JP2007288968A - Capacitor charging device for rectifier circuit - Google Patents

Capacitor charging device for rectifier circuit Download PDF

Info

Publication number
JP2007288968A
JP2007288968A JP2006115655A JP2006115655A JP2007288968A JP 2007288968 A JP2007288968 A JP 2007288968A JP 2006115655 A JP2006115655 A JP 2006115655A JP 2006115655 A JP2006115655 A JP 2006115655A JP 2007288968 A JP2007288968 A JP 2007288968A
Authority
JP
Japan
Prior art keywords
phase
circuit
voltage
thyristor
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115655A
Other languages
Japanese (ja)
Inventor
Satoru Fujita
悟 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006115655A priority Critical patent/JP2007288968A/en
Publication of JP2007288968A publication Critical patent/JP2007288968A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an initial charging current to two capacitors, which are connected in series between DC output terminals P, N of a positive electrode and negative electrode of a rectifier circuit, from becoming excessive. <P>SOLUTION: A series circuit of two thyristors (TR1-TT2), whose conduction directions are aligned with each other, and a series circuit of two switching elements (SR1-ST2), whose conduction directions are aligned with each other, are connected in parallel so as to constitute a two-way switch circuit for one phase. The two-way switch for one phase is provided corresponding to the number of phases (figure shows an example of three phases). Firing-angle control of the thyristors (TR1-TT2) is executed via a thyristor control circuit 102 during starting. Consequently, it is possible to limit the initial charging current. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、N(Nは2以上の自然数)相の交流電圧を直流電圧に変換する整流回路、特にその制御に関する。   The present invention relates to a rectifier circuit that converts an AC voltage of N (N is a natural number of 2 or more) phase into a DC voltage, and more particularly to its control.

半導体電力変換素子によりなる交流/直流変換回路を用いて、N相の交流電圧を直流電圧に変換し、負荷に供給するシステムは従来から良く知られている。図8は例えば特許文献1に開示されている三相の整流回路とその制御回路の例を示す。
図8において、R,S,Tは交流入力端子、P,Nは直流出力端子、LR,LS,LTはリアクトル、SR1,SR2,SS1,SS2,ST1,ST2はIGBT(絶縁ゲート型バイポーラトランジスタ)やMOSFET(金属酸化膜形電界効果トランジスタ)などのスイッチング素子、DR1〜4,DS1〜4,DT1〜4はダイオード、C1,C2はP,N間に直列接続されたコンデンサ、4R,4S,4Tは双方向スイッチ回路である。
2. Description of the Related Art Conventionally, a system that converts an N-phase AC voltage into a DC voltage using an AC / DC conversion circuit composed of a semiconductor power conversion element and supplies the converted voltage to a load is well known. FIG. 8 shows an example of a three-phase rectifier circuit and its control circuit disclosed in Patent Document 1, for example.
In FIG. 8, R, S, and T are AC input terminals, P and N are DC output terminals, LR, LS, and LT are reactors, and SR1, SR2, SS1, SS2, ST1, and ST2 are IGBTs (insulated gate bipolar transistors). And switching elements such as MOSFET (metal oxide field effect transistor), DR1-4, DS1-4, DT1-4 are diodes, C1, C2 are capacitors connected in series between P and N, 4R, 4S, 4T Is a bidirectional switch circuit.

例えば、双方向スイッチ回路4Rは、スイッチング素子SR1,SR2の直列回路と、ダイオードDR1,DR2の直列回路とを並列接続して構成される。ダイオードDR1,DR2同士の接続点はリアクトルLRの一端に接続され、スイッチング素子SR1,SR2同士の接続点はコンデンサC1,C2同士の接続点に接続される。スイッチング素子SR1,SR2の直列回路の両端は、ダイオードDR3,4を介してコンデンサC1,C2の直列回路の両端に接続される。なお、双方向スイッチ回路4S,4Tも上記と同様に構成される。   For example, the bidirectional switch circuit 4R is configured by connecting in parallel a series circuit of switching elements SR1 and SR2 and a series circuit of diodes DR1 and DR2. A connection point between the diodes DR1 and DR2 is connected to one end of the reactor LR, and a connection point between the switching elements SR1 and SR2 is connected to a connection point between the capacitors C1 and C2. Both ends of the series circuit of switching elements SR1 and SR2 are connected to both ends of the series circuit of capacitors C1 and C2 via diodes DR3 and DR4. The bidirectional switch circuits 4S and 4T are configured in the same manner as described above.

制御回路の動作について説明する。
電圧検出器2RS,2STにより検出した入力線間電圧VRS,VSTを、相電圧変換器10により相電圧VR,VS,VTに変換し、変換した入力相電圧VR,VS,VTの極性と同期した信号R+,R−,S+,S−,T+,T−を極性判別器11により作成する。また、電圧検出器5C1より検出したコンデンサ電圧VC1を指令値12にフィードバックし、電圧調節器13bを介して入力相電圧VR,VS,VTと乗算する。さらに、電圧検出器5C2より検出した直流出力電圧VC2を指令値12にフィードバックし、電圧調節器13aを介して入力相電圧VR,VS,VTと乗算する。
The operation of the control circuit will be described.
The input line voltages VRS, VST detected by the voltage detectors 2RS, 2ST are converted into phase voltages VR, VS, VT by the phase voltage converter 10, and synchronized with the polarity of the converted input phase voltages VR, VS, VT. Signals R +, R−, S +, S−, T +, T− are created by the polarity discriminator 11. Further, the capacitor voltage VC1 detected by the voltage detector 5C1 is fed back to the command value 12, and is multiplied by the input phase voltages VR, VS, and VT through the voltage regulator 13b. Further, the DC output voltage VC2 detected by the voltage detector 5C2 is fed back to the command value 12 and multiplied by the input phase voltages VR, VS, and VT via the voltage regulator 13a.

これらの乗算結果に対し、電流検出器3R,3S,3Tにより検出した各相入力電流IR,IS,ITをフィードバックし、電流調節器16R,16S,16Tを介して比較器17R,17S,17Tによりキャリア信号20と比較することで、上側アームのスイッチング素子SR1,SS1,ST1に対するPWM信号を得るとともに、電流調節器16Ra,16Sa,16Taを介して比較器17Ra,17Sa,17Taによりキャリア信号20と比較することで、下側アームのスイッチング素子SR2,SS2,ST2に対するPWM信号を得る。さらに、入力相電圧VR,VS,VTの極性と同期した信号R+,R−,S+,S−,T+,T−と、上記PWM信号との論理積をアンドゲート18R〜18Taで求め、ゲート駆動回路19R〜19Taを介して各スイッチング素子SR1,SR2,SS1,SS2,ST1,ST2に対する制御信号を作成する。   In response to these multiplication results, the respective phase input currents IR, IS, IT detected by the current detectors 3R, 3S, 3T are fed back, and the comparators 17R, 17S, 17T via the current regulators 16R, 16S, 16T. By comparing with the carrier signal 20, the PWM signal for the switching elements SR1, SS1, ST1 of the upper arm is obtained and compared with the carrier signal 20 by the comparators 17Ra, 17Sa, 17Ta via the current regulators 16Ra, 16Sa, 16Ta. As a result, a PWM signal for the switching elements SR2, SS2, ST2 of the lower arm is obtained. Further, a logical product of the signals R +, R-, S +, S-, T +, T- synchronized with the polarities of the input phase voltages VR, VS, VT and the PWM signal is obtained by AND gates 18R-18Ta to drive the gate. Control signals for the switching elements SR1, SR2, SS1, SS2, ST1, and ST2 are created through the circuits 19R to 19Ta.

ここで、コンデンサ電圧VC1が低下するとスイッチング素子SS2のパルス幅が広くなり、コンデンサ電圧VC1が上昇するとスイッチング素子SS2のパルス幅が狭くなるように制御回路101が動作する。これにより、R→LR→DR1→DR3→C1→SS2→DS2→LS→S→Rの経路で流れるコンデンサC1の充電電流が変化し、コンデンサ電圧VC1が一定に維持される。一方、コンデンサ電圧VC2が低下するとスイッチング素子SR1のパルス幅が広くなり、コンデンサ電圧VC2が上昇するとスイッチング素子SR1のパルス幅が狭くなるように制御回路101が動作する。これにより、R→LR→DR1→SR1→C2→DS4→DS2→LS→S→Rの経路で流れるコンデンサC2の充電電流が変化し、コンデンサ電圧VC2が一定に維持される。   Here, when the capacitor voltage VC1 decreases, the pulse width of the switching element SS2 increases, and when the capacitor voltage VC1 increases, the control circuit 101 operates so that the pulse width of the switching element SS2 decreases. As a result, the charging current of the capacitor C1 flowing through the path of R → LR → DR1 → DR3 → C1 → SS2 → DS2 → LS → S → R changes, and the capacitor voltage VC1 is kept constant. On the other hand, the control circuit 101 operates such that when the capacitor voltage VC2 decreases, the pulse width of the switching element SR1 increases, and when the capacitor voltage VC2 increases, the pulse width of the switching element SR1 decreases. As a result, the charging current of the capacitor C2 flowing through the path of R → LR → DR1 → SR1 → C2 → DS4 → DS2 → LS → S → R changes, and the capacitor voltage VC2 is kept constant.

このような動作により、コンデンサ電圧VC1,VC2をそれぞれ独立して制御することができる。また、入力電流のフィードバック制御によって、入力電流は入力電圧と同期した正弦波状の波形に制御され、出力電圧(コンデンサC1,C2の電圧)もフィードバック制御によって、一定の直流電圧に制御することができる。これにより、入力電流を高力率に制御しながら、交流電圧を直流電圧に変換することができる。   With such an operation, the capacitor voltages VC1 and VC2 can be controlled independently. In addition, the input current is controlled to a sinusoidal waveform synchronized with the input voltage by feedback control of the input current, and the output voltage (the voltages of the capacitors C1 and C2) can also be controlled to a constant DC voltage by feedback control. . As a result, the AC voltage can be converted to a DC voltage while controlling the input current at a high power factor.

特開2002−142458号公報JP 2002-142458 A

図8において、装置起動時などでコンデンサ電圧VC1,VC2がゼロに近い状態、かつ各双方向スイッチ回路を構成する2つのスイッチング素子がオフの状態で、交流入力1aを投入するとR→LR→DR1→DR3→C1→C2→DS4→DS2→LS→S→Rの経路で電流が流れ、コンデンサC1,C2を充電する。これにより、図9(c)に示すような過大な電流が流れ、リアクトルやダイオードなどの素子を破壊するおそれがある。
上記特許文献1には、双方向スイッチ回路を構成する2つのダイオードのうちの一方を、図10のようにサイリスタTR1,TS1,TT1に置き換え、図11のように各相間電圧が低い状態でオンする方法も開示されているが、リアクトルやコンデンサの選定によっては充電電流経路にあるダイオードの電流定格を超える電流が流れるおそれがある。
In FIG. 8, when the AC input 1a is turned on when the capacitor voltages VC1 and VC2 are close to zero at the time of starting the apparatus and the two switching elements constituting each bidirectional switch circuit are turned off, R → LR → DR1 A current flows through a route of DR3 → C1 → C2 → DS4 → DS2 → LS → S → R to charge the capacitors C1 and C2. As a result, an excessive current as shown in FIG. 9C flows, and there is a risk of destroying elements such as a reactor and a diode.
In Patent Document 1, one of the two diodes constituting the bidirectional switch circuit is replaced with thyristors TR1, TS1, and TT1 as shown in FIG. 10 and turned on in a state where each interphase voltage is low as shown in FIG. However, depending on the selection of the reactor and the capacitor, a current exceeding the current rating of the diode in the charging current path may flow.

そこで、例えばリアクトルを大形化し、充電電流経路のインピーダンスを大きくすれば抑制できるが、装置が大形化しコストアップになることは避けられない。もちろん、専用の初期充電回路を設ければ上記の問題は解消するが回路構成が複雑になる。
したがって、この発明の課題は、初期充電時にコンデンサの充電電流を制限できるようにし、各半導体素子の破壊を低コストに防止できるようにすることにある。
Therefore, for example, the reactor can be increased in size and the impedance of the charging current path can be increased. However, it is inevitable that the device is increased in size and the cost is increased. Of course, if a dedicated initial charging circuit is provided, the above problem can be solved, but the circuit configuration becomes complicated.
Accordingly, an object of the present invention is to allow the charging current of a capacitor to be limited during initial charging, and to prevent destruction of each semiconductor element at low cost.

このような課題を解決するため、請求項1の発明では、N(Nは2以上の自然数)相の交流電圧を直流電圧に変換するために、通流方向を一致させた2つのサイリスタの直列回路と、通流方向を一致させた2つのスイッチング素子の直列回路とを並列接続して構成される1相分の双方向スイッチ回路をN個設け、各双方向スイッチ回路におけるサイリスタ同士の接続点をそれぞれリアクトルを介して各相の交流入力端子に接続し、各双方向スイッチ回路におけるサイリスタの直列回路のカソード側をそれぞれダイオードを介して正極の直流出力端子に一括して接続し、各双方向スイッチ回路におけるサイリスタの直列回路のアノード側をそれぞれダイオードを介して負極の直流出力端子に一括して接続し、正極および負極の直流出力端子間に2つのコンデンサを直列に接続し、各双方向スイッチ回路におけるスイッチング素子同士の接続点を前記2つのコンデンサ同士の接続点に一括して接続した整流回路において、
N相の交流入力電圧を検出する電圧検出手段と、前記交流入力電圧位相に同期する信号を生成する同期信号生成手段と、前記交流入力電圧位相に同期する信号に基き前記サイリスタの点弧角を制御する点弧角制御手段とを設け、前記2つのコンデンサの初期充電を行なうことを特徴とする。
In order to solve such a problem, in the invention of claim 1, in order to convert an AC voltage of N (N is a natural number of 2 or more) phase into a DC voltage, a series of two thyristors whose flow directions coincide with each other. N bidirectional switch circuits for one phase constituted by connecting a circuit and a series circuit of two switching elements having the same flow direction in parallel are provided, and connection points between thyristors in each bidirectional switch circuit Are connected to the AC input terminal of each phase via the reactor, and the cathode side of the series circuit of the thyristor in each bidirectional switch circuit is connected to the DC output terminal of the positive electrode via the diode, respectively. Connect the anode side of the series circuit of thyristors in the switch circuit to the negative DC output terminal via a diode, and connect between the positive and negative DC output terminals. One of connecting a capacitor in series, in the rectifier circuit the connection point between the switching elements connected collectively to a connection point between the two capacitors in each of the bidirectional switching circuit,
A voltage detecting means for detecting an N-phase AC input voltage; a synchronization signal generating means for generating a signal synchronized with the AC input voltage phase; and a firing angle of the thyristor based on the signal synchronized with the AC input voltage phase. A firing angle control means for controlling is provided, and initial charging of the two capacitors is performed.

上記請求項1の発明においては、N相の交流入力電流を検出する電流検出手段を設け、交流入力電流が一定値に制限されるように前記サイリスタの点弧角を制御することができる(請求項2の発明)。
これら請求項1または2の発明においては、前記各双方向スイッチ回路を構成する2つのサイリスタの一方をダイオードに置き換え、サイリスタの点弧角を制御することにより、直流出力端子間に直列に接続された2つのコンデンサの初期充電を行なうことができる(請求項3の発明)。
In the first aspect of the present invention, the current detection means for detecting the N-phase AC input current is provided, and the firing angle of the thyristor can be controlled so that the AC input current is limited to a constant value. Item 2).
In the first or second aspect of the present invention, one of the two thyristors constituting each of the bidirectional switch circuits is replaced with a diode, and the firing angle of the thyristor is controlled, so that the DC output terminals are connected in series. In addition, initial charging of only two capacitors can be performed (invention of claim 3).

請求項1,2の発明によれば、初期充電時にサイリスタの点弧角を制御することにより、コンデンサの充電電流を制限するようにしたので、ダイオードの低電流容量化、リアクトルの小型化による装置の軽量化および低コスト化が可能となり、各半導体素子の破壊を防止できる。
また、請求項3の発明によれば、双方向スイッチを構成する2つのサイリスタのうちの1つをダイオードに置き換えることで、サイリスタゲート駆動回路が小型,軽量化され低コスト化が可能となる。
According to the first and second aspects of the present invention, since the charging current of the capacitor is limited by controlling the firing angle of the thyristor during initial charging, a device with a lower current capacity of the diode and a smaller reactor Can be reduced in weight and cost, and destruction of each semiconductor element can be prevented.
According to the invention of claim 3, by replacing one of the two thyristors constituting the bidirectional switch with a diode, the thyristor gate drive circuit can be reduced in size and weight, and the cost can be reduced.

図1はこの発明の実施の形態を示す全体構成図である。
図8との相違点は、双方向スイッチ回路の2つのダイオードの直列回路をサイリスタの直列回路に代え、そのサイリスタ制御回路102を付加した点にある。
サイリスタ制御回路102は、電圧検出器2RS,2STにより検出した入力線間電圧を位相同期回路24に入力し、各相に同期した位相を出力する。一方、点弧角指令生成回路21から出力されるサイリスタの点弧角指令と、位相同期回路24から出力される各相の位相を点弧角制御回路22へ入力し、サイリスタゲート駆動回路23を介して各サイリスタへゲート信号が出力される。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.
The difference from FIG. 8 is that the series circuit of two diodes in the bidirectional switch circuit is replaced with a series circuit of thyristors and a thyristor control circuit 102 is added.
The thyristor control circuit 102 inputs the input line voltage detected by the voltage detectors 2RS and 2ST to the phase synchronization circuit 24, and outputs a phase synchronized with each phase. On the other hand, the firing angle command of the thyristor output from the firing angle command generation circuit 21 and the phase of each phase output from the phase synchronization circuit 24 are input to the firing angle control circuit 22, and the thyristor gate drive circuit 23 is A gate signal is output to each thyristor.

点弧角指令生成回路の具体例を図2(a)に、その動作を図2(b)に示す。
点弧角指令生成回路21は図2(a)のように、積分器202,リミッタ203および減算器などから構成され、初期充電指令201によって積分器202は動作し、0°からリミッタ203で制限する180°まで徐々に加算し、点弧角指令αrefを180°から0°へ徐々にシフトさせるようにする。
A specific example of the firing angle command generation circuit is shown in FIG. 2 (a), and its operation is shown in FIG. 2 (b).
As shown in FIG. 2A, the firing angle command generation circuit 21 includes an integrator 202, a limiter 203, a subtractor, and the like. The integrator 202 operates according to the initial charge command 201, and is limited by 0 to the limiter 203. The firing angle command αref is gradually shifted from 180 ° to 0 °.

点弧角制御回路22の具体例を図3(a)〜(d)に示す。
点弧角指令生成回路21から出力される点弧角指令値αrefと、点弧角同期回路24から出力される、入力電圧に同期した各相の点弧角θR,θS,θTとを比較器30R,30S,30Tにて比較する。双方向スイッチを構成する負側のサイリスタの制御に対しては、点弧角シフト回路31R,31S,31Tにより点弧角を180°シフトさせてから、比較器30Ra,30Sa,30Taにて比較する。図3(b)〜(d)のように、三相のうちの二相の上下サイリスタを制御することでも初期充電は可能であるが、三相で制御する場合に比べて初期充電が完了するまでに若干時間を要する。
Specific examples of the firing angle control circuit 22 are shown in FIGS.
The firing angle command value αref output from the firing angle command generation circuit 21 and the firing angles θR, θS, θT of each phase synchronized with the input voltage output from the firing angle synchronization circuit 24 are compared. Compare at 30R, 30S, and 30T. For the control of the negative thyristor constituting the bidirectional switch, the firing angle shift circuits 31R, 31S, 31T shift the firing angle by 180 °, and then the comparison is made by the comparators 30Ra, 30Sa, 30Ta. . As shown in FIGS. 3B to 3D, the initial charging can be performed by controlling the upper and lower thyristors of the two phases of the three phases, but the initial charging is completed as compared with the case of controlling by the three phases. It takes some time to complete.

図4を参照して、図1におけるサイリスタの点弧角制御を主に説明する。
図4の上から順に入力相電圧、R相の位相、各サイリスタのゲート信号、リアクトルLRの電流(IR)、PN間の電圧(コンデンサ電圧)を示し、ここでは図3(b)のようにR相とS相のサイリスタの点弧角を制御する例を示す。入力相電圧の位相180°から点弧角指令を小さくしていくと、R相正側のサイリスタのゲート信号TR1とS相負側のサイリスタのゲート信号TS2が重なり、この時点で交流入力からコンデンサに向けてパルス状の充電電流が流れ、コンデンサ電圧が上昇する。
With reference to FIG. 4, the firing angle control of the thyristor in FIG. 1 will be mainly described.
FIG. 4 shows the input phase voltage, the phase of R phase, the gate signal of each thyristor, the current (IR) of the reactor LR, and the voltage between PN (capacitor voltage) in this order, as shown in FIG. 3B. An example of controlling the firing angle of the R-phase and S-phase thyristors is shown. When the firing angle command is decreased from the phase of the input phase voltage of 180 °, the gate signal TR1 of the thyristor on the R phase positive side and the gate signal TS2 of the thyristor on the S phase negative side overlap, and at this point, the capacitor is switched from the AC input to the capacitor. A pulsed charging current flows toward the capacitor, and the capacitor voltage rises.

R相負側のサイリスタのゲート信号TR2とS相正側のサイリスタのゲート信号TS1についても同様であり、点弧角指令αrefが0に到達する頃には、コンデンサ電圧は入力電圧の√2倍の波高値の電圧(実効値が200Vの場合、200×√2=282.8V)になり、初期充電が完了する。ここでは2相を制御する場合について説明したが、3相で制御する場合も初期充電は可能であり、2相の場合と比較して充電電流経路が増加するため、初期充電時間を短くできる。なお、従来と同様の制御方式のため詳細は省略するが、初期充電後に制御回路101により上下コンデンサの個別制御を行なうことで、初期充電値から昇圧することができる。   The same applies to the gate signal TR2 of the R-phase negative thyristor and the gate signal TS1 of the S-phase positive thyristor. When the firing angle command αref reaches 0, the capacitor voltage is √2 times the input voltage. The voltage of the peak value (200 × √2 = 282.8 V when the effective value is 200 V) is reached, and the initial charging is completed. Although the case where two phases are controlled has been described here, the initial charging is possible even when the control is performed using three phases, and the charging current path is increased as compared with the case of two phases, so that the initial charging time can be shortened. Although details are omitted because of the control method similar to the conventional one, the voltage can be boosted from the initial charge value by performing individual control of the upper and lower capacitors by the control circuit 101 after the initial charge.

図5に点弧角指令生成回路の他の実施の形態を示す。
これは、図2に示すものに対し、各相の入力電流を検出し、充電電流が電流制限値を超えないように点弧角指令を調節するブロックを追加したものである。すなわち、図5(a)のように各相の電流を検出し、最大値演算回路204で絶対値から最大値を求め、一次遅れ要素205を介して電流制限値と比較する。その結果、検出電流が制限値以内であれば積分器202を動作させ、制限値にかかる場合は積分器202を停止する。なお、停止する代わりに、積分器202に負の指令を与え、点弧角指令を戻すようにしても良い。
FIG. 5 shows another embodiment of the firing angle command generation circuit.
This is obtained by adding a block that detects the input current of each phase and adjusts the firing angle command so that the charging current does not exceed the current limit value, as shown in FIG. That is, as shown in FIG. 5A, the current of each phase is detected, the maximum value is calculated from the absolute value by the maximum value calculation circuit 204, and is compared with the current limit value via the first-order lag element 205. As a result, if the detected current is within the limit value, the integrator 202 is operated, and if the detected current is reached, the integrator 202 is stopped. Instead of stopping, a negative command may be given to the integrator 202 to return the firing angle command.

図6はこの発明の他の実施の形態を示す全体構成図である。
図6からも明らかなように、双方向スイッチを構成する2つのサイリスタのうちの1つをダイオード(DR2,DS2,DT2)に置き換えて構成したもので、制御回路101は図8と同じであり、サイリスタ制御回路102は図1と同様であるが、負側の制御回路を有していない点で図1とは若干異なる程度なので、説明は省略する。
FIG. 6 is an overall configuration diagram showing another embodiment of the present invention.
As is apparent from FIG. 6, one of the two thyristors constituting the bidirectional switch is replaced with a diode (DR2, DS2, DT2), and the control circuit 101 is the same as FIG. The thyristor control circuit 102 is the same as that shown in FIG. 1, but its description is omitted because it is slightly different from that shown in FIG. 1 in that it does not have a negative-side control circuit.

図7は図6の動作を説明するもので、図7の上から順に入力相電圧、R相の位相、各サイリスタのゲート信号、リアクトルLRの電流(IR)、PN間の電圧(コンデンサ電圧)を示し、ここでは各相のサイリスタの点弧角を制御した例を示す。入力相電圧の位相180°から点弧角指令を小さくしていくと、この例では双方向スイッチの負側はダイオードであるため、入力電圧が正である点弧角指令αrefが与えられた時点(180°以内)で、交流入力からコンデンサに向けてパルス状の充電電流が流れ、コンデンサ電圧が上昇する。図4との相違は、サイリスタが正側にしか接続されていないので、正側の電流しか制御できないことである。なお、入力電流の制限は図5と同じ回路で同様に行なうことができる。   FIG. 7 illustrates the operation of FIG. 6. From the top of FIG. 7, the input phase voltage, the phase of R phase, the gate signal of each thyristor, the current of the reactor LR (IR), the voltage between PN (capacitor voltage) Here, an example in which the firing angle of each phase thyristor is controlled is shown. When the firing angle command is reduced from the phase of the input phase voltage of 180 °, the negative side of the bidirectional switch is a diode in this example, and therefore, when the firing angle command αref having a positive input voltage is given. (Within 180 °), a pulsed charging current flows from the AC input to the capacitor, and the capacitor voltage rises. The difference from FIG. 4 is that since the thyristor is connected only to the positive side, only the positive side current can be controlled. Note that the input current can be limited in the same manner as in the circuit shown in FIG.

この発明の実施の形態を示す全体構成図Overall configuration diagram showing an embodiment of the present invention 図1の点弧角指令生成回路の具体例とその動作説明図Specific example of firing angle command generation circuit of FIG. 図1の点弧角制御回路の具体例を示す構成図Configuration diagram showing a specific example of the firing angle control circuit of FIG. 図1の動作説明図1 is an explanatory diagram of the operation. 図1の点弧角指令生成回路の別の具体例とその動作説明図Another specific example of the firing angle command generation circuit of FIG. この発明の他の実施の形態を示す全体構成図Overall configuration diagram showing another embodiment of the present invention 図6の動作説明図FIG. 6 is an operation explanatory diagram. 整流回路とその制御回路の第1の従来を示す全体構成図Overall configuration diagram showing a first conventional rectifier circuit and its control circuit 図8の動作説明図Operation explanatory diagram of FIG. 整流回路とその制御回路の第2の従来を示す全体構成図Overall configuration diagram showing a second conventional rectifier circuit and its control circuit 図10の動作説明図Explanation of operation in FIG.

符号の説明Explanation of symbols

1…3相交流電源、2RS,2ST,5C1,5C2…電圧検出器、3R,3S,3T…電流検出器、4R,4S,4T…双方向スイッチ回路、6…負荷、10…相電圧変換回路、11…極性判別回路、13a,13b…電圧調節器、15R,15Ra,15S,15Sa,15T,15Ta…乗算器、16R,16Ra,16S,16Sa,16T,16Ta…電流調節器、17R,17Ra,17S,17Sa,17T,17Ta…比較器、18R,18Ra,18S,18Sa,18T,18Ta…アンドゲート、19R,19Ra,19S,19Sa,19T,19Ta…スイッチング素子用ゲート駆動回路、21…点弧角指令生成回路、22…点弧角制御回路、23…サイリスタ用ゲート駆動回路、24…位相同期回路、101…制御回路、102…サイリスタ制御回路、202…積分器、203…リミッタ、204…最大値演算回路、205…一次遅れ要素、31R,31S,31T…点弧角シフト回路、LR,LS,LT…リアクトル、DR1〜4,DS1〜4,DT1〜4…ダイオード、C1,C2…コンデンサ、R,S,T…入力端子、P,N…出力端子、NP…中性点端子、SR1,SR2,SS1,SS2,ST1,ST2…スイッチング素子、TR1,TR2,TS1,TS2,TT1,TT2…サイリスタ。

DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power supply, 2RS, 2ST, 5C1, 5C2 ... Voltage detector, 3R, 3S, 3T ... Current detector, 4R, 4S, 4T ... Bidirectional switch circuit, 6 ... Load, 10 ... Phase voltage conversion circuit 11a, 13b, voltage regulator, 15R, 15Ra, 15S, 15Sa, 15T, 15Ta, multiplier, 16R, 16Ra, 16S, 16Sa, 16T, 16Ta, current regulator, 17R, 17Ra, 17S, 17Sa, 17T, 17Ta ... comparators, 18R, 18Ra, 18S, 18Sa, 18T, 18Ta ... AND gates, 19R, 19Ra, 19S, 19Sa, 19T, 19Ta ... gate drive circuits for switching elements, 21 ... firing angle Command generation circuit, 22 ... firing angle control circuit, 23 ... thyristor gate drive circuit, 24 ... phase synchronization circuit, 101 ... Control circuit 102 ... Thyristor control circuit 202 ... Integrator 203 ... Limiter 204 ... Maximum value calculation circuit 205 ... First-order lag element 31R, 31S, 31T ... Starting angle shift circuit, LR, LS, LT ... Reactor , DR1-4, DS1-4, DT1-4, diode, C1, C2 ... capacitor, R, S, T ... input terminal, P, N ... output terminal, NP ... neutral point terminal, SR1, SR2, SS1, SS2, ST1, ST2 ... switching elements, TR1, TR2, TS1, TS2, TT1, TT2 ... thyristors.

Claims (3)

N(Nは2以上の自然数)相の交流電圧を直流電圧に変換するために、通流方向を一致させた2つのサイリスタの直列回路と、通流方向を一致させた2つのスイッチング素子の直列回路とを並列接続して構成される1相分の双方向スイッチ回路をN個設け、各双方向スイッチ回路におけるサイリスタ同士の接続点をそれぞれリアクトルを介して各相の交流入力端子に接続し、各双方向スイッチ回路におけるサイリスタの直列回路のカソード側をそれぞれダイオードを介して正極の直流出力端子に一括して接続し、各双方向スイッチ回路におけるサイリスタの直列回路のアノード側をそれぞれダイオードを介して負極の直流出力端子に一括して接続し、正極および負極の直流出力端子間に2つのコンデンサを直列に接続し、各双方向スイッチ回路におけるスイッチング素子同士の接続点を前記2つのコンデンサ同士の接続点に一括して接続した整流回路において、
N相の交流入力電圧を検出する電圧検出手段と、前記交流入力電圧位相に同期する信号を生成する同期信号生成手段と、前記交流入力電圧位相に同期する信号に基き前記サイリスタの点弧角を制御する点弧角制御手段とを設け、前記2つのコンデンサの初期充電を行なうことを特徴とする整流回路のコンデンサ充電装置。
In order to convert an AC voltage of N (N is a natural number of 2 or more) phase into a DC voltage, a series circuit of two thyristors having the same flow direction and a series of two switching elements having the same flow direction N bidirectional switch circuits for one phase constituted by connecting the circuits in parallel are provided, and the connection points between the thyristors in each bidirectional switch circuit are connected to the AC input terminals of the respective phases through the reactors, Connect the cathode side of the series circuit of the thyristor in each bidirectional switch circuit to the positive DC output terminal via a diode, and connect the anode side of the series circuit of the thyristor in each bidirectional switch circuit via a diode. Connect to the negative DC output terminal at once and connect two capacitors in series between the positive and negative DC output terminals. In the rectifier circuit the connection point between the switching elements connected collectively to a connection point between the two capacitors in,
A voltage detecting means for detecting an N-phase AC input voltage; a synchronization signal generating means for generating a signal synchronized with the AC input voltage phase; and a firing angle of the thyristor based on the signal synchronized with the AC input voltage phase. A capacitor charging device for a rectifier circuit, characterized in that an ignition angle control means for controlling is provided to perform initial charging of the two capacitors.
N相の交流入力電流を検出する電流検出手段を設け、交流入力電流が一定値に制限されるように前記サイリスタの点弧角を制御することを特徴とする請求項1に記載の整流回路のコンデンサ充電装置。   2. The rectifier circuit according to claim 1, further comprising a current detection unit configured to detect an N-phase AC input current, and controlling an ignition angle of the thyristor so that the AC input current is limited to a constant value. Capacitor charger. 前記各双方向スイッチ回路を構成する2つのサイリスタの一方をダイオードに置き換え、サイリスタの点弧角を制御することにより、直流出力端子間に直列に接続された2つのコンデンサの初期充電を行なうことを特徴とする請求項1または2に記載の整流回路のコンデンサ充電装置。

By replacing one of the two thyristors constituting each of the bidirectional switch circuits with a diode and controlling the firing angle of the thyristor, initial charging of two capacitors connected in series between the DC output terminals is performed. 3. The capacitor charging device for a rectifier circuit according to claim 1, wherein the capacitor charging device is a rectifier circuit.

JP2006115655A 2006-04-19 2006-04-19 Capacitor charging device for rectifier circuit Pending JP2007288968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115655A JP2007288968A (en) 2006-04-19 2006-04-19 Capacitor charging device for rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115655A JP2007288968A (en) 2006-04-19 2006-04-19 Capacitor charging device for rectifier circuit

Publications (1)

Publication Number Publication Date
JP2007288968A true JP2007288968A (en) 2007-11-01

Family

ID=38760230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115655A Pending JP2007288968A (en) 2006-04-19 2006-04-19 Capacitor charging device for rectifier circuit

Country Status (1)

Country Link
JP (1) JP2007288968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056721A1 (en) 2013-10-18 2015-04-23 三菱電機株式会社 Dc power source device, electric motor drive device, air conditioner, and refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138063A (en) * 1990-09-26 1992-05-12 Shin Kobe Electric Mach Co Ltd Power converter
JPH06339276A (en) * 1993-05-26 1994-12-06 Fuji Electric Co Ltd Controlling method for phase of thyristor rectifier
JPH1118432A (en) * 1997-06-26 1999-01-22 Yaskawa Electric Corp Main circuit power on circuit for servo controller
JP2002142458A (en) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd Rectification circuit and its control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138063A (en) * 1990-09-26 1992-05-12 Shin Kobe Electric Mach Co Ltd Power converter
JPH06339276A (en) * 1993-05-26 1994-12-06 Fuji Electric Co Ltd Controlling method for phase of thyristor rectifier
JPH1118432A (en) * 1997-06-26 1999-01-22 Yaskawa Electric Corp Main circuit power on circuit for servo controller
JP2002142458A (en) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd Rectification circuit and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056721A1 (en) 2013-10-18 2015-04-23 三菱電機株式会社 Dc power source device, electric motor drive device, air conditioner, and refrigerator
KR20160065977A (en) 2013-10-18 2016-06-09 미쓰비시덴키 가부시키가이샤 Dc power source device, electric motor drive device, air conditioner, and refrigerator
US10113784B2 (en) 2013-10-18 2018-10-30 Mitsubishi Electric Corporation Direct-current power supply device, motor driving device, air conditioner, and refrigerator

Similar Documents

Publication Publication Date Title
JP5163734B2 (en) 3-level inverter
US8902621B2 (en) Power supply device for use with selectable AC power supply voltage
US20110175557A1 (en) Motor driving apparatus having power regeneration function
JP5223711B2 (en) Uninterruptible power system
US20110116293A1 (en) Power conversion equipment
JP5939411B2 (en) Power converter
KR101399120B1 (en) Power converter
US20120275202A1 (en) Series multiplex power conversion apparatus
US20180316216A1 (en) Uninterruptible power supply device
JP4051875B2 (en) Rectifier circuit and control method thereof
JP2008172925A (en) Backup operation device of matrix converter
KR101399118B1 (en) Power converter
JP2013230027A (en) Ac power supply system
US20180309319A1 (en) Uninterruptible power supply device
JP4893113B2 (en) Control device for rectifier circuit
US20180367060A1 (en) Power supply having four quadrant converter and techniques for operation
US8976553B2 (en) Power conversion device
JP7168189B2 (en) Power converters, power generation systems, load systems and power transmission and distribution systems
JP5978927B2 (en) 5 level power converter
KR101741830B1 (en) Uninterruptible power supply apparatus and method thereof
JP2007288968A (en) Capacitor charging device for rectifier circuit
KR20200071616A (en) Power conversion apparatus with improved power conversion efficiency
JP5978926B2 (en) 5 level power converter
JP2007074799A (en) Controller of rectifying circuit
JP2009177901A (en) Uninterruptible power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Effective date: 20110711

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A02