JP2007286884A - Operation support method for conveyance equipment - Google Patents
Operation support method for conveyance equipment Download PDFInfo
- Publication number
- JP2007286884A JP2007286884A JP2006113259A JP2006113259A JP2007286884A JP 2007286884 A JP2007286884 A JP 2007286884A JP 2006113259 A JP2006113259 A JP 2006113259A JP 2006113259 A JP2006113259 A JP 2006113259A JP 2007286884 A JP2007286884 A JP 2007286884A
- Authority
- JP
- Japan
- Prior art keywords
- production
- equipment
- simulation
- conveyance equipment
- transport
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 62
- 238000003860 storage Methods 0.000 claims abstract description 21
- 238000004088 simulation Methods 0.000 claims abstract description 17
- 230000032258 transport Effects 0.000 claims description 26
- 238000011084 recovery Methods 0.000 claims description 16
- 230000002349 favourable effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 description 17
- 238000012546 transfer Methods 0.000 description 15
- 238000013404 process transfer Methods 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Warehouses Or Storage Devices (AREA)
Abstract
Description
本発明は、搬送設備の運転支援方法に関し、特に、液晶工場等のクリーンルーム内の搬送装置に適用して好適な搬送設備の運転支援方法に関するものである。 The present invention relates to an operation support method for transfer equipment, and more particularly to an operation support method for transfer equipment suitable for application to a transfer apparatus in a clean room such as a liquid crystal factory.
液晶パネルの生産は、多数の製造工程をそれぞれ異なる製造装置で行い、さらに複数の製造工程の異なる品種が製造装置を共有する。
ガラス基板の投入から全ての工程を終え、払出しを行うまでの数日から10数日の間のガラス基板は、ロット毎にカセットに入れられ、数100カセットのロットがクリーンルーム内で加工、搬送、保管のサイクルを繰り返している。
In the production of a liquid crystal panel, a number of manufacturing processes are performed by different manufacturing apparatuses, and different types of manufacturing processes share the manufacturing apparatus.
The glass substrate for several days to several tens of days from the completion of the glass substrate loading to the dispensing is put into a cassette for each lot, and several hundred cassette lots are processed and transported in a clean room. The storage cycle is repeated.
一方、製造装置は、膜形成、レジスト塗布、露光、現像、エッチング、レジスト剥離等の工程を複数回繰り返すため、同じ製造装置が複数回、生産工程に組み込まれる。
製造装置と搬送装置の何れかが停止すれば、当該装置が担当する工程以降の後工程に供給不足が生じ、当該装置の前工程では加工が終了しても次工程に送ることができず、滞留が生じ、時間経過と共に前工程と後工程の両方に影響が広がっていく。
On the other hand, since the manufacturing apparatus repeats a process such as film formation, resist coating, exposure, development, etching, and resist stripping a plurality of times, the same manufacturing apparatus is incorporated into the production process a plurality of times.
If either the manufacturing device or the transport device stops, supply shortage occurs in the subsequent process after the process that the apparatus is in charge of, and even if processing is completed in the previous process of the apparatus, it cannot be sent to the next process, The retention occurs, and the influence spreads over both the pre-process and the post-process with the passage of time.
装置が停止した影響について単純な予測ができず、時間と共に影響の度合いも変化するため、装置停止後の復旧は、設備管理者の経験により復旧後の生産計画の優先順位を決め、定常操業までの間は非定常な操業を行っている。
この方法では、設備管理者の経験と技量に負うところが大きく、また同じ状況が繰り返し発生しないため、経験則が合理的な根拠に乏しい場合がある。
Since it is impossible to make a simple prediction about the impact of equipment shutdown, and the degree of impact changes with time, recovery after equipment shutdown determines the priority of the production plan after the recovery based on the experience of the equipment manager, and continues to steady operation. During this period, unsteady operations are performed.
This method depends heavily on the experience and skill of the facility manager, and the same situation does not occur repeatedly, so the rule of thumb may be lacking in a rational basis.
一方、例えば、特許文献1及び2には、コンピュータによるシミュレーションを用いた制御方法が開示されている。
しかしながら、前者は、物流センターの受注情報から物流の予測をシミュレーションし、自動倉庫やピッキング、搬送の最適化を図るもので、生産への影響を低減する運転支援とは異なるものである。
また、後者は、シミュレーション結果に基づいて、搬送の優先順位を設定するものであり、非定常な状態を複数のシナリオに従ってシミュレーションを行うものではない。
However, the former simulates logistics prediction from order information of a logistics center and optimizes automatic warehouse, picking, and transportation, and is different from operation support that reduces the impact on production.
The latter is for setting the priority order of conveyance based on the simulation result, and does not perform simulation in a non-stationary state according to a plurality of scenarios.
本発明は、上記従来の搬送設備が有する問題点に鑑み、非定常な搬送で生じる状況をシミュレーションで仮想的に実行し、複数の実行計画の中から設備管理者が合理的な判断が下せる選択肢を提供することにより、予測可能な状況のもとでの生産再開の手段を提供し、生産への影響を最小限に低減するようにした搬送設備の運転支援方法を提供することを目的とする。 In view of the problems of the above-described conventional transport equipment, the present invention virtually executes a situation caused by unsteady transport by simulation, and allows the equipment manager to make a reasonable decision from a plurality of execution plans. To provide a means for resuming production under predictable conditions, and to provide an operation support method for transport equipment that minimizes the impact on production .
上記目的を達成するため、本発明の搬送設備の運転支援方法は、搬送装置によりワークを複数の供給保管装置と製造装置とに順次搬送するようにした搬送設備において、搬送設備が停止した後の復旧を行うに際し、停止した搬送設備の状況を特定するとともに、該特定した状況を初期状態として、予め準備した複数のシナリオに基づいてシミュレーションを行い、該シミュレーションの結果の中から生産への影響が最も好ましい結果を得たシナリオに従って復旧作業を行うことを特徴とする。 In order to achieve the above object, the operation support method for a transfer facility according to the present invention is a transfer facility in which a transfer device sequentially transfers a workpiece to a plurality of supply storage devices and a manufacturing device. At the time of recovery, the status of the stopped transport equipment is specified, and the simulation is performed based on a plurality of scenarios prepared in advance with the specified status as an initial state. The recovery operation is performed according to the scenario that has obtained the most preferable result.
本発明の搬送設備の運転支援方法によれば、搬送装置によりワークを複数の供給保管装置と製造装置とに順次搬送するようにした搬送設備において、搬送設備が停止した後の復旧を行うに際し、停止した搬送設備の状況を特定するとともに、該特定した状況を初期状態として、予め準備した複数のシナリオに基づいてシミュレーションを行い、該シミュレーションの結果の中から生産への影響が最も好ましい結果を得たシナリオに従って復旧作業を行うことから、非定常な搬送で生じる状況をシミュレーションで仮想的に実行し、複数の実行計画の中から設備管理者が合理的な判断が下せる選択肢を提供することができ、これにより、予測可能な状況のもとでの生産再開の手段を提供し、生産への影響を最小限に低減することができる。 According to the operation support method for a transport facility of the present invention, in the transport facility that sequentially transports a workpiece to a plurality of supply storage devices and a manufacturing device by the transport device, when performing recovery after the transport facility is stopped, The status of the stopped transportation equipment is specified, and the simulation is performed based on a plurality of scenarios prepared in advance with the specified status as an initial state, and the most favorable result on the production is obtained from the simulation results. Since the recovery work is performed according to the scenario, it is possible to virtually execute the situation caused by unsteady transport by simulation and provide an option for the facility manager to make a reasonable decision from multiple execution plans. As a result, it is possible to provide a means for resuming production under a predictable situation and to minimize the influence on production.
以下、本発明の搬送設備の運転支援方法の実施の形態を、図面に基づいて説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a transport facility driving support method of the present invention will be described with reference to the drawings.
図1〜図7に、本発明の搬送設備の運転支援方法の一実施例を示す。 1 to 7 show an embodiment of the operation support method for a transport facility according to the present invention.
図1に、液晶パネル生産工場の概略のレイアウトを示す。
カセットの工程内のカセット搬送や、製造装置6(EQ1〜EQ48)への供給を行う自動倉庫を兼ねたカセット供給保管装置4(CS1〜CS8)の周囲には、製造装置6(EQ1〜EQ48)が配置され、ポート5を経由しカセットを製造装置6側に受け渡す。
また、カセット供給保管装置4は、ポート5と干渉しない位置に図示しない保管棚を配置しカセットの保管を行う。
一例として、複数数段ある棚の1段めの位置をポート5に割り当て、その上部の2段め以降を保管棚に割り当てる等で天井までの高さを利用し、カセットの保管を行う。
カセット供給保管装置4は、1台または複数台のスタッカクレーン7が矢印の方向に走行し、棚、ポート、入庫口、出庫口ヘカセットを搬送する。
工程間搬送装置1は、カセット供給保管装置4と間に出庫ポート2、入庫ポート3を経由しカセットの受け渡しを行う。
FIG. 1 shows a schematic layout of a liquid crystal panel production factory.
Around the cassette supply and storage device 4 (CS1 to CS8), which also serves as an automatic warehouse for carrying the cassette in the cassette process and supplying the manufacturing device 6 (EQ1 to EQ48), the manufacturing device 6 (EQ1 to EQ48) And the cassette is transferred to the manufacturing apparatus 6 side via the
The cassette supply / storage device 4 stores a cassette by arranging a storage shelf (not shown) at a position where it does not interfere with the
As an example, cassettes are stored using the height up to the ceiling, for example, by assigning the first level position of a plurality of shelves to
In the cassette supply and storage device 4, one or a plurality of
The
搬送設備の各装置の稼動状態を図2に示す。
CS1〜CS6はカセット供給保管装置4の稼動状況を示し、OHVは、工程間搬送装置1の稼動状況を示す。また、EQ1〜EQ11は製造装置6の稼動状況を示す。
装置が稼動状況から非稼動状況に遷移するのは突発的な故障や事故以外に、計画的に設備の保守や修理を行うための停止がある。
また、数ヶ月に一度は全ての装置を停止して一斉に保守を行うこともある。
計画的な設備停止は停止時間が予め決められているが、突発的な故障や事故は停止から復旧までの時間の予測は個々の事例により異なり、復旧での時間予測が困難な場合もある。
FIG. 2 shows the operating state of each device of the transport facility.
CS1 to CS6 indicate the operation status of the cassette supply and storage device 4, and OHV indicates the operation status of the
The transition of the device from the operating state to the non-operating state includes not only a sudden failure or accident but also a stop for planned maintenance and repair of the equipment.
In addition, once every several months, all devices are stopped and maintenance is performed all at once.
The planned stoppage time of the equipment stoppage is determined in advance. However, in the case of a sudden failure or accident, the prediction of the time from the stoppage to the recovery differs depending on each case, and it may be difficult to predict the recovery time.
図3に、生産する工程毎にどの製造装置を割り当てるかを表示したプロセスフローを示す。
一般的な工場運営では、1つの工程を単一の製造装置に割り当てることは希で、同じ機種の製造装置を複数台導入し、複数の製造装置で生産できるようにし、単位時間当りの処理量が増加したり製造装置が故障した場合でも、他の製造装置で生産を継続する生産停止のリスク回避が行われている。
なお、図3において、製造装置の下のカッコ書きは、当該製造装置が接続するカセット供給保管装置を示している。
また、このプロセスフローは、生産する品種毎に割り当てる工程と製造装置が異なる。
FIG. 3 shows a process flow displaying which manufacturing apparatus is assigned to each production process.
In general factory operations, it is rare to assign a single process to a single manufacturing device, so that multiple manufacturing devices of the same model can be introduced and produced by multiple manufacturing devices, and the amount of processing per unit time Even if the production rate increases or the manufacturing apparatus fails, the risk of production stoppage that continues production with other manufacturing apparatuses is avoided.
In FIG. 3, the parentheses below the manufacturing apparatus indicate the cassette supply / storage apparatus to which the manufacturing apparatus is connected.
Moreover, this process flow differs in the process and manufacturing apparatus allocated for every kind to produce.
図4に、搬送設備の装置が停止した後の復旧のシナリオを示す。
複数のシナリオは、着眼点毎に異なるシナリオがある。
一例として、生産物の優先度の高いものから順に処理することもあれば、積極的な介入は行わない成り行きに任せる方法もある。
シナリオに記述される要素としては、故障している装置を代替できる装置があれば、代替経路を探し、代替装置に搬送する経路展開の指定、個々の搬送物に対する作業の優先順位、装置の復旧までの予測時間、装置の平均故障間隔等を指定する。
FIG. 4 shows a recovery scenario after the equipment of the transport facility is stopped.
There are different scenarios for each point of interest.
As an example, there is a method in which products are processed in descending order of priority, or a method in which aggressive intervention is not performed.
As elements described in the scenario, if there is a device that can replace the failed device, search for an alternative route, specify the route development to be transferred to the alternative device, priority of work for each transported item, and device recovery Specify the estimated time until the failure, the average failure interval of the equipment, etc.
図5に制御システムの構成を示す。
生産管理システムの指示で、搬送制御は工程間搬送装置であるOHV制御に工程間の搬送を指示し、工程内搬送に関してはカセット供給保管装置CS1からCS8の制御装置に搬送を指示する。
監視システムは搬送装置内の状況を監視し記録する。また、スケジューリングシミュレータは監視システムに接続し、シミュレーション開始時の装置の稼動状況や在庫状況を初期条件として入力し、装置の復旧から定常的な生産までの生産状況と搬送の状況をシミュレーションする。
なお、スケジューリングシミュレータは公知のものであり、監視システムでなく搬送制御コンピュータや工程間搬送のOHV制御あるいはカセット供給保管装置4のCS制御の個々の制御コンピュータと接続することも本発明の趣旨を逸脱しない範囲で可能である。
FIG. 5 shows the configuration of the control system.
In response to an instruction from the production management system, transfer control instructs OHV control, which is an inter-process transfer apparatus, to transfer between processes, and for in-process transfer, it instructs transfer from the cassette supply storage device CS1 to the control device of CS8.
The monitoring system monitors and records the situation in the transport device. The scheduling simulator is connected to a monitoring system, and the operation status and inventory status of the device at the start of simulation are input as initial conditions, and the production status and the status of conveyance from the restoration of the device to the steady production are simulated.
Note that the scheduling simulator is a well-known one, and it is not a monitoring system, but it is also deviated from the gist of the present invention that it is connected to a transfer control computer, an OHV control of inter-process transfer, or an individual control computer of CS control of the cassette supply / storage device 4. It is possible as long as it is not.
図6に、搬送設備の装置が停止した影響の一例を示す。
カセット供給保管装置CS4に接続する製造装置が(8)の時点で停止し、(9)の時点で復旧したとする。
その結果、停止した製造装置に供給するためのカセットが、CS4では時間経過と共に増加する。
一方、停止した製造装置の下流工程に位置するカセット供給保管装置CS5、CS6では、次工程の製造装置に供給するカセットが減少し、停止状態がさらに継続した場合、供給不足が発生する。
製造装置は、カセット1個当りに数10分から数時間の加工時間がかかり、下流のカセット供給保管装置に影響がでるまでには、カセット供給保管装置に接続する製造装置の数と製造装置での加工時間の積に強い相関のある遅延時間を経過後に影響がでる。
また、この例では下流側の影響を示したが上流側では滞留が生じる。
FIG. 6 shows an example of the influence of the stoppage of the transport equipment.
It is assumed that the manufacturing apparatus connected to the cassette supply / storage apparatus CS4 stops at the time point (8) and recovers at the time point (9).
As a result, the number of cassettes to be supplied to the stopped manufacturing apparatus increases with time in CS4.
On the other hand, in the cassette supply and storage devices CS5 and CS6 located in the downstream process of the stopped manufacturing apparatus, the supply of the cassette to the manufacturing apparatus in the next process decreases, and if the stopped state continues further, supply shortage occurs.
The manufacturing apparatus takes several tens of minutes to several hours of processing time per cassette, and before the downstream cassette supply / storage apparatus is affected, the number of manufacturing apparatuses connected to the cassette supply / storage apparatus and the manufacturing apparatus Influences after a delay time that has a strong correlation with the product of machining time.
Further, in this example, the influence on the downstream side is shown, but stagnation occurs on the upstream side.
図7に、シミュレーションの方法を示す。
装置の停止が生じ、その影響が軽微でないと予想される場合に、復旧までのスケジューリングをシミュレーションする。
搬送装置と製造装置の稼動状況、既に仕掛かっているカセットの有無、カセットの保管棚に保管されているカセットの在庫状況を収集し、各カセットのプロセスフローのどの工程に位置しているかを特定する。
FIG. 7 shows a simulation method.
When the apparatus is stopped and the influence is not expected to be insignificant, the scheduling until recovery is simulated.
Collect the operating status of the transfer device and the manufacturing device, the presence or absence of cassettes already in progress, and the inventory status of cassettes stored in the cassette storage shelves, and identify which step in the process flow of each cassette is located .
各カセットの特定したプロセスフローの位置と装置状態を初期状態として、準備した複数のシナリオに基づいて、復旧までの状況、復旧後、定常操業までの数時間から数日間の生産状況と搬送状況をシミュレーションする。
この場合、シミュレーションで、棚の飽和やスタッカクレーンの稼動率、工程間搬送の稼動率や能力の飽和、払出しまでの遅延時間等を推定し、その結果を表示あるいは帳票に出力する。
Based on the prepared scenarios, the status of the process flow specified for each cassette and the equipment status, based on the prepared scenarios, the status of recovery, the production status and the transport status for several hours to several days after recovery until normal operation Simulate.
In this case, the simulation estimates the shelf saturation, stacker crane operation rate, inter-process transfer operation rate and capacity saturation, delay time until dispensing, and the like, and displays the result on a report or form.
シミュレーションの結果に対し、設備管理者が工場の操業状態や生産計画を加味し、合理的に判断し、最適と推定できる結果が得られたシミュレーションのシナリオを選択する。
スケジューリングシミュレータは、選択されたシナリオを表示し、あるいは帳票出力し、もしくはコンピュータ間の通信により必要とするコンピュータに報告する。
The facility manager selects the simulation scenario that gives the result that can be estimated optimally by taking into account the factory operating conditions and production plan.
The scheduling simulator displays the selected scenario, outputs a form, or reports to a necessary computer by communication between computers.
設備管理者は、最適と推定できるシナリオに従って、搬送制御あるいは生産管理に搬送の優先順位を設定し、復旧を行う。
この復旧段階は、設備管理者が人手介入により行う段階で、スケジューリングシミュレータが自動で処理を行うことは、本発明の趣旨を逸脱するものではない。
設備管理者に、合理的な判断が下せる選択肢を装置が停止した状況からのシミュレーション結果として提供することで、予測可能な状況のもとでの生産再開の手段を提供する。
The facility manager sets the priority of transport in the transport control or production management according to the scenario that can be estimated to be optimum, and performs recovery.
This restoration stage is a stage in which the facility manager performs manual intervention, and the automatic execution of processing by the scheduling simulator does not depart from the spirit of the present invention.
Providing equipment managers with options that allow them to make reasonable judgments as simulation results from a situation where the equipment has stopped, providing means for resuming production under predictable conditions.
以上、本発明の搬送設備の運転支援方法について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。 As mentioned above, although the driving | operation assistance method of the conveyance facility of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, It combines suitably the structure described in the Example. For example, the configuration can be changed as appropriate without departing from the spirit of the invention.
本発明の搬送設備の運転支援方法は、非定常な搬送で生じる状況をシミュレーションで仮想的に実行し、複数の実行計画の中から設備管理者が合理的な判断が下せる選択肢を提供するという特性を有していることから、例えば、予測可能な状況のもとでの生産を再開し、生産への影響を最小限に低減するようにした搬送設備の用途に好適に用いることができる。 The transfer facility operation support method of the present invention is characterized by virtually executing a situation caused by unsteady transfer by simulation and providing an option for the facility manager to make a reasonable decision from a plurality of execution plans. Therefore, for example, it can be suitably used for the use of a transport facility in which production under a predictable situation is resumed and the influence on production is reduced to a minimum.
1 工程間搬送装置
2 出庫ポート
3 入庫ポート
4 カセット供給保管装置
5 ポート
6 製造装置
7 スタッカクレーン
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006113259A JP2007286884A (en) | 2006-04-17 | 2006-04-17 | Operation support method for conveyance equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006113259A JP2007286884A (en) | 2006-04-17 | 2006-04-17 | Operation support method for conveyance equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007286884A true JP2007286884A (en) | 2007-11-01 |
Family
ID=38758598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006113259A Pending JP2007286884A (en) | 2006-04-17 | 2006-04-17 | Operation support method for conveyance equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007286884A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015166542A (en) * | 2014-03-04 | 2015-09-24 | 株式会社熊平製作所 | safe-deposit box system |
JP7530322B2 (en) | 2021-03-22 | 2024-08-07 | 住友重機械工業株式会社 | Autonomous Driving Device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02284853A (en) * | 1989-04-27 | 1990-11-22 | Nissan Motor Co Ltd | Control method for production line |
-
2006
- 2006-04-17 JP JP2006113259A patent/JP2007286884A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02284853A (en) * | 1989-04-27 | 1990-11-22 | Nissan Motor Co Ltd | Control method for production line |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015166542A (en) * | 2014-03-04 | 2015-09-24 | 株式会社熊平製作所 | safe-deposit box system |
JP7530322B2 (en) | 2021-03-22 | 2024-08-07 | 住友重機械工業株式会社 | Autonomous Driving Device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7778721B2 (en) | Small lot size lithography bays | |
Sarin et al. | A survey of dispatching rules for operational control in wafer fabrication | |
KR101383824B1 (en) | Scheduling amhs pickup and delivery ahead of schedule | |
US9606532B2 (en) | Method and manufacturing system | |
JP2017199741A (en) | Management apparatus and management method | |
Upasani et al. | A problem reduction approach for scheduling semiconductor wafer fabrication facilities | |
US8452438B2 (en) | Method for minimizing productivity loss while using a manufacturing scheduler | |
CN107577211B (en) | Internet of things technology-based pulling control system and method for material in process | |
JP2007286884A (en) | Operation support method for conveyance equipment | |
JP2017199773A (en) | Management apparatus and management method | |
US20050203655A1 (en) | Scheduling system and method for avoiding low equipment utilization | |
JP4492525B2 (en) | Transport control device, transport control program, and transport control method | |
JP2017199772A (en) | Component mounting system and component mounting method | |
JPH03293712A (en) | Processor for semiconductor wafer | |
JP2005208891A (en) | Control apparatus and processing system | |
JP2002229619A (en) | Production line control system and production line controlling method | |
JP2002244738A (en) | Carrier conveyance control method in physical distribution automated factory | |
JPH11282923A (en) | Circulation type production process schedule planning method | |
US7392105B2 (en) | Method and system for improved performance of manufacturing processes | |
JP2013065736A (en) | Manufacturing system | |
CN114420590A (en) | Process task execution method and semiconductor process equipment | |
TWI230880B (en) | Semiconductor dispatching integration system and method using the same to dispatch | |
JP4530247B2 (en) | Manufacturing method of semiconductor device | |
JP2010277390A (en) | Apparatus and method for controlling transfer | |
JP2008159846A (en) | Control method and system of leveling number of in-process items of semiconductor device manufacturing line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101006 |