JP2007286886A - Vessel traffic monitoring system - Google Patents

Vessel traffic monitoring system Download PDF

Info

Publication number
JP2007286886A
JP2007286886A JP2006113281A JP2006113281A JP2007286886A JP 2007286886 A JP2007286886 A JP 2007286886A JP 2006113281 A JP2006113281 A JP 2006113281A JP 2006113281 A JP2006113281 A JP 2006113281A JP 2007286886 A JP2007286886 A JP 2007286886A
Authority
JP
Japan
Prior art keywords
magnetic
signal
component
electric field
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006113281A
Other languages
Japanese (ja)
Other versions
JP4270468B2 (en
Inventor
Megumi Hirota
恵 廣田
Atsushi Sato
敦 佐藤
Yoko Teranishi
陽子 寺西
Kenji Iijima
健二 飯島
Hideki Kiuchi
英樹 木内
Naoto Mishina
尚登 三品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES DEV INST MINI DEFENCE
Shimadzu Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
TECH RES DEV INST MINI DEFENCE
Shimadzu Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES DEV INST MINI DEFENCE, Shimadzu Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical TECH RES DEV INST MINI DEFENCE
Priority to JP2006113281A priority Critical patent/JP4270468B2/en
Publication of JP2007286886A publication Critical patent/JP2007286886A/en
Application granted granted Critical
Publication of JP4270468B2 publication Critical patent/JP4270468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately monitor traffic in a port with increased acoustic environmental noise due to a plurality of congested vessels. <P>SOLUTION: Magnetic sensors (2-1 to 2-n) and field sensors (3-1 to 3-n) are disposed on a sea bottom 1, and detection signals of the magnetic sensors and the field sensors are captured to a CPU 6 of a control tower 5. Each of the detection signals of the magnetic sensors and the field sensors is divided to a DC component and an AC component, the magnetic DC component and AC component and the field DC component and AC component are analyzed, and compared with a signal pattern for each type of vessels stored in the CPU 6, whereby monitoring a passing vessel and the type of the vessel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、危機管理・セキュリティ分野、特に原子力、火力発電所及び大型プラント施設等の冷却水取水のセキュリティにて港湾進入監視等に用いられる船舶通航監視システムに関する。 The present invention relates to a marine traffic monitoring system used for harbor entry monitoring and the like in the field of crisis management and security, particularly in the security of cooling water intake in nuclear power plants, thermal power plants and large plant facilities.

従来の船舶通航監視システムとして、海底に設置した複数の音響磁気複合センサからなる音響磁気センサ群を備え、この音響磁気複合センサ群からの磁気信号と音響信号を同時に管理塔の信号処理装置に伝送し、磁気信号で船舶の通過を検知し、音響信号で船舶の種類を識別するようにした装置が開示されている(例えば、特許文献1参照)。   As a conventional ship traffic monitoring system, an acousto-magnetic sensor group consisting of multiple acousto-magnetic composite sensors installed on the sea floor is provided, and the magnetic signal and acoustic signal from this acousto-magnetic composite sensor group are simultaneously transmitted to the signal processing unit of the control tower. However, an apparatus is disclosed in which the passage of a ship is detected with a magnetic signal and the type of the ship is identified with an acoustic signal (see, for example, Patent Document 1).

特開平8−220211号公報Japanese Patent Laid-Open No. 8-220221

従来の音響信号と磁気信号を複合して船舶の通航を監視する方式では、港湾などにおいては、船舶の音響信号に対する環境ノイズが大きく、複数の船舶が輻輳してある場合、音響信号は伝搬距離が長い他船舶の信号が混入し、音響信号の分析が困難であった。また、木造船は磁気信号が小さいため信号を検出することが困難であり、音響と磁気の複合式船舶通航監視システムでは、通航する全ての船舶を監視するには十分な効果が得られないという問題があった。   In a conventional method of monitoring the passage of a ship by combining a sound signal and a magnetic signal, in a port or the like, when the environmental noise is large with respect to the sound signal of the ship and a plurality of ships are congested, the sound signal is a propagation distance. However, it was difficult to analyze the acoustic signal because the signals from other ships were mixed. In addition, it is difficult to detect a wooden ship because the magnetic signal is small, and the combined acoustic and magnetic ship traffic monitoring system does not provide a sufficient effect to monitor all ships that pass through it. There was a problem.

この発明は上記問題点に着目してなされたものであって、複数の船舶が輻輳し、音響環境ノイズが大きい港湾などにおいても精度良く通航監視を行い得る船舶通航監視システムを提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and it is an object of the present invention to provide a ship traffic monitoring system capable of accurately monitoring traffic even in harbors where a plurality of ships are congested and acoustic environmental noise is large. And

この発明の船舶通航監視システムは、1個あるいは複数個の磁気センサと、1個あるいは複数個の電界センサとを海中に設置し、この磁気センサの磁気検知信号及び電界センサの電界検知信号により、船舶の通航を監視することを特徴とする。   In the ship traffic monitoring system of the present invention, one or a plurality of magnetic sensors and one or a plurality of electric field sensors are installed in the sea, and the magnetic detection signal of the magnetic sensor and the electric field detection signal of the electric field sensor It is characterized by monitoring the passage of ships.

この発明の船舶通航監視システムにおいては、前記磁気センサの磁気検知信号と電界センサの電界検知信号の直流成分と交流成分に分離し、磁気及び電界の直流成分と交流成分の信号態様により、船舶通航有無判定を行うと良い。   In the ship traffic monitoring system according to the present invention, the magnetic detection signal of the magnetic sensor and the electric field detection signal of the electric field sensor are separated into a direct current component and an alternating current component, and the signal of the direct current component and the alternating current component of the magnetic field and the electric field is used. It is good to perform presence / absence determination.

また、この発明の船舶通航監視システムにおいて、船舶通航有無判定とともに、船舶類別判定を併せ行うようにしても良い。   In the ship traffic monitoring system according to the present invention, the ship classification determination may be performed together with the ship traffic presence / absence determination.

この発明によれば、磁気センサと電界センサとを海中に設置し、磁気センサの磁気検知信号と電界センサの電界検知信号により船舶の通航を監視するので、複数の船舶が輻輳しても船舶の磁気信号又は電界(電位差)信号は音響信号に対して伝搬距離が短いので、他船舶の信号が混入することが少なく、磁気信号及び電界信号に対する環境ノイズも小さく、防食装置が取り付けられた木造船に関しては、電界信号により信号検出が可能であるから、従来は、監視困難であった複数の船舶が輻輳し、音響環境ノイズが大きい港湾などの船舶通航監視において、船舶の発生する磁気信号及び電界(電位差)信号を検出することにより、精度良く通航監視を行うことができる。   According to the present invention, the magnetic sensor and the electric field sensor are installed in the sea, and the passage of the ship is monitored by the magnetic detection signal of the magnetic sensor and the electric field detection signal of the electric field sensor. Since a magnetic signal or electric field (potential difference) signal has a short propagation distance relative to an acoustic signal, the signal from other ships is rarely mixed, the environmental noise for the magnetic signal and electric field signal is small, and a wooden ship with a corrosion protection device attached. Since the detection of signals using electric field signals is possible, the magnetic signals and electric fields generated by ships are often used in ship traffic monitoring in harbors and the like where multiple ships, which have been difficult to monitor in the past, are congested and have large acoustic environmental noise. By detecting the (potential difference) signal, traffic monitoring can be performed with high accuracy.

以下、実施の形態により、この発明をさらに詳細に説明する。図1は、この発明の実施形態船舶通航監視システムを示す概略図である。図1において、港湾の海底1に複数個の磁気センサ2-1、2-2……、2-n及び複数個の電界(UEP:アンダーウォーター・エレクトリック・ポテンシャル)センサ3-1、3-2……、3-nが配置されている。これらの磁気センサ2-1、2-2……、2-n及び電界センサ3-1、3-2……、3-nの各磁気検知信号及び電界(電位差)検知信号は個別にケーブル4により、陸上の管理塔5に設けられるCPU6に取り込むようになっている。この図1のシステムでは、ケーブル4上に磁気センサ2-1、2-2……、2-n及び電界センサ3-1、3-2……、3-nを配置しているが、他の実施形態システム例として、図2に示すように、磁気センサ2-1、2-2……、2-nと電界センサ3-1、3-2、……、3-nを、それぞれ別のケーブル4-1、4-2に分けて配置しても良い。管理塔5のCPU6には、磁気センサ2-1、2-2、……、2-n及び電界センサ3-1、3-2、……、3-nの検知信号を、各センサ毎に記憶する検知データ記憶部を備えている。また、この検知データ記憶部は、磁気センサ2-1、2-2……、2-n及び電界センサ3-1、3-2、……、3-nのそれぞれの検知信号が直流成分と交流成分に分離されるので、各センサの直流成分と交流成分を分離して記憶する領域を備えている。   Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a schematic diagram showing a ship traffic monitoring system according to an embodiment of the present invention. In FIG. 1, a plurality of magnetic sensors 2-1, 2-2..., 2-n and a plurality of electric field (UEP: Underwater Electric Potential) sensors 3-1, 3-2 ... 3-n is arranged. These magnetic sensors 2-1, 2-2... 2 -n and the electric field sensors 3-1, 3-2. Thus, the data is taken into the CPU 6 provided in the onshore management tower 5. In the system shown in FIG. 1, magnetic sensors 2-1, 2-2,..., 2-n and electric field sensors 3-1, 3-2,. As an example system of the embodiment, as shown in FIG. 2, the magnetic sensors 2-1, 2-2,..., 2-n and the electric field sensors 3-1, 3-2,. The cables 4-1 and 4-2 may be separately arranged. The CPU 6 of the management tower 5 receives the detection signals of the magnetic sensors 2-1, 2-2, ..., 2-n and the electric field sensors 3-1, 3-2, ..., 3-n for each sensor. A detection data storage unit is provided. In addition, the detection data storage unit is configured so that the detection signals of the magnetic sensors 2-1, 2-2,..., 2-n and the electric field sensors 3-1, 3-2,. Since it is separated into alternating current components, an area for separating and storing the direct current components and alternating current components of each sensor is provided.

上記実施形態船舶通航監視システムの処理手順を図5、図6に示すフロー図、及び図3、図4に示す検知信号例を用いて説明する。なお、図1に示すシステムでは、磁気センサ2-1、2-2、……、2-nと電界センサ3-1、3-2、……、3-nのそれぞれについて、検知信号処理を実行するが、この図5、図6、図3では、便宜上1個の磁気センサ及び電界センサについて説明している。   The processing procedure of the ship traffic monitoring system of the above embodiment will be described with reference to flowcharts shown in FIGS. 5 and 6 and detection signal examples shown in FIGS. In the system shown in FIG. 1, detection signal processing is performed for each of the magnetic sensors 2-1, 2-2,..., 2-n and the electric field sensors 3-1, 3-2,. However, in FIG. 5, FIG. 6, and FIG. 3, one magnetic sensor and electric field sensor are described for convenience.

処理動作が開始されると、ステップST1において、検出信号フラグFLGをOFFにする。検出信号フラグFLGとしては磁気信号直流成分検出フラグ、磁気信号交流成分検出フラグ、電界(電位差)信号直流成分検出フラグ、及び電界(電位差)信号交流成分検出フラグがCPU6の記憶部に備えられており、これらを処理動作開始時にすべてOFF(論理「0」)とする。次にステップST2へ移行する。   When the processing operation is started, the detection signal flag FLG is turned OFF in step ST1. As the detection signal flag FLG, a magnetic signal DC component detection flag, a magnetic signal AC component detection flag, an electric field (potential difference) signal DC component detection flag, and an electric field (potential difference) signal AC component detection flag are provided in the storage unit of the CPU 6. These are all turned off (logic “0”) at the start of the processing operation. Next, the process proceeds to step ST2.

ステップST2においては、所定のサンプリングタイム毎に磁気センサ2-1、2-2、……、2-nで得た磁気検知信号を取り込む。続いて、ステップST3へ移行する。ステップST3においては、取り込んだ磁気検知信号を直流成分(直流〜0.5Hz)と交流成分(0.5Hz〜数Hz)にディジタルフィルタを用いて分離する。一例として、船舶が磁気センサ2-1、2-2……、2-n近辺を通航したときの磁気検知信号と直流成分及び交流成分に分離した結果を、図3の(a)、(b)、(c)に示す。これら取り込まれた磁気検知信号、及び分離された直流成分、交流成分は、いずれもCPU6の検知データ記憶部に記憶される。次に、ステップST4へ移行する。   In step ST2, the magnetic detection signals obtained by the magnetic sensors 2-1, 2-2,..., 2-n are taken in every predetermined sampling time. Subsequently, the process proceeds to step ST3. In step ST3, the captured magnetic detection signal is separated into a DC component (DC to 0.5 Hz) and an AC component (0.5 Hz to several Hz) using a digital filter. As an example, the result of separating the magnetic detection signal and the direct current component and the alternating current component when the ship has passed near the magnetic sensors 2-1, 2-2,..., 2-n is shown in FIGS. ) And (c). These captured magnetic detection signals and the separated DC and AC components are all stored in the detection data storage unit of the CPU 6. Next, the process proceeds to step ST4.

ステップST4においては、分離抽出した磁気信号の直流成分が検出レベル以上か否かを判定する〔図4の(a)参照〕。磁気信号の直流成分が検出レベル以上であれば、ステップST5へ移行する。一方、検出レベル以上でない場合は、ステップST5をスキップして、ステップST6へ移行する。ステップST5においては、検出フラグFLGの磁気信号直流成分検出フラグをON(論理「1」)にする。そして、ステップST6へ移行する。   In step ST4, it is determined whether or not the DC component of the separated and extracted magnetic signal is equal to or higher than the detection level (see (a) of FIG. 4). If the DC component of the magnetic signal is greater than or equal to the detection level, the process proceeds to step ST5. On the other hand, if it is not higher than the detection level, step ST5 is skipped and the process proceeds to step ST6. In step ST5, the magnetic signal DC component detection flag of the detection flag FLG is turned ON (logic “1”). Then, the process proceeds to step ST6.

ステップST6においては、分離抽出した磁気信号の交流成分を周波数(FFT)変換し、次にステップST7に移行する。ステップST7においては、分離抽出した磁気信号の交流成分を検出レベル以上か否かを判定する〔図4の(b)参照)。図4の(b)に示すように、磁気信号の交流成分を周波数変換すると、時間軸が周波数に応じたレベルとなり、特定周波数に集中すると、レベルがしきい値を越えることになる。磁気信号の交流成分が検出レベル以上であれば、ステップST8へ移行する。一方、検出レベル以上でない場合は、ステップST8をスキップして、ステップST9へ移行する。ステップST8においては、検出フラグFLG内の磁気信号交流成分検出フラグをONにする。そして、ステップST9へ移行する。 ステップST9においては、所定のサンプリングタイム毎に電界センサ3-1、3-2、……、3-nで得た電界(電位差)検知信号をシステムに取り込む。続いて、ステップST10へ移行する。ステップST10においては、取り込んだ電界(電位差)検知信号を直流成分(直流〜0.5Hz)と交流成分(0.5Hz〜数Hz)にディジタルフィルタを用いて分離する。一例として船舶が電界船舶通航監視システム3-1、3-2、……、3-n近辺を通航したときの電界(電位差)検知信号と直流成分及び交流成分に分離した結果を図3の(d)(e)(f)に示す。次に、ステップST11へ移行する。   In step ST6, the AC component of the separated and extracted magnetic signal is subjected to frequency (FFT) conversion, and then the process proceeds to step ST7. In step ST7, it is determined whether or not the AC component of the separated and extracted magnetic signal is equal to or higher than the detection level (see FIG. 4B). As shown in FIG. 4B, when the AC component of the magnetic signal is frequency-converted, the time axis becomes a level corresponding to the frequency, and when concentrated on a specific frequency, the level exceeds the threshold value. If the AC component of the magnetic signal is greater than or equal to the detection level, the process proceeds to step ST8. On the other hand, if it is not higher than the detection level, step ST8 is skipped and the process proceeds to step ST9. In step ST8, the magnetic signal AC component detection flag in the detection flag FLG is turned ON. Then, the process proceeds to step ST9. In step ST9, the electric field (potential difference) detection signal obtained by the electric field sensors 3-1, 3-2,..., 3-n is taken into the system at every predetermined sampling time. Subsequently, the process proceeds to step ST10. In step ST10, the captured electric field (potential difference) detection signal is separated into a DC component (DC to 0.5 Hz) and an AC component (0.5 Hz to several Hz) using a digital filter. As an example, the electric field (potential difference) detection signal and the result of separation into a DC component and an AC component are shown in FIG. d) As shown in (e) and (f). Next, the process proceeds to step ST11.

ステップST11においては、分離抽出した電界(電位差)信号の直流成分が検出レベル以上か否かを判定する〔図4の(a)参照〕。電界信号の直流成分が検出レベル以上であれば、ステップST12へ移行する。一方、検出レベル以上でない場合は、ステップST12をスキップして、ステップST13へ移行する。ステップST12において、検出フラグFLGの電界(電位差)信号直流成分検出フラグをONにする。そして、ステップST13へ移行する。   In step ST11, it is determined whether or not the DC component of the separated and extracted electric field (potential difference) signal is equal to or higher than the detection level (see FIG. 4A). If the DC component of the electric field signal is equal to or higher than the detection level, the process proceeds to step ST12. On the other hand, if not higher than the detection level, step ST12 is skipped and the process proceeds to step ST13. In step ST12, the electric field (potential difference) signal DC component detection flag of the detection flag FLG is turned ON. Then, the process proceeds to step ST13.

ステップST13においては、分離抽出した電界(電位差)信号の交流成分を周波数(FFT)変換し、次にステップST14に移行する。この場合の周波数変換も、ステップST6で説明した磁気信号の交流成分の周波数変換と同様である。ステップST14においては、分離抽出した電界(電位差)信号の交流成分を検出レベル以上か否かを判定する〔図4の(b)参照)。電界信号の交流成分が検出レベル以上であれば、ステップST15へ移行する。一方、検出レベル以上でない場合は、ステップST15をスキップして、ステップST16へ移行する。ステップST15においては、検出フラグFLG内の電界(電位差)信号交流成分検出フラグをONにする。そして、ステップST16へ移行する。   In step ST13, the AC component of the separated electric field (potential difference) signal is subjected to frequency (FFT) conversion, and then the process proceeds to step ST14. The frequency conversion in this case is the same as the frequency conversion of the AC component of the magnetic signal described in step ST6. In step ST14, it is determined whether or not the AC component of the separated and extracted electric field (potential difference) signal is equal to or higher than the detection level (see FIG. 4B). If the AC component of the electric field signal is equal to or higher than the detection level, the process proceeds to step ST15. On the other hand, if not higher than the detection level, step ST15 is skipped and the process proceeds to step ST16. In step ST15, the electric field (potential difference) signal AC component detection flag in the detection flag FLG is turned ON. Then, the process proceeds to step ST16.

ステップST16においては、信号分析を行う。検出信号フラグFLGを参照して、検出レベルを超えた信号は、信号有りと判定し、信号分析を行い、検出レベルを超えない信号は信号なしと判定する。なお、信号有りと判定した信号に対しては、直流成分については、波形分析を行い、交流成分については、基本周波数及び高調波の分析を行う。次に、ステップST17へ移行する。   In step ST16, signal analysis is performed. With reference to the detection signal flag FLG, a signal that exceeds the detection level is determined to be present, signal analysis is performed, and a signal that does not exceed the detection level is determined to be no signal. For a signal determined to have a signal, a waveform analysis is performed for the DC component, and a fundamental frequency and a harmonic are analyzed for the AC component. Next, the process proceeds to step ST17.

ステップST17においては、ステップST16で行った信号分析の結果を用いて、船舶通航有無判定を行う。ここでは、4つの検出信号フラグのON/OFFの組み合わせにより、船舶通航の有無を判定する。船舶通航有りと判定した場合は、ステップST18へ移行する。一方、通航なしと判定した場合は、ステップST1に戻る。   In step ST17, the presence / absence of vessel traffic is determined using the result of the signal analysis performed in step ST16. Here, the presence / absence of vessel traffic is determined by the combination of ON / OFF of the four detection signal flags. If it is determined that there is a ship traffic, the process proceeds to step ST18. On the other hand, if it is determined that there is no traffic, the process returns to step ST1.

ステップST18においては、磁気及び電界信号において直流成分と交流成分の比率分析、磁気及び電界(電位差)信号の比率分析を行い、この各比率分析結果とステップST16で行った信号分析結果を用いて船舶の類別を行う。ここでは、予めCPU6の記憶部に船舶の各類別毎の各検出信号フラグのON/OFFのパターン及び磁気信号の直流成分と交流成分の比率分析値、電界信号の直流成分と交流成分の比率分析値、磁気信号と電界信号の比率分析値のデータが記憶されており、監視中に検知した信号データを記憶内容と比較し、一致し、あるいは一致に近い船舶を類別する。   In step ST18, the ratio analysis of the direct current component and the alternating current component in the magnetic and electric field signals and the ratio analysis of the magnetic and electric field (potential difference) signals are performed, and the vessel analysis is performed using each ratio analysis result and the signal analysis result performed in step ST16. Classification of. Here, the ON / OFF pattern of each detection signal flag for each classification of the ship, the ratio analysis value of the DC component and the AC component of the magnetic signal, the ratio analysis of the DC component and the AC component of the electric field signal are stored in the storage unit of the CPU 6 in advance. Value, magnetic signal and electric field signal ratio analysis value data is stored, and the signal data detected during monitoring is compared with the stored content, and ships that match or close to match are classified.

なお、上記実施形態システムにおいて、船舶の磁気信号あるいは電界(電位差)信号のどちらかのみ検出された場合においても、磁気信号あるいは電界(電位差)信号の直流成分あるいは交流成分のどちらかのみ検出された場合においても、船舶通航監視を行うことができる。   In the system of the above embodiment, even when only the magnetic signal or electric field (potential difference) signal of the ship is detected, only the DC component or AC component of the magnetic signal or electric field (potential difference) signal is detected. Even in this case, ship traffic monitoring can be performed.

また、図3の例示では、磁気センサ及び電界センサの数を考慮していないが、図1、図2に示すように複数個の磁気センサ及び複数個の電界センサを設けている場合も、磁気センサ及び電界センサ毎に同様の処理を行えば良い。また、上記実施形態では船舶の直流成分と交流成分の信号態様により、船舶を類別するようにしているが、港湾を通航する際に船舶が能動的に決まった周波数の信号を発生させることで所轄船舶のキーを用いるようにしても良い。   In the illustration of FIG. 3, the number of magnetic sensors and electric field sensors is not taken into consideration. However, when a plurality of magnetic sensors and a plurality of electric field sensors are provided as shown in FIGS. The same processing may be performed for each sensor and electric field sensor. In the above embodiment, the ship is classified according to the signal mode of the DC component and the AC component of the ship. However, when the ship goes through the port, the ship actively generates a signal having a determined frequency. A ship key may be used.

この発明の一実施形態船舶通航監視システムを示す概略図である。It is the schematic which shows the ship traffic monitoring system of one Embodiment of this invention. この発明の他の実施形態船舶通航監視システムを示す概略図である。It is the schematic which shows the ship traffic monitoring system of other embodiment of this invention. 上記実施形態船舶通航監視システムの磁気センサ及び電界センサの検出信号を説明する波形図である。It is a wave form diagram explaining the detection signal of the magnetic sensor and electric field sensor of the ship traffic monitoring system of the said embodiment. 同磁気センサ及び電界センサの検出信号中の直流成分、交流成分の有無を判別する場合を説明する図である。It is a figure explaining the case where the presence or absence of the direct-current component and alternating current component in the detection signal of the magnetic sensor and an electric field sensor is discriminated. 上記実施形態船舶通航監視システムの船舶通航処理手順を説明するフロー図である。It is a flowchart explaining the ship passage processing procedure of the said embodiment ship passage monitoring system. 図5とともに、上記実施形態船舶通航監視システムの船舶通航処理手順を説明するフロー図である。FIG. 6 is a flowchart for explaining a ship passage processing procedure of the ship passage monitoring system according to the embodiment together with FIG. 5.

符号の説明Explanation of symbols

1 海底
2-1、2-2、……、2-n 磁気センサ
3-1、3-2、……、3-n 電界センサ
4、4-1、4-2 ケーブル
5 管理塔
6 CPU
7 船舶
1 Seabed 2-1, 2-2, ... 2-n Magnetic sensor 3-1, 3-2, ... 3-n Electric field sensor 4, 4-1, 4-2 Cable 5 Management tower 6 CPU
7 Ship

Claims (3)

1個あるいは複数個の磁気センサと、1個あるいは複数個の電界センサとを海中に設置し、この磁気センサの磁気検知信号及び電界センサの電界検知信号により、船舶の通航を監視することを特徴とする船舶通航監視システム。   One or a plurality of magnetic sensors and one or a plurality of electric field sensors are installed in the sea, and the passage of the ship is monitored by the magnetic detection signal of the magnetic sensor and the electric field detection signal of the electric field sensor. Ship traffic monitoring system. 前記磁気センサの磁気検知信号と電界センサの電界検知信号の直流成分と交流成分に分離し、磁気及び電界の直流成分と交流成分の信号態様により、船舶通航有無判定を行う請求項1記載の船舶通航監視システム。   The ship according to claim 1, wherein the vessel detects whether or not the vessel is voyage by separating the magnetic detection signal of the magnetic sensor and the direct current component and the alternating current component of the electric field detection signal of the electric field sensor, and determining the DC and AC components of the magnetic and electric fields. Traffic monitoring system. 前記船舶通航有無判定とともに、船舶類別判定を併せ行うものであることを特徴とする請求項2記載の船舶通航監視システム。
3. The ship traffic monitoring system according to claim 2, wherein the ship classification determination is performed together with the ship traffic presence / absence determination.
JP2006113281A 2006-04-17 2006-04-17 Ship traffic monitoring system Active JP4270468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113281A JP4270468B2 (en) 2006-04-17 2006-04-17 Ship traffic monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113281A JP4270468B2 (en) 2006-04-17 2006-04-17 Ship traffic monitoring system

Publications (2)

Publication Number Publication Date
JP2007286886A true JP2007286886A (en) 2007-11-01
JP4270468B2 JP4270468B2 (en) 2009-06-03

Family

ID=38758600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113281A Active JP4270468B2 (en) 2006-04-17 2006-04-17 Ship traffic monitoring system

Country Status (1)

Country Link
JP (1) JP4270468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127589A (en) * 2005-11-07 2007-05-24 Universal Shipbuilding Corp Electric field detection method and device, and program for electric field detection method; and mobile position etc. estimation detection method and device, and program for mobile position etc. estimation detection method
JP2013156192A (en) * 2012-01-31 2013-08-15 Takai Kogyo Kk Magnetic field monitoring alarm system
CN106815976A (en) * 2017-02-14 2017-06-09 中国国际海运集装箱(集团)股份有限公司 Compressed natural gas ship and its emergency switching-off system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127589A (en) * 2005-11-07 2007-05-24 Universal Shipbuilding Corp Electric field detection method and device, and program for electric field detection method; and mobile position etc. estimation detection method and device, and program for mobile position etc. estimation detection method
JP2013156192A (en) * 2012-01-31 2013-08-15 Takai Kogyo Kk Magnetic field monitoring alarm system
CN106815976A (en) * 2017-02-14 2017-06-09 中国国际海运集装箱(集团)股份有限公司 Compressed natural gas ship and its emergency switching-off system

Also Published As

Publication number Publication date
JP4270468B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
Tani et al. Propeller underwater radiated noise: A comparison between model scale measurements in two different facilities and full scale measurements
JP4270468B2 (en) Ship traffic monitoring system
JP2007333564A (en) Sea wave measurement system and sea wave measurement method
CN115294804B (en) Submarine cable safety early warning method and system based on ship state monitoring
Premus et al. Use of mode subspace projections for depth discrimination with a horizontal line array: Theory and experimental results
JP4211996B2 (en) Ship traffic monitoring device
Klinck et al. Mobile autonomous platforms for passive-acoustic monitoring of high-frequency cetaceans
Jie et al. Study on safety monitoring system for submarine power cable on the basis of AIS and radar technology
Galeazzi et al. Detection of parametric roll for ships
US11131759B2 (en) System, device and method for in-water inspection of maritime vessel acoustic treatments
Lajic et al. Transformation of vessel performance system into fault-tolerant syste-example of fault detection on speed log
JP2002181618A (en) Fishing ground watcher
Galeazzi et al. Parametric roll resonance detection using phase correlation and log-likelihood testing techniques
Axelsson et al. Neural-network-based classification of commercial ships from multi-influence passive signatures
Du et al. Passive acoustic source depth discrimination with two hydrophones in shallow water
CN113947949B (en) Intelligent tracking method and system for submarine cable protection area based on ship danger coefficient
Lajic Fault-tolerant onboard monitoring and decision support systems
KR20150107911A (en) Offshore Wind Power Electricity Generating Farm Watching System
JP5565865B2 (en) Navigation body detection apparatus and navigation body detection method
CN202256261U (en) Internal testing device of circulating water pipe
KR101652460B1 (en) Offshore Wind Power Electricity Generating Farm Watching System
JP2007206880A (en) Determination method of suspicious ship
Gaggero et al. SHIP URN: UNIGE activities in the context of LIFE-PIAQUO Project
KR20150031359A (en) Method for guiding optimum hull cleaning
Lajic et al. Fault isolation for shipboard decision support

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350