JP2007287484A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2007287484A
JP2007287484A JP2006113726A JP2006113726A JP2007287484A JP 2007287484 A JP2007287484 A JP 2007287484A JP 2006113726 A JP2006113726 A JP 2006113726A JP 2006113726 A JP2006113726 A JP 2006113726A JP 2007287484 A JP2007287484 A JP 2007287484A
Authority
JP
Japan
Prior art keywords
electrode
dye
substrate
solar cell
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006113726A
Other languages
Japanese (ja)
Other versions
JP5089911B2 (en
Inventor
Kenichi Okada
顕一 岡田
Takayuki Kitamura
隆之 北村
Hideyuki Shibata
秀幸 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006113726A priority Critical patent/JP5089911B2/en
Publication of JP2007287484A publication Critical patent/JP2007287484A/en
Application granted granted Critical
Publication of JP5089911B2 publication Critical patent/JP5089911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell in which an electrolytic solution can be arranged uniformly between both electrode faces without depending on viscosity, and in which damage of a connection part and deterioration of a dye due to heat in sealing can be suppressed. <P>SOLUTION: The dye-sensitized solar cell 10 has a porous oxide semiconductor layer 3 on which the sensitized dye is carried. Moreover, this is provided with a first electrode 2 which functions as a window electrode, and a second electrode 5 which is arranged opposed to the first electrode by interposing an electrolyte layer 6 at least at one part. Furthermore, a first base material 1 at which the first electrode is installed and a second base material 4 at which the second electrode is installed are provided with at least a first region α pinching the electrolyte layer, and a second region β having a recessed part 7 in outer faces of the first base material and/or the second base material, and the second region is arranged so as to surround the first region. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、色素増感太陽電池[以下、「DSC」(Dye-Sensitized Solar Cell) と略記する。]に係り、より詳細には、対極用基板又は作用極用基板等に電解液注入用の小孔を設けること無く、対極用基板と作用極用基板との間にあらかじめ電解液(電解質)を充填して貼り合せた色素増感太陽電池に関する。   The present invention is abbreviated as a dye-sensitized solar cell [hereinafter referred to as “DSC” (Dye-Sensitized Solar Cell). In more detail, an electrolyte solution (electrolyte) is previously provided between the counter electrode substrate and the working electrode substrate without providing a small hole for injecting the electrolyte solution on the counter electrode substrate or the working electrode substrate. The present invention relates to a dye-sensitized solar cell filled and bonded.

環境問題、資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。代表的な太陽電池としては、単結晶、多結晶あるいはアモルファスのシリコンを用いたものが挙げられる。しかし、従来のシリコン系太陽電池は製造コストが高く、原料供給が不十分などの課題が残されており、安価な提供は難しいことから、広く普及には至ってない。
また、Cu―In―Se系(「CIS系」とも呼ぶ。)などの化合物系太陽電池が開発されており、極めて高い光電変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題があり、やはり大幅普及への障害を抱えた状況にある。
Against the backdrop of environmental problems and resource problems, solar cells as clean energy are attracting attention. Typical solar cells include those using single crystal, polycrystalline or amorphous silicon. However, conventional silicon-based solar cells are not widely used because they are expensive to manufacture and have problems such as insufficient supply of raw materials and are difficult to provide at low cost.
In addition, compound solar cells such as Cu—In—Se (also referred to as “CIS”) have been developed and have excellent characteristics such as extremely high photoelectric conversion efficiency. There is a problem such as load, and it is still in a situation where it has obstacles to widespread use.

これらに対して、色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、安価で高い光電変換効率を得られる光電変換素子として着目されている(例えば、特許文献1、非特許文献1を参照)。
図10は、従来の色素増感型太陽電池の一例を示す断面図である。
この色素増感型太陽電池100は、増感色素を担持させた多孔質半導体層103が一方の面に形成された第一基板101と、透明導電層105が形成された第二基板104と、これらの間に封入された液状またはゲル状の電解質からなる電解質層と、を主な構成要素としている。
On the other hand, a dye-sensitized solar cell is proposed by a group of Gretzel et al. In Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high photoelectric conversion efficiency at low cost (for example, Patent Document 1). , See Non-Patent Document 1).
FIG. 10 is a cross-sectional view showing an example of a conventional dye-sensitized solar cell.
The dye-sensitized solar cell 100 includes a first substrate 101 on which a porous semiconductor layer 103 supporting a sensitizing dye is formed on one surface, a second substrate 104 on which a transparent conductive layer 105 is formed, The main component is an electrolyte layer made of a liquid or gel electrolyte enclosed between them.

その際、第一基板101としては、例えば、光透過性の板材が用いられ、第一基板101の色素増感半導体層103と接する面には導電性を持たせるために透明導電層102が配置されており、第一基板101、透明導電層102及び多孔質半導体層103により作用極108をなす。
第二基板104としては、例えば、電解質層106と接する側の面、すなわち透明導電層105上にはさらに電気化学的活性を確保するために例えば炭素や白金などからなる導電層(不図示)が設けられ、第二基板104、透明導電層105及び導電層(不図示)により対極109を構成している。
At this time, for example, a light-transmitting plate material is used as the first substrate 101, and the transparent conductive layer 102 is disposed on the surface of the first substrate 101 in contact with the dye-sensitized semiconductor layer 103 to provide conductivity. The working electrode 108 is formed by the first substrate 101, the transparent conductive layer 102, and the porous semiconductor layer 103.
As the second substrate 104, for example, a conductive layer (not shown) made of carbon, platinum, or the like is provided on the surface in contact with the electrolyte layer 106, that is, on the transparent conductive layer 105 to further ensure electrochemical activity. The counter electrode 109 is configured by the second substrate 104, the transparent conductive layer 105, and the conductive layer (not shown).

多孔質半導体層103と透明導電層105の上に設けた導電層(不図示)とを対向させて、第一基板101と第二基板104が所定の間隔をなすように配置し、両基板間の周辺部に熱可塑性樹脂からなる封止剤107を設ける。
そして、この封止剤107を介して2つの基板101、104を貼り合わせてセルを積み上げ、電解液の注入口110を介して、両極108、109間にI/I などの酸化・還元対を含む有機電解液を充填し、電荷移送用の電解質106を形成したものが挙げられる。
The porous substrate layer 103 and the conductive layer (not shown) provided on the transparent conductive layer 105 are opposed to each other, and the first substrate 101 and the second substrate 104 are arranged so as to form a predetermined interval, and between the two substrates. A sealant 107 made of a thermoplastic resin is provided on the periphery of the substrate.
Then, the two substrates 101 and 104 are bonded to each other through the sealant 107, and the cells are stacked. Through the electrolyte injection port 110, oxidation / reduction of I / I 3 or the like between the electrodes 108 and 109 is performed. An organic electrolyte solution containing a reducing pair is filled and an electrolyte 106 for charge transfer is formed.

この色素増感型太陽電池の対極と作用極の接合は、色素が熱に弱いという理由から、先に熱プレスにより両極を接合後、上述のように、あらかじめ設けられた小孔を注入口(以下、「注入孔」と呼ぶ。)として、該注入孔より電解液を充填するという手法が行なわれている。また、このような色素増感型太陽電池での封止手順は、一般的に以下のように行われている。   In this dye-sensitized solar cell, the counter electrode and the working electrode are bonded to each other because the dye is weak against heat. Hereinafter, a method of filling the electrolytic solution from the injection hole is performed. Moreover, the sealing procedure in such a dye-sensitized solar cell is generally performed as follows.

(1)作用極(例えば、ガラスなどの基板の上にフッ素ドープ酸化スズなどの透明導電膜を形成し、その上に集電用の金属配線を形成し、さらに、その上に酸化チタンなどの金属酸化物半導体を形成し、該金属酸化物半導体に増感色素を担持させることにより構成)と対極(例えば、ガラスなどの基板の上に、白金などの金属薄膜を形成することにより構成)を予め用意し、両極を接着性フィルム(例えば、デュポン社製の「サーリン」や「バイネル」、三井デュポンポリケミカル社製の「ハイミラン」)を使い、80〜150℃程度の加熱プレスにて貼り合せる。その後、予め作用極・対極・接着性フィルムなどに開けておいた電解液注入孔より内部に電解液を入れて、接着剤で該注入孔を封じる(例えば、特許文献2を参照)。   (1) Working electrode (for example, a transparent conductive film such as fluorine-doped tin oxide is formed on a substrate such as glass, a metal wiring for current collection is formed thereon, and further, titanium oxide or the like is formed thereon. A metal oxide semiconductor is formed and a sensitizing dye is supported on the metal oxide semiconductor) and a counter electrode (for example, a metal thin film such as platinum is formed on a substrate such as glass). Prepare in advance and use an adhesive film (for example, “Surlin” or “Binell” manufactured by DuPont, or “High Milan” manufactured by Mitsui DuPont Polychemical Co., Ltd.) to attach both electrodes using a heating press at about 80 to 150 ° C. . Thereafter, an electrolytic solution is introduced into the inside of the electrolytic solution injection hole previously opened in the working electrode, the counter electrode, and the adhesive film, and the injection hole is sealed with an adhesive (see, for example, Patent Document 2).

(2)上記(1)と同様に、作用極と対極を予め用意し、両極を光硬化性樹脂(例えば、スリーボンド社製の「3003」)を使い貼り合せる。その後、予め作用極・対極・接着性フィルムなどに開けておいた電解液注入孔より内部に電解液を入れて、接着剤で該注入孔を封じる(例えば、特許文献3を参照)。   (2) As in (1) above, a working electrode and a counter electrode are prepared in advance, and both electrodes are bonded together using a photo-curing resin (for example, “3003” manufactured by ThreeBond). Thereafter, an electrolytic solution is introduced into the inside from an electrolytic solution injection hole previously opened in a working electrode, a counter electrode, an adhesive film, etc., and the injection hole is sealed with an adhesive (for example, see Patent Document 3).

(3)作用極(例えば、ガラスなどの基板の上にフッ素ドープ酸化スズなどの透明導電膜を形成し、その上に集電用の金属配線を形成し、さらに、その上に酸化チタンなどの金属酸化物半導体を形成することにより構成)と対極(例えば、ガラスなどの基板の上に、白金などの金属薄膜を形成することにより構成)を予め用意し、両極を低温ガラスフリット(例えば、PbO)を介して挟み、オーブンで400〜600℃程度にて加熱融着する。その後、予め作用極・対極・接着性フィルムなどに開けておいた電解液注入孔より内部に色素溶液を循環することで前記金属酸化物半導体に増感色素を担持させ、その後電解液(又はイオン液体)を入れて、接着剤で該注入孔を封じる(例えば、特許文献4を参照)。   (3) Working electrode (for example, a transparent conductive film such as fluorine-doped tin oxide is formed on a substrate such as glass, a metal wiring for current collection is formed thereon, and further, a titanium oxide or the like is formed thereon. A metal oxide semiconductor is formed and a counter electrode (for example, a metal thin film such as platinum is formed on a substrate such as glass) is prepared in advance, and both electrodes are made of a low-temperature glass frit (for example, PbO). ), And heat-sealed in an oven at about 400 to 600 ° C. Thereafter, a sensitizing dye is supported on the metal oxide semiconductor by circulating a dye solution through an electrolyte solution injection hole previously opened in a working electrode, a counter electrode, an adhesive film, etc., and then an electrolyte solution (or ion) Liquid) and the injection hole is sealed with an adhesive (for example, see Patent Document 4).

(4)上記(1)と同様に、作用極と対極を予め用意し、間にイオン液体など高粘度溶媒を用いた電解液、ナノコンポジットイオンゲル電解質などの固体、擬固体電解質、及び従来の電解液などを挟み、両極を押さえつけた状態で、別に用意した気密パッケージに封じる(例えば、特許文献5を参照)。   (4) As in (1) above, a working electrode and a counter electrode are prepared in advance, and an electrolyte using a high viscosity solvent such as an ionic liquid, a solid such as a nanocomposite ion gel electrolyte, a quasi-solid electrolyte, and conventional electrolysis A liquid or the like is sandwiched between the two electrodes and sealed in a separately prepared airtight package (see, for example, Patent Document 5).

(5)上記(1)と同様に、作用極と対極を予め用意し、間にイオン液体など高粘度溶媒を用いた電解液、ナノコンポジットイオンゲル電解質などの固体、擬固体電解質、及び従来の電解液などを挟み、両極を押さえつけた状態で、周囲を光硬化性樹脂で覆い、露光して封じる。   (5) Similar to (1) above, a working electrode and a counter electrode are prepared in advance, and an electrolyte using a high viscosity solvent such as an ionic liquid, a solid such as a nanocomposite ion gel electrolyte, a quasi-solid electrolyte, and conventional electrolysis Cover the area with a photo-curing resin with the liquid sandwiched between the electrodes and hold the electrodes, and then expose and seal.

しかしながら、上記(1)、(2)、(3)の各製法では、電解液は電極間隙や注入孔など細い経路を通って注入されるため、高粘度の電解液では非常に時間が掛かるので、粘度の低い電解液しか使用できないという制限が生じる。また、全面に熱が加わることにより、基板に応力が発生するため、接合部がダメージを受けやすく、外気との遮断が不十分となる虞がある。   However, in each of the production methods (1), (2), and (3), the electrolyte is injected through a thin path such as an electrode gap or an injection hole, so that a highly viscous electrolyte takes a very long time. However, there is a limitation that only an electrolyte solution having a low viscosity can be used. Further, since heat is applied to the entire surface, stress is generated in the substrate, so that the joint portion is easily damaged and there is a possibility that the shielding from the outside air is insufficient.

また、上記(4)の製法では、固体や高粘度の電解質にも対応できるが、セルと封止パッケージを別に用意するため重く大きくなる欠点がある上、液体電解質を使う場合、パッケージ設計を工夫しないとパッケージ内部での液漏れ・液移動が発生する。   In addition, the production method (4) above can be applied to solid and high-viscosity electrolytes, but there is a drawback that the cell and the sealed package are prepared separately. Otherwise, liquid leakage and liquid movement will occur inside the package.

また、上記(5)の製法では、上記(4)と同様に、固体や高粘度の電解質にも対応できるが、セルに影響を与えずに周囲の接着部分を洗浄することが難しいため、ある程度被接着面が汚れた状態で封止する必要がある。一般に接着剤は被接着面が清浄でない場合には接着力が低下するため、封止の信頼性が低下する。
このように、高粘度電解液や、擬固体、固体電解質を用いた太陽電池を封止する方法は限られており、その方法にもそれぞれに封止の信頼性を損なう問題点がある。
In addition, in the production method of (5), as in the case of (4), it can be applied to a solid or high-viscosity electrolyte, but it is difficult to clean the surrounding adhesive part without affecting the cell. It is necessary to seal the surface to be bonded in a dirty state. In general, when the surface to be bonded is not clean, the adhesive strength is reduced, so that the sealing reliability is lowered.
As described above, methods for sealing solar cells using a high-viscosity electrolytic solution, a pseudo solid, or a solid electrolyte are limited, and each of these methods has a problem of impairing the reliability of sealing.

さらに、作用極(例えば、ガラスなどの基板の上にフッ素ドープ酸化スズなどの透明導電膜を形成し、その上に集電用の金属配線を形成し、さらに、その上に酸化チタンなどの金属酸化物半導体を形成し、該金属酸化物半導体に増感色素を担持させることにより構成)と対極(例えば、ガラスなどの基板の上に、白金などの金属薄膜を形成することにより構成)を予め用意し、基板の周縁部にガラスフリット層を配した後、これら両極を重ね合わせる。そして、一方の基板を透過してレーザー光を照射することにより、両極を貼り合せる。その後、予め作用極・対極・接着性フィルムなどに開けておいた電解液注入孔より内部に電解液(又はイオン液体)を入れて、接着剤で該注入孔を封じることも提案されている(例えば、特許文献6を参照)。   Furthermore, a working electrode (for example, a transparent conductive film such as fluorine-doped tin oxide is formed on a substrate such as glass, a metal wiring for current collection is formed thereon, and a metal such as titanium oxide is further formed thereon. An oxide semiconductor is formed and a sensitizing dye is supported on the metal oxide semiconductor) and a counter electrode (for example, a metal thin film such as platinum is formed on a substrate such as glass) in advance. After preparing and arranging a glass frit layer on the peripheral edge of the substrate, these two electrodes are overlapped. And both electrodes are bonded together by irradiating a laser beam through one substrate. Thereafter, it has also been proposed that an electrolytic solution (or ionic liquid) is put inside from an electrolytic solution injection hole previously opened in a working electrode, a counter electrode, an adhesive film, and the injection hole is sealed with an adhesive ( For example, see Patent Document 6).

しかしながら、この場合も注入孔より電解液を充填するという手法を行なっているため、粘度の低い電解液のみ使用可能であり、ゲル状の電解液のように粘度の高い場合には、注入が難しく、たとえ注入したとしても狭い面積にしか電解液が行き渡らないことから、太陽電池の大面積化には対応できない、という制限があった。
特許第2664194号公報 特開2001−35549号公報 特開2000−100482号公報 特開2000−348783号公報 特開2005−71973号公報 特開2004−172048号公報 O’ Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991;353:737-739
However, in this case as well, since the electrolyte solution is filled from the injection hole, only an electrolyte solution having a low viscosity can be used, and injection is difficult when the viscosity is high like a gel electrolyte solution. Even if it is injected, since the electrolyte spreads only in a small area, there is a limitation that it cannot cope with the increase in the area of the solar cell.
Japanese Patent No. 2664194 JP 2001-35549 A JP 2000-1000048 A JP 2000-348783 A JP 2005-71973 A JP 2004-172048 A O 'Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991; 353: 737-739

本発明は上記事情に鑑みてなされたもので、粘度に依存すること無く電解液を両極間の面内に均一に配置することができると共に、封止時の熱による接続部のダメージや色素の劣化も抑制できる色素増感太陽電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to uniformly dispose the electrolytic solution in the plane between both electrodes without depending on the viscosity, and damage of the connection portion due to heat at the time of sealing or coloring matter. It aims at providing the dye-sensitized solar cell which can also suppress degradation.

本発明の請求項1に係る色素増感太陽電池は、増感色素を担持させた多孔質酸化物半導体層を有して構成され、窓極として機能する第一電極と、少なくとも一部に電解質層を介して前記第一電極と対向して配される第二電極とを備えてなる色素増感太陽電池であって、前記第一電極を設ける第一基材と前記第二電極を設ける第二基材は、その重なり方向において、前記電解質層を挟む第一領域と、前記第一基材及び/又は前記第二基材の外面に凹部を有する第二領域とを少なくとも備え、前記第二領域は前記第一領域を囲むように配されていることを特徴とする。   A dye-sensitized solar cell according to claim 1 of the present invention includes a porous oxide semiconductor layer carrying a sensitizing dye, a first electrode functioning as a window electrode, and at least a part of an electrolyte. A dye-sensitized solar cell comprising a second electrode disposed opposite to the first electrode via a layer, wherein the first substrate on which the first electrode is provided and the second electrode on which the second electrode is provided The two substrates include at least a first region sandwiching the electrolyte layer and a second region having a recess on an outer surface of the first substrate and / or the second substrate in the overlapping direction, The region is arranged to surround the first region.

本発明の請求項2に係る色素増感太陽電池は、請求項1に記載の色素増感太陽電池において、前記第二領域を囲むように、基板間に空隙を備える第三領域を備えていることを特徴とする。   The dye-sensitized solar cell according to claim 2 of the present invention is the dye-sensitized solar cell according to claim 1, and includes a third region having a gap between the substrates so as to surround the second region. It is characterized by that.

本発明の請求項3に係る色素増感太陽電池は、請求項1又は2に記載の色素増感太陽電池において、前記第一基材及び前記第二基材を構成する部材は、超音波を通す材料からなることを特徴とする。   The dye-sensitized solar cell according to claim 3 of the present invention is the dye-sensitized solar cell according to claim 1 or 2, wherein the members constituting the first base material and the second base material are ultrasonic waves. It consists of the material which lets it pass.

本発明の請求項4に係る色素増感太陽電池は、請求項1又は2に記載の色素増感太陽電池において、前記第二領域の接合界面は、溶着していることを特徴とする。   The dye-sensitized solar cell according to claim 4 of the present invention is characterized in that in the dye-sensitized solar cell according to claim 1 or 2, the bonding interface of the second region is welded.

本発明の請求項5に係る色素増感太陽電池は、請求項1に記載の色素増感太陽電池において、前記第一基材又は第二電極を通して前記第一領域をRu色素の主吸収550nmの光を用いて観測した際に得られる反射率のばらつきが、1セル内において50%以内であることを特徴とする。   The dye-sensitized solar cell according to claim 5 of the present invention is the dye-sensitized solar cell according to claim 1, wherein the main absorption of Ru dye is 550 nm through the first base material or the second electrode. The variation in reflectance obtained when observing with light is within 50% within one cell.

本発明は、窓極として機能する第一電極を設ける第一基材と、少なくとも一部に電解質層を介して前記第一電極と対向して配される第二電極を設ける第二基材が、その重なり方向において、前記電解質層を挟む第一領域を囲むように、第一基材及び/又は第二基材の外面に凹部を有する第二領域を備えた構成をしている。ゆえに、前記第一領域を囲むように超音波を加えて前記凹部を有する第二領域を構成することにより、基板全体が加熱されることなく、超音波を印加した部分だけが局所的に発熱・溶融して前記第一基材と前記第二基材が接合され、封止部を形成することで、前記電解質層が外気と確実に遮断する封止が行なわれる。また、超音波の印加による局所的な加熱と振動によって電解液が溶融部から一時的に逃避する状態となり、接合部分が電解液で濡れた状態であっても、確実に電解質層を封止することができる。
したがって、粘度に依存すること無く電解液を両極間の面内に均一に配置することができると共に、封止時の熱による接続部のダメージや色素の劣化も抑制できる色素増感太陽電池を提供することができる。すなわち、本発明によれば、低粘度タイプに限定されず、高粘度タイプのゲル状の電解液も使用が可能となるとともに、太陽電池の大面積化にも容易に対応できる色素増感太陽電池が得られる。しかも、前記第一基材又は前記第二基材等に電解液注入用の小孔が無く、簡単な構造をした色素増感太陽電池とすることもできる。
The present invention includes a first base material provided with a first electrode functioning as a window electrode, and a second base material provided with a second electrode disposed at least partially facing the first electrode via an electrolyte layer. In the overlapping direction, the first substrate and / or the second substrate has a second region having a recess on the outer surface so as to surround the first region sandwiching the electrolyte layer. Therefore, by constructing the second region having the recess by applying an ultrasonic wave so as to surround the first region, only the portion to which the ultrasonic wave is applied is locally heated and heated without heating the entire substrate. By melting and joining the first base material and the second base material to form a sealing portion, sealing is performed in which the electrolyte layer is surely shielded from outside air. In addition, the electrolyte solution temporarily escapes from the melted portion by local heating and vibration due to the application of ultrasonic waves, and the electrolyte layer is surely sealed even when the joint is wet with the electrolyte solution. be able to.
Therefore, it is possible to provide a dye-sensitized solar cell that can uniformly dispose the electrolyte solution in the plane between both electrodes without depending on the viscosity, and can suppress damage to the connecting portion and deterioration of the dye due to heat during sealing. can do. That is, according to the present invention, the dye-sensitized solar cell is not limited to the low-viscosity type, and a high-viscosity gel electrolyte can be used and can easily cope with an increase in the area of the solar cell. Is obtained. In addition, the first substrate or the second substrate can be a dye-sensitized solar cell having a simple structure without a small hole for injecting an electrolyte.

以下に、本発明に係る色素増感太陽電池の一実施形態を図面に基づいて説明する。
図1は、本発明に係る色素増感太陽電池の構造を示す図であり、図1(a)は、その概略平面図であり、図1(b)は、図1(a)に示すA−A線に沿う概略断面図である。
図1に示すように、本実施形態に係る色素増感太陽電池10は、第一基材1と、該第一基材1の一面に配された、第一電極として機能する透明導電膜2と、該透明導電膜2上に設けた多孔質酸化物半導体層3とからなる構造体を、光が入射する側の窓極基板8とする。一方、第二基材4と、該第二基材4の一面に配された、第二電極として機能する金属薄膜5とからなる構造体を対極基板9とする。そして、この窓極基板8と対極基板9の間に電解液(もしくは電解質ゲル)6を挟み込み、少なくとも何れか一方の基材1又は4(図示例では、第一基材1)の外面に凹部7を有する封止部11を形成して、該電解液6を囲むように封止するものである。
Hereinafter, an embodiment of a dye-sensitized solar cell according to the present invention will be described with reference to the drawings.
FIG. 1 is a view showing the structure of a dye-sensitized solar cell according to the present invention, FIG. 1 (a) is a schematic plan view thereof, and FIG. 1 (b) is an A view shown in FIG. 1 (a). It is a schematic sectional drawing which follows the -A line.
As shown in FIG. 1, a dye-sensitized solar cell 10 according to this embodiment includes a first substrate 1 and a transparent conductive film 2 that functions as a first electrode and is disposed on one surface of the first substrate 1. And the porous oxide semiconductor layer 3 provided on the transparent conductive film 2 is a window electrode substrate 8 on the light incident side. On the other hand, a structure composed of the second base material 4 and the metal thin film 5 functioning as the second electrode disposed on one surface of the second base material 4 is referred to as a counter electrode substrate 9. Then, an electrolyte solution (or electrolyte gel) 6 is sandwiched between the window electrode substrate 8 and the counter electrode substrate 9, and a recess is formed on the outer surface of at least one of the base materials 1 and 4 (first base material 1 in the illustrated example). 7 is formed so as to surround the electrolytic solution 6.

また、透明導電膜2を設ける第一基材1と金属薄膜5を設ける第二基材4は、その重なり方向において、前記電解質層6を挟む第一領域αと、前記凹部7を有する第二領域βとを少なくとも備え、前記第二領域βは前記第一領域αを囲むように配されている。
このように、第一領域αを囲むように、前記封止部11を形成する前記凹部7を備えた第二領域βを配すと、両電極層を接合する際に、色素の劣化が無く、第一領域α内に配された電解質層6を外気と遮断することができる。
Moreover, the 1st base material 1 which provides the transparent conductive film 2, and the 2nd base material 4 which provides the metal thin film 5 are the 2nd area | region (alpha) which sandwiches the said electrolyte layer 6, and the said recessed part 7 in the overlapping direction. And the second region β is disposed so as to surround the first region α.
As described above, when the second region β including the concave portion 7 that forms the sealing portion 11 is disposed so as to surround the first region α, there is no deterioration of the dye when the two electrode layers are joined. The electrolyte layer 6 disposed in the first region α can be blocked from the outside air.

第一基材1は、表面に導電材料からなる膜(層)を形成することにより電気を通す導電性を有し、光透過性の高い透明な部材であれば何でも良く、特に制限されない。この第一基材1としては、ガラス板を使用するのが一般的であるが、ガラス板以外にも、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などのプラスチック、酸化チタン、アルミナなどセラミックスの研磨板などを用いることができる。
また、第一基材1は、後に導電膜を形成した基板上に色素担持用の多孔質半導体として焼き付けで二酸化チタン(TiO)を成膜する場合は、500℃程度の高熱に耐える導電性耐熱ガラスが望ましい。
The first base material 1 is not particularly limited as long as it is a transparent member that has a conductivity to conduct electricity by forming a film (layer) made of a conductive material on the surface and has a high light transmittance. As the first substrate 1, a glass plate is generally used, but other than the glass plate, for example, plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polycarbonate (PC). Further, a ceramic polishing plate such as titanium oxide or alumina can be used.
In addition, the first base material 1 is conductive to withstand a high heat of about 500 ° C. when titanium dioxide (TiO 2 ) is formed by baking as a porous semiconductor for dye support on a substrate on which a conductive film is formed later. Heat resistant glass is desirable.

透明導電膜2は、第一基材1上に形成された導電材料からなる導電性の膜である。透明導電膜2としては、例えば、スズ添加酸化インジウム(ITO)や酸化スズ(SnO)、フッ素添加スズ(FTO)などの透明な酸化物半導体を単独で、もしくは複数種類を複合化して用いるようにしても良い。透明導電膜2は、第一基材1上に形成される場合、光透過率の高いものとする。
このように、第一基材1上に光透過率の高い透明な透明導電膜2を形成することで電極用基板とする。
The transparent conductive film 2 is a conductive film made of a conductive material formed on the first base material 1. As the transparent conductive film 2, for example, a transparent oxide semiconductor such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), or fluorine-added tin (FTO) is used alone or in combination of a plurality of types. Anyway. The transparent conductive film 2 has a high light transmittance when formed on the first substrate 1.
Thus, the electrode substrate is formed by forming the transparent transparent conductive film 2 having a high light transmittance on the first base material 1.

多孔質酸化物半導体層3は、多孔質半導体に色素を担持させたものである。多孔質酸化物半導体層3の素材、形成法などについて特に限定されるものは無いが、例えば、二酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを単独、または2種以上を複合させた、平均粒径が5nm〜50nmの酸化物半導体粒子を主成分とする多孔質の薄膜であり、市販の微粒子やゾル−ゲル法により得られたコロイド溶液などから得ることができる。
多孔膜化の手法としては、例えばコロイド溶液や分散液(必要に応じて添加剤を含む)を、スクリーンプリント、インクジェットプリント、ロールコート、ドクターブレード、スピンコート、スプレー塗布など、種々の塗布法を用いて塗布する他、微粒子の泳動電着、発泡剤の併用などによるものでも構わない。この多孔質酸化物半導体層3の粒子間には、増感色素が含まれている。
The porous oxide semiconductor layer 3 is a porous semiconductor having a dye supported thereon. There are no particular limitations on the material and formation method of the porous oxide semiconductor layer 3. For example, titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO) ), Niobium oxide (Nb 2 O 5 ) or the like, or a composite of two or more, and is a porous thin film mainly composed of oxide semiconductor particles having an average particle diameter of 5 nm to 50 nm, and commercially available fine particles Or a colloidal solution obtained by a sol-gel method.
As a method for forming a porous film, for example, colloidal solutions and dispersions (including additives as necessary), various coating methods such as screen printing, inkjet printing, roll coating, doctor blade, spin coating, spray coating, etc. In addition to coating by coating, electrophoretic electrodeposition of fine particles, combined use of a foaming agent, etc. may be used. A sensitizing dye is contained between the particles of the porous oxide semiconductor layer 3.

また、増感色素は、例えば、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体をはじめ、エロシン、ローダミン、メロシアニンなどの有機色素なども使用することができ、用途、使用する半導体酸化物多孔質層の材料に応じて適当なものを、特に限定されることなく適宜選択することができる。   As the sensitizing dye, for example, a ruthenium complex containing a bipyridine structure or a terpyridine structure as a ligand, a metal-containing complex such as porphyrin or phthalocyanine, and an organic dye such as erosine, rhodamine or merocyanine may be used. In accordance with the use and the material of the semiconductor oxide porous layer to be used, an appropriate one can be appropriately selected without particular limitation.

一方、第二基材4は、表面に導電材料からなる膜(層)を形成することによるか、あるいは単独で電気を通す部材であれば何でも良く、特に制限されない。この第二基材4としては、ガラス板を使用するのが一般的であるが、ガラス板以外にも、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などのプラスチックフィルムシート、酸化チタン、アルミナなどセラミックスの研磨、Tiなどの金属などを用いることができる。そして、第二基材4上に後述する金属薄膜5を形成する。   On the other hand, the second substrate 4 is not particularly limited as long as it is formed by forming a film (layer) made of a conductive material on the surface or is a member that conducts electricity alone. As the second base material 4, a glass plate is generally used, but other than the glass plate, for example, a plastic such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) or the like. Polishing of ceramics such as a film sheet, titanium oxide, and alumina, and metals such as Ti can be used. Then, a metal thin film 5 described later is formed on the second substrate 4.

また、金属薄膜5は、例えば、白金や化学的に安定なカーボンを用いることができる。金属薄膜5の形成方法に関しては、例えば、金属薄膜5が白金からなる場合、スパッタ法や蒸着法といった真空製膜法、基板表面に塩化白金酸溶液などの含白金溶液を塗布後に熱処理を加える湿式製膜法などを用いておこなうことができる。   The metal thin film 5 can be made of, for example, platinum or chemically stable carbon. Regarding the method of forming the metal thin film 5, for example, when the metal thin film 5 is made of platinum, a vacuum film forming method such as a sputtering method or a vapor deposition method, or a wet method in which a heat treatment is applied after applying a platinum-containing solution such as a chloroplatinic acid solution to the substrate surface It can be performed using a film forming method or the like.

電解液6としては、例えば、酸化還元対を含む有機溶媒や、イオン液体(室温溶融塩)などを用いることができる。
酸化還元対も特に限定されるものでは無いが、例えばヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどを選ぶことができ、前者であればヨウ化物塩(リチウム塩、四級化イミダゾリウム塩、テトラブチルアンモニウム塩などを単独、あるいは複合して用いることができる)とヨウ素を単独、あるいは複合して添加することにより与えることができる。
As the electrolytic solution 6, for example, an organic solvent containing a redox pair, an ionic liquid (room temperature molten salt), or the like can be used.
The oxidation-reduction pair is not particularly limited. For example, iodine / iodide ion, bromine / bromide ion, etc. can be selected. In the former case, iodide salt (lithium salt, quaternized imidazolium salt, tetra Butylammonium salt and the like can be used alone or in combination, and iodine can be added alone or in combination.

有機溶媒としては、アセトニトリルやメトキシアセトニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどを用いた揮発性電解液が例示される。
また、イオン液体としては、例えば、四級化イミダゾリウム誘導体や四級化ピリジニウム誘導体、四級化アンモニウム誘導体といった四級化された窒素原子を有する化合物をカチオンとした室温で液体の常温溶融性塩がある。
Examples of the organic solvent include volatile electrolytes using acetonitrile, methoxyacetonitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, and the like.
Examples of the ionic liquid include, for example, a room temperature meltable salt that is a quaternary imidazolium derivative, a quaternized pyridinium derivative, a quaternized ammonium atom-containing compound having a quaternized nitrogen atom as a cation at room temperature. There is.

このような電解液6を適当なゲル化剤、充填剤を導入することにより流動性を抑え擬固体化したもの、いわゆるゲル電解質を用いても構わない。
電解液6には、更に必要に応じてリチウム塩やtert−ブチルピリジンなど種々の添加物を加えても構わない。更に、このような電解液と同様に電荷輸送能力を有する高分子固体電解質などを用いても構わない。
A so-called gel electrolyte obtained by suppressing the fluidity of such an electrolytic solution 6 by introducing an appropriate gelling agent and filler and so-called gel electrolyte may be used.
Various additives such as lithium salt and tert-butylpyridine may be further added to the electrolytic solution 6 as necessary. Further, a polymer solid electrolyte having a charge transporting ability as in the case of such an electrolytic solution may be used.

凹部7は、基材1(4)の外面に、例えば、超音波を発生する超音波発振子の先端を圧接し、又は圧接しながらスキャンして超音波を印可することで形成される溝である。このように、封止したい個所を超音波発振子でスキャンするだけで、二つの電極基板8,9同士を封止できるので、熱プレス法など他の方法と比べて簡易・高速であり、また、発熱部の熱劣化などの影響も少ないものとできる。しかも、粘度に関係なく電解液6を十分に、かつ、均一に挟み込むことができるので、エネルギー変換効率が向上したものとすることができる。   The concave portion 7 is a groove formed by, for example, pressing the tip of an ultrasonic oscillator that generates ultrasonic waves on the outer surface of the substrate 1 (4), or scanning while pressing and applying ultrasonic waves. is there. In this way, since the two electrode substrates 8 and 9 can be sealed by simply scanning the place to be sealed with an ultrasonic oscillator, it is simpler and faster than other methods such as a hot press method. In addition, the influence of the heat deterioration of the heat generating portion can be reduced. Moreover, since the electrolyte solution 6 can be sandwiched sufficiently and uniformly regardless of the viscosity, the energy conversion efficiency can be improved.

この超音波による封止は、プラスチック基板/プラスチック基板、プラスチック基板/金属基板、プラスチック基板/ガラス基板などの組み合わせに使用できる。したがって、封止したい個所を強く押さえて超音波を印可すると、その部分が局所的に加熱、溶融し、接合することができる。   This ultrasonic sealing can be used for combinations of plastic substrates / plastic substrates, plastic substrates / metal substrates, plastic substrates / glass substrates, and the like. Therefore, when an ultrasonic wave is applied while strongly pressing a portion to be sealed, the portion is locally heated and melted and can be joined.

また、本発明に係る色素増感太陽電池10では、二つの電極基板8,9間が電解液6で濡れている場合であっても、溶接部が局所加圧されており、かつ、超音波によりキャビティが発生して電解液6が封止部11を避けるため、問題なく正常に封止される。したがって、粘度の高い電解液にも使用することが可能となる。   Moreover, in the dye-sensitized solar cell 10 according to the present invention, even when the space between the two electrode substrates 8 and 9 is wet with the electrolyte solution 6, the welded portion is locally pressurized, and the ultrasonic wave As a result, a cavity is generated and the electrolytic solution 6 avoids the sealing portion 11, so that the sealing is normally performed without any problem. Therefore, it becomes possible to use also for electrolyte solution with high viscosity.

このような構成によれば、その封止部分は強固に接合され、化学的、機械的、熱的に高い特性を有し、優れた耐久性、安全性を示すものとなり、この色素増感太陽電池10を長期間屋外において過酷な使用条件の下で使用しても、その封止部分から電解液6が漏洩したり、水分や異物が侵入したりすることがない。   According to such a configuration, the sealed portion is firmly bonded, has high chemical, mechanical, and thermal properties, and exhibits excellent durability and safety. Even when the battery 10 is used outdoors under severe conditions for a long time, the electrolytic solution 6 does not leak from the sealed portion, and moisture and foreign matter do not enter.

また、電解液6を挟む第一領域αを囲むように配された第二領域のみに超音波を印可しているので、第一基板1上に形成した多孔質酸化物半導体層3に担持されている光増感用色素が加熱されて劣化することがなく、該色素が担持された第一基板1を接合、封止できることになり、製造操作が簡便となる。しかも、レーザー光を用いた封止方法よりも熱が発生しないため、多孔質酸化物半導体層3と封止部11に距離を置く必要もないものとすることができる。   Further, since the ultrasonic wave is applied only to the second region disposed so as to surround the first region α sandwiching the electrolytic solution 6, it is supported by the porous oxide semiconductor layer 3 formed on the first substrate 1. The photosensitizing dye is not deteriorated by heating, and the first substrate 1 carrying the dye can be bonded and sealed, and the manufacturing operation is simplified. In addition, since heat is not generated compared to the sealing method using laser light, it is not necessary to place a distance between the porous oxide semiconductor layer 3 and the sealing portion 11.

また、図1に示すように、前記第二領域βを囲むように、基板間に空隙を備える第三領域γを備えていても良い。
このように、第三領域γによる空隙を設けることにより、隙間に封止剤を促すことができるため、より外気との遮断が可能となる。また、第三領域γは絶縁部ともなることから、セルの短絡防止にもなる。
Moreover, as shown in FIG. 1, you may provide the 3rd area | region (gamma) provided with a space | gap between board | substrates so that the said 2nd area | region (beta) may be enclosed.
As described above, by providing the gap by the third region γ, the sealant can be promoted in the gap, so that it is possible to further block the outside air. Further, since the third region γ also serves as an insulating portion, it also prevents a short circuit of the cell.

また、前記第一基材1及び前記第二基材4を構成する部材は、超音波を通す材料からなると好ましい。この2枚の基材1、4を透過しての超音波の印可により、2枚の基材1、4が軟化、溶融し、接着力が一層高まり、接着層を介さずとも接続部が確実に固定されたものとなる。   Moreover, it is preferable that the member which comprises said 1st base material 1 and said 2nd base material 4 consists of the material which lets an ultrasonic wave pass. By applying ultrasonic waves through the two base materials 1 and 4, the two base materials 1 and 4 are softened and melted, and the adhesive force is further increased, and the connecting portion is securely connected without using an adhesive layer. It will be fixed to.

また、前記第二領域βの接合界面に形成される封止部11は、溶着されたものであると好ましい。2枚の基材1、4の接合界面が溶着されたものであると、接続部が確実に固定されたものとなる。   Moreover, it is preferable in the sealing part 11 formed in the joining interface of said 2nd area | region (beta) being what was welded. If the bonding interface between the two substrates 1 and 4 is welded, the connecting portion is securely fixed.

さらに、本発明に係る色素増感太陽電池10は、第一基材1又は第二電極としての金属薄膜5を通して前記第一領域αをRu色素の主吸収550nmの光を用いて観測した際に得られる反射率のばらつきが、1セル内において50%以内である。
このように色素の担持むらが少ないため、良好な発電効率が得られる。
Furthermore, when the dye-sensitized solar cell 10 according to the present invention observes the first region α using light having a main absorption of 550 nm of the Ru dye through the metal thin film 5 as the first substrate 1 or the second electrode. The obtained variation in reflectance is within 50% within one cell.
Thus, since there is little support | carrier nonuniformity of pigment | dye, favorable electric power generation efficiency is obtained.

以上の説明では、作用極入射型のセル構造に本発明を適用した事例について詳述したが、本発明はこの構造に限定されるものではなく、対極入射型や両極入射型のセル構造にも本発明は適用できる。   In the above description, the example in which the present invention is applied to the working electrode incident type cell structure has been described in detail. However, the present invention is not limited to this structure, and the present invention is not limited to this structure. The present invention is applicable.

また、第一基材1及び/又は第二基材4は、その内面に凹凸加工を施しても良い。この凹凸加工は、何れかの基材1(4)としてガラス板を用いた場合、エッチング法などを用いることで行なうことができる。また、何れかの基材1(4)が金属である場合は、切削法やプレス法、キャスト法、エッチング法などを用いることで凹凸加工を施すことが出来、例えば、材質として純チタンが好適である。さらに、何れかの基材1(4)がプラスチックである場合は、射出成形法や切削法、ダイスタンプ法などの簡便な方法で凹凸加工を施すことができる。しかも、何れかの基材1(4)にプラスチックを用いた場合、経済的に、軽量なモジュールを得ることができる。
これにより、基板における封止したい個所を強く押さえること無く、超音波を印可するとで容易かつ確実に二つの電極基板8,9同士を加熱、溶融し、接合することができる。
Moreover, you may give uneven | corrugated processing to the inner surface of the 1st base material 1 and / or the 2nd base material 4. FIG. This uneven | corrugated process can be performed by using the etching method etc., when a glass plate is used as any one of the base materials 1 (4). Further, when any one of the base materials 1 (4) is a metal, it is possible to perform uneven processing by using a cutting method, a pressing method, a casting method, an etching method, etc., for example, pure titanium is suitable as a material. It is. Furthermore, when any one of the base materials 1 (4) is a plastic, it is possible to perform uneven processing by a simple method such as an injection molding method, a cutting method, or a die stamp method. Moreover, when a plastic is used for any of the base materials 1 (4), a lightweight module can be obtained economically.
As a result, the two electrode substrates 8 and 9 can be easily heated and melted and bonded together by applying ultrasonic waves without strongly pressing a portion to be sealed in the substrate.

また、この両極基板8,9の間には、超音波が印可されることで加熱、溶融し、両極基板8,9を接合、封止する接着層(不図示)を設けても良い。この接着層としては、例えばハイミランに代表される熱可塑性樹脂など
を用いることができる。また、この接着層は、何れか一方もしくは両方の電極基板8,9に、印刷などの塗布手段により基板に塗布し、加熱して、乾燥又は仮焼成することで帯状に配するができる。
このように、両極基板8,9の間に接着層を配するようにした場合は、透過率、熱膨張率、成膜性などに応じ、適切な接着層を選ぶことができる。したがって、例えば異なる線膨張係数の基材を使用した際の緩衝層としても機能するため、封止部分の経時劣化を抑制するなど、設計の自由度を増すことができる。
In addition, an adhesive layer (not shown) for joining and sealing the bipolar substrates 8 and 9 by heating and melting by applying ultrasonic waves may be provided between the bipolar substrates 8 and 9. As the adhesive layer, for example, a thermoplastic resin typified by high Milan can be used. In addition, the adhesive layer can be arranged in a band shape by applying it to one or both of the electrode substrates 8, 9 by applying means such as printing, heating, drying, or pre-baking.
Thus, when an adhesive layer is disposed between the bipolar substrates 8 and 9, an appropriate adhesive layer can be selected according to the transmittance, the thermal expansion coefficient, the film formability, and the like. Therefore, for example, since it functions also as a buffer layer when using base materials having different linear expansion coefficients, it is possible to increase the degree of freedom in design, such as suppressing deterioration with time of the sealed portion.

次に、本発明に係る色素増感太陽電池10の製造方法の一例について説明する。
図2から図4は、色素増感太陽電池における窓極として機能する電極を設けた窓極基板8を作製する工程を順次示す図であり、図5及び図6は、色素増感太陽電池における対極として機能する電極を設けた対極基板9を作製する工程を順次示す図である。そして、図7及び図8は、前記窓極基板8と対極基板9とを接合することで、本発明に係る色素増感太陽電池を製造する一例を示す概略断面図である。
Next, an example of a method for producing the dye-sensitized solar cell 10 according to the present invention will be described.
FIG. 2 to FIG. 4 are diagrams sequentially showing steps for producing a window electrode substrate 8 provided with an electrode functioning as a window electrode in a dye-sensitized solar cell. FIGS. 5 and 6 are diagrams in the dye-sensitized solar cell. It is a figure which shows sequentially the process of producing the counter electrode substrate 9 provided with the electrode which functions as a counter electrode. 7 and 8 are schematic cross-sectional views showing an example of manufacturing the dye-sensitized solar cell according to the present invention by bonding the window electrode substrate 8 and the counter electrode substrate 9 together.

まず、窓極基板8の作製方法について説明する。
図2に示すように、第一基材1を準備し、この第一基材1の一方の面の上に透明導電膜2を設ける。
第一基材2としては、通常用いられているガラス板でも差し支えないが、低コスト化とともに軽量化も図れるプラスチックを採用してもよい。
また、透明導電膜2の形成方法としては、透明導電膜2の材料に応じて公知の方法を用いて行えば良く、例えば、スパッタ法やCVD法(気相成長法)、SPD法(スプレー熱分解堆積法)、蒸着法などにより、フッ素添加スズ(FTO)などの酸化物半導体からなる薄膜を形成する。この薄膜は、厚過ぎると光透過性が劣り、一方、薄過ぎると導電性が劣ってしまうため、光透過性と導電性の両方を考慮して、0.2μm〜2μm程度の膜厚に形成する。これにより、窓側電極用の導電性基板が構成される
引き続き、この成膜された薄膜の上に、レジストをスクリーン印刷法などにより形成した後、レジストをエッチングして第一基材1の表面上に、所定のパターンの透明導電膜2を作製する。これにより、窓側電極用の導電性基板が構成される
First, a method for producing the window electrode substrate 8 will be described.
As shown in FIG. 2, a first substrate 1 is prepared, and a transparent conductive film 2 is provided on one surface of the first substrate 1.
As the first base material 2, a glass plate that is usually used may be used. However, a plastic that can reduce the cost and reduce the weight may be employed.
As a method for forming the transparent conductive film 2, a known method may be used depending on the material of the transparent conductive film 2. For example, a sputtering method, a CVD method (vapor phase growth method), an SPD method (spray heat) is used. A thin film made of an oxide semiconductor such as fluorine-added tin (FTO) is formed by a decomposition deposition method) or an evaporation method. If this thin film is too thick, the light transmittance is inferior, while if it is too thin, the conductivity is inferior. Therefore, in consideration of both the light transmittance and the conductivity, the thin film is formed to a thickness of about 0.2 μm to 2 μm. To do. Thus, a conductive substrate for the window-side electrode is formed. Subsequently, a resist is formed on the formed thin film by a screen printing method or the like, and then the resist is etched on the surface of the first substrate 1. Then, a transparent conductive film 2 having a predetermined pattern is produced. Thereby, the electroconductive board | substrate for window side electrodes is comprised.

次いで、図3及び図4に示すように、窓側電極用の導電性基板における透明導電膜2上に、多孔質酸化物半導体層3を形成する。多孔質酸化物半導体層3の形成方法としては、例えば、二酸化チタン(TiO)の粉末を分散媒と混ぜてペーストを調整し、これをスクリーン印刷法やインクジェットプリント法、ロールコート法、ドクターブレード法、スピンコート法などにより透明導電膜2上に塗布し、焼成する。そして、この多孔質酸化物半導体層3は、2μm〜30μm程度に形成する。
そして、多孔質酸化物半導体層3の粒子間に、増感色素を担持させることで、窓極基板8を構成する。増感色素の担持は、例えば、多孔質酸化物半導体層3が形成された導電性基板を色素液に浸漬することで成し得ることができる。
Next, as shown in FIGS. 3 and 4, the porous oxide semiconductor layer 3 is formed on the transparent conductive film 2 in the conductive substrate for the window side electrode. As a method for forming the porous oxide semiconductor layer 3, for example, a titanium dioxide (TiO 2 ) powder is mixed with a dispersion medium to prepare a paste, which is subjected to a screen printing method, an ink jet printing method, a roll coating method, a doctor blade, or the like. It is applied onto the transparent conductive film 2 by a method such as a spin coating method and baked. And this porous oxide semiconductor layer 3 is formed in about 2 micrometers-30 micrometers.
The window electrode substrate 8 is configured by supporting a sensitizing dye between the particles of the porous oxide semiconductor layer 3. The loading of the sensitizing dye can be achieved, for example, by immersing the conductive substrate on which the porous oxide semiconductor layer 3 is formed in the dye solution.

次に、対極として機能する電極を設けた対極基板9の作製方法について説明する。
まず、プラスチックよりなる第二基材4を準備し、この第二基材4の一面に導電層を設ける。導電層の形成方法としては、第一基材1の場合と同様に、導電層の材料に応じて公知の方法を用いて行えば良く、例えば、スパッタ法やCVD法(気相成長法)、SPD法(スプレー熱分解堆積法)、蒸着法などにより、フッ素添加スズ(FTO)などの酸化物半導体からなる薄膜を形成する。この導電層は、厚過ぎるとコストが増加する要因となり、一方、薄過ぎると導電性が劣ってしまうこととなるため、コストと導電性の両方を考慮して、0.2μm〜2μm程度の膜厚に形成する。これにより、対極用の導電性基板が構成される。
引き続き、この成膜された導電層の上に、レジストをスクリーン印刷法などにより形成した後、レジストをエッチングして所望の形状をしたユニットセルパターンを作製する。
これにより、対極用の導電性基板が構成される。
Next, a manufacturing method of the counter electrode substrate 9 provided with an electrode functioning as a counter electrode will be described.
First, a second substrate 4 made of plastic is prepared, and a conductive layer is provided on one surface of the second substrate 4. As a method for forming the conductive layer, similarly to the case of the first substrate 1, a known method may be used according to the material of the conductive layer. For example, a sputtering method, a CVD method (vapor phase growth method), A thin film made of an oxide semiconductor such as fluorine-added tin (FTO) is formed by SPD (spray pyrolysis deposition) or vapor deposition. If the conductive layer is too thick, the cost increases. On the other hand, if the conductive layer is too thin, the conductivity is inferior. Therefore, considering both the cost and the conductivity, the film is about 0.2 μm to 2 μm. Form thick. Thereby, the electroconductive board | substrate for counter electrodes is comprised.
Subsequently, after a resist is formed on the deposited conductive layer by a screen printing method or the like, the resist is etched to produce a unit cell pattern having a desired shape.
Thereby, the electroconductive board | substrate for counter electrodes is comprised.

次いで、図5に示すように、対極用の導電性基板における導電層の上に、金属薄膜5を形成する。この金属薄膜5としては、白金やカーボンを用いることができ、スパッタ法や蒸着法といった真空製膜法によって形成できるほか、基板表面に塩化白金酸溶液などの含白金溶液を塗布後に熱処理を加える湿式製膜法などによっても行なうことができる。この金属薄膜5の厚さは、0.005μm〜0.3μm程度とする。
引き続き、この成膜された金属薄膜5の上に、レジストをスクリーン印刷法などにより形成した後、不要部分をエッチング除去することにより対極基板9を構成する。
Next, as shown in FIG. 5, the metal thin film 5 is formed on the conductive layer in the conductive substrate for the counter electrode. As the metal thin film 5, platinum or carbon can be used, and it can be formed by a vacuum film forming method such as a sputtering method or a vapor deposition method. In addition, a wet process in which a platinum-containing solution such as a chloroplatinic acid solution is applied to the substrate surface and heat treatment is applied. It can also be performed by a film forming method. The thickness of the metal thin film 5 is about 0.005 μm to 0.3 μm.
Subsequently, after a resist is formed on the formed metal thin film 5 by a screen printing method or the like, the counter electrode substrate 9 is configured by etching away unnecessary portions.

なお、図示しないが、ここで金属薄膜5が成膜された第二基材4の上に、印刷などの塗布手段によりヒートシール性接着剤を塗布し、乾燥又は仮焼成することで、超音波が印可されることで加熱溶融する接着層を形成するようにしても良い。また、接着層は、樹脂フィルムを貼り付けることで形成しても良い。   Although not shown in the figure, a heat sealable adhesive is applied onto the second base material 4 on which the metal thin film 5 is formed by an application means such as printing, and is then dried or pre-baked to produce ultrasonic waves. An adhesive layer that is heated and melted may be formed by applying. The adhesive layer may be formed by attaching a resin film.

次いで、図7に示すように、図3及び図4に示した窓極基板8と図5及び図6に示した対極基板9とを、窓極基板8に設けた多孔質酸化物半導体層3と対極基板9に設けた金属薄膜5とが向かい合うように配置すると共に、その間に電解液6として、イオン性液体など高粘度溶媒を用いた電解液、ナノコンポジットイオンゲル電解質などの固体、擬固体電解質、及び従来の電解液を挟み込むように両極基板8,9を重ね合わせる。   Next, as shown in FIG. 7, the porous oxide semiconductor layer 3 in which the window electrode substrate 8 shown in FIGS. 3 and 4 and the counter electrode substrate 9 shown in FIGS. 5 and 6 are provided on the window electrode substrate 8. And the metal thin film 5 provided on the counter electrode substrate 9 are opposed to each other, and as the electrolyte 6, an electrolyte using a high viscosity solvent such as an ionic liquid, a solid or quasi-solid electrolyte such as a nanocomposite ion gel electrolyte And the bipolar substrates 8 and 9 are overlapped so as to sandwich the conventional electrolyte.

そして、図8に示すように、封止したい個所を強く押さえ付けた状態で、何れか一方もしくは両方の基材の外面に超音波発振子12の先端を圧接し、又は圧接しながらスキャンして電解液6を囲むように超音波を印可することで、超音波が基材を透過して前記電解液6の周囲を封止し、図1に示すような色素増感太陽電池10とする。
この超音波発振子を備える超音波接合装置としては、例えば、図9(a)に示すように、所定の領域に対して一度に超音波を印可することが可能な線状タイプの超音波接合装置12Aや、図9(b)に示すように、スキャンしながら局部的に超音波を印可することが可能な鏝状(もしくはペン状)タイプの超音波接合装置12Bが挙げられる。また、図示しないが、一度に環状に超音波を印可することが可能な枠状タイプの超音波接合装置としても良い。
Then, as shown in FIG. 8, in a state where the portion to be sealed is strongly pressed, the tip of the ultrasonic oscillator 12 is pressed against the outer surface of one or both of the base materials, or scanned while being pressed. By applying ultrasonic waves so as to surround the electrolytic solution 6, the ultrasonic waves pass through the base material and seal the periphery of the electrolytic solution 6, thereby obtaining a dye-sensitized solar cell 10 as shown in FIG. 1.
As an ultrasonic bonding apparatus provided with this ultrasonic oscillator, for example, as shown in FIG. 9A, a linear type ultrasonic bonding capable of applying ultrasonic waves to a predetermined region at a time. As shown in FIG. 9B, an apparatus 12A and a bowl-shaped (or pen-shaped) type ultrasonic bonding apparatus 12B capable of applying ultrasonic waves locally while scanning can be used. Although not shown, a frame-type ultrasonic bonding apparatus that can apply ultrasonic waves in a ring shape at a time may be used.

以上のような構成により、電解液の粘度に依存すること無く、両極間の面内に均一に電解質層を配置することができる。よって、両極基板等に電解液注入用の小孔が無く、簡単な構造をしたものとすることができる。また、両極基板の接合による電解質層の封止は、超音波の印可によって印可された部分が部分的に発熱・溶融するので、基板全体が加熱されることなく、封止時の熱による接続部のダメージや色素の劣化を抑制でき、電解質層を外気と確実に遮断することができる。しかも、接合部分が電解液で濡れた状態であっても、超音波による局所的な加熱によって確実に電解質層を封止することができる。   With the above configuration, the electrolyte layer can be uniformly disposed in the plane between both electrodes without depending on the viscosity of the electrolytic solution. Therefore, the bipolar substrate or the like has no small holes for injecting the electrolyte, and can have a simple structure. In addition, the sealing of the electrolyte layer by joining the bipolar substrates partially heats and melts the portion applied by the application of ultrasonic waves, so that the whole substrate is not heated, and the connection portion by the heat at the time of sealing Damage and pigment deterioration can be suppressed, and the electrolyte layer can be reliably shielded from the outside air. In addition, even when the joint portion is wet with the electrolytic solution, the electrolyte layer can be reliably sealed by local heating using ultrasonic waves.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
まず、窓極基材(第一基材1)として、15mm×20mmの大きさをした、ポリエチレンナフタレート(PEN)フィルム、ポリエチレンテレフタレート(PET)フィルム、40μm厚金属チタン箔、をそれぞれ準備し、チタン箔を除く基材の一面に、表1に示すような透明導電膜2を形成した後、その上に酸化チタンペーストを塗布し、酸化チタニア膜からなる多孔質酸化物半導体層3を形成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.
First, as a window electrode base material (first base material 1), a polyethylene naphthalate (PEN) film, a polyethylene terephthalate (PET) film, and a 40 μm-thick metal titanium foil each having a size of 15 mm × 20 mm were prepared. After forming a transparent conductive film 2 as shown in Table 1 on one surface of the substrate excluding the titanium foil, a titanium oxide paste was applied thereon to form a porous oxide semiconductor layer 3 made of a titania film. .

Figure 2007287484
Figure 2007287484

多孔質酸化物半導体層3は、窓極基材がポリエチレンナフタレート(PEN)フィルム、及びポリエチレンテレフタレート(PET)フィルムの場合、メンディングテープをスペーサーとして樹脂フィルム上に酸化チタンペースト(「Ti−nanoxide T/L」:Solaronix 社製)をしごき塗りし、乾燥した後、熱風循環型のオーブンにて150℃で30分間焼成し、オーブンから取り出した後、電極面積が10mm×10mmとなるように、余分の酸化チタニア多孔膜を削り落として作製した。   When the window electrode base material is a polyethylene naphthalate (PEN) film or a polyethylene terephthalate (PET) film, the porous oxide semiconductor layer 3 is made of titanium oxide paste (“Ti-nanoxide” on a resin film using a mending tape as a spacer. (T / L ”: manufactured by Solaronix), dried, baked at 150 ° C. for 30 minutes in a hot air circulation oven, and taken out of the oven, so that the electrode area becomes 10 mm × 10 mm. The excess porous titania porous membrane was scraped off.

そして、多孔質酸化物半導体層3を形成したそれぞれの窓極基材は、0.3mMのN3色素(「Ruthenium535」:Solaronix 社製)、t−ブタノール、アセトニトリル等量混合溶媒に一晩浸漬し、チタニア多孔膜表面に色素を担持させてそれぞれ窓極基板8とした。   Then, each window electrode base material on which the porous oxide semiconductor layer 3 is formed is immersed overnight in a mixed solvent of equal amounts of 0.3 mM N3 dye (“Ruthenium535” manufactured by Solaronix), t-butanol and acetonitrile. A dye was supported on the surface of the titania porous film to form window electrode substrates 8 respectively.

一方、対極基材(第二基材4)として、15mm×20mmの大きさをした、ポリエチレンナフタレート(PEN)フィルム、ポリエチレンテレフタレート(PET)フィルム、金属チタン箔(40μm厚)、をそれぞれ準備し、これらの基材の上面に、スパッタ法にてシート抵抗10Ω/□の白金を金属薄膜5として30nmの厚さにそれぞれ形成して、それぞれ対極基板9とした。   On the other hand, as a counter electrode base material (second base material 4), a polyethylene naphthalate (PEN) film, a polyethylene terephthalate (PET) film, and a metal titanium foil (40 μm thickness) each having a size of 15 mm × 20 mm were prepared. On the upper surfaces of these base materials, platinum having a sheet resistance of 10 Ω / □ was formed as a metal thin film 5 to a thickness of 30 nm by sputtering, and each was used as a counter electrode substrate 9.

そして、窓極基板8に設けた多孔質酸化物半導体層3と対極基板9に設けた金属薄膜5とが向かい合うように配置すると共に、その間に電解液6を充填して該電解液6を挟み込むように両極基板8,9とを直接重ね合わせた。
また、この際、両極基板8,9を直接重ね合わせたものとは別に、対極基板9の金属薄膜5側に、接着層として、窓極基板8の多孔質酸化物半導体層3の周囲を取り囲むような環状をした幅1mmの樹脂フィルムを配し、窓極基板8に設けた多孔質酸化物半導体層3と対極基板9に設けた金属薄膜5とが向かい合うように配置すると共に、その間に電解液6を充填して該接着層(樹脂フィルム)を介して両極基板8,9を重ね合わせものも用意した。
Then, the porous oxide semiconductor layer 3 provided on the window electrode substrate 8 and the metal thin film 5 provided on the counter electrode substrate 9 are arranged so as to face each other, and the electrolyte solution 6 is filled therebetween to sandwich the electrolyte solution 6. Thus, the bipolar substrates 8 and 9 were directly overlapped.
In addition, at this time, apart from the case where the bipolar substrates 8 and 9 are directly overlapped, the periphery of the porous oxide semiconductor layer 3 of the window electrode substrate 8 is surrounded as an adhesive layer on the metal thin film 5 side of the counter electrode substrate 9. An annular resin film having a width of 1 mm is disposed, and the porous oxide semiconductor layer 3 provided on the window electrode substrate 8 and the metal thin film 5 provided on the counter electrode substrate 9 are disposed so as to face each other, and electrolysis is performed therebetween. The liquid 6 was filled, and a substrate in which the bipolar substrates 8 and 9 were overlapped via the adhesive layer (resin film) was also prepared.

この電解液6には、1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (略称「EMIm−TFSI」)溶液中に、1.5Mの1-ethyl-3-methylimidazolium iodide(略称「EMIm−I」)、0.1MのLiI、0.15MのI、0.5Mの4-t-buthylpyridene(略称「TBP」)、0.8wt%のHOを溶解したもの(略称「イオン液体型」)、メトキシアセトニトリル溶媒中に、0.3Mの1,2-dimethyl-3-propylimidazoliumiodide、0.1MのLiI、0.05MのI、0.5MのTBPを溶解したもの(揮発型)、及び前記イオン液体型に10wt%のチタニアナノ粒子(25nm)を加えたもの(略称「イオンゲル型」)を用いた。 This electrolyte solution 6 includes 1.5M 1-ethyl-3-methylimidazolium iodide (abbreviated as “EMIm-I”) in 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (abbreviated as “EMIm-TFSI”) solution. ), 0.1M LiI, 0.15M I 2 , 0.5M 4-t-buthylpyridene (abbreviation “TBP”), 0.8 wt% H 2 O dissolved (abbreviation “ionic liquid type”) ), 0.3 M 1,2-dimethyl-3-propylimidazoliumiodide, 0.1 M LiI, 0.05 M I 2 , 0.5 M TBP dissolved in methoxyacetonitrile solvent (volatile type), and What added 10 wt% titania nanoparticle (25 nm) to the ionic liquid type (abbreviation "ion gel type") was used.

そして、重ね合わせた両極基板8,9の封止したい個所を強く押さえ付けた状態で、超音波発振子12の先端を圧接し、スキャンしながら局部的に超音波を印可することで周囲を封止して、窓極基板8と対極基板9とを貼り合わせてセルとした。なお、超音波接合には、精電舎電子工業社製の「SONOPET250B」を用いた。   Then, in a state where the portions to be sealed of the stacked bipolar substrates 8 and 9 are pressed firmly, the tip of the ultrasonic oscillator 12 is pressed and the ultrasonic wave is applied locally while scanning, thereby sealing the periphery. The window electrode substrate 8 and the counter electrode substrate 9 were bonded together to form a cell. For ultrasonic bonding, “SONOPET250B” manufactured by Seidensha Electronics Co., Ltd. was used.

重ね合わせた窓極基板8と対極基板9、及び接着層の組み合わせは、表2に纏めて示した。
なお、接着層は、厚さ50μmのオレフィン系樹脂フィルム(「ハイミラン」:三井デュポンポリケミカル社製)を「A」、厚さ75μmのポリエチレンテレフタレート(PET)フィルムを「B」とし、接着層なし(すなわち、窓極基板8と対極基板9とを直に接合した)ものを「C」として表1中に示した。
Combinations of the superimposed window electrode substrate 8 and counter electrode substrate 9 and adhesive layer are shown in Table 2.
The adhesive layer is an olefin resin film having a thickness of 50 μm (“High Milan”: Mitsui DuPont Polychemical Co., Ltd.) “A”, a polyethylene terephthalate (PET) film having a thickness of 75 μm is “B”, and there is no adhesive layer. A sample obtained by joining the window electrode substrate 8 and the counter electrode substrate 9 directly (C) is shown in Table 1.

また、比較例1として、窓極基材として15mm×20mmの大きさをしたポリエチレンテレフタレート(PET)フィルムを準備し、この基材の上面に、SPD法にてシート抵抗10Ω/□のフッ素ドープ酸化スズ(FTO)膜を透明導電膜として1μmの厚さに形成した。次いで、成膜された透明導電膜の上に酸化チタンペースト[Ti−nanoxide T (Solaronix 社製)]を10μmの厚さに塗布し、乾燥した後、熱風循環型のオーブンにて450℃で30分間焼成し、オーブンから取り出した後、電極面積が10mm×10mmとなるように、余分の酸化チタニア多孔膜を削り落として、多孔質酸化物半導体層として機能する多孔質酸化チタン膜(以下、チタニア多孔膜とも呼ぶ)を作製した。そして、多孔質酸化チタン膜が形成されたガラス板は、0.3mMのN3色素(「Ruthenium535」:Solaronix 社製)、t−ブタノール、アセトニトリル等量混合溶媒に一晩浸漬して、チタニア多孔膜表面に色素を担持させて窓極基板とした。   Further, as Comparative Example 1, a polyethylene terephthalate (PET) film having a size of 15 mm × 20 mm was prepared as a window electrode base material, and fluorine-doped oxidation with a sheet resistance of 10Ω / □ was performed on the upper surface of the base material by the SPD method. A tin (FTO) film was formed to a thickness of 1 μm as a transparent conductive film. Next, a titanium oxide paste [Ti-nanoxide T (manufactured by Solaronix)] is applied on the formed transparent conductive film to a thickness of 10 μm, dried, and then dried at 450 ° C. in a hot air circulation type oven. After firing for 5 minutes and taking out from the oven, a porous titanium oxide film (hereinafter referred to as titania) functioning as a porous oxide semiconductor layer is scraped off so that the electrode area becomes 10 mm × 10 mm. Also called a porous membrane). Then, the glass plate on which the porous titanium oxide film was formed was immersed in a mixed solvent of 0.3 mM N3 dye ("Ruthenium535" manufactured by Solaronix), t-butanol, acetonitrile, and the like overnight to form a titania porous film. A dye was supported on the surface to obtain a window electrode substrate.

一方、対極基材として、15mm×20mmの大きさをしたポリエチレンテレフタレート(PET)フィルムを準備し、この基材の上面に、スパッタ法にてシート抵抗10Ω/□の白金を金属薄膜として20nmの厚さにそれぞれ形成して、対極基板とした。
そして、接着層なしに両電極基板を140℃程度の加熱プレスにて貼り合せた。その後、予め窓極・対極・接着性フィルムなどに開けておいた電解液注入孔より内部に電解液を入れて、接着剤で該注入孔を封じセルとした。
On the other hand, a polyethylene terephthalate (PET) film having a size of 15 mm × 20 mm was prepared as a counter electrode substrate, and a 20 nm thick platinum film having a sheet resistance of 10Ω / □ was formed on the upper surface of the substrate by sputtering. Each was formed as a counter electrode substrate.
And both electrode board | substrates were bonded together by the hot press at about 140 degreeC without the contact bonding layer. Thereafter, an electrolytic solution was introduced into the inside from an electrolytic solution injection hole previously opened in a window electrode, a counter electrode, an adhesive film, etc., and the injection hole was sealed with an adhesive to form a cell.

さらに、比較例2として、窓極基材として15mm×20mmの大きさをしたポリエチレンテレフタレート(PET)フィルムを準備し、この基材の上面に、SPD法にてシート抵抗10Ω/□のフッ素ドープ酸化スズ(FTO)膜を透明導電膜として1μmの厚さに形成した。次いで、成膜された透明導電膜の上に酸化チタンペースト[Ti−nanoxide T (Solaronix 社製)]を10μmの厚さに塗布し、乾燥した後、熱風循環型のオーブンにて450℃で30分間焼成し、オーブンから取り出した後、電極面積が10mm×10mmとなるように、余分の酸化チタニア多孔膜を削り落として、多孔質酸化物半導体層として機能する多孔質酸化チタン膜(以下、チタニア多孔膜とも呼ぶ)を作製した。そして、多孔質酸化チタン膜が形成されたガラス板は、0.3mMのN3色素(「Ruthenium535」:Solaronix 社製)、t−ブタノール、アセトニトリル等量混合溶媒に一晩浸漬して、チタニア多孔膜表面に色素を担持させて窓極基板とした。   Furthermore, as Comparative Example 2, a polyethylene terephthalate (PET) film having a size of 15 mm × 20 mm was prepared as a window electrode base material, and fluorine-doped oxidation with a sheet resistance of 10Ω / □ was performed on the upper surface of the base material by the SPD method. A tin (FTO) film was formed to a thickness of 1 μm as a transparent conductive film. Next, a titanium oxide paste [Ti-nanoxide T (manufactured by Solaronix)] is applied on the formed transparent conductive film to a thickness of 10 μm, dried, and then dried at 450 ° C. in a hot air circulation type oven. After firing for 5 minutes and taking out from the oven, a porous titanium oxide film (hereinafter referred to as titania) functioning as a porous oxide semiconductor layer is scraped off so that the electrode area becomes 10 mm × 10 mm. Also called a porous membrane). Then, the glass plate on which the porous titanium oxide film was formed was immersed in a mixed solvent of 0.3 mM N3 dye ("Ruthenium535" manufactured by Solaronix), t-butanol, acetonitrile, and the like overnight to form a titania porous film. A dye was supported on the surface to obtain a window electrode substrate.

一方、対極基材として、15mm×20mmの大きさをしたポリエチレンテレフタレート(PET)フィルムを準備し、この基材の上面に、スパッタ法にてシート抵抗10Ω/□の白金を金属薄膜として20nmの厚さにそれぞれ形成して、対極基板とした。
そして、両電極基板の間に電解液を充填した後、接着層なしに両電極基板を140℃程度の加熱プレスにて貼り合せセルとした。
On the other hand, a polyethylene terephthalate (PET) film having a size of 15 mm × 20 mm was prepared as a counter electrode substrate, and a 20 nm thick platinum film having a sheet resistance of 10Ω / □ was formed on the upper surface of the substrate by sputtering. Each was formed as a counter electrode substrate.
And after filling electrolyte solution between both electrode board | substrates, both electrode board | substrates were made into the bonding cell with the heating press of about 140 degreeC without the contact bonding layer.

Figure 2007287484
Figure 2007287484

そして、上記のように作製した実施例1乃至7、及び比較例1及び2での電解液の封止状態を確認すると共に、各セル全体に光を当て、エネルギー変換効率を測定した。なお、発電特性は、100mW/cm、AM−1.5の疑似太陽光下にて計測した。その結果を、表3に示す。なお、封止状態は、電解液の漏れがないものを「○」、電解液の漏れがあったものを「×」で示した。 And while confirming the sealing state of the electrolyte solution in Examples 1 thru | or 7 produced as mentioned above and Comparative Examples 1 and 2, light was applied to each whole cell, and the energy conversion efficiency was measured. The power generation characteristics were measured under pseudo sunlight of 100 mW / cm 2 and AM-1.5. The results are shown in Table 3. The sealed state was indicated by “◯” when there was no leakage of the electrolytic solution, and “X” when there was leakage of the electrolytic solution.

また、1セル(10mm角)の略中央部を16マス(=4×4、1マス=2mm角)に区分し、各マスごとに、Ru色素の主吸収550nmの光を用いて観測した際に得られる反射率を測定した。そして、各マスごとに得られた反射率の最大値と最小値との差分[%]を算出することにより、1セル内における反射率のばらつき(表3には、変色[%]として表記)とした。表3の評価欄には、変色が30%以下の場合(○印)と、変色が50%以下の場合(△印)と、変色が50%を越える場合(×印)とを記号により明記した。   In addition, when a substantially central portion of one cell (10 mm square) is divided into 16 squares (= 4 × 4, 1 square = 2 mm square), and each square is observed using light having a main absorption of 550 nm of a Ru dye. The reflectance obtained was measured. Then, by calculating the difference [%] between the maximum value and the minimum value of the reflectance obtained for each cell, the variation in reflectance within one cell (shown as discoloration [%] in Table 3). It was. In the evaluation column of Table 3, when the discoloration is 30% or less (○ mark), when the discoloration is 50% or less (△ mark), and when the discoloration exceeds 50% (× mark), specify by symbol did.

Figure 2007287484
Figure 2007287484

その結果、電解液の封止状態においては、加熱プレスでは接合部分が濡れた状態であると確実に封止することが出来なかったが、超音波によれば、接合部分が濡れた状態であっても、確実に封止することができた。したがって、本発明の色素増感太陽電池では、熱による接続部のダメージなく、あらゆる粘度の電解液、電解質を用いることができることがわかる。   As a result, in the sealed state of the electrolytic solution, the heated press could not be reliably sealed if the joined portion was wet. However, according to the ultrasonic wave, the joined portion was wet. Even if it was able to seal reliably. Therefore, it can be seen that the dye-sensitized solar cell of the present invention can use electrolytes and electrolytes of all viscosities without damage to the connecting portion due to heat.

また、エネルギー変換効率においては、何れも従来法による比較例1と比較して劣ることのないエネルギー変換効率を示した。したがって、超音波によれば、エネルギー変換効率が低下すること無く良好なものとすることが出来た。   Moreover, in energy conversion efficiency, all showed the energy conversion efficiency which is not inferior compared with the comparative example 1 by a conventional method. Therefore, according to the ultrasonic wave, the energy conversion efficiency can be improved without decreasing.

本発明に係る色素増感太陽電池の構造の一例を示す図であり、(a)は概略平面図、(b)は(a)に示すA−A線に沿う概略断面図である。It is a figure which shows an example of the structure of the dye-sensitized solar cell which concerns on this invention, (a) is a schematic plan view, (b) is a schematic sectional drawing which follows the AA line shown to (a). 本発明に係る色素増感太陽電池における第一電極(窓極)として機能する電極を設けた基板を作製する一例の第一工程を示す概略断面図である。It is a schematic sectional drawing which shows the 1st process of an example which produces the board | substrate provided with the electrode which functions as a 1st electrode (window electrode) in the dye-sensitized solar cell which concerns on this invention. 本発明に係る色素増感太陽電池における第一電極(窓極)として機能する電極を設けた基板を作製する一例の第二工程を示す概略断面図である。It is a schematic sectional drawing which shows the 2nd process of an example which produces the board | substrate provided with the electrode which functions as a 1st electrode (window electrode) in the dye-sensitized solar cell which concerns on this invention. 図3に示すB−B線に沿う概略断面図である。It is a schematic sectional drawing which follows the BB line shown in FIG. 本発明に係る色素増感太陽電池における第二電極(対極)として機能する電極を設けた基板を作製する一例の第一工程を示す概略断面図である。It is a schematic sectional drawing which shows the 1st process of an example which produces the board | substrate which provided the electrode which functions as a 2nd electrode (counter electrode) in the dye-sensitized solar cell which concerns on this invention. 図5に示すC−C線に沿う概略断面図である。It is a schematic sectional drawing which follows the CC line shown in FIG. 本発明に係る色素増感太陽電池における第一電極(窓極)と第二電極(対極)との間に電解質層を挟み込み、両電極を貼り合せる工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of putting an electrolyte layer between the 1st electrode (window electrode) and the 2nd electrode (counter electrode) in the dye-sensitized solar cell which concerns on this invention, and bonding both electrodes. 本発明に係る色素増感太陽電池における第一電極(窓極)と第二電極(対極)とを貼り合せ、局所的に超音波を印可して加熱工程を示す概略断面図である。It is a schematic sectional drawing which bonds a 1st electrode (window electrode) and a 2nd electrode (counter electrode) in a dye-sensitized solar cell concerning the present invention, and applies a ultrasonic wave locally and shows a heating process. 超音波溶接する超音波接合装置の一例を示す図である。It is a figure which shows an example of the ultrasonic bonding apparatus which ultrasonically welds. 従来の色素増感太陽電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional dye-sensitized solar cell.

符号の説明Explanation of symbols

α 第一領域、β 第二領域、γ 第三領域、1 第一基材、2 透明導電膜(第一電極)、3 多孔質酸化物半導体層、4 第二基材、5 金属薄膜(第二電極)、6 電解質層、7 凹部、8 窓極基板、9 対極基板、10 色素増感太陽電池、11 接合部、12 超音波接合部材。
α first region, β second region, γ third region, 1st substrate, 2 transparent conductive film (first electrode), 3 porous oxide semiconductor layer, 4th substrate, 5 metal thin film (1st) 2 electrodes), 6 electrolyte layer, 7 recess, 8 window electrode substrate, 9 counter electrode substrate, 10 dye-sensitized solar cell, 11 bonding portion, 12 ultrasonic bonding member.

Claims (5)

増感色素を担持させた多孔質酸化物半導体層を有して構成され、窓極として機能する第一電極と、少なくとも一部に電解質層を介して前記第一電極と対向して配される第二電極とを備えてなる色素増感太陽電池であって、
前記第一電極を設ける第一基材と前記第二電極を設ける第二基材は、その重なり方向において、前記電解質層を挟む第一領域と、前記第一基材及び/又は前記第二基材の外面に凹部を有する第二領域とを少なくとも備え、前記第二領域は前記第一領域を囲むように配されていることを特徴とする色素増感太陽電池。
A first electrode that has a porous oxide semiconductor layer carrying a sensitizing dye and functions as a window electrode, and is disposed at least partially opposite to the first electrode via an electrolyte layer A dye-sensitized solar cell comprising a second electrode,
The first base material on which the first electrode is provided and the second base material on which the second electrode is provided are, in the overlapping direction, a first region sandwiching the electrolyte layer, the first base material and / or the second base material. And a second region having a recess on the outer surface of the material, and the second region is disposed so as to surround the first region.
前記第二領域を囲むように、基板間に空隙を備える第三領域を備えていることを特徴とする請求項1に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, further comprising a third region having a gap between the substrates so as to surround the second region. 前記第一基材及び前記第二基材を構成する部材は、超音波を通す材料からなることを特徴とする請求項1又は2に記載の色素増感太陽電池。   3. The dye-sensitized solar cell according to claim 1, wherein the members constituting the first base material and the second base material are made of a material through which an ultrasonic wave passes. 前記第二領域の接合界面は、溶着していることを特徴とする請求項1又は2に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1 or 2, wherein the bonding interface of the second region is welded. 前記第一基材又は第二電極を通して前記第一領域をRu色素の主吸収550nmの光を用いて観測した際に得られる反射率のばらつきが、1セル内において50%以内であることを特徴とする請求項1に記載の色素増感太陽電池。
Variation in reflectance obtained when observing the first region with light having a main absorption of Ru dye of 550 nm through the first substrate or the second electrode is within 50% within one cell. The dye-sensitized solar cell according to claim 1.
JP2006113726A 2006-04-17 2006-04-17 Method for producing dye-sensitized solar cell Active JP5089911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113726A JP5089911B2 (en) 2006-04-17 2006-04-17 Method for producing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113726A JP5089911B2 (en) 2006-04-17 2006-04-17 Method for producing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2007287484A true JP2007287484A (en) 2007-11-01
JP5089911B2 JP5089911B2 (en) 2012-12-05

Family

ID=38759067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113726A Active JP5089911B2 (en) 2006-04-17 2006-04-17 Method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5089911B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153073A (en) * 2008-12-24 2010-07-08 Kyocera Corp Photoelectric conversion device
WO2014157941A1 (en) * 2013-03-26 2014-10-02 성균관대학교산학협력단 Dye-sensitized solar cells and manufacturing method therefor
JP5702897B2 (en) * 2012-08-24 2015-04-15 積水化学工業株式会社 Electric module manufacturing method and electric module
JP2018037606A (en) * 2016-09-02 2018-03-08 積水化学工業株式会社 Electric module and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100482A (en) * 1998-09-21 2000-04-07 Matsushita Electric Ind Co Ltd Coloring matter sensitizing solar battery
JP2000348783A (en) * 1999-06-01 2000-12-15 Nikon Corp Manufacture of pigment-sensitized type solar cell
JP2005071973A (en) * 2003-08-06 2005-03-17 Fujikura Ltd Photoelectric conversion element and manufacturing method of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100482A (en) * 1998-09-21 2000-04-07 Matsushita Electric Ind Co Ltd Coloring matter sensitizing solar battery
JP2000348783A (en) * 1999-06-01 2000-12-15 Nikon Corp Manufacture of pigment-sensitized type solar cell
JP2005071973A (en) * 2003-08-06 2005-03-17 Fujikura Ltd Photoelectric conversion element and manufacturing method of same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153073A (en) * 2008-12-24 2010-07-08 Kyocera Corp Photoelectric conversion device
JP5702897B2 (en) * 2012-08-24 2015-04-15 積水化学工業株式会社 Electric module manufacturing method and electric module
WO2014157941A1 (en) * 2013-03-26 2014-10-02 성균관대학교산학협력단 Dye-sensitized solar cells and manufacturing method therefor
JP2018037606A (en) * 2016-09-02 2018-03-08 積水化学工業株式会社 Electric module and method for manufacturing the same

Also Published As

Publication number Publication date
JP5089911B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
TWI381535B (en) Pigment Sensitive Photoelectric Conversion Device and Manufacturing Method thereof
JP5430971B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP5241912B2 (en) Method for producing dye-sensitized solar cell
JP5351553B2 (en) Photoelectric conversion element module
JP5430970B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP5008034B2 (en) Photoelectric conversion element and manufacturing method thereof
KR20110009184A (en) Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JP5052768B2 (en) Solar cell module and manufacturing method thereof
WO2012118050A1 (en) Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP5144986B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5089911B2 (en) Method for producing dye-sensitized solar cell
JP5465446B2 (en) Photoelectric conversion element
JP5089910B2 (en) Method for producing dye-sensitized solar cell
JP5160045B2 (en) Photoelectric conversion element
JP5451106B2 (en) Photoelectric conversion element module
KR101188929B1 (en) Seal member for photoelectric conversion device, photoelectric conversion device comprising the same and method of preparing the same
JP4864716B2 (en) Dye-sensitized solar cell and method for producing the same
JP6594313B2 (en) Photoelectric conversion element and photoelectric conversion element module including the same
CN103548104B (en) DSSC and manufacture method thereof
JP5706786B2 (en) Method for producing dye-sensitized solar cell
WO2013114733A1 (en) Photoelectric conversion element module
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
JP5762053B2 (en) Dye-sensitized solar cell, method for producing the same, dye-sensitized solar cell module and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5089911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250