JP2007284822A - Porous filler and method for producing the same, and porous filler slurry and paper - Google Patents

Porous filler and method for producing the same, and porous filler slurry and paper Download PDF

Info

Publication number
JP2007284822A
JP2007284822A JP2006113477A JP2006113477A JP2007284822A JP 2007284822 A JP2007284822 A JP 2007284822A JP 2006113477 A JP2006113477 A JP 2006113477A JP 2006113477 A JP2006113477 A JP 2006113477A JP 2007284822 A JP2007284822 A JP 2007284822A
Authority
JP
Japan
Prior art keywords
porous filler
paper
concentration
mineral acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006113477A
Other languages
Japanese (ja)
Other versions
JP4742963B2 (en
Inventor
Manabu Yamamoto
学 山本
Hiroyuki Wakasa
浩之 若狭
Hitoshi Okada
比斗志 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2006113477A priority Critical patent/JP4742963B2/en
Publication of JP2007284822A publication Critical patent/JP2007284822A/en
Application granted granted Critical
Publication of JP4742963B2 publication Critical patent/JP4742963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous filler prevented from the degradation of its aggregate structure in paper manufacturing process, having high bulking effect when mixed in paper, capable of increasing white paper opacity, paper surface strength and paper inside bond strength as well, and low in viscosity in a slurried state. <P>SOLUTION: The porous filler comprises aggregates consisting of a silicon oxide and a metal compound, being 10-150 m<SP>2</SP>/g in specific surface area, 0.10-0.80 μm in pore size and 16-40 μm in average particle size, wherein the content of the metal compound is 0.08-8.0 mass% in terms of oxide based on 100 mass% of the silicon oxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紙の嵩高化に用いられる多孔性填料ならびにその製造方法に関する。また、その多孔性填料を得るための多孔性填料スラリーに関する。また、多孔性填料が配合された紙に関する。   The present invention relates to a porous filler used for increasing the bulk of paper and a method for producing the same. The present invention also relates to a porous filler slurry for obtaining the porous filler. The present invention also relates to a paper containing a porous filler.

紙は省資源や物流費の削減といった観点、環境保護運動の高まりといった社会的要求等から軽量化が望まれている。しかし、紙を軽量化すると紙厚が減少し、不透明度が下がって裏側の印刷が透けてしまうため、読みにくくなるだけでなく紙の高級感も損なわれるという問題があった。そのため、紙の厚さを維持した上での軽量化、すなわち嵩高化が要求されている。   Paper is desired to be reduced in weight from the viewpoints of resource saving and logistics cost reduction, and social demands such as an increasing environmental protection movement. However, when the paper is lightened, the paper thickness is reduced, the opacity is lowered, and the printing on the back side is transparent. Therefore, it is required to reduce the weight while maintaining the thickness of the paper, that is, to increase the bulk.

紙の嵩高化方法としては、例えば、紙の主原料である木材パルプを適宜選択する方法、パルプを叩解、マーセル化処理や酵素処理する方法、抄紙時にかかるウェットプレス圧または平滑化処理の圧力を緩和する方法、界面活性剤などの嵩高剤をパルプに添加する方法などが知られている。
しかしながら、これらの方法では、紙を充分に嵩高にできない上に、嵩高剤を用いた場合には抄紙時に発泡するという問題があった。
Examples of methods for increasing the bulk of the paper include, for example, a method of appropriately selecting wood pulp, which is the main raw material of paper, a method of beating pulp, a mercerization treatment or an enzyme treatment, and a wet press pressure or a smoothing treatment pressure applied during papermaking. A method of relaxing, a method of adding a bulking agent such as a surfactant to the pulp, and the like are known.
However, in these methods, there is a problem that the paper cannot be made sufficiently bulky, and when a bulking agent is used, foaming occurs during paper making.

そこで、嵩比重が小さい填料を添加する方法が提案されている。例えば、特許文献1には、無定形シリカや無定形シリケート、ゼオライト等の多孔性填料を配合する方法が提案されている。
特許文献2には、紙の嵩高化と紙の不透明度およびインク吸収性の向上とを目的として、水和ケイ酸塩と金属化合物とが凝集した水和ケイ酸塩填料であって、金属化合物の含有量が酸化物換算で0.5〜8.0質量%(対酸化ケイ素質量%)、平均粒子径が1〜15μm、吸油量が200〜350mL/100gのものが提案されている。
また、特許文献3には、紙の嵩高化と紙の白紙不透明度の向上とを目的として、金属塩を含有する酸性溶液でケイ酸ナトリウム水溶液を中和して、凝集構造を有する金属含有ケイ酸塩を形成させ、さらに湿式粉砕して平均粒子径を1〜15μmにした填料が提案されている。
特許第3306860号公報(特開平10−226982号公報) 特許第3728215号公報(特開2002−274837号公報) 特開2004−250268号公報
Therefore, a method of adding a filler having a small bulk specific gravity has been proposed. For example, Patent Document 1 proposes a method of blending a porous filler such as amorphous silica, amorphous silicate, or zeolite.
Patent Document 2 discloses a hydrated silicate filler in which a hydrated silicate and a metal compound are aggregated for the purpose of increasing the bulk of the paper and improving the opacity and ink absorbability of the paper. Has been proposed in terms of oxide content of 0.5 to 8.0 mass% (mass% silicon oxide), an average particle size of 1 to 15 μm, and an oil absorption of 200 to 350 mL / 100 g.
Patent Document 3 discloses that a metal-containing silica having an agglomerated structure is obtained by neutralizing a sodium silicate aqueous solution with an acidic solution containing a metal salt for the purpose of increasing the bulk of the paper and improving the white paper opacity. There has been proposed a filler in which an acid salt is formed and wet pulverized to have an average particle size of 1 to 15 μm.
Japanese Patent No. 3306860 (Japanese Patent Laid-Open No. 10-226982) Japanese Patent No. 3728215 (Japanese Patent Laid-Open No. 2002-274837) JP 2004-250268 A

しかしながら、特許文献1に記載の多孔性填料は、炭酸カルシウムやタルクに比べて紙の不透明度を高める能力が低かった。また、粒度分布がブロードであるため、紙に配合した際に、粗大粒子に起因して印刷時のパイリングや粉落ちが生じ、紙の表面強度が低くなる上に、微細粒子に起因して繊維間結合強度(内部結合強度)が低くなるといった問題が生じた。
特許文献2に記載の填料では、粒子径が小さすぎて好適な嵩高性が得られない上、填料自体の脆さを改善できず、パルプスラリー調製時、抄紙時のプレス処理およびキャレンダー処理時に受ける圧力で凝集構造が破壊され、微細粒子が発生して、その填料が配合された紙は、充分な嵩高性および内部結合強度、表面強度が得られなかった。
特許文献3に記載の填料でも、圧力による凝集構造の破壊を防止できず、湿式粉砕により微細粒子が増加するため、その填料が配合された紙は、充分な嵩高性が得られない上に、表面強度および内部結合強度が不充分であった。
本発明は、紙の製造時での凝集構造の破壊が防止され、紙に配合した際の嵩高化効果が高い上に、白紙の不透明度、紙の表面強度および内部結合強度をいずれも高くできる多孔性填料ならびにその製造方法を提供することを目的とする。また、その多孔性填料を得るための多孔性填料スラリーであって、粘度が低く、ハンドリングに優れるものを提供することを目的とする。また、嵩高であり、白紙の不透明度、表面強度および内部結合強度のいずれもが高い紙を提供することを目的とする。
However, the porous filler described in Patent Document 1 has a lower ability to increase the opacity of paper than calcium carbonate and talc. In addition, because the particle size distribution is broad, when blended in paper, it causes piling and dusting during printing due to coarse particles, resulting in low surface strength of the paper and fibers due to fine particles. There was a problem that the interlaminar bond strength (internal bond strength) was lowered.
In the filler described in Patent Document 2, a suitable bulkiness cannot be obtained because the particle size is too small, and the brittleness of the filler itself cannot be improved, and at the time of pulp slurry preparation, paper processing press processing and calendar processing The aggregate structure was destroyed by the pressure applied, fine particles were generated, and the paper in which the filler was blended did not have sufficient bulkiness, internal bond strength, and surface strength.
Even the filler described in Patent Document 3 cannot prevent destruction of the aggregated structure due to pressure, and fine particles increase due to wet pulverization. Therefore, the paper in which the filler is blended cannot obtain sufficient bulkiness. The surface strength and internal bond strength were insufficient.
The present invention prevents destruction of the agglomeration structure during the production of paper, has a high bulking effect when blended with paper, and can increase the opacity of white paper, the surface strength of the paper, and the internal bond strength. It aims at providing a porous filler and its manufacturing method. It is another object of the present invention to provide a porous filler slurry for obtaining the porous filler, which has a low viscosity and is excellent in handling. Another object of the present invention is to provide a paper that is bulky and has high opacity, surface strength, and internal bond strength.

[1] 酸化ケイ素と金属化合物とが凝集した凝集体からなる多孔性填料であって、
比表面積が10〜150m/g、細孔径が0.10〜0.80μm、平均粒子径が16〜40μmであり、
金属化合物の含有量が、酸化ケイ素100質量%に対して酸化物換算で0.08〜8.0質量%であることを特徴とする多孔性填料。
[2] [1]に記載の多孔性填料と電解質とが水中に含まれる多孔性填料スラリーであって、
電解質濃度が50〜120g/Lであることを特徴とする多孔性填料スラリー。
[3] 攪拌されているケイ酸アルカリ水溶液中に、鉱酸溶液および鉱酸の金属塩溶液を添加することにより、酸化ケイ素と金属化合物とが凝集した凝集体からなる多孔性填料を水中で析出させ、多孔性填料スラリーを得る多孔性填料の製造方法であって、
ケイ酸アルカリ水溶液の攪拌速度を周速7m/秒以上とし、
鉱酸の金属塩溶液の添加量を、酸化ケイ素100質量%に対して0.07〜7.0質量%の金属がケイ酸アルカリ水溶液に添加される量とし、
前記多孔性填料スラリーの電解質濃度を50〜120g/Lとすることを特徴とする多孔性填料の製造方法。
[4] 前記鉱酸溶液および鉱酸の金属塩溶液を2回以上に分割して添加する[3]に記載の多孔性填料の製造方法。
[5] 1回目の際には、ケイ酸アルカリ水溶液の温度を20〜70℃とし、2回目以降の添加の際には、ケイ酸アルカリ水溶液の温度を70℃より高くする[4]に記載の多孔性填料の製造方法。
[6] [1]に記載の多孔性填料を含有することを特徴とする紙。
[1] A porous filler comprising an aggregate in which silicon oxide and a metal compound are aggregated,
The specific surface area is 10 to 150 m 2 / g, the pore diameter is 0.10 to 0.80 μm, the average particle diameter is 16 to 40 μm,
A porous filler, wherein the content of the metal compound is 0.08 to 8.0 mass% in terms of oxide with respect to 100 mass% of silicon oxide.
[2] A porous filler slurry in which the porous filler according to [1] and an electrolyte are contained in water,
A porous filler slurry having an electrolyte concentration of 50 to 120 g / L.
[3] By adding a mineral acid solution and a metal salt solution of a mineral acid to a stirred aqueous alkali silicate solution, a porous filler composed of aggregates of silicon oxide and a metal compound is precipitated in water. A porous filler production method for obtaining a porous filler slurry,
The stirring speed of the alkali silicate aqueous solution is set to a peripheral speed of 7 m / second or more,
The addition amount of the metal salt solution of the mineral acid is an amount in which 0.07 to 7.0% by mass of metal is added to the alkali silicate aqueous solution with respect to 100% by mass of silicon oxide,
A method for producing a porous filler, wherein an electrolyte concentration of the porous filler slurry is 50 to 120 g / L.
[4] The method for producing a porous filler according to [3], wherein the mineral acid solution and the metal salt solution of the mineral acid are added in two or more portions.
[5] The temperature of the alkali silicate aqueous solution is 20 to 70 ° C. at the first time, and the temperature of the alkali silicate aqueous solution is higher than 70 ° C. at the second and subsequent additions. A method for producing a porous filler.
[6] A paper comprising the porous filler according to [1].

本発明の多孔性填料は、紙の製造時での凝集構造の破壊が防止され、紙に配合した際の嵩高化効果が高い上に、白紙の不透明度、紙の表面強度および内部結合強度をいずれも高くできるものである。
本発明の多孔性填料スラリーは、紙の製造時での凝集構造の破壊が防止され、紙に配合した際の嵩高化効果が高い上に、白紙の不透明度、紙の表面強度および内部結合強度をいずれも高くできる多孔性填料が得られるものである。また、得られた多孔性填料を溶媒中に再分散させた際に、粘度を低くでき、ハンドリングに優れたものである。
本発明の多孔性填料の製造方法によれば、紙に配合した際の嵩高化効果が高い上に、白紙の不透明度、紙の表面強度および内部結合強度をいずれも高くでき、また、スラリー状態での粘度が低く、ハンドリングに優れる多孔性填料を製造できる。
また、本発明の紙は、嵩高であり、白紙不透明度、表面強度および内部結合強度が高い。
The porous filler of the present invention prevents destruction of the agglomerated structure at the time of paper manufacture, has a high bulking effect when blended with paper, and has white paper opacity, paper surface strength and internal bond strength. Both can be high.
The porous filler slurry of the present invention prevents destruction of the agglomerated structure during paper production, has a high bulking effect when blended with paper, and has white paper opacity, paper surface strength and internal bond strength. It is possible to obtain a porous filler capable of increasing both of the above. Further, when the obtained porous filler is redispersed in a solvent, the viscosity can be lowered and the handling is excellent.
According to the method for producing a porous filler of the present invention, the bulking effect when blended into paper is high, and the opacity of the white paper, the surface strength of the paper and the internal bond strength can all be increased, and the slurry state A porous filler having a low viscosity and excellent handling can be produced.
The paper of the present invention is bulky and has high white paper opacity, surface strength and internal bond strength.

(多孔性填料)
本発明の多孔性填料は、酸化ケイ素と金属化合物とが凝集した凝集体からなるものである。
(Porous filler)
The porous filler of the present invention comprises an aggregate obtained by aggregating silicon oxide and a metal compound.

多孔性填料を構成する酸化ケイ素は、例えば、二酸化ケイ素および/またはケイ酸塩から形成されたものである。ここで、ケイ酸塩とは、一般式xMO・ySiO、xMO・ySiO、xM・ySiOで表される化合物であって、MがAl,Fe,Ca,Mg,Na,K,Ti,Znのいずれかのものである(x,yは任意の正の数値である。)。
通常、酸化ケイ素は、粒子状になっている。
The silicon oxide constituting the porous filler is formed from, for example, silicon dioxide and / or silicate. Here, the silicate is a compound represented by the general formulas xM 2 O · ySiO 2 , xMO · ySiO 2 , xM 2 O 3 · ySiO 2 , where M is Al, Fe, Ca, Mg, Na , K, Ti, Zn (x and y are arbitrary positive numerical values).
Usually, silicon oxide is in the form of particles.

多孔性填料に含まれる金属化合物を形成する金属元素としては、例えば、バリウム、チタン、アルミニウム、マグネシウム、カルシウム、ニッケル、鉄、ジルコニウム、ストロンチウムなどが挙げられる。また、金属化合物としては、例えば、酸化物が挙げられ、その形状は、粒子状であってもよいし、不定形であってもよい。   Examples of the metal element forming the metal compound contained in the porous filler include barium, titanium, aluminum, magnesium, calcium, nickel, iron, zirconium, and strontium. Moreover, as a metal compound, an oxide is mentioned, for example, The shape may be a particle form and an indeterminate form may be sufficient as it.

多孔性填料中の金属化合物の含有量は、酸化ケイ素100質量%に対して酸化物換算で0.08〜8.0質量%であり、好ましくは0.1〜4.3質量%である。本発明者らが調べたところ、金属化合物の含有量が、酸化ケイ素100質量%に対して酸化物換算で0.08質量%以上であれば、粒度分布を狭くでき、微小粒子および粗大粒子を共に少なくでき、紙に配合した際の内部結合強度および表面強度を高くできることが判明した。また、スラリー状態での粘度を小さくでき、ハンドリングを向上させることができることが判明した。また、金属化合物の含有量が、酸化ケイ素100質量%に対して酸化物換算で8.0質量%以下であれば、紙に配合した際に嵩高効果を充分に発揮でき、また、白紙の不透明度を高くできることが判明した。
なお、金属化合物の含有量は、多孔性填料の粉末サンプルを錠剤化した後、その錠剤化したものを測定試料として、蛍光X線分析装置により各元素の含有量を測定し、その含有量を酸化物量に換算することにより求められる。
Content of the metal compound in a porous filler is 0.08-8.0 mass% in conversion of an oxide with respect to 100 mass% of silicon oxides, Preferably it is 0.1-4.3 mass%. As a result of investigations by the present inventors, when the content of the metal compound is 0.08% by mass or more in terms of oxide with respect to 100% by mass of silicon oxide, the particle size distribution can be narrowed, and fine particles and coarse particles can be reduced. It was found that both can be reduced and the internal bond strength and surface strength can be increased when blended in paper. It was also found that the viscosity in the slurry state can be reduced and handling can be improved. In addition, if the content of the metal compound is 8.0% by mass or less in terms of oxide with respect to 100% by mass of silicon oxide, the bulk effect can be sufficiently exerted when blended with paper, and It was found that the transparency can be increased.
The metal compound content is determined by tableting a porous filler powder sample, measuring the content of each element with a fluorescent X-ray analyzer using the tableted sample as a measurement sample, It is calculated | required by converting into an oxide amount.

多孔性填料の比表面積は10〜150m/gであり、かつ、細孔径は0.10〜0.80μmであり、好ましくは、比表面積は20〜100m/gであり、かつ、細孔径は0.15〜0.50μmである。比表面積が10〜150m/gであり、かつ、細孔径が0.10〜0.80μmであることにより、多孔性填料を構成する凝集構造体の結合力を強くでき、紙の製造時にて圧力を受けても、凝集構造が破壊されにくいため、紙に配合した際に充分に嵩高にできる。また、凝集構造が破壊されにくいことにより、狭い粒度分布を維持できるため、紙の内部結合強度および表面強度を高くできる。
本発明における比表面積は、水銀圧入法により測定した値であって、細孔形状が幾何学的な円筒であると仮定した全細孔の表面積で、測定範囲内における圧力と圧入された水銀量の関係から求めた値である。
本発明における細孔径は、水銀圧入法により測定した値であって、積分比表面積曲線から得られるメジアン細孔直径のことである。
The specific surface area of the porous filler is 10 to 150 m 2 / g and the pore diameter is 0.10 to 0.80 μm, preferably the specific surface area is 20 to 100 m 2 / g and the pore diameter Is 0.15 to 0.50 μm. When the specific surface area is 10 to 150 m 2 / g and the pore diameter is 0.10 to 0.80 μm, the cohesive strength of the aggregate structure constituting the porous filler can be increased, and at the time of paper production Even when subjected to pressure, the agglomerated structure is unlikely to be destroyed, so that it can be sufficiently bulky when blended with paper. In addition, since the aggregated structure is not easily broken, a narrow particle size distribution can be maintained, so that the internal bond strength and surface strength of the paper can be increased.
The specific surface area in the present invention is a value measured by a mercury intrusion method, and is the surface area of all pores assuming that the pore shape is a geometric cylinder. The pressure in the measurement range and the amount of mercury injected The value obtained from the relationship.
The pore diameter in the present invention is a value measured by a mercury intrusion method and is a median pore diameter obtained from an integral specific surface area curve.

多孔性填料の平均粒子径は16〜40μmである。多孔性填料の平均粒子径が16μm以上であれば、紙に配合した際の嵩高効果を充分に発揮でき、平均粒子径が40μm以下であれば、紙面に存在する粗大粒子の脱落に起因する表面強度の低下を防止できる。
本発明における平均粒子径は、レーザー回折法により測定し、体積積算で50%となる値のことである。
また、多孔性填料の粒度分布は狭いことが好ましく、具体的には、粒子径の標準偏差(σ)が0.490以下であることが好ましく、0.400以下であることがより好ましい。このような粒度分布では、粗大粒子および微細粒子が共により少ないため、紙に配合した際に、表面強度および内部結合強度をより高くできる。
The average particle diameter of the porous filler is 16 to 40 μm. If the average particle size of the porous filler is 16 μm or more, the bulkiness effect when blended in paper can be sufficiently exerted, and if the average particle size is 40 μm or less, the surface is caused by dropping off of coarse particles existing on the paper surface. A reduction in strength can be prevented.
The average particle diameter in the present invention is a value that is 50% in volume integration as measured by a laser diffraction method.
The particle size distribution of the porous filler is preferably narrow, and specifically, the standard deviation (σ) of the particle diameter is preferably 0.490 or less, more preferably 0.400 or less. In such a particle size distribution, since both coarse particles and fine particles are smaller, the surface strength and the internal bond strength can be further increased when blended in paper.

(多孔性填料スラリー)
本発明の多孔性填料スラリーは、上記多孔性填料を得るためのものであって、上述した多孔性填料と、電解質とが水中に含まれるものである。
(Porous filler slurry)
The porous filler slurry of the present invention is for obtaining the above porous filler, and contains the above-described porous filler and electrolyte in water.

本発明の多孔性填料スラリーの電解質濃度は50〜120g/Lであり、60〜100g/Lであることがより好ましい。本発明者らが調べたところ、電解質濃度が50g/L以上では、粒子の凝集不足を抑制でき、多孔性填料の比表面積を150m/g以下、かつ、細孔径を0.10μm以上にできることが判明した。そして、多孔性填料の比表面積および細孔径を前記範囲にできる結果、得られる多孔性填料が、紙の製造時に圧力を受けても、凝集構造が破壊されにくくなることが判明した。さらに、比表面積および細孔径を前記範囲にすることにより、紙に配合した際の不透明度を高くできることも判明した。比表面積を小さく、細孔径を大きくすることで、多孔性填料の一次粒子を大きくでき、光散乱能を高くできる。よって、紙に配合した際の嵩高性と不透明度を高くできる。
一方、電解質濃度が120g/L以下では、多孔性填料の比表面積を10m/g以上、かつ、細孔径を0.80μm以下にできることが判明した。また、多孔性填料の粒度分布を狭くでき、微細粒子および粗大粒子を共に少なくできるため、多孔性填料を紙に配合した際に、紙の内部結合強度および表面強度を高くすることができることが判明した。
The electrolyte concentration of the porous filler slurry of the present invention is 50 to 120 g / L, and more preferably 60 to 100 g / L. As a result of investigations by the present inventors, when the electrolyte concentration is 50 g / L or more, insufficient aggregation of particles can be suppressed, the specific surface area of the porous filler can be 150 m 2 / g or less, and the pore diameter can be 0.10 μm or more. There was found. And as a result of being able to make the specific surface area and pore diameter of the porous filler within the above-mentioned range, it has been found that the resulting porous filler is less likely to break the aggregated structure even when subjected to pressure during paper production. Furthermore, it was also found that by setting the specific surface area and the pore diameter within the above ranges, the opacity when blended with paper can be increased. By reducing the specific surface area and increasing the pore diameter, the primary particles of the porous filler can be increased and the light scattering ability can be increased. Therefore, the bulkiness and opacity when blended in paper can be increased.
On the other hand, it has been found that when the electrolyte concentration is 120 g / L or less, the specific surface area of the porous filler can be 10 m 2 / g or more and the pore diameter can be 0.80 μm or less. In addition, the particle size distribution of the porous filler can be narrowed, and both fine particles and coarse particles can be reduced, so it was found that the internal bond strength and surface strength of the paper can be increased when the porous filler is added to the paper. did.

ここで、電解質とは、水に溶解した際に陽イオンと陰イオンを生じる物質のことであり、具体的には、NaHSO4、NaHCO、NaCl、NaSO、NaCO3、NaHPO、NaHPO、NaPO、KCl、KSO、KCO、Ca(HCO、CHCOONa、CuSO、FeCl、CHCOONH、MgCl、Mg(OH)、MgCl・Mg(OH)、NaCl、NHCl、CaCl、AlCl、NaNO、NHNO、Ca(NO、Al(NO、(NHSO、CaSO、Al(SOなどが挙げられる。 Here, the electrolyte is a substance that generates a cation and an anion when dissolved in water. Specifically, NaHSO 4 , NaHCO 3 , NaCl, Na 2 SO 4 , Na 2 CO 3, NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 , KCl, K 2 SO 4 , K 2 CO 3 , Ca (HCO 3 ) 2 , CH 3 COONa, CuSO 4 , FeCl 3 , CH 3 COONH 4 , MgCl, Mg (OH), MgCl 2 .Mg (OH) 2 , NaCl, NH 4 Cl, CaCl 2 , AlCl 3 , NaNO 3 , NH 4 NO 3 , Ca (NO 3 ) 2 , Al (NO 3 ) 3 , (NH 4 ) 2 SO 4 , CaSO 4 , Al 2 (SO 4 ) 3 and the like.

多孔性填料スラリーの電解質濃度を求めるためには、まず、多孔性填料スラリーをろ紙(5C、例えば、アドバンテック社製ろ紙)でろ過して固形分を除去した後、得られたろ液の体積を測定する。そして、このろ液を乾燥し、電解質からなる乾固物の質量を測定し、(乾固物の質量)/(ろ液体積)により求められる。
なお、多孔性填料スラリー中の電解質は、後述する製造方法で使用する鉱酸の金属塩のみに由来するものではなく、ケイ酸ナトリウム水溶液および鉱酸溶液中のイオンなどにも由来する。そのため、必ずしも鉱酸の金属塩の添加量のみによって電解質濃度が決まるものではない。
In order to determine the electrolyte concentration of the porous filler slurry, first, the porous filler slurry is filtered through a filter paper (5C, for example, filter paper manufactured by Advantech) to remove solids, and then the volume of the obtained filtrate is measured. To do. And this filtrate is dried, the mass of the dried product which consists of electrolyte is measured, and it calculates | requires by (mass of dried product) / (filtrate volume).
The electrolyte in the porous filler slurry is not only derived from the metal salt of the mineral acid used in the production method described later, but also derived from ions in the sodium silicate aqueous solution and the mineral acid solution. Therefore, the electrolyte concentration is not necessarily determined only by the amount of mineral acid metal salt added.

(多孔性填料の製造方法)
本発明の多孔性填料の製造方法について説明する。
本発明の多孔性填料の製造方法は、攪拌されているケイ酸アルカリ水溶液中に鉱酸溶液および鉱酸の金属塩溶液を添加し、ケイ酸アルカリ水溶液を中和することにより、酸化ケイ素と金属化合物とが凝集した凝集物からなる多孔性填料を水中で析出させ、多孔性填料スラリーを得る方法である。
(Method for producing porous filler)
The manufacturing method of the porous filler of this invention is demonstrated.
The method for producing a porous filler according to the present invention includes adding a mineral acid solution and a metal salt solution of a mineral acid to a stirred alkali silicate aqueous solution, and neutralizing the alkali silicate aqueous solution, whereby silicon oxide and metal In this method, a porous filler slurry is obtained by precipitating a porous filler composed of an agglomerate in which a compound is aggregated in water.

この製造方法で使用するケイ酸アルカリ水溶液としては特に制限されないが、ケイ酸ナトリウム水溶液またはケイ酸カリウム水溶液が好ましい。ケイ酸アルカリ水溶液の濃度は、多孔性填料が効率的に製造できることから、3〜15質量%であることが好ましく、ケイ酸アルカリ水溶液がケイ酸ナトリウム水溶液の場合には、SiO/NaOモル比が2.0〜3.4であることが好ましい。 Although it does not restrict | limit especially as alkali silicate aqueous solution used with this manufacturing method, Sodium silicate aqueous solution or potassium silicate aqueous solution is preferable. The concentration of the alkali silicate aqueous solution is preferably 3 to 15% by mass because the porous filler can be efficiently produced. When the alkali silicate aqueous solution is a sodium silicate aqueous solution, SiO 2 / Na 2 O It is preferable that the molar ratio is 2.0 to 3.4.

鉱酸の金属塩溶液の添加量は、生成する酸化ケイ素100質量%に対して0.07〜7.0質量%の金属元素がケイ酸アルカリ水溶液に添加される量とする。本発明者らが調べたところ、鉱酸の金属塩溶液の添加量を、酸化ケイ素100質量%に対して0.07質量%以上の金属元素がケイ酸アルカリ水溶液に添加される量とすれば、多孔性填料中の金属化合物の含有量を、酸化ケイ素100質量%に対して酸化物換算で0.08質量%以上にできることが判明した。そして、粒度分布を狭くでき、紙に配合した際の内部結合強度を高くできることが判明した。また、スラリーとした際にその粘度を小さくでき、ハンドリングを向上させることができることが判明した。また、酸化ケイ素100質量%に対して7.0質量%以下の金属元素がケイ酸アルカリ水溶液に添加される量とすれば、多孔性填料中の金属化合物の含有量を、酸化ケイ素100質量%に対して酸化物換算で8.0質量%以下にできることが判明した。そして、紙に配合した際に嵩高効果を充分に発揮し、また、白紙の不透明度の高い多孔性填料が得られることが判明した。
また、多孔性填料中の金属化合物の含有量を確実に酸化ケイ素100質量%に対して酸化物換算で0.08〜8.0質量%にできることから、鉱酸の金属塩溶液の添加量を、酸化ケイ素100質量%に対して酸化物換算で0.08〜4.3質量%となるようにケイ酸アルカリ水溶液に添加される量とすることが好ましい。
The amount of the mineral acid metal salt solution added is such that 0.07 to 7.0% by mass of the metal element is added to the alkali silicate aqueous solution with respect to 100% by mass of the silicon oxide to be produced. When the present inventors investigated, if the addition amount of the metal salt solution of a mineral acid is made into the quantity by which 0.07 mass% or more of metal elements are added to alkali silicate aqueous solution with respect to 100 mass% of silicon oxides. It was found that the content of the metal compound in the porous filler can be 0.08% by mass or more in terms of oxide with respect to 100% by mass of silicon oxide. It was found that the particle size distribution can be narrowed and the internal bond strength when blended into paper can be increased. Moreover, when it was set as the slurry, it turned out that the viscosity can be made small and handling can be improved. Further, if the metal element of 7.0% by mass or less is added to the alkali silicate aqueous solution with respect to 100% by mass of silicon oxide, the content of the metal compound in the porous filler is 100% by mass of silicon oxide. It became clear that it can be 8.0 mass% or less with respect to oxide. And it became clear that the bulkiness effect was fully exhibited when it mix | blended with paper, and the porous filler with high opacity of a white paper was obtained.
Moreover, since the content of the metal compound in the porous filler can surely be 0.08 to 8.0% by mass in terms of oxide with respect to 100% by mass of silicon oxide, the addition amount of the metal salt solution of the mineral acid can be reduced. The amount added to the alkali silicate aqueous solution is preferably 0.08 to 4.3% by mass in terms of oxide with respect to 100% by mass of silicon oxide.

本発明で用いる鉱酸溶液および鉱酸の金属塩溶液において、鉱酸としては、例えば、塩酸、硫酸、硝酸などが挙げられ、鉱酸の金属塩としては、前記鉱酸のナトリウム塩、カリウム塩、カルシウム塩、アルミニウム塩などが挙げられる。これらの中でも、価格、ハンドリングの点で、硫酸、硫酸アルミニウムが好ましく、また、水溶液であることが好ましい。   In the mineral acid solution and the metal salt solution of the mineral acid used in the present invention, examples of the mineral acid include hydrochloric acid, sulfuric acid, nitric acid and the like, and examples of the metal salt of the mineral acid include the sodium salt and potassium salt of the mineral acid. , Calcium salt, aluminum salt and the like. Among these, sulfuric acid and aluminum sulfate are preferable from the viewpoint of cost and handling, and an aqueous solution is preferable.

鉱酸溶液および鉱酸の金属塩溶液の添加量の合計は、理論必要中和量の80〜120%の範囲であり、得られる多孔性填料スラリーのpHを、2.5を超えて10以下の範囲に調整する量であることが好ましい。鉱酸溶液および鉱酸の金属塩溶液の添加量の合計が理論必要中和量の90%未満あるいは得られるスラリーのpHが10を超える量である場合には、原料であるケイ酸アルカリ水溶液の無駄が多くなる。一方、理論必要中和量の150%超あるいは得られるスラリーのpHが2.5以下になる量である場合には多孔性填料スラリーを濃縮する際に発生するろ液pHが低くなり過ぎて、取り扱いにくくなる。   The total addition amount of the mineral acid solution and the metal salt solution of the mineral acid is in the range of 80 to 120% of the theoretically required neutralization amount, and the pH of the resulting porous filler slurry exceeds 2.5 and is 10 or less. It is preferable that the amount is adjusted to the above range. When the total addition amount of the mineral acid solution and the metal salt solution of the mineral acid is less than 90% of the theoretically required neutralization amount or the pH of the resulting slurry exceeds 10, the alkali silicate aqueous solution as the raw material There is a lot of waste. On the other hand, when the pH of the slurry required exceeds 150% of the theoretically required neutralization amount or the pH of the resulting slurry is 2.5 or less, the filtrate pH generated when the porous filler slurry is concentrated becomes too low, It becomes difficult to handle.

ケイ酸アルカリ水溶液の攪拌速度は周速7m/秒以上とする。ここで、周速は剪断力の指標となり、周速が速ければ剪断力が大きくなる。周速が7m/秒以上であることにより、充分な剪断力を確保でき、平均粒子径を容易に16〜40μmにでき、かつ、粒度分布を容易に狭くできる。
ケイ酸アルカリ水溶液の攪拌速度は、目的の平均粒子径(16μm以上)に容易にできることから、15m/秒以下であることが好ましい。
攪拌装置としては、アジテータ、ホモミキサ、パイプラインミキサなどの装置が好ましい。なお、ボールミルやサンドグラインダ等の粉砕機を用いることも可能ではあるが、微細粒子の増加やスラリーの増粘といった問題が生じる傾向があるため好ましくない。
The stirring speed of the aqueous alkali silicate solution is set to a peripheral speed of 7 m / second or more. Here, the peripheral speed is an index of the shearing force, and the shearing force increases as the peripheral speed increases. When the peripheral speed is 7 m / sec or more, a sufficient shearing force can be secured, the average particle diameter can be easily made 16 to 40 μm, and the particle size distribution can be easily narrowed.
The stirring speed of the aqueous alkali silicate solution is preferably 15 m / second or less because it can easily achieve the target average particle diameter (16 μm or more).
As the stirring device, an agitator, a homomixer, a pipeline mixer or the like is preferable. Although it is possible to use a pulverizer such as a ball mill or a sand grinder, it is not preferable because problems such as an increase in fine particles and a thickening of the slurry tend to occur.

鉱酸溶液および鉱酸の金属塩溶液は、ケイ酸アルカリ水溶液中に1回で一括して添加して、1段階で中和してもよいが、多孔性填料の比表面積、細孔径および粒子径を前記範囲に容易に調整できることから、2回以上に分割して添加して、ケイ酸アルカリ水溶液を2段階以上で中和することが好ましい。
さらに、鉱酸溶液および鉱酸の金属塩溶液を2回以上に分割して添加して、ケイ酸アルカリ水溶液を2段階で中和する場合には、多孔性填料の比表面積、細孔径および粒子径を前記範囲により容易に調整できることから、1回目の添加の際には、ケイ酸アルカリ水溶液の温度を20〜70℃にし、2回目以降の添加の際には、ケイ酸アルカリ水溶液の温度を70℃より高くすることが好ましい。また、2回目以降の添加の際には、ケイ酸アルカリ水溶液の温度を、0.1MPaにおける水の沸点である100℃以下にすることが好ましい。
The mineral acid solution and the metal salt solution of the mineral acid may be added all at once to the alkali silicate aqueous solution and neutralized in one step, but the specific surface area, pore diameter and particles of the porous filler Since the diameter can be easily adjusted within the above range, it is preferable to add in two or more portions to neutralize the alkali silicate aqueous solution in two or more stages.
Further, when the mineral acid solution and the mineral acid metal salt solution are added in two or more portions to neutralize the alkali silicate aqueous solution in two stages, the specific surface area, pore diameter and particles of the porous filler Since the diameter can be easily adjusted in the above range, the temperature of the alkali silicate aqueous solution is set to 20 to 70 ° C. during the first addition, and the temperature of the alkali silicate aqueous solution is set during the second and subsequent additions. It is preferable that the temperature be higher than 70 ° C. In addition, in the second and subsequent additions, the temperature of the alkali silicate aqueous solution is preferably set to 100 ° C. or lower which is the boiling point of water at 0.1 MPa.

また、鉱酸溶液および鉱酸の金属塩溶液を2回以上に分割して添加して、ケイ酸アルカリ水溶液を2段階以上で中和する場合には、最終的に、鉱酸溶液と鉱酸の金属塩溶液とが添加されれば、各回ごとに添加する溶液の種類を変更してもよい。例えば、鉱酸溶液および鉱酸の金属塩溶液を3回に分割して添加して、ケイ酸アルカリ水溶液を3段階で中和する場合には、1回目の添加(1段目の中和)にて鉱酸溶液を添加し、2回目の添加(2段目の中和)にて鉱酸溶液を添加し、3回目の添加(3段目の中和)にて鉱酸の金属塩溶液を添加してもよい。また、1回目の添加(1段目の中和)にて鉱酸溶液を添加し、2回目の添加(2段目の中和)にて鉱酸の金属塩溶液を添加し、3回目の添加(3段目の中和)にて鉱酸溶液を添加してもよい。   Further, when the mineral acid solution and the metal salt solution of the mineral acid are added in two or more portions and the aqueous alkali silicate solution is neutralized in two or more stages, finally the mineral acid solution and the mineral acid If the metal salt solution is added, the type of the solution to be added may be changed each time. For example, when a mineral acid solution and a metal salt solution of a mineral acid are added in three portions and the aqueous alkali silicate solution is neutralized in three stages, the first addition (first stage neutralization) Add the mineral acid solution at, add the mineral acid solution at the second addition (second stage neutralization), and add the mineral acid solution at the third addition (third stage neutralization). May be added. Also, the mineral acid solution is added by the first addition (neutralization of the first stage), the metal salt solution of the mineral acid is added by the second addition (neutralization of the second stage), and the third time The mineral acid solution may be added by addition (neutralization at the third stage).

また、1回目の添加では、鉱酸溶液および/または鉱酸の金属塩溶液の添加量を理論必要中和量の10〜50%の範囲にすることが好ましい。あるいは、1回目で鉱酸溶液の添加量を理論必要中和量の20〜50%に範囲とした上で、最終回では鉱酸の金属塩溶液を添加することが好ましい。
このように1回目の添加量を特定することにより、平均粒子径をより容易に16〜40μmにでき、粒度分布をより容易に狭くできる。また、多孔性填料スラリーの粘度をより低くでき、ハンドリングをより高めることができる。
In addition, in the first addition, it is preferable that the addition amount of the mineral acid solution and / or the metal salt solution of the mineral acid is in the range of 10 to 50% of the theoretically required neutralization amount. Alternatively, it is preferable to add the mineral acid solution in the range of 20 to 50% of the theoretically required neutralization amount in the first round and then add the mineral acid metal salt solution in the final round.
Thus, by specifying the first addition amount, the average particle diameter can be more easily made 16 to 40 μm, and the particle size distribution can be more easily narrowed. Moreover, the viscosity of the porous filler slurry can be further lowered, and handling can be further enhanced.

1回目の添加および2回目以降の添加共に、鉱酸溶液および/または鉱酸の金属塩溶液をケイ酸アルカリ水溶液に一括してまたは連続的に添加することができる。
鉱酸溶液および/または鉱酸の金属塩溶液の添加が終了した後には、必要に応じて、添加時の温度を維持したまま攪拌する熟成工程を有してもよい。
In both the first addition and the second and subsequent additions, the mineral acid solution and / or the metal salt solution of the mineral acid can be added to the aqueous alkali silicate solution all at once or continuously.
After completion of the addition of the mineral acid solution and / or the metal salt solution of the mineral acid, an aging step of stirring while maintaining the temperature at the time of addition may be included as necessary.

鉱酸溶液および鉱酸の金属塩溶液を1回で添加する場合には、ケイ酸アルカリ水溶液の温度を60℃〜当該溶液の沸点にすることが好ましく、75℃〜当該溶液の沸点にすることがより好ましい。鉱酸溶液および鉱酸の金属塩溶液の添加は、ケイ酸アルカリ水溶液に一括してまたは連続的に添加することができる。   When adding the mineral acid solution and the metal salt solution of the mineral acid at a time, the temperature of the alkali silicate aqueous solution is preferably 60 ° C. to the boiling point of the solution, and 75 ° C. to the boiling point of the solution. Is more preferable. The mineral acid solution and the metal salt solution of the mineral acid can be added to the aqueous alkali silicate solution all at once or continuously.

この製造方法では、多孔性填料を析出することによって得られる多孔性填料スラリーを、電解質濃度を50〜120g/Lにする。
多孔性填料スラリーの電解質濃度を50〜120g/Lにするためには、上記製造方法におけるケイ酸アルカリ水溶液の濃度、鉱酸溶液および/または鉱酸の金属塩溶液の添加量を適宜選択すればよい。電解質濃度を高くするためには、ケイ酸アルカリ水溶液の濃度を高く、鉱酸溶液および/または鉱酸の金属塩溶液の添加量を多くすればよく、さらには、電解質溶液および/または粉末を必要に応じて一括又は複数回に分けて添加してもよい。電解質濃度を低くするためには、ケイ酸アルカリ水溶液の濃度を低く、鉱酸溶液および/または鉱酸の金属塩溶液の添加量を少なくすればよい。
In this production method, the electrolyte concentration of the porous filler slurry obtained by precipitating the porous filler is adjusted to 50 to 120 g / L.
In order to set the electrolyte concentration of the porous filler slurry to 50 to 120 g / L, the concentration of the alkali silicate aqueous solution, the addition amount of the mineral acid solution and / or the metal salt solution of the mineral acid in the above production method is appropriately selected. Good. In order to increase the electrolyte concentration, the concentration of the alkali silicate aqueous solution should be increased, the amount of the mineral acid solution and / or the metal salt solution of the mineral acid added should be increased, and further, the electrolyte solution and / or powder is required. Depending on the case, it may be added in one batch or in several batches. In order to lower the electrolyte concentration, the concentration of the alkali silicate aqueous solution may be lowered and the amount of the mineral acid solution and / or the metal salt solution of the mineral acid may be reduced.

上述したように、特定の攪拌速度で攪拌されているケイ酸ナトリウム水溶液に特定量の鉱酸溶液および鉱酸の金属塩溶液を添加することにより、酸化ケイ素と金属化合物とが凝集した凝集体からなる多孔性填料を析出させることができる。これにより、平均粒子径が16〜40μmで、粒度分布が狭く、粗大粒子と微細粒子とが共に少なく、比表面積が10〜150m/g、細孔径が0.10〜0.80μmの多孔性填料を得ることができる。このような多孔性填料を紙に配合することにより、紙を嵩高にでき、また、不透明度を高くできる上に、紙の表面強度および内部結合強度を高くできる。
また、上記製造方法によれば、粘度が低く、ハンドリングに優れた多孔性填料スラリーを製造できる。
As described above, by adding a specific amount of a mineral acid solution and a metal salt solution of a mineral acid to a sodium silicate aqueous solution that is being stirred at a specific stirring speed, the aggregate of silicon oxide and metal compound is aggregated. The resulting porous filler can be deposited. Thereby, the average particle size is 16 to 40 μm, the particle size distribution is narrow, both coarse and fine particles are small, the specific surface area is 10 to 150 m 2 / g, and the pore size is 0.10 to 0.80 μm. A filler can be obtained. By blending such a porous filler into paper, the paper can be made bulky, the opacity can be increased, and the surface strength and internal bond strength of the paper can be increased.
Moreover, according to the said manufacturing method, the low viscosity and the porous filler slurry excellent in handling can be manufactured.

(紙)
本発明の紙は、上記多孔性填料が含まれるものである。また、上記多孔性填料の他にも、必要に応じて、一般に紙に用いられる各種の顔料、例えば、カオリン、焼成カオリン、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二酸化チタン、タルク、酸化亜鉛、アルミナ、炭酸マグネシウム、酸化マグネシウム、無定形シリケート、ベントナイト、ゼオライト、セリサイト、スメクタイト等の鉱物質顔料や、スチレン系樹脂、尿素系樹脂、メラミン系樹脂、アクリル系樹脂、塩化ビニリデン系樹脂並びにそれらの微小中空粒子等の有機顔料が含まれていてもよい。
(paper)
The paper of the present invention contains the above porous filler. In addition to the above porous filler, various pigments generally used for paper as required, such as kaolin, calcined kaolin, calcium carbonate, calcium sulfate, barium sulfate, titanium dioxide, talc, zinc oxide, alumina , Magnesium carbonate, magnesium oxide, amorphous silicate, bentonite, zeolite, sericite, smectite and other mineral pigments, styrene resins, urea resins, melamine resins, acrylic resins, vinylidene chloride resins and their fine particles Organic pigments such as hollow particles may be included.

紙を形成するセルロース繊維原料としては、例えば、クラフトパルプ(KP)、サルファイトパルプ(SP)、ソーダパルプ(AP)等の化学パルプ、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ、あるいは、楮、三椏、麻、ケナフ等を原料とする非木材パルプ、古紙を原料とする脱墨パルプが挙げられる。これら単独で用いてもよいし、2種以上混合して用いてもよい。   Examples of cellulose fiber raw materials for forming paper include chemical pulps such as kraft pulp (KP), sulfite pulp (SP) and soda pulp (AP), semi-chemical pulp (SCP), and chemiground wood pulp (CGP). Semi-chemical pulp, ground pulp (GP), thermo-mechanical pulp (TMP, BCTMP) and other mechanical pulp, non-wood pulp made from cocoon, coconut, hemp, kenaf, etc., deinked pulp made from waste paper Is mentioned. These may be used alone or in combination of two or more.

本発明の紙は、セルロース繊維原料および上記多孔性填料を含む紙料を調製し、その紙料を抄紙することにより得られる。その際使用される抄紙機としては、例えば、長網式、円網式、短網式、ツインワイヤー式抄紙機などが挙げられる。
紙料中には、必要に応じて、各種のアニオン性、ノニオン性、カチオン性あるいは両性の歩留向上剤、濾水性向上剤、紙力増強剤や内添サイズ剤等の各種抄紙用内添助剤、染料、蛍光増白剤、pH調整剤、消泡剤、ピッチコントロール剤、スライムコントロール剤等の抄紙用内添助剤を適宜添加できる。
The paper of the present invention is obtained by preparing a stock containing a cellulose fiber raw material and the above porous filler, and papermaking the stock. Examples of the paper machine used at that time include a long net type, a circular net type, a short net type, and a twin wire type paper machine.
In the paper stock, various anionic, nonionic, cationic or amphoteric yield improvers, drainage improvers, paper strength enhancers, internal sizing agents, etc. Auxiliary additives for paper making, such as auxiliary agents, dyes, fluorescent brighteners, pH adjusters, antifoaming agents, pitch control agents, slime control agents, and the like can be appropriately added.

本発明の紙には、澱粉、ポリビニルアルコール、ポリアクリルアマイド等の各種表面バインダーや、ロジン系サイズ剤、合成サイズ剤、石油樹脂系サイズ剤、中性サイズ剤等の表面サイズ剤、塩化ナトリウムや硫酸ナトリウム等の導電剤が塗布または含浸されていてもよい。   The paper of the present invention includes various surface binders such as starch, polyvinyl alcohol, and polyacrylamide, surface sizing agents such as rosin sizing agents, synthetic sizing agents, petroleum resin sizing agents, neutral sizing agents, sodium chloride, A conductive agent such as sodium sulfate may be applied or impregnated.

上述した本発明の紙は、上記多孔性填料が含まれるものであるから、嵩高であり、不透明度、表面強度および内部結合強度が高い。このような紙は印刷用紙や上質系塗工紙に好適に用いられる。   Since the paper of the present invention described above contains the above porous filler, it is bulky and has high opacity, surface strength and internal bond strength. Such paper is suitably used for printing paper and high-quality coated paper.

以下に実施例を挙げて、本発明を具体的に説明するが、本発明はそれらの実施例に限定されるものではない。また、例中の「部」及び「%」は特に断らない限り、「質量部」及び「質量%」のことである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” mean “parts by mass” and “% by mass” unless otherwise specified.

合成例1
水道水206gに7%硫酸ナトリウム水溶液867gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)143.4g(中和比55%)、硫酸アルミニウム(濃度20%)30.3g(中和比10%)を順次40分かけて略等速で添加し、2段目の中和、3段目の中和を行って多孔性填料スラリーを得た。
多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis example 1
After adding 867 g of 7% sodium sulfate aqueous solution to 206 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / second, and 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was added at a substantially constant speed over 15 minutes with the temperature kept at 50 ° C. After neutralizing the first stage, the temperature was raised to 90 ° C. at the above peripheral speed. Next, at the same temperature, 143.4 g of sulfuric acid (concentration 20%) (neutralization ratio 55%) and 30.3 g of aluminum sulfate (concentration 20%) (neutralization ratio 10%) were sequentially added at approximately constant speed over 40 minutes. Addition, neutralization of the second stage and neutralization of the third stage were performed to obtain a porous filler slurry.
The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例2
2段目の中和では、温度90℃にて硫酸(濃度20%)156.4g(中和比60%)を、3段目の中和では、温度90℃にて硫酸アルミニウム(濃度20%)30.3g(中和比10%)を各々40分かけて略等速で添加した以外は合成例1と同様にして多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis example 2
In the second stage neutralization, 156.4 g of sulfuric acid (concentration 20%) at a temperature of 90 ° C. (neutralization ratio 60%), and in the third stage neutralization, aluminum sulfate (concentration 20%) at a temperature of 90 ° C. ) A porous filler slurry was obtained in the same manner as in Synthesis Example 1 except that 30.3 g (neutralization ratio 10%) was added at a substantially constant rate over 40 minutes. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例3
水道水422gに7%硫酸ナトリウム水溶液647gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、温度50℃のまま、スリーワンモータ攪拌翼の周速を10m/秒に調整し、硫酸(濃度20%)83.4g(中和比32%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)159g(中和比61%)、硫酸アルミニウム(濃度20%)6.1g(中和比2%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料を得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis example 3
After adding 647 g of 7% sodium sulfate aqueous solution to 422 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Then, while maintaining the temperature at 50 ° C., the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / sec, and 83.4 g of sulfuric acid (concentration 20%) (neutralization ratio 32%) was added at a substantially constant speed over 15 minutes. After neutralizing the first stage, the temperature was raised to 90 ° C. at the above peripheral speed. Next, at the same temperature, 159 g of sulfuric acid (concentration 20%) (neutralization ratio 61%) and 6.1 g of aluminum sulfate (concentration 20%) (neutralization ratio 2%) were sequentially added at a substantially constant rate over 40 minutes. The second and third stages were neutralized to obtain a porous filler. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例4
水道水206gに7%硫酸ナトリウム水溶液867gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を8.7m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)52.1g(中和比20%)、硫酸アルミニウム(濃度45%)136.4g(中和比45%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis example 4
After adding 867 g of 7% sodium sulfate aqueous solution to 206 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 8.7 m / second, and while maintaining the temperature at 50 ° C., 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was maintained at a substantially constant speed over 15 minutes. After the addition and neutralization of the first stage, the temperature was raised to 90 ° C. at the peripheral speed. Next, at the same temperature, 52.1 g of sulfuric acid (concentration 20%) (neutralization ratio 20%) and 136.4 g of aluminum sulfate (concentration 45%) (neutralization ratio 45%) were sequentially added at approximately constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例5
水道水590gに20%硫酸ナトリウム水溶液497gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度65℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度65℃のまま、硫酸(濃度20%)62.6g(中和比24%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)159g(中和比61%)、硫酸アルミニウム(濃度20%)30.3g(中和比10%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis example 5
After adding 497 g of a 20% aqueous sodium sulfate solution to 590 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 65 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / sec, and 62.6 g of sulfuric acid (concentration 20%) (neutralization ratio 24%) was added at a substantially constant speed over 15 minutes while maintaining the temperature at 65 ° C. After neutralizing the first stage, the temperature was raised to 90 ° C. at the above peripheral speed. Next, at the same temperature, 159 g of sulfuric acid (concentration 20%) (neutralization ratio 61%) and 30.3 g of aluminum sulfate (concentration 20%) (neutralization ratio 10%) were sequentially added at a substantially constant rate over 40 minutes. The second and third stages of neutralization were performed to obtain a porous filler slurry. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例6
水道水623gに7%硫酸ナトリウム水溶液450gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸アルミニウム(濃度20%)45.5g(中和比15%)、硫酸(濃度20%)130.3g(中和比50%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 6
After adding 450 g of 7% sodium sulfate aqueous solution to 623 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / second, and 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was added at a substantially constant speed over 15 minutes while maintaining the temperature at 50 ° C. After neutralizing the first stage, the temperature was raised to 90 ° C. at the above peripheral speed. Then, at the same temperature, 45.5 g of aluminum sulfate (concentration 20%) (neutralization ratio 15%) and 130.3 g of sulfuric acid (concentration 20%) (neutralization ratio 50%) were successively applied at a substantially constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例7
水道水206gに7%硫酸ナトリウム水溶液867gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)117.3g(中和比45%)、硫酸アルミニウム(濃度20%)60.6g(中和比20%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis example 7
After adding 867 g of 7% sodium sulfate aqueous solution to 206 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / second, and 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was added at a substantially constant speed over 15 minutes while maintaining the temperature at 50 ° C. After neutralizing the first stage, the temperature was raised to 90 ° C. at the above peripheral speed. Next, at the same temperature, 117.3 g of sulfuric acid (concentration 20%) (neutralization ratio 45%) and 60.6 g of aluminum sulfate (concentration 20%) (neutralization ratio 20%) were sequentially added at approximately constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例8
水道水246gに7%硫酸ナトリウム水溶液827gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78g(中和比30%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸アルミニウム(濃度20%)4.5g(中和比1.5%)、硫酸(濃度20%)165.5g(中和比63.5%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis example 8
After adding 827 g of 7% aqueous sodium sulfate solution to 246 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / sec, and while maintaining the temperature at 50 ° C., 78 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was added at a substantially constant speed over 15 minutes. After neutralizing the stage, the temperature was raised to 90 ° C. at the peripheral speed. Next, at the same temperature, 4.5 g of aluminum sulfate (concentration 20%) (neutralization ratio 1.5%) and 165.5 g of sulfuric acid (concentration 20%) (neutralization ratio 63.5%) were sequentially applied over 40 minutes. It was added at substantially the same speed, and the second and third stages were neutralized to obtain a porous filler slurry. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例9
水道水623gに7%硫酸ナトリウム水溶液450gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸アルミニウム(濃度20%)197.1g(中和比65%)を40分かけて略等速で添加し、2段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 9
After adding 450 g of 7% sodium sulfate aqueous solution to 623 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / second, and 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was added at a substantially constant speed over 15 minutes while maintaining the temperature at 50 ° C. After neutralizing the first stage, the temperature was raised to 90 ° C. at the above peripheral speed. Next, 197.1 g of aluminum sulfate (concentration 20%) (neutralization ratio 65%) was added at the same temperature at a substantially constant speed over 40 minutes, and the second stage neutralization was performed to obtain a porous filler slurry. It was. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例10
水道水312gに7%硫酸ナトリウム水溶液490gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を8.7m/秒に調整し、温度50℃のまま、硫酸(濃度20%)70.4g(中和比27%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)151.2g(中和比58%)、硫酸アルミニウム(濃度20%)30.3g(中和比10%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 10
After adding 490 g of 7% sodium sulfate aqueous solution to 312 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 8.7 m / second, and the sulfuric acid (concentration 20%) 70.4 g (neutralization ratio 27%) was maintained at a substantially constant speed over 15 minutes with the temperature kept at 50 ° C. After the addition and neutralization of the first stage, the temperature was raised to 90 ° C. at the peripheral speed. Next, at the same temperature, 151.2 g of sulfuric acid (concentration 20%) (neutralization ratio 58%) and 30.3 g of aluminum sulfate (concentration 20%) (neutralization ratio 10%) were sequentially added at a substantially constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例11
水道水206gに7%硫酸ナトリウム水溶液867gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を8.7m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸アルミニウム(濃度20%)136.4g(中和比45%)、硫酸(濃度20%)52.1g(中和比20%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 11
After adding 867 g of 7% sodium sulfate aqueous solution to 206 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 8.7 m / sec, and while maintaining the temperature at 50 ° C., 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was maintained at a substantially constant speed over 15 minutes. After the addition and neutralization of the first stage, the temperature was raised to 90 ° C. at the peripheral speed. Then, at the same temperature, 136.4 g of aluminum sulfate (concentration 20%) (neutralization ratio 45%) and 52.1 g of sulfuric acid (concentration 20%) (neutralization ratio 20%) were sequentially added at approximately constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例12
水道水568gに7%硫酸ナトリウム水溶液209gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度50℃のまま、硫酸(濃度20%)99g(中和比38%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)122.5g(中和比47%)、硫酸アルミニウム(濃度20%)30.3g(中和比10%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 12
After adding 209 g of 7% aqueous sodium sulfate solution to 568 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / second, and while maintaining the temperature at 50 ° C., 99 g of sulfuric acid (concentration 20%) (neutralization ratio 38%) was added at a substantially constant speed over 15 minutes. After neutralizing the stage, the temperature was raised to 90 ° C. at the peripheral speed. Next, at the same temperature, 122.5 g of sulfuric acid (concentration 20%) (neutralization ratio 47%) and 30.3 g of aluminum sulfate (concentration 20%) (neutralization ratio 10%) were sequentially added at a substantially constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例13
水道水587gに20%硫酸ナトリウム水溶液504gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度70℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10m/秒に調整し、温度70℃のまま、硫酸(濃度20%)57.3g(中和比22%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)164.2g(中和比63%)、硫酸アルミニウム(濃度20%)30.3g(中和比10%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 13
After adding 504 g of 20% aqueous sodium sulfate solution to 587 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 70 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10 m / second, and 57.3 g of sulfuric acid (concentration 20%) (neutralization ratio 22%) was added at a substantially constant speed over 15 minutes while maintaining the temperature at 70 ° C. After neutralizing the first stage, the temperature was raised to 90 ° C. at the above peripheral speed. Next, at the same temperature, 164.2 g of sulfuric acid (concentration 20%) (neutralization ratio 63%) and 30.3 g of aluminum sulfate (concentration 20%) (neutralization ratio 10%) were sequentially added at approximately constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例14
水道水664gに7%硫酸ナトリウム水溶液408gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10.58m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸(濃度20%)143.4g(中和比55%)、硫酸アルミニウム(濃度20%)30.3g(中和比10%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 14
After adding 408 g of 7% aqueous sodium sulfate solution to 664 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10.58 m / sec, and while maintaining the temperature at 50 ° C., 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was maintained at a substantially constant speed over 15 minutes. After the addition and neutralization of the first stage, the temperature was raised to 90 ° C. at the peripheral speed. Next, at the same temperature, 143.4 g of sulfuric acid (concentration 20%) (neutralization ratio 55%) and 30.3 g of aluminum sulfate (concentration 20%) (neutralization ratio 10%) were sequentially added at approximately constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例15
水道水430gに20%硫酸ナトリウム水溶液632gを加えた後、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を6.97m/秒に調整し、温度50℃のまま、硫酸(濃度20%)91.2g(中和比35%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、そのままの温度で硫酸アルミニウム(濃度20%)60.6g(中和比20%)、硫酸(濃度20%)104.3g(中和比40%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 15
After adding 632 g of 20% aqueous sodium sulfate solution to 430 g of tap water, 347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 6.97 m / sec, and 91.2 g of sulfuric acid (concentration 20%) (neutralization ratio 35%) was maintained at a substantially constant speed over 15 minutes while maintaining the temperature at 50 ° C. After the addition and neutralization of the first stage, the temperature was raised to 90 ° C. at the peripheral speed. Next, at the same temperature, 60.6 g of aluminum sulfate (concentration 20%) (neutralization ratio 20%) and 104.3 g of sulfuric acid (concentration 20%) (neutralization ratio 40%) were sequentially added at approximately constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

合成例16
水道水1913gに、スリーワンモータで攪拌しながら、市販の3号ケイ酸ナトリウム水溶液347g(濃度38%)を温度50℃にて添加した。その後、スリーワンモータ攪拌翼の周速を10.58m/秒に調整し、温度50℃のまま、硫酸(濃度20%)78.2g(中和比30%)を15分間かけて略等速で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、このままの温度で硫酸(濃度20%)78.2g(中和比55%)、硫酸アルミニウム(濃度20%)30.3g(中和比10%)を順次40分かけて略等速で添加し、2段目、3段目の中和を行って多孔性填料スラリーを得た。多孔性填料スラリーは、ろ過・洗浄した後、水に再分散させて、紙への配合評価に供した。
Synthesis Example 16
347 g (concentration 38%) of a commercially available No. 3 sodium silicate aqueous solution was added to 1913 g of tap water at a temperature of 50 ° C. while stirring with a three-one motor. Thereafter, the peripheral speed of the three-one motor agitating blade was adjusted to 10.58 m / sec, and while maintaining the temperature at 50 ° C., 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 30%) was maintained at a substantially constant speed over 15 minutes. After the addition and neutralization of the first stage, the temperature was raised to 90 ° C. at the peripheral speed. Next, at this temperature, 78.2 g of sulfuric acid (concentration 20%) (neutralization ratio 55%) and 30.3 g of aluminum sulfate (concentration 20%) (neutralization ratio 10%) were sequentially added at approximately constant speed over 40 minutes. The porous filler slurry was obtained by adding and neutralizing the second and third stages. The porous filler slurry was filtered and washed, then redispersed in water, and used for evaluation of blending into paper.

上記合成例1〜16の条件を表1,2にまとめた。なお、表1,2における「金属添加量」とは、生成した酸化ケイ素100質量%に対する量であり、「金属化合物含有量(酸化物換算)」とは、酸化ケイ素100質量%に対して酸化物に換算した量である。   The conditions of the synthesis examples 1 to 16 are summarized in Tables 1 and 2. In Tables 1 and 2, the “metal addition amount” is an amount with respect to 100% by mass of the generated silicon oxide, and the “metal compound content (oxide conversion)” is an oxidation with respect to 100% by mass of silicon oxide. It is the amount converted into a thing.

合成例1〜16の多孔性填料スラリーについて、pH、電解質濃度、粘度、多孔性填料の平均粒子径および標準偏差を測定した。また、多孔性填料スラリーをろ過・洗浄した後のケーキの一部を105℃にて乾燥して、比表面積および細孔径を測定した。また、蛍光X線分析装置による金属化合物含有割合(酸化物換算)の測定に供した。それらの結果を表1または表2に示す。   About the porous filler slurry of the synthesis examples 1-16, pH, electrolyte concentration, a viscosity, the average particle diameter of a porous filler, and a standard deviation were measured. Moreover, a part of cake after filtering and washing | cleaning a porous filler slurry was dried at 105 degreeC, and the specific surface area and the pore diameter were measured. Moreover, it used for the measurement of the metal compound content rate (oxide conversion) by the fluorescent X ray analyzer. The results are shown in Table 1 or Table 2.

なお、多孔性填料スラリーの粘度は、多孔性填料スラリーの固形分濃度を15%に調整し、温度20℃で、B型粘度計により測定した値である。
また、各多孔性填料について、平均粒子径は、レーザー回折式粒度分布計(SALD2000J((株)島津製作所製)を用いて測定された50%体積積算値の粒子径である。また、粒子径の標準偏差はレーザー回折式粒度分布計により求めた粒子径から算出した値である。
比表面積は、ポロシメーターであるポアサイザ9230((株)島津製作所製))を用いて、細孔形状が幾何学的な円筒であると仮定した場合の全細孔の表面積であり、測定範囲内における圧力と圧入された水銀量の関係から求めた値である。
細孔径は、ポアサイザ9230((株)島津製作所製))を用いて測定されたメジアン細孔直径である。
多孔性填料中の金属化合物の含有量(酸化物換算)は、蛍光X線分析装置(スペクトリス社製PW2404)を用いて測定した値である。
The viscosity of the porous filler slurry is a value measured with a B-type viscometer at a temperature of 20 ° C. with the solid content concentration of the porous filler slurry adjusted to 15%.
Moreover, about each porous filler, an average particle diameter is a particle diameter of the 50% volume integrated value measured using the laser diffraction type particle size distribution analyzer (SALD2000J (made by Shimadzu Corp.)). The standard deviation is a value calculated from the particle diameter obtained by a laser diffraction particle size distribution analyzer.
The specific surface area is the surface area of all pores when the pore shape is assumed to be a geometric cylinder using a pore sizer 9230 (manufactured by Shimadzu Corporation), which is a porosimeter. It is a value obtained from the relationship between pressure and the amount of mercury injected.
The pore diameter is a median pore diameter measured using a pore sizer 9230 (manufactured by Shimadzu Corporation).
The metal compound content (as oxide) in the porous filler is a value measured using a fluorescent X-ray analyzer (Spectras PW2404).

Figure 2007284822
Figure 2007284822

Figure 2007284822
Figure 2007284822

合成例1〜16の多孔性填料を紙に配合した。   The porous fillers of Synthesis Examples 1 to 16 were added to paper.

製造例1
カナダ標準濾水度(CSF)が450mLある晒化学パルプ(BKP)スラリーに、合成例1で得られた多孔性填料を紙質量当たり7部になるよう添加し、さらに絶乾パルプ量100部当たり、澱粉1.0部、アルキルケテンダイマー0.03部、及び硫酸バンドを0.5部、歩留向上剤0.02部(DR−1500、ハイモ社製)となるように添加して紙料を調製した。その紙料を、角型手抄き装置を用いて目標坪量が風乾で70g/mとなるように抄造し、プレスにより脱水後、シリンダードライヤーを用いて乾燥しシートを作製した。その後、線圧25kg/cmでキャレンダー処理を施して成紙を得た。
Production Example 1
To the bleached chemical pulp (BKP) slurry with 450 mL Canadian Standard Freeness (CSF), the porous filler obtained in Synthesis Example 1 is added to 7 parts per mass of paper, and further per 100 parts of absolute dry pulp quantity. , 1.0 part of starch, 0.03 part of alkyl ketene dimer, 0.5 part of sulfuric acid band and 0.02 part of yield improver (DR-1500, manufactured by Hymo Co., Ltd.) Was prepared. The stock was made using a square handmaking device so that the target basis weight was 70 g / m 2 when air-dried, dehydrated by a press, and then dried using a cylinder dryer to produce a sheet. Thereafter, a calendering process was performed at a linear pressure of 25 kg / cm to obtain a synthetic paper.

製造例2〜15
多孔性填料を合成例2〜16のものに各々変更したこと以外は、製造例1と同一条件で成紙を得た。
Production Examples 2-15
An obtained paper was obtained under the same conditions as in Production Example 1 except that the porous filler was changed to those of Synthesis Examples 2 to 16, respectively.

各製造例の紙について、以下のように評価した。評価結果を表3または表4に示す。
・紙の緊度:JIS P 8118により測定した。
・不透明度:JIS P 8149に従って測定した。
・内部結合強度:J.TAPPI No.18−2に従い測定した。
・表面強度(印刷強度):RI印刷機(明製作所製)にてオフセットインキT13を用いて測定し、その結果を評価表示した。
◎:強度が高く、実用上問題なく、品質も優れている。
○:強度が高く、実用上問題ない。
△:強度がやや劣り、実用上問題ある。
×:強度が著しく劣り、実用上問題であり、品質も著しく劣っている。
The paper of each production example was evaluated as follows. The evaluation results are shown in Table 3 or Table 4.
-Paper tightness: Measured according to JIS P 8118.
Opacity: Measured according to JIS P 8149.
-Internal bond strength: TAPPI No. It measured according to 18-2.
-Surface strength (printing strength): Measured using an offset ink T13 with an RI printing machine (manufactured by Meisei Seisakusho), and the result was evaluated and displayed.
A: High in strength, practically satisfactory, and excellent in quality.
○: Strength is high and there is no practical problem.
Δ: The strength is slightly inferior, and there is a problem in practical use.
X: Strength is remarkably inferior, it is a problem in practical use, and quality is remarkably inferior.

Figure 2007284822
Figure 2007284822

Figure 2007284822
Figure 2007284822

酸化ケイ素と特定量の金属化合物とを含有し、特定の粒子特性を有し、凝集構造の破壊が防止された多孔性填料が配合された製造例1〜7の紙は、嵩高であり、白紙の不透明度、表面強度および内部結合強度のいずれもが高かった。
これに対し、金属化合物の含有量が酸化物換算で0.08質量%未満の多孔性填料が配合された製造例8の紙は、不透明度、内部結合強度および表面強度が低かった。
金属化合物の含有量が酸化物換算で8.0質量%を超え、凝集構造の破壊が防止されていない多孔性填料が配合された製造例9の紙は、嵩高化が不充分であり、また、不透明度も低かった。
比表面積が10g/cm未満であり、凝集構造の破壊が防止されていない多孔性填料が配合された製造例10の紙、比表面積が150g/cmを超え、凝集構造の破壊が防止されていない多孔性填料が配合された製造例11の紙は、嵩高化が不充分であった。
細孔径が0.10μm未満であり、凝集構造の破壊が防止されていない多孔性填料が配合された製造例12の紙は、嵩高化が不充分であった上に、内部結合強度および表面強度も低かった。
細孔径が0.80μmを超え、凝集構造の破壊が防止されていない多孔性填料が配合された製造例13の紙は、嵩高化が不充分であった。
平均粒子径が16μm未満である多孔性填料が配合された製造例14および製造例16の紙は、嵩高化が不充分であった。
平均粒子径が40μmを超えていた多孔性填料が配合された製造例15の紙は、不透明度、内部結合強度、表面強度が低かった。


The papers of Production Examples 1 to 7 containing silicon oxide and a specific amount of a metal compound, having specific particle characteristics, and containing a porous filler in which destruction of the aggregated structure is prevented are bulky, and are blank. All of the opacity, surface strength and internal bond strength were high.
On the other hand, the paper of Production Example 8 in which a porous filler having a metal compound content of less than 0.08% by mass in terms of oxide was low in opacity, internal bond strength, and surface strength.
The paper of Production Example 9 in which the content of the metal compound exceeds 8.0% by mass in terms of oxide and the porous filler that does not prevent the destruction of the aggregated structure is blended is insufficiently bulky. The opacity was also low.
Paper of Production Example 10 having a specific surface area of less than 10 g / cm 2 and blended with a porous filler that does not prevent the destruction of the agglomerated structure, the specific surface area exceeds 150 g / cm 2, and the destruction of the agglomerated structure is prevented. The paper of Production Example 11 in which an unfilled porous filler was blended was insufficient in bulk.
The paper of Production Example 12 having a pore diameter of less than 0.10 μm and blended with a porous filler that does not prevent the destruction of the aggregated structure was insufficient in bulk, and had an internal bond strength and surface strength. Was also low.
The paper of Production Example 13 containing a porous filler having a pore diameter exceeding 0.80 μm and not preventing the destruction of the aggregated structure was insufficiently bulky.
The papers of Production Example 14 and Production Example 16 in which a porous filler having an average particle size of less than 16 μm was blended were insufficiently bulky.
The paper of Production Example 15 in which the porous filler having an average particle diameter exceeding 40 μm was blended had low opacity, internal bond strength, and surface strength.


Claims (6)

酸化ケイ素と金属化合物とが凝集した凝集体からなる多孔性填料であって、
比表面積が10〜150m/g、細孔径が0.10〜0.80μm、平均粒子径が16〜40μmであり、
金属化合物の含有量が、酸化ケイ素100質量%に対して酸化物換算で0.08〜8.0質量%であることを特徴とする多孔性填料。
A porous filler comprising an aggregate in which silicon oxide and a metal compound are aggregated,
The specific surface area is 10 to 150 m 2 / g, the pore diameter is 0.10 to 0.80 μm, the average particle diameter is 16 to 40 μm,
A porous filler, wherein the content of the metal compound is 0.08 to 8.0 mass% in terms of oxide with respect to 100 mass% of silicon oxide.
請求項1に記載の多孔性填料と電解質とが水中に含まれる多孔性填料スラリーであって、
電解質濃度が50〜120g/Lであることを特徴とする多孔性填料スラリー。
A porous filler slurry containing the porous filler according to claim 1 and an electrolyte in water,
A porous filler slurry having an electrolyte concentration of 50 to 120 g / L.
攪拌されているケイ酸アルカリ水溶液中に、鉱酸溶液および鉱酸の金属塩溶液を添加することにより、酸化ケイ素と金属化合物とが凝集した凝集体からなる多孔性填料を水中で析出させて、多孔性填料スラリーを得る多孔性填料の製造方法であって、
ケイ酸アルカリ水溶液の攪拌速度を周速7m/秒以上とし、
鉱酸の金属塩溶液の添加量を、酸化ケイ素100質量%に対して0.07〜7.0質量%の金属がケイ酸アルカリ水溶液に添加される量とし、
前記多孔性填料スラリーの電解質濃度を50〜120g/Lとすることを特徴とする多孔性填料の製造方法。
By adding a mineral acid solution and a metal salt solution of a mineral acid to a stirred alkali silicate aqueous solution, a porous filler composed of an aggregate in which silicon oxide and a metal compound are aggregated is precipitated in water, A method for producing a porous filler to obtain a porous filler slurry,
The stirring speed of the alkali silicate aqueous solution is set to a peripheral speed of 7 m / second or more,
The addition amount of the metal salt solution of the mineral acid is an amount in which 0.07 to 7.0% by mass of metal is added to the alkali silicate aqueous solution with respect to 100% by mass of silicon oxide,
A method for producing a porous filler, wherein an electrolyte concentration of the porous filler slurry is 50 to 120 g / L.
前記鉱酸溶液および鉱酸の金属塩溶液を2回以上に分割して添加する請求項3に記載の多孔性填料の製造方法。   The method for producing a porous filler according to claim 3, wherein the mineral acid solution and the metal salt solution of the mineral acid are added in two or more portions. 1回目の添加の際には、ケイ酸アルカリ水溶液の温度を20〜70℃とし、2回目以降の添加の際には、ケイ酸アルカリ水溶液の温度を70℃より高くする請求項4に記載の多孔性填料の製造方法。   5. The temperature of the alkali silicate aqueous solution is 20 to 70 ° C. at the first addition, and the temperature of the alkali silicate aqueous solution is higher than 70 ° C. at the second and subsequent additions. A method for producing a porous filler. 請求項1に記載の多孔性填料を含有することを特徴とする紙。   A paper comprising the porous filler according to claim 1.
JP2006113477A 2006-04-17 2006-04-17 Porous filler and production method thereof, porous filler slurry and paper Active JP4742963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113477A JP4742963B2 (en) 2006-04-17 2006-04-17 Porous filler and production method thereof, porous filler slurry and paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113477A JP4742963B2 (en) 2006-04-17 2006-04-17 Porous filler and production method thereof, porous filler slurry and paper

Publications (2)

Publication Number Publication Date
JP2007284822A true JP2007284822A (en) 2007-11-01
JP4742963B2 JP4742963B2 (en) 2011-08-10

Family

ID=38756868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113477A Active JP4742963B2 (en) 2006-04-17 2006-04-17 Porous filler and production method thereof, porous filler slurry and paper

Country Status (1)

Country Link
JP (1) JP4742963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052384A (en) * 2017-09-13 2019-04-04 凸版印刷株式会社 Luminous paper and method for producing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597420A (en) * 1990-12-28 1993-04-20 Rhone Poulenc Chim Novel silica, method for its production and its use particularly as paper filler
JPH05311599A (en) * 1992-04-28 1993-11-22 Tokuyama Soda Co Ltd Filler for paper and paper using the same
JPH0891820A (en) * 1994-09-26 1996-04-09 Nippon Chem Ind Co Ltd Hydrated silicic acid and its production
JPH09176988A (en) * 1995-12-27 1997-07-08 Nippon Paper Ind Co Ltd Production of filler added paper
JPH10226982A (en) * 1997-02-06 1998-08-25 Nippon Paper Ind Co Ltd Low-density paper for printing
JP2000007320A (en) * 1998-03-12 2000-01-11 Oji Paper Co Ltd Silica particle, its production and paper containing internally added silica particle
JP2002274837A (en) * 2001-03-22 2002-09-25 Nippon Paper Industries Co Ltd Hydrated silicate
JP2004176196A (en) * 2002-11-25 2004-06-24 Seiko Pmc Corp Filler for paper and paper containing the filler
JP2004250268A (en) * 2003-02-19 2004-09-09 Nippon Paper Industries Co Ltd Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597420A (en) * 1990-12-28 1993-04-20 Rhone Poulenc Chim Novel silica, method for its production and its use particularly as paper filler
JPH05311599A (en) * 1992-04-28 1993-11-22 Tokuyama Soda Co Ltd Filler for paper and paper using the same
JPH0891820A (en) * 1994-09-26 1996-04-09 Nippon Chem Ind Co Ltd Hydrated silicic acid and its production
JPH09176988A (en) * 1995-12-27 1997-07-08 Nippon Paper Ind Co Ltd Production of filler added paper
JPH10226982A (en) * 1997-02-06 1998-08-25 Nippon Paper Ind Co Ltd Low-density paper for printing
JP2000007320A (en) * 1998-03-12 2000-01-11 Oji Paper Co Ltd Silica particle, its production and paper containing internally added silica particle
JP2002274837A (en) * 2001-03-22 2002-09-25 Nippon Paper Industries Co Ltd Hydrated silicate
JP2004176196A (en) * 2002-11-25 2004-06-24 Seiko Pmc Corp Filler for paper and paper containing the filler
JP2004250268A (en) * 2003-02-19 2004-09-09 Nippon Paper Industries Co Ltd Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052384A (en) * 2017-09-13 2019-04-04 凸版印刷株式会社 Luminous paper and method for producing the same
JP7027746B2 (en) 2017-09-13 2022-03-02 凸版印刷株式会社 Phosphorescent paper and its manufacturing method

Also Published As

Publication number Publication date
JP4742963B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP3898007B2 (en) Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles
JP5528760B2 (en) Paper made by adding cellulose nanofibers and method for producing the same
JP2009270206A (en) Porous filler and method for producing the same
US4725318A (en) Filler for paper-making and neutral paper-making process by the use thereof
JP4568921B2 (en) Silica particles, method for producing the same, and silica particle-containing paper
JP5003139B2 (en) Porous filler for paper, its production method and porous filler slurry for paper and paper
US6264907B1 (en) Process for producing silica particles suitable for use as filler for paper
JP4796282B2 (en) Low density printing paper
JP3982027B2 (en) Method for producing composite particles
JP2007091581A (en) Porous filler, its production method and paper
JP4233478B2 (en) Neutral newspaper printing paper
JP4903493B2 (en) Method for producing composite particles
JP4742963B2 (en) Porous filler and production method thereof, porous filler slurry and paper
JP4788429B2 (en) Paper with improved paper strength and stiffness, method for producing the same, and method for improving plastic wire wear
EP1620599B2 (en) Process for manufacturing of paper
JP5840943B2 (en) Method for producing composite particles
JP4225929B2 (en) Light calcium carbonate-silica composite
JP5122872B2 (en) Neutral paper and method for producing neutral paper
JP2960001B2 (en) Manufacturing method of filler-filled paper
JP5058413B2 (en) Calcium carbonate-containing composite substrate, method for producing the same, and coated paper using the same
JP5422884B2 (en) Method for producing hydrated silicic acid and paper
JP2960002B2 (en) Manufacturing method of filler-filled paper
JP2005272155A (en) Silica particles and paper with internally added silica particles
RU2544826C2 (en) Application of acid water for manufacturing paper
JP2002220221A (en) Method for manufacturing silica particles and paper internally filled with silica particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250