JP2007285578A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- JP2007285578A JP2007285578A JP2006112444A JP2006112444A JP2007285578A JP 2007285578 A JP2007285578 A JP 2007285578A JP 2006112444 A JP2006112444 A JP 2006112444A JP 2006112444 A JP2006112444 A JP 2006112444A JP 2007285578 A JP2007285578 A JP 2007285578A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- leeward
- refrigerant
- windward
- slit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、圧縮され高温となった冷媒を互いに重ねられた複数の熱交換器を通過するようにしてなる熱交換器に関する。 The present invention relates to a heat exchanger configured to pass a plurality of heat exchangers that are stacked on each other by compressing a high-temperature refrigerant.
近年では空調装置の冷凍サイクルの冷媒として、環境的により良好である炭酸ガスを用いる頻度が高まっている。このように炭酸ガスを冷媒とする場合、炭酸ガスをより高圧に圧縮する必要があるが、そのため、圧縮された冷媒温度がより高温になってしまう。 In recent years, the frequency of using environmentally better carbon dioxide as a refrigerant in a refrigeration cycle of an air conditioner is increasing. Thus, when carbon dioxide gas is used as the refrigerant, it is necessary to compress the carbon dioxide gas to a higher pressure. Therefore, the compressed refrigerant temperature becomes higher.
よって、コンプレッサで圧縮した冷媒を冷却するコンデンサには高い熱交換効率が要求されることになるため、例えば特許文献1のように、2つの熱交換器を空気の流れ方向に相互に重ねた状態で配置して、それら風上側および風下側の熱交換器に冷媒を連続して通過させることで、冷媒と空気との熱交換効率、つまり冷却効率を高めることができるようにしたものがある。
Therefore, since the capacitor | condenser which cools the refrigerant | coolant compressed with the compressor requires high heat exchange efficiency, the state which piled up two heat exchangers mutually in the air flow direction like
すなわち、上述した2つの熱交換器を重ねた熱交換器では、圧縮した冷媒(炭酸ガス)を風下側熱交換器から風上側熱交換器へと供給するようになっており、また、風上側熱交換器のコア部を通過した空気が風下側熱交換器のコア部を通過するようになっている。 That is, in the heat exchanger in which the two heat exchangers described above are stacked, the compressed refrigerant (carbon dioxide gas) is supplied from the leeward heat exchanger to the upwind heat exchanger, and the upwind side The air that has passed through the core portion of the heat exchanger passes through the core portion of the leeward heat exchanger.
そこでこのような両熱交換器を製造する場合、フィンを一体にして同時に炉において加熱し、一挙にロウ付けすることにより、効率よく製造する方法がある。 Therefore, when manufacturing such a heat exchanger, there is a method of efficiently manufacturing by integrally heating the fins together in a furnace and brazing them at once.
ここで、風上側および風下側の両熱交換器のコア部は互いに近接されているため、それら両コア部のフィンは互いに連結された状態で形成されて両熱交換器に組み込むようになっている。このため、冷媒の導入側となる風下側熱交換器の高熱が、連結したフィンを伝って風上側熱交換器のコア部に伝達され、ひいては、冷媒の温度が低下される風上側熱交換器を流れる冷媒の冷却効率が低下してしまうという問題が生じる場合がある。 Here, since the core portions of both the windward and leeward heat exchangers are close to each other, the fins of both the core portions are formed in a state of being connected to each other and incorporated into the heat exchangers. Yes. For this reason, the high heat of the leeward heat exchanger serving as the refrigerant introduction side is transmitted to the core portion of the windward heat exchanger through the connected fins, and thus the temperature of the refrigerant is reduced. There may be a problem in that the cooling efficiency of the refrigerant flowing through the refrigerant decreases.
そこで、風上側熱交換器のフィンと風下側熱交換器のフィンとを分離して、それら両フィン間で熱伝達されるのを阻止することが望ましいのであるが、このように両フィンを分離した場合にも両熱交換器への組み付け性を考慮すると、それぞれのフィンを部分的にも連結しておくのが望ましい。 Therefore, it is desirable to separate the fins of the windward side heat exchanger and the fins of the leeward side heat exchanger to prevent heat transfer between these fins. Even in this case, it is desirable to partially connect the fins in consideration of the ease of assembly to both heat exchangers.
このように両フィンを部分的に連結しつつ分離した構造としては、例えば特許文献2に示すように、両フィン間に、所定間隔をもって連結部を設けたスリットを形成した連結フィンが開示されている。
しかしながら、上記特許文献2に開示されたスリットを形成した連結フィンでは、スリットに設けた連結部は単に両熱交換器のフィン同士を連結するものであり、一定間隔をもって配置される。
However, in the connection fin formed with the slit disclosed in
ところが、高圧高温の(炭酸ガス)冷媒が導入される風下側熱交換器では、その冷媒の導入側が最も高温となりなり、そして、冷媒の排出側に向けて温度が徐々に低下することになる。また、風下側熱交換器の出口側と風上側熱交換器の入り口側の冷媒は風下側熱交換器の導入側と風上側熱交換器の導出側に比べて温度差が少なく、フィンが連結していても熱伝導の影響が少ない。したがって、風下側熱交換器のコア部から風上側熱交換器のコア部に伝達される熱を効率良く低減するためには、風下側熱交換器の冷媒導入側でより効率良く熱伝達を遮断する必要がある。 However, in a leeward heat exchanger into which a high-pressure and high-temperature (carbon dioxide) refrigerant is introduced, the refrigerant introduction side becomes the highest temperature, and the temperature gradually decreases toward the refrigerant discharge side. The refrigerant on the outlet side of the leeward heat exchanger and the inlet side of the leeward heat exchanger has a smaller temperature difference than the inlet side of the leeward heat exchanger and the outlet side of the leeward heat exchanger, and the fins are connected. Even if it does, there is little influence of heat conduction. Therefore, in order to efficiently reduce the heat transferred from the core part of the leeward heat exchanger to the core part of the leeward heat exchanger, the heat transfer is cut off more efficiently on the refrigerant introduction side of the leeward heat exchanger. There is a need to.
しかし、上記連結フィンに形成したスリットの連結部が一定間隔である場合は、冷媒の導入側も排出側も略同じ条件で熱遮断されることになり、換言すれば、冷媒の導入側での熱遮断効率が悪化してしまう。 However, when the connecting portions of the slits formed in the connecting fins are at regular intervals, the refrigerant introduction side and the discharge side are thermally shut off under substantially the same conditions, in other words, on the refrigerant introduction side. The heat shutoff efficiency will deteriorate.
そこで、本発明は、風下側熱交換器のコア部から風上側熱交換器のコア部にフィンを介して伝達される熱を、風下側熱交換器の冷媒導入側でより効率良く遮断でき、しかも同時に製造する場合の組み付け性を向上できる熱交換器を得ることを目的とする。 Therefore, the present invention can more efficiently block the heat transferred from the core portion of the leeward heat exchanger to the core portion of the leeward heat exchanger via the fins on the refrigerant introduction side of the leeward heat exchanger, And it aims at obtaining the heat exchanger which can improve the assembly | attachment property in the case of manufacturing simultaneously.
本発明は、空気流れ方向に対して相互に重ねた状態で配置される風上側熱交換器(2)および風下側熱交換器(3)と、風上側熱交換器(2)のコア部(2C)および風下側熱交換器(3)のコア部(3C)にそれぞれ設けられて相互に連結される連結フィン(4)と、を備え、炭酸ガスを用いた冷媒が風下側熱交換器(3)から風上側熱交換器(2)へと供給される間に、風上側熱交換器(2)のコア部(2C)および風下側熱交換器(3)のコア部(3C)を通過する空気との間で熱交換される熱交換器(1)において、前記連結フィン(4)に、風上側熱交換器(2)と風下側熱交換器(3)との間で適宜長さのスリット(10)を形成し、そのスリット(10)の長さ割合を、風下側熱交換器(3)に冷媒が導入される側(3a)でその反対側(3b)よりも大きくしたことを最も主要な特徴とする。 The present invention relates to a windward side heat exchanger (2) and a leeward side heat exchanger (3) arranged in a state of being overlapped with each other in the air flow direction, and a core portion of the windward side heat exchanger (2) ( 2C) and connecting fins (4) provided on the core part (3C) of the leeward side heat exchanger (3) and connected to each other, and the refrigerant using carbon dioxide gas is sent to the leeward side heat exchanger ( While being supplied from 3) to the windward heat exchanger (2), it passes through the core (2C) of the windward heat exchanger (2) and the core (3C) of the leeward heat exchanger (3). In the heat exchanger (1) for exchanging heat with the air to be circulated, the connecting fin (4) is appropriately lengthened between the upwind heat exchanger (2) and the downwind heat exchanger (3). The slit (10) is formed, and the length ratio of the slit (10) is set on the side (3a) where the refrigerant is introduced into the leeward heat exchanger (3). The most important feature that the is larger than the opposite side (3b).
本発明によれば、風上側熱交換器と風下側熱交換器のそれぞれのコア部に連結状態で取り付けられる連結フィンにスリットを形成したことにより、炭酸ガス冷媒が導入される風下側熱交換器側の熱が連結フィンを介して風上側熱交換器側に伝達されるのを抑え、しかも、そのスリットの長さ割合が風下側熱交換器に冷媒が導入される側でその反対側よりも大きくなっているので、高温側となる風下側熱交換器の冷媒導入側の熱が風上側熱交換器に伝達されるのを効果的に遮断して、風上側熱交換器における冷媒と空気との熱交換効率を向上することができる。 According to the present invention, the slits are formed in the connecting fins attached to the respective core portions of the windward side heat exchanger and the leeward side heat exchanger, so that the leeward side heat exchanger into which the carbon dioxide refrigerant is introduced. The heat of the side is suppressed from being transmitted to the windward heat exchanger side via the connecting fins, and the length ratio of the slit is more on the side where the refrigerant is introduced into the leeward heat exchanger than on the opposite side. Therefore, the heat on the refrigerant introduction side of the leeward heat exchanger on the high temperature side is effectively blocked from being transferred to the windward heat exchanger, and the refrigerant and air in the windward heat exchanger are It is possible to improve the heat exchange efficiency.
以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施形態)図1は、本実施形態にかかる熱交換器の分解斜視図、図2は、連結フィンの展開斜視図、図3は、連結フィンの拡大斜視図である。なお、以下では、自動車の空調装置の冷凍サイクルに用いられるコンデンサに適用し、その冷凍サイクルの冷媒として炭酸ガスが用いられる場合について例示する。 (First Embodiment) FIG. 1 is an exploded perspective view of a heat exchanger according to this embodiment, FIG. 2 is an exploded perspective view of a connecting fin, and FIG. 3 is an enlarged perspective view of the connecting fin. In addition, below, it applies to the capacitor | condenser used for the refrigerating cycle of a motor vehicle air conditioner, and demonstrates the case where carbon dioxide is used as a refrigerant | coolant of the refrigerating cycle.
すなわち、熱交換器1は、図1に示すように、空気Aの流れ方向に対して相互に重ねた状態で配置される風上側熱交換器2および風下側熱交換器3と、風上側熱交換器2のコア部2Cおよび風下側熱交換器3のコア部3Cにそれぞれ設けられて相互に連結される連結フィン4と、を備えて構成される。もちろん、風上側熱交換器2は空気Aの流れ方向上流側に配置されるとともに、風下側熱交換器3は空気Aの流れ方向下流側に配置され、これら風上側熱交換器2および風下側熱交換器3は熱交換器1の組み付け状態で互いに近接配置される。
That is, as shown in FIG. 1, the
風上側熱交換器2および風下側熱交換器3は、コア部2C,3Cの冷媒流れ方向(図中左右方向)の両端部にヘッダタンク2Tin,2Toutおよび3Tin,3Toutを設けて構成され、高圧に圧縮されて高温となった炭酸ガス冷媒が、風下側熱交換器3の流入側ヘッダタンク3Tinの導入口3Pinから導入された後、コア部3Cを流通して空気Aと熱交換されつつ排出側ヘッダタンク3Toutへと至り、その後、風上側熱交換器2の流入側ヘッダタンク2Tinに導入されて、コア部2Cを流通して空気Aと熱交換されつつ排出側ヘッダタンク3Toutへと送られ、そのヘッダタンク3Toutに設けた排出口2Poutから排出される。なお、図1中の矢印Kは、炭酸ガス冷媒の流れ方向を示している。
The windward
風上側熱交換器2のコア部2Cは、両端部のヘッダタンク2Tin,2Tout間にそれらの長さ方向(図中上下方向)に等間隔をもって配置されて、それらヘッダタンク2Tin,2Toutを相互に連通する複数本の扁平状チューブ2Ctを備え、それら複数のチューブ2Ct間に連結フィン4の風上部分4Fを装填することにより構成される。
The core portion 2C of the windward
また、風下側熱交換器3のコア部3Cは、コア部2Cと同様に両端部のヘッダタンク3Tin,3Toutを相互に連通する複数本の扁平状チューブ3Ctを備え、それら等間隔に配置された複数のチューブ3Ct間に連結フィン4の風下部分4Rを装填することにより構成される。
Moreover, the core part 3C of the leeward
連結フィン4は、図2に示す帯状のアルミ薄板11をコルゲート成形することにより、図3に示すように波形に形成され、その全体幅Wは、風上側熱交換器2のコア部2Cの幅W1(図1参照)、風下側熱交換器3のコア部3Cの幅W2(図1参照)、およびそれら風上側熱交換器2と風下側熱交換器3との間の間隔S(図3参照)、を合わせた長さとほぼ等しくなっており、その幅方向風上側(図中手前側)が風上部分4Fとなり、その幅方向風下側(図中向こう側)が風下部分4Rとなっている。
The connecting
ここで、本実施形態では、図3に示すように、連結フィン4に、風上側熱交換器2と風下側熱交換器3との間、つまり連結フィン4の風上部分4Fと風下部分4Rとの間に適宜長さのスリット10を形成し、そのスリット10の長さL1の割合を、風下側熱交換器3に冷媒が導入される側3a、つまり流入側ヘッダタンク3Tinが取り付けられる側で、その反対側3b、つまり排出側ヘッダタンク3Toutが取り付けられる側よりも大きくしてある。なお、本実施形態の場合、風下側熱交換器3に冷媒が導入される側3aは、風上側熱交換器2から冷媒が排出される側と言うことができ、図1では右側となっている。
Here, in the present embodiment, as shown in FIG. 3, the connecting
すなわち、本実施形態ではスリット10の長さL1の割合を、風下側熱交換器3に冷媒が導入される側3aで大きくするために、連結フィン4の流入側ヘッダタンク3Tinが取り付けられる側を基端として十分に長い1つのスリット10を形成するようになっている。
That is, in this embodiment, in order to increase the ratio of the length L1 of the
連結フィン4は、図2に示す帯状のアルミ薄板11をコルゲート成形して、図3に示すような波形状に形成されるのであるが、本実施形態では、その帯状のアルミ薄板11の段階で流入側ヘッダタンク3Tinの接続側に予めスリット10を形成しておき、当該スリット10が形成された状態のアルミ薄板11をコルゲート成形するようになっている。このとき、スリット10はアルミ薄板11の流入側ヘッダタンク3Tin側の終端11eで切り欠かれている。
The
スリット10の長さL1は、図3に示すように、連結フィン4をコルゲート成形した状態で、例えば、連結フィン4の全長、つまりコア部2Cの全幅L0(図1参照)に対して、(1/3・L0)<L1<(2/3・L0)の範囲で形成してある。
As shown in FIG. 3, the length L1 of the
以上の構成により、本実施形態の熱交換器1によれば、風上側熱交換器2と風下側熱交換器3のそれぞれのコア部2C,3Cに連結状態で取り付けられる連結フィン4にスリット10を形成したことにより、炭酸ガス冷媒が導入される風下側熱交換器3側の熱が連結フィン4を介して風上側熱交換器2側に伝達されるのを抑え、しかも、そのスリット10が流入側ヘッダタンク3Tinの接続側に形成されていることにより、高温側となる風下側熱交換器3の冷媒導入側の熱が風上側熱交換器2に伝達されるのを効果的に遮断できる。したがって、風上側熱交換器2では冷媒と空気との熱交換効率を向上できるため、熱交換器1での冷媒の冷却効率を高めることができる。また、風下側熱交換器の出口側と風上側熱交換器の入り口側の冷媒は風下側熱交換器の導入側と風上側熱交換器の導出側に比べて温度差が少なく、フィンが連結していても熱伝導の影響が少部分で連結されているため、同時に製造する場合の組み付け性を向上することができる。
With the above configuration, according to the
(第2実施形態)図4は、連結フィンを形成する帯状のアルミ薄板の別の実施形態を示す展開斜視図である。なお、上記第1実施形態と同一の構成要素については共通の符号を付与するとともに、重複する説明を省略する。 (Second Embodiment) FIG. 4 is an exploded perspective view showing another embodiment of a strip-shaped aluminum thin plate forming a connecting fin. In addition, about the same component as the said 1st Embodiment, while attaching | subjecting a common code | symbol, the overlapping description is abbreviate | omitted.
本実施形態のアルミ薄板11Aでは、スリット10の流入側ヘッダタンク3Tin側の終端11eを切り欠かず、当該終端11eに熱伝達に影響の無い程度(かつ、成形時および組み付け時の連結剛性、連結強度を保持できる程度)に微小幅wの連結部11cを設けて、スリット10をその連結部11cで閉塞してある。
In the aluminum
したがって、本実施形態では、スリット10を流入側ヘッダタンク3Tin側に形成したことにより上記第1実施形態と同様の作用効果を奏するのはもちろんのこと、連結部11cによってアルミ薄板11Aの終端11eで風上部分4Fと風下部分4Rとが分離するのを防止することができる。このため、アルミ薄板11Aをコルゲート成形して連結フィン4を形成する際、さらには、その連結フィン4をコア部2C,3Cに組み付ける際に、終端11e側のずれを阻止できるため、成形性や組み付け性を向上することができる。
Therefore, in the present embodiment, the
なお、この場合のアルミ薄板11Aに連結部11cを設けるためには、図5に示すように、所定間隔をもって複数のスリット10を形成した連続した帯状薄板11Rを裁断して個々のアルミ薄板11Aを形成する際に、その裁断位置を図示するように隣接するアルミ薄板11A側にずらせることにより、連結部11cを容易に設けることができる。
In order to provide the connecting
(第3実施形態)図6は、連結フィンを形成する帯状のアルミ薄板の別の実施形態を示す展開斜視図である。なお、上記第1実施形態あるいは第2実施形態と同一の構成要素については共通の符号を付与するとともに、重複する説明を省略する。 (Third Embodiment) FIG. 6 is an exploded perspective view showing another embodiment of a strip-shaped aluminum thin plate forming connection fins. Note that the same constituent elements as those in the first embodiment or the second embodiment are given common reference numerals, and redundant description is omitted.
本実施形態のアルミ薄板11Bではスリット10を複数形成し、それら各スリット10の長さLa,Lb,Lc・・・を流入側ヘッダタンク3Tin側(冷媒導入側3a)に行くにしたがって長く形成してある。
In the aluminum
したがって、本実施形態にあっても複数形成したスリット10の長さLa,Lb,Lc・・・が流入側ヘッダタンク3Tin側に行くにしたがって長くなっているので、上記実施形態と同様に高温側となる風下側熱交換器3の冷媒導入側の熱が風上側熱交換器2に伝達されるのを効果的に遮断して、熱交換器1の冷媒の冷却効率を高めることができるとともに、連結フィン4の風上部分4Fと風下部分4Rとの分離をより確実に防止できる。
Therefore, even in the present embodiment, the lengths La, Lb, Lc... Of the plurality of
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されず、種々の変形が可能であり、一例としては、冷凍サイクルのコンデンサに限ることなく、その他の熱交換器にあっても本発明を適用することができる。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the heat exchange is not limited to the condenser of the refrigeration cycle. The present invention can also be applied to a container.
1 熱交換器
2 風上側熱交換器
2C 風上側熱交換器のコア部
3 風下側熱交換器
3C 風下側熱交換器のコア部
3a 風下側熱交換器3冷媒が導入される側
4 連結フィン
4F 連結フィンの風上部分
4R 連結フィンの風下部分
10 スリット
DESCRIPTION OF
Claims (1)
風上側熱交換器(2)のコア部(2C)および風下側熱交換器(3)のコア部(3C)にそれぞれ設けられて相互に連結される連結フィン(4)と、を備え、
冷媒が風下側熱交換器(3)から風上側熱交換器(2)へと供給される間に、風上側熱交換器(2)のコア部(2C)および風下側熱交換器(3)のコア部(3C)を通過する空気との間で熱交換される熱交換器(1)において、
前記連結フィン(4)に、風上側熱交換器(2)と風下側熱交換器(3)との間で適宜長さのスリット(10)を形成し、そのスリット(10)の長さ割合を、風下側熱交換器(3)に冷媒が導入される側(3a)でその反対側(3b)よりも大きくしたことを特徴とする熱交換器。 An upwind heat exchanger (2) and a leeward heat exchanger (3) arranged in a state of being stacked on each other in the air flow direction;
Connecting fins (4) provided on the core part (2C) of the windward side heat exchanger (2) and the core part (3C) of the leeward side heat exchanger (3) and connected to each other,
While the refrigerant is supplied from the leeward heat exchanger (3) to the leeward heat exchanger (2), the core (2C) of the leeward heat exchanger (2) and the leeward heat exchanger (3) In the heat exchanger (1) that exchanges heat with the air passing through the core (3C) of
A slit (10) having an appropriate length is formed in the connecting fin (4) between the windward side heat exchanger (2) and the leeward side heat exchanger (3), and the length ratio of the slit (10). Is larger on the side (3a) where the refrigerant is introduced into the leeward heat exchanger (3) than on the opposite side (3b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006112444A JP2007285578A (en) | 2006-04-14 | 2006-04-14 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006112444A JP2007285578A (en) | 2006-04-14 | 2006-04-14 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007285578A true JP2007285578A (en) | 2007-11-01 |
Family
ID=38757531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006112444A Pending JP2007285578A (en) | 2006-04-14 | 2006-04-14 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007285578A (en) |
-
2006
- 2006-04-14 JP JP2006112444A patent/JP2007285578A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6732789B2 (en) | Heat exchanger for CO2 refrigerant | |
JPH11316093A (en) | Liquid-cooled tow-phase heat exchanger | |
JP2006322698A (en) | Heat exchanger | |
JP2007170718A (en) | Heat exchanger | |
JP2007278558A (en) | Refrigerant radiator | |
JP2007017132A (en) | Tube for heat exchange, and heat exchanger | |
JP2006329511A (en) | Heat exchanger | |
US8393385B2 (en) | Heat exchanging apparatus and method of making same | |
US11268769B2 (en) | Heat exchanger | |
JP2006322636A (en) | Heat exchanger | |
US7036568B2 (en) | Heat exchanger having projecting fluid passage | |
JP4348113B2 (en) | Heat exchanger | |
JP3911604B2 (en) | Heat exchanger and refrigeration cycle | |
JP2004218983A (en) | Heat exchanger | |
US20050274504A1 (en) | Heat exchanger having projecting fluid passage | |
JP2008304109A (en) | Heat exchanger | |
WO2021210428A1 (en) | Heat exchanger | |
JP2013134016A (en) | Heat exchanger | |
JP2007285578A (en) | Heat exchanger | |
KR100666927B1 (en) | Heat exchanger of header type | |
KR100606332B1 (en) | Flat tube for heat exchanger for use in air conditioning or refrigeration systems | |
JP4334311B2 (en) | Heat exchanger | |
JP2005257094A (en) | Heat exchanger | |
JP2006284163A (en) | Integrated heat exchanging device | |
JP2006017442A (en) | Heat exchanger |