit plate member (Plate member for heating part formation)
51B Gas outlet (fuel supply port)
51A Gas inlet (exhaust port for combustion exhaust gas)
52 Plate part (flat plate part)
56 Standing wall 58 Divided flow path (reformer)
58A Heat exchange channel (Heat exchange part)
58B Reformed Raw Material Guide Channel (Reformed Raw Material Guide Section)
62 Standing wall 64 Divided flow path (heating unit)
64A heat exchange flow path (heat exchange section)
64B Mixed gas guide channel (fuel guide part)
65 Laminated core 66 Reformation inlet manifold (manifold for reforming material)
70 Combustion inlet manifold (fuel manifold)

Claims (6)

改質反応用の改質触媒が担持され、水蒸気改質反応を含む改質反応によって供給された改質原料から水素を含有する改質ガスを生成するための改質部と、
前記改質部のガス流と同じ方向のガス流を生じさせるように隔壁を介して前記改質部に隣接されると共に触媒燃焼用の酸化触媒が担持され、供給された燃料の触媒燃焼に伴って生じた熱を前記改質部に供給するための加熱部と、
一端側が前記改質原料の供給口とされると共に他端側が前記改質部における前記改質原料の流入側に連続した改質原料導入部と、
一端側が前記燃料の供給口とされると共に他端側が前記加熱部における前記燃料の流入側に連続し、前記改質原料導入部による改質原料の流れ方向とは異なる流れ方向で前記燃料を前記加熱部に導く燃料導入部と、
を備えた熱交換型改質器。
A reforming part for generating a reformed gas containing hydrogen from a reforming raw material supported by a reforming reaction including a steam reforming reaction, on which a reforming catalyst for reforming reaction is supported;
An oxidation catalyst for catalytic combustion is supported while adjoining the reforming section through a partition so as to generate a gas flow in the same direction as the gas flow of the reforming section, and accompanying the catalytic combustion of the supplied fuel A heating unit for supplying the generated heat to the reforming unit,
One end side is the reforming raw material supply port, and the other end side is a reforming raw material introduction section continuous to the reforming raw material inflow side in the reforming section,
One end side is the fuel supply port and the other end side is continuous with the fuel inflow side in the heating unit, and the fuel is supplied in a flow direction different from the flow direction of the reforming material by the reforming material introduction unit. A fuel introduction section that leads to the heating section;
A heat exchange type reformer equipped with
前記燃料導入部は、全体が前記酸化触媒の非担持領域とされている請求項1記載の熱交換型改質器。   The heat exchange reformer according to claim 1, wherein the fuel introduction part is entirely a non-supporting region of the oxidation catalyst. 前記改質部と加熱部とは、それぞれ複数設けられて少なくとも一部が隣接するように積層されており、
前記改質原料導入部は、前記改質部の各層に設けられて前記改質原料の供給口の開口面を一致させており、
燃料導入部は、前記加熱部の各層に設けられて前記燃料の供給口の開口面を一致させている請求項1又は請求項2記載の熱交換型改質器。
A plurality of the reforming unit and the heating unit are provided so that at least a part of the reforming unit and the heating unit are adjacent to each other.
The reforming material introduction section is provided in each layer of the reforming section, and the opening surface of the reforming material supply port is matched,
3. The heat exchange reformer according to claim 1, wherein the fuel introduction section is provided in each layer of the heating section so that the opening surfaces of the fuel supply ports coincide with each other.
平板状に形成された平板部に、他の平板部との間に前記改質部を構成する熱交換部と、前記熱交換部に対する前記改質原料の供給側において該改質原料を所定方向に案内する立壁が立設され前記他の平板部との間に前記改質原料導入部を構成する改質原料ガイド部とが形成されている改質部形成用プレート部材と、
平板状に形成された平板部に、他の平板部との間に前記加熱部を構成する熱交換部と、前記熱交換部に対する前記燃料の供給側において該燃料を前記改質部形成用プレート部材の所定方向と交差する方向に案内する立壁が立設され前記他の平板部との間に前記燃料導入部を構成する燃料ガイド部とが形成されている加熱部形成用プレート部材と、
を所定のパターンで積層することで構成されている積層コア部を含む請求項3記載の熱交換型改質器。
A flat plate portion formed in a flat plate shape and a heat exchanging portion constituting the reforming portion between the flat plate portion and the reforming raw material in a predetermined direction on the supply side of the reforming raw material with respect to the heat exchanging portion A reforming portion forming plate member in which a standing wall for guiding is formed and a reforming material guide portion constituting the reforming material introducing portion is formed between the other flat plate portion,
A heat exchange part constituting the heating part between the flat plate part formed in a flat plate shape and another flat plate part, and the fuel for reforming part formation on the fuel supply side with respect to the heat exchange part A heating part forming plate member in which a standing wall that guides in a direction crossing a predetermined direction of the member is erected and a fuel guide part that constitutes the fuel introduction part is formed between the other flat plate part;
The heat exchange type | mold reformer of Claim 3 containing the lamination | stacking core part comprised by laminating | stacking by a predetermined pattern.
前記複数の改質原料導入部の改質原料の供給口が開口する集合空間を形成し、該複数の改質原料導入部に改質原料を分散して供給するための改質原料用マニホルドと、
前記複数の燃料導入部の燃料の供給口が開口する集合空間を形成し、該複数の燃料導入部に燃料を分散して供給するための燃料用マニホルドと、
をさらに備えた請求項3又は請求項4記載の熱交換型改質器。
A reforming material manifold for forming a collective space in which the reforming material supply ports of the plurality of reforming material introducing portions are opened, and for distributing and supplying the reforming materials to the plurality of reforming material introducing portions; ,
A fuel manifold for forming a collective space in which fuel supply ports of the plurality of fuel introduction portions are opened, and for distributing and supplying fuel to the plurality of fuel introduction portions;
The heat exchange reformer according to claim 3 or 4, further comprising:
一端側が前記改質ガスの排出口とされると共に他端側が前記改質部における前記改質ガスの流出側に連続した改質ガス導出部と、
一端側が前記加熱部の燃焼排ガスの排出口とされると共に他端側が前記加熱部における前記燃焼排ガスの排出側に連続し、前記改質ガス導出部による改質ガスの流れ方向とは異なる流れ方向で前記燃焼排ガスを前記燃焼排ガスの排出口に導く燃焼排ガス排出部と、
をさらに備えた請求項1乃至請求項5の何れか1項記載の熱交換型改質器。
A reformed gas lead-out section having one end side as an outlet for the reformed gas and the other end side being continuous with the outflow side of the reformed gas in the reforming section;
One end side is a combustion exhaust gas discharge port of the heating unit and the other end side is continuous with the combustion exhaust gas discharge side of the heating unit, and the flow direction is different from the flow direction of the reformed gas by the reformed gas outlet unit A combustion exhaust gas discharge part for guiding the combustion exhaust gas to the exhaust port of the combustion exhaust gas,
The heat exchange type reformer according to any one of claims 1 to 5, further comprising:
JP2006119751A 2006-04-24 2006-04-24 Heat exchange type reformer Expired - Fee Related JP4809113B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006119751A JP4809113B2 (en) 2006-04-24 2006-04-24 Heat exchange type reformer
US12/297,653 US20090064579A1 (en) 2006-04-24 2007-04-24 Heat exchange reformer unit and reformer system
EP07734374A EP2013141A2 (en) 2006-04-24 2007-04-24 Heat exchange reformer unit and reformer system
PCT/IB2007/001056 WO2007122497A2 (en) 2006-04-24 2007-04-24 Heat exchange reformer unit and reformer system
CN2007800145437A CN101426720B (en) 2006-04-24 2007-04-24 Heat exchange reformer unit and reformer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119751A JP4809113B2 (en) 2006-04-24 2006-04-24 Heat exchange type reformer

Publications (2)

Publication Number Publication Date
JP2007290901A true JP2007290901A (en) 2007-11-08
JP4809113B2 JP4809113B2 (en) 2011-11-09

Family

ID=38761911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119751A Expired - Fee Related JP4809113B2 (en) 2006-04-24 2006-04-24 Heat exchange type reformer

Country Status (2)

Country Link
JP (1) JP4809113B2 (en)
CN (1) CN101426720B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102835A (en) * 2014-02-28 2015-09-08 포항공과대학교 산학협력단 an integrated equipment of fuel processors and heat exchange units in the fuel cell systems and operating methods using the same
KR101619060B1 (en) * 2014-05-22 2016-05-11 주식회사 한중엔시에스 Plate Type Reformer for Fuel Cell System

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931087B (en) * 2009-06-19 2012-10-17 扬光绿能股份有限公司 Heat exchange device
JP6604380B2 (en) * 2015-06-08 2019-11-13 株式会社Ihi Reactor
WO2019189844A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Fuel cell device, and method for operating fuel cell device
KR102091085B1 (en) * 2018-07-23 2020-03-19 고등기술연구원연구조합 Module type reforming reactor
JP7385110B2 (en) * 2019-09-26 2023-11-22 株式会社ノーリツ hot water equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186935A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Reactor and operation of fuel battery by using the same
JPS61286204A (en) * 1985-06-10 1986-12-16 Kawasaki Heavy Ind Ltd Reformer for producing hydrogen
JPH06111838A (en) * 1992-09-30 1994-04-22 Toshiba Corp Reformer, reforming system, and fuel cell system
WO2002034383A1 (en) * 2000-10-27 2002-05-02 Uop Llc Process and apparatus using plate arrangement for reactant heating and preheating
WO2003033134A1 (en) * 2001-10-18 2003-04-24 Gtl Microsystems Ag Catalytic reactor
WO2003033133A1 (en) * 2001-10-18 2003-04-24 Gtl Microsystems Ag Catalytic reactor
WO2003033131A1 (en) * 2001-10-12 2003-04-24 Gtl Microsystems Ag Catalytic reactor
WO2004013258A1 (en) * 2002-08-02 2004-02-12 Catacel Corporation Autothermal catalytic stem reformer
JP2004244230A (en) * 2003-02-10 2004-09-02 Toyota Central Res & Dev Lab Inc Crossflow-type fuel reformer
JP2005053742A (en) * 2003-08-05 2005-03-03 Kawasaki Heavy Ind Ltd Plate fin type reactor
JP2005251750A (en) * 2004-03-03 2005-09-15 Samsung Sdi Co Ltd Reformer for fuel cell and fuel cell system including reformer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186935A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Reactor and operation of fuel battery by using the same
JPS61286204A (en) * 1985-06-10 1986-12-16 Kawasaki Heavy Ind Ltd Reformer for producing hydrogen
JPH06111838A (en) * 1992-09-30 1994-04-22 Toshiba Corp Reformer, reforming system, and fuel cell system
WO2002034383A1 (en) * 2000-10-27 2002-05-02 Uop Llc Process and apparatus using plate arrangement for reactant heating and preheating
WO2003033131A1 (en) * 2001-10-12 2003-04-24 Gtl Microsystems Ag Catalytic reactor
WO2003033134A1 (en) * 2001-10-18 2003-04-24 Gtl Microsystems Ag Catalytic reactor
WO2003033133A1 (en) * 2001-10-18 2003-04-24 Gtl Microsystems Ag Catalytic reactor
WO2004013258A1 (en) * 2002-08-02 2004-02-12 Catacel Corporation Autothermal catalytic stem reformer
JP2004244230A (en) * 2003-02-10 2004-09-02 Toyota Central Res & Dev Lab Inc Crossflow-type fuel reformer
JP2005053742A (en) * 2003-08-05 2005-03-03 Kawasaki Heavy Ind Ltd Plate fin type reactor
JP2005251750A (en) * 2004-03-03 2005-09-15 Samsung Sdi Co Ltd Reformer for fuel cell and fuel cell system including reformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102835A (en) * 2014-02-28 2015-09-08 포항공과대학교 산학협력단 an integrated equipment of fuel processors and heat exchange units in the fuel cell systems and operating methods using the same
KR101598686B1 (en) 2014-02-28 2016-03-03 포항공과대학교 산학협력단 an integrated equipment of fuel processors and heat exchange units in the fuel cell systems and operating methods using the same
KR101619060B1 (en) * 2014-05-22 2016-05-11 주식회사 한중엔시에스 Plate Type Reformer for Fuel Cell System

Also Published As

Publication number Publication date
JP4809113B2 (en) 2011-11-09
CN101426720B (en) 2011-12-07
CN101426720A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
JP4809113B2 (en) Heat exchange type reformer
EP2331247B1 (en) Reformer
AU2011241481B2 (en) Thermal management in a fuel cell stack
US20090064579A1 (en) Heat exchange reformer unit and reformer system
US9941535B2 (en) Fuel cell module
EP2013560B1 (en) Heat exchanger, heat-exchange reformer, and methods of producing heat-exchanger and heat-exchange reformer
US20060003202A1 (en) Reformer and fuel cell system having the same
US7763220B2 (en) Reformer, fuel cell system having the same, and method of manufacturing the same
JP4963372B2 (en) REACTOR, REACTOR MANUFACTURING METHOD, AND REACTOR UNIT MEMBER
EP2859610B1 (en) Fuel cell module
JP4952011B2 (en) Gas mixer and hydrogen generator
EP2769432B1 (en) Fuel cell module
US8053139B2 (en) SOFC thermal management via direct injection
JP4809117B2 (en) Heat exchange type reformer and reformer
JP5076353B2 (en) Heat exchange type reformer
US8263027B2 (en) Apparatus, systems and methods for the production of hydrogen
WO2014165037A1 (en) Heat exchanger
JP4735393B2 (en) Heat exchanger and heat exchange type reformer
JP2009091181A (en) Reforming apparatus and fuel cell system
JPH10245573A (en) Apparatus for removing carbon monoxide from reformed gas
JP2009129701A (en) Fuel cell module
JP5239125B2 (en) Reactor
JP5267820B2 (en) Solid oxide fuel cell
JP2017160094A (en) Reformer for fuel cell, fuel cell module and module accommodating device
JP2002234705A (en) Apparatus for removing carbon monoxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4809113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees