JP2007284780A - Surface-treated steel sheet and its production method - Google Patents

Surface-treated steel sheet and its production method Download PDF

Info

Publication number
JP2007284780A
JP2007284780A JP2006268971A JP2006268971A JP2007284780A JP 2007284780 A JP2007284780 A JP 2007284780A JP 2006268971 A JP2006268971 A JP 2006268971A JP 2006268971 A JP2006268971 A JP 2006268971A JP 2007284780 A JP2007284780 A JP 2007284780A
Authority
JP
Japan
Prior art keywords
reaction layer
coating
steel sheet
mass ppm
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006268971A
Other languages
Japanese (ja)
Other versions
JP5092332B2 (en
Inventor
Rie Umebayashi
里江 梅林
Satoshi Ando
聡 安藤
Sakae Fujita
栄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006268971A priority Critical patent/JP5092332B2/en
Publication of JP2007284780A publication Critical patent/JP2007284780A/en
Application granted granted Critical
Publication of JP5092332B2 publication Critical patent/JP5092332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated steel sheet producible without using chromium, phosphorous and heavy metals, and having excellent bare corrosion resistance and corrosion resistance at defective parts. <P>SOLUTION: In the surface-treated steel sheet, at least one side of a steel sheet is provided with a film composed of a reaction layer comprising Ti and Fe and a coating layer stacked on the reaction layer, the oxygen reduction current after the formation of the film is ≤1/10 of the oxygen reduction current before the formation of the film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車、家庭用電気器具および建材などに用いて好適な表面処理鋼板、特に、塩分付着後に乾燥および湿潤が繰り返される環境下においても、耐食性に優れる被膜を表面に有する表面処理鋼板およびその製造方法に関するものである。   The present invention relates to a surface-treated steel sheet suitable for use in automobiles, household electrical appliances, building materials, and the like, in particular, a surface-treated steel sheet having a coating with excellent corrosion resistance on the surface even in an environment where drying and wetting are repeated after adhesion of salt. It relates to the manufacturing method.

従来、鋼板の分野では、防錆性を確保するために、鋼板の表面にリン酸亜鉛被膜およびクロメート被膜を形成後に、さらに塗装して供用するのが一般的である。
ここに、クロメート被膜は、浸漬処理や塗布処理或いは電解処理などの方法を用いて鋼板上に形成される。しかし、クロメート処理は、クロムを含む溶液を用いて行われるところ、環境保全の観点から世界的にクロムの使用が規制されるなか、クロメート被膜に替わる表面処理被膜が求められている。
Conventionally, in the field of steel sheets, in order to ensure rust prevention, it is common to further coat and use after forming a zinc phosphate coating and a chromate coating on the surface of the steel sheet.
Here, the chromate film is formed on the steel plate using a method such as dipping, coating, or electrolytic treatment. However, when the chromate treatment is performed using a solution containing chromium, a surface treatment coating that replaces the chromate coating is demanded while the use of chromium is regulated worldwide from the viewpoint of environmental protection.

一方、りん酸亜鉛被膜は、その処理液中に燐を多量に含むことや、ニッケルやマンガン等の重金属が処理剤中に多量に含有されていることから、環境負荷の原因となり得るため、やはりりん酸亜鉛被膜に替わる表面処理被膜が求められている。   On the other hand, since the zinc phosphate coating contains a large amount of phosphorus in the treatment liquid and a heavy metal such as nickel and manganese is contained in the treatment agent, it can cause environmental burdens. There is a need for a surface-treated coating that replaces the zinc phosphate coating.

上記の観点から、表面処理剤や被膜について種々の提案がなされている。
例えば、特許文献1には、ジルコニウムイオン及び/又はチタニウムイオン並びに、フッ素イオンを含有してなり、ジルコニウムイオン及び/又はチタニウムイオンの含有量は、重量基準で20〜500質量ppmであり、フッ素イオンの含有量は、ジルコニウムイオン及び/又はチタニウムイオンに対してモル比で6倍以上であり、実質的にりん酸イオンを含有せず、pHが2〜5である化成処理剤が開示されている。
From the above viewpoint, various proposals have been made on surface treatment agents and coatings.
For example, Patent Document 1 contains zirconium ions and / or titanium ions and fluorine ions, and the content of zirconium ions and / or titanium ions is 20 to 500 ppm by mass on the basis of weight. Is disclosed as a chemical conversion treatment agent having a molar ratio of 6 times or more with respect to zirconium ions and / or titanium ions, substantially not containing phosphate ions, and having a pH of 2 to 5. .

特許文献2には、ジルコニウムイオン及び/又はチタニウムイオン、フッ素イオン並びに、可溶性エポキシ樹脂を含有してなり、ジルコニウムイオン及び/又はチタニウムイオンの含有量は、20〜500質量ppmであり、フッ素イオンの含有量は、ジルコニウムイオン及び/又はチタニウムイオンに対して、モル比で6倍以上であり、実質的にりん酸イオンを含有せず、pHが2.5〜4.5である金属表面処理用組成物が開示されている。   Patent Document 2 contains zirconium ions and / or titanium ions, fluorine ions, and a soluble epoxy resin, and the content of zirconium ions and / or titanium ions is 20 to 500 mass ppm. The content is 6 times or more in molar ratio with respect to zirconium ions and / or titanium ions, substantially does not contain phosphate ions, and has a pH of 2.5 to 4.5. A composition is disclosed.

特許文献3には、ジルコニウム化合物及びチタニウム化合物から選ばれる1種以上の化合物を金属元素として5〜5000質量ppm含み、遊離フッ素イオンを0.1〜100質量ppm含み、かつpHが2〜6である金属の表面処理用処理液が開示されている。   Patent Document 3 contains 5 to 5000 mass ppm of one or more compounds selected from zirconium compounds and titanium compounds as metal elements, 0.1 to 100 mass ppm of free fluorine ions, and a pH of 2 to 6. A metal surface treatment solution is disclosed.

特許文献4には、(A)Ti,Zr,HfおよびSiからなる群から選ばれる少なくとも1種の元素を含む化合物、(B)ナフタレンスルホン酸などから選ばれる少なくとも1種の化合物、(C)Ag,Alなどから選ばれる少なくとも1種の金属元素を含む化合物、(D)フッ素含有化合物の少なくとも1種、を含有する金属表面処理用組成物が開示されている。   Patent Document 4 includes (A) a compound containing at least one element selected from the group consisting of Ti, Zr, Hf and Si, (B) at least one compound selected from naphthalenesulfonic acid, and the like (C). Disclosed is a metal surface treatment composition containing a compound containing at least one metal element selected from Ag, Al, and the like, and (D) at least one fluorine-containing compound.

特許文献5には、金属製基材上に、ジルコニウム及び/又はチタンを含んでなる表面処理層を有し、更に樹脂層を有するノンクロム被覆金属材料が開示されている。
特許文献6にはTi、O、Fを主成分とし、最表面に含有されるPとM(MはTiあるいはTi及びZr)の原子比が0.1≦P/M<0.6である表面処理金属材料が開示されている。
特開2003−155578号公報 特開2003−253461号公報 特開2004−190121号公報 特開2005−264230号公報 特開2005−200720号公報 特開2006−9046号公報
Patent Document 5 discloses a non-chromium-coated metal material having a surface treatment layer containing zirconium and / or titanium on a metal substrate, and further having a resin layer.
In Patent Document 6, the atomic ratio of P and M (M is Ti or Ti and Zr) containing Ti, O, and F as main components and 0.1% in the outermost surface is 0.1 ≦ P / M <0.6. A surface-treated metal material is disclosed.
JP 2003-155578 A JP 2003-253461 A JP 2004-190121 A JP 2005-264230 A JP 2005-200720 A Japanese Unexamined Patent Publication No. 2006-9046

しかしながら、特許文献1ないし6に開示されている処理剤や処理方法を用いて鋼板を処理した場合、特に屋外環境下、つまり塩分付着後に乾燥および湿潤が繰り返される環境下において、素地に到達するような後天的な傷部、もしくはピンホール欠陥のような表面処理層の欠陥部を起点として、鋼板と表面処理層との界面で糸状錆に代表される塗膜下腐食が発生し、外観が損なわれる。すなわち欠陥部耐食性が不足していた。   However, when the steel sheet is treated using the treatment agents and treatment methods disclosed in Patent Documents 1 to 6, it may reach the substrate particularly in an outdoor environment, that is, in an environment where drying and wetting are repeated after adhesion of salt. From scratches on the surface of the surface treatment layer such as pinhole defects such as acquired scratches, undercoat corrosion such as thread rust occurs at the interface between the steel sheet and the surface treatment layer, and the appearance is impaired. It is. That is, the defect corrosion resistance was insufficient.

また、表面処理鋼板では、さらに裸耐食性、すなわち無塗装で用いた場合の耐食性にも優れている必要がある。   In addition, the surface-treated steel sheet needs to be further excellent in bare corrosion resistance, that is, corrosion resistance when used without coating.

本発明は、上記の現状に鑑み、クロム、燐および重金属を用いることなく製造可能な、裸耐食性および欠陥部耐食性に優れる表面処理鋼板およびその製造方法を提供することを目的とする。   An object of this invention is to provide the surface treatment steel plate excellent in the bare corrosion resistance and defect part corrosion resistance which can be manufactured without using chromium, phosphorus, and a heavy metal in view of said present condition, and its manufacturing method.

さて、発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、鋼板にFeおよびTiを含む反応層を形成し、この反応層上にさらに酸素透過抑制効果の高い被覆層を形成して反応層および被覆層からなる被膜を形成し、この被膜形成後の酸素還元電流を同形成前の酸素還元電流の1/10以下にすることによって、塩分付着後に乾燥および湿潤が繰り返される環境下においても、裸耐食性および欠陥部耐食性に優れる表面処理鋼板を得ることができるとの知見を得た。   As a result of intensive investigations to solve the above problems, the inventors formed a reaction layer containing Fe and Ti on the steel sheet, and formed a coating layer having a higher oxygen permeation suppressing effect on the reaction layer. Forming a film comprising the reaction layer and the coating layer, and reducing the oxygen reduction current after the film formation to 1/10 or less of the oxygen reduction current before the film formation, whereby drying and wetting are repeated after the deposition of salt. The inventors have also found that a surface-treated steel sheet having excellent bare corrosion resistance and defect portion corrosion resistance can be obtained.

本発明は、上記の知見に立脚するものであり、その要旨構成は次の通りである。
(1)鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を有し、該被膜を形成後の酸素還元電流が同被膜形成前の酸素還元電流の1/10以下であることを特徴とする表面処理鋼板。
The present invention is based on the above findings, and the gist of the present invention is as follows.
(1) At least one surface of a steel sheet has a coating composed of a reaction layer containing Ti and Fe and a coating layer laminated on the reaction layer, and the oxygen reduction current after the formation of the coating is before the formation of the coating A surface-treated steel sheet characterized by being 1/10 or less of the oxygen reduction current.

(2)前記反応層のTi付着量が5〜80mg/m2であることを特徴とする上記(1)記載の表面処理鋼板。 (2) The surface-treated steel sheet according to (1), wherein the reaction layer has a Ti adhesion amount of 5 to 80 mg / m 2 .

(3)鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。 (3) In forming a coating comprising a reaction layer containing Ti and Fe on at least one side of the steel plate and a coating layer laminated on the reaction layer, Ti: 100 to 5000 mass ppm on at least one side of the steel plate , Oxidizing agent: 1000 to 50000 mass ppm and free fluorine ions: 50 to 1000 mass ppm, and a treatment liquid having a pH of 3 to 6 is brought into contact at a relative flow rate of 0.1 m / s or more to form the reaction layer. A method for producing a surface-treated steel sheet, comprising: forming a surface-treated steel sheet.

(4)鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面にFeめっきを施したのち、該めっき面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。 (4) In forming a coating consisting of a reaction layer containing Ti and Fe on at least one side of the steel plate and a coating layer laminated on the reaction layer, after applying Fe plating on at least one side of the steel plate, A treatment liquid containing Ti: 100-5000 mass ppm, oxidizing agent: 1000-50000 mass ppm and free fluorine ions: 50-1000 mass ppm on the plated surface, and having a pH of 3-6, has a relative flow rate of 0.1 m / s. The manufacturing method of the surface treatment steel plate characterized by making it contact in the above and forming the said reaction layer.

(5)鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面を、pHが5以下の酸性水溶液に浸漬処理した後、該処理面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。 (5) When forming a coating comprising a reaction layer containing Ti and Fe and a coating layer laminated on the reaction layer on at least one side of the steel plate, an acidic aqueous solution having a pH of 5 or less on at least one side of the steel plate After the immersion treatment, a treatment liquid containing Ti: 100 to 5000 mass ppm, oxidizing agent: 1000 to 50000 mass ppm and free fluorine ions: 50 to 1000 mass ppm, and having a pH of 3 to 6 on the treated surface. The method for producing a surface-treated steel sheet, wherein the reaction layer is formed by contact at a relative flow rate of 0.1 m / s or more.

(6)鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面にFeめっきを施したのち、該めっき面をpHが5以下の酸性水溶液に浸漬処理した後、該処理面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。 (6) In forming a coating composed of a reaction layer containing Ti and Fe on at least one side of the steel plate and a coating layer laminated on the reaction layer, after applying Fe plating on at least one side of the steel plate, After immersing the plated surface in an acidic aqueous solution having a pH of 5 or less, the treated surface contains Ti: 100-5000 mass ppm, oxidizing agent: 1000-50000 mass ppm and free fluorine ions: 50-1000 mass ppm, A method for producing a surface-treated steel sheet, wherein the reaction layer is formed by contacting a treatment liquid having a pH of 3 to 6 at a relative flow rate of 0.1 m / s or more.

(7)上記(3)〜(6)のいずれかにおいて、前記反応層の形成後に、該反応層上に、有機被膜、無機被膜および有機無機複合被膜のうちの少なくとも1つによる被覆層を形成することを特徴とする表面処理鋼板の製造方法。 (7) In any one of the above (3) to (6), after the formation of the reaction layer, a coating layer of at least one of an organic coating, an inorganic coating, and an organic-inorganic composite coating is formed on the reaction layer A method for producing a surface-treated steel sheet, comprising:

本発明によれば、クロム、燐および重金属を含む処理液を用いることなく、裸耐食性および欠陥部耐食性に優れる表面処理鋼板を提供することができる。   According to the present invention, it is possible to provide a surface-treated steel sheet having excellent bare corrosion resistance and defect portion corrosion resistance without using a treatment liquid containing chromium, phosphorus and heavy metals.

以下、本発明を具体的に説明する。
鋼板上に塩分が存在する場合、その塩類による結露水や表層の水膜による電気伝導度増加、同水膜中における錯形成による鉄イオン拡散促進、塩素イオン吸着による酸化被膜の破壊、化学的凝縮作用による湿潤状態の持続(結露)などが複合して作用する結果、鋼板は腐食しやすくなる。沿岸地域では、飛来海塩の影響により、塩分が付着しやすい環境にある。さらに、昼夜などの気温の変化により、乾燥および湿潤が繰り返される環境下では、鋼表面への酸素供給量の増大が生じ、カソード反応が促進され、更に腐食が進行しやすくなる。
The present invention will be specifically described below.
When salt is present on the steel sheet, electrical conductivity increases due to condensation water and surface water film due to the salt, diffusion of iron ions by complex formation in the water film, destruction of oxide film due to adsorption of chlorine ions, chemical condensation As a result of the combined action of the wet state due to the action (condensation) and the like, the steel sheet is easily corroded. In coastal areas, salt is likely to adhere due to the effects of incoming sea salt. Furthermore, in an environment where drying and wetting are repeated due to changes in temperature such as day and night, the amount of oxygen supplied to the steel surface increases, the cathode reaction is promoted, and corrosion further proceeds.

このような環境下での腐食反応を抑制するためには、鋼板表面に、酸素還元電流を1/10以下にする被膜を形成することが肝要である。すなわち、被膜の形成によって酸素還元電流を1/10以下に小さくすると、酸素透過量が減少する結果、腐食反応を抑制することができる。   In order to suppress the corrosion reaction under such an environment, it is important to form a film that reduces the oxygen reduction current to 1/10 or less on the steel sheet surface. That is, when the oxygen reduction current is reduced to 1/10 or less by forming a film, the amount of oxygen permeation is reduced, and the corrosion reaction can be suppressed.

なお、酸素還元電流は、5質量%NaCl水溶液中でカソード動電位分極曲線を測定することにより評価できる。そして、この測定を、被膜の形成前後で行うことによって、被膜の形成後の酸素還元電流の低下代を把握できる。なお、被膜の形成前とは、反応層形成前であり、反応層形成前に後述する酸性水溶液への浸漬処理を施す場合は、酸性水溶液の浸漬処理後反応層形成前であり、反応層形成前に後述するFeめっきを施す場合はFeめっき後反応層形成前であり、反応層形成前にFeめっきと酸性水溶液への浸漬処理を施す場合は、Feめっきおよび酸性水溶液への浸漬処理後反応層形成前である。   The oxygen reduction current can be evaluated by measuring the cathodic potentiodynamic polarization curve in a 5 mass% NaCl aqueous solution. Then, by performing this measurement before and after the formation of the film, it is possible to grasp the reduction amount of the oxygen reduction current after the film is formed. In addition, before the formation of the coating is before the formation of the reaction layer. When the immersion treatment in the acidic aqueous solution described later is performed before the formation of the reaction layer, the reaction layer is formed after the immersion treatment of the acidic aqueous solution and before the formation of the reaction layer. When Fe plating described later is performed before Fe plating and before reaction layer formation, when Fe plating and immersion treatment in acidic aqueous solution are performed before reaction layer formation, reaction after immersion treatment in Fe plating and acidic aqueous solution Before layer formation.

次に、酸素還元電流を1/10以下にするための被膜について、詳しく説明する。
この被膜は、鋼板表面に形成するTiおよびFeを含む反応層と、該反応層上の形成する被覆層との積層になる。
Next, the film for reducing the oxygen reduction current to 1/10 or less will be described in detail.
This coating is a laminate of a reaction layer containing Ti and Fe formed on the steel sheet surface and a coating layer formed on the reaction layer.

まず、反応層は、FeおよびTiを含む必要がある。ここで、FeおよびTiの組み合わせが耐食性の向上に効果を発現する理由は明らかではないが、Tiの化合物中にFeを取り入れることによって、得られる反応層と下地鋼板との密着性が向上する結果、糸状錆の発生が抑制されるためであると推察される。   First, the reaction layer needs to contain Fe and Ti. Here, the reason why the combination of Fe and Ti is effective in improving the corrosion resistance is not clear, but the result of improving the adhesion between the resulting reaction layer and the underlying steel sheet by incorporating Fe into the Ti compound It is presumed that this is because the occurrence of thread-like rust is suppressed.

ここで、反応層のTi付着量は5〜80mg/m2とすることが好ましい。Ti付着量が5mg/m2未満では、鋼板表面を均一に被覆できず、耐食性を損なうおそれがある。一方、Ti付着量が80mg/m2を超えると、密着性不良となり、裸耐食性と欠陥部耐食性が劣化するおそれがある。 Here, Ti deposition amount of the reaction layer is preferably set to 5-80 mg / m 2. If the amount of Ti deposited is less than 5 mg / m 2 , the steel sheet surface cannot be uniformly coated and the corrosion resistance may be impaired. On the other hand, if the amount of Ti adhesion exceeds 80 mg / m 2 , adhesion may be poor, and the bare corrosion resistance and the defect portion corrosion resistance may be deteriorated.

また、反応層中のFe/(Fe+Ti)は、0.3〜0.9とするのが好ましい。Fe/(Fe+Ti)が0.3より少ないと鋼板と反応層との密着性が低下し、十分な耐食性を確保できない。一方、Fe/(Fe+Ti)が0.9より多いと反応層中のTi含有比率が低くなる結果、耐食性が低下する。   Further, Fe / (Fe + Ti) in the reaction layer is preferably 0.3 to 0.9. When Fe / (Fe + Ti) is less than 0.3, the adhesion between the steel sheet and the reaction layer is lowered, and sufficient corrosion resistance cannot be ensured. On the other hand, if Fe / (Fe + Ti) is more than 0.9, the Ti content ratio in the reaction layer is lowered, resulting in a decrease in corrosion resistance.

このTi系反応層には、Feの他の金属種、例えば、Zr、V、Mo、Mn、Co、Fe、Ni、Zn、Al、Mg、P、LaおよびCeなどを複合化してもよい。   In the Ti-based reaction layer, other metal species such as Fe, for example, Zr, V, Mo, Mn, Co, Fe, Ni, Zn, Al, Mg, P, La, and Ce may be combined.

次に、反応層の形成方法を説明する。反応層の形成方法は、浸漬処理やスプレー処理など、処理液と鋼板とを接触反応させることができる方法であれば、特に限定する必要はない。鋼板を表面処理した後は、そのまま乾燥するか、もしくは反応層形成後に水洗を実施してから、乾燥しても良い。また、乾燥前に、ロール絞り又は気体絞りなどの工程により、処理液の液膜を制御してもよい。   Next, a method for forming the reaction layer will be described. The method for forming the reaction layer is not particularly limited as long as it is a method capable of causing the treatment liquid and the steel plate to contact with each other, such as immersion treatment or spray treatment. After the surface treatment of the steel sheet, it may be dried as it is, or may be dried after washing with water after forming the reaction layer. In addition, the liquid film of the treatment liquid may be controlled by a process such as roll squeezing or gas squeezing before drying.

ここで、上記処理液は、被膜形成成分であるTiイオンを100〜5000質量ppm含むことが必要である。Tiイオンが100質量ppm未満であると、Ti供給量が少なく、処理液の処理能力が小さくなる。一方、Tiイオンが5000質量ppmを超えると、耐食性についてそれ以上の効果は期待できず、経済的に不利である。
上記Tiイオン供給源としては特に限定されず、例えば、硫酸チタン、チタン系フッ化物、チタン系塩化物およびヨウ化チタン等、可溶性Ti塩であればいずれでもよい。
Here, the treatment liquid needs to contain 100 to 5000 mass ppm of Ti ions which are film forming components. If the Ti ion is less than 100 ppm by mass, the amount of Ti supply is small and the treatment capacity of the treatment liquid becomes small. On the other hand, if Ti ions exceed 5000 ppm by mass, no further effect on corrosion resistance can be expected, which is economically disadvantageous.
The Ti ion supply source is not particularly limited and may be any soluble Ti salt such as titanium sulfate, titanium-based fluoride, titanium-based chloride, and titanium iodide.

さらに、処理液は、酸化剤を1000〜50000質量ppm含むことが必要である。酸化剤が1000質量ppm未満であると、Ti系の反応層が均一に形成され難く、十分な耐食性を発現できない。一方、酸化剤が50000質量ppmを超えると、効率的に反応層を形成することが難しい。
上記酸化剤の供給源としては酸化力を有するものであれば特に限定されず、例えば、HNO3、HClO3、HBrO3、HNO2、HMnO4、HVO3、H2O2、H2WO4、H2MoO4およびこれらの塩類のいずれでもよい。
Furthermore, the treatment liquid needs to contain 1000 to 50000 mass ppm of the oxidizing agent. When the oxidizing agent is less than 1000 ppm by mass, it is difficult to form a Ti-based reaction layer uniformly, and sufficient corrosion resistance cannot be expressed. On the other hand, when the oxidizing agent exceeds 50,000 mass ppm, it is difficult to efficiently form a reaction layer.
The supply source of the oxidizing agent is not particularly limited as long as it has an oxidizing power. For example, HNO 3 , HClO 3 , HBrO 3 , HNO 2 , HMNO 4 , HVO 3 , H 2 O 2 , H 2 WO 4 , H 2 MoO 4 and any of these salts.

さらにまた、遊離フッ素イオンを50〜1000質量ppm含むことが必要である。遊離フッ素イオンが50質量ppm未満であると、Fe表面のエッチングが不十分となり均一な反応層が形成されない。一方、遊離フッ素イオンが1000質量ppmを超えると、エッチングが進行しすぎて反応層が均一に形成されない。
上記フッ素イオンの供給源としては特に限定されず、例えば、ふっ化水素酸、ふっ化水素酸塩、ふっ化硼素酸等をあげることができる。
Furthermore, it is necessary to contain 50 to 1000 mass ppm of free fluorine ions. When the free fluorine ion is less than 50 ppm by mass, etching of the Fe surface is insufficient and a uniform reaction layer is not formed. On the other hand, if the free fluorine ion exceeds 1000 ppm by mass, etching proceeds excessively and the reaction layer is not formed uniformly.
The fluorine ion supply source is not particularly limited, and examples thereof include hydrofluoric acid, hydrofluoric acid salt, and boron fluoride acid.

次に、処理液のpHは3〜6とする。すなわち、pHが3未満では、Ti系反応層が安定に形成できない。一方、pHが6を超えると、Ti系反応層が形成されない。
このpHの調整剤としては特に限定されず、硝酸、過塩素酸、硫酸、硝酸ナトリウム、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、アンモニア等の酸または塩基を用いて行うのが好ましい。
Next, the pH of the treatment solution is 3-6. That is, when the pH is less than 3, the Ti-based reaction layer cannot be stably formed. On the other hand, when the pH exceeds 6, a Ti-based reaction layer is not formed.
The pH adjusting agent is not particularly limited, and it is preferably carried out using an acid or base such as nitric acid, perchloric acid, sulfuric acid, sodium nitrate, ammonium hydroxide, sodium hydroxide, potassium hydroxide, or ammonia.

上記処理液を用いた反応層の形成において、最も重要なのは、処理液が鋼板と接触するときの相対流速である、この相対流速が0の浸漬処理では反応層が形成しない。つまり、処理液を鋼板との間で相対流速0.1m/s以上で接触させる必要がある。なぜなら、0.1m/s未満であると、鋼板表面への反応層形成成分の供給速度が遅くなって反応性が低下し、十分な裸耐食性と欠陥部耐食性を発現できない。   In the formation of the reaction layer using the treatment liquid, the most important thing is the relative flow rate when the treatment liquid comes into contact with the steel sheet. In the immersion treatment where the relative flow rate is 0, the reaction layer is not formed. That is, it is necessary to bring the treatment liquid into contact with the steel sheet at a relative flow rate of 0.1 m / s or more. This is because if it is less than 0.1 m / s, the supply rate of the reaction layer forming component to the steel sheet surface is slowed, the reactivity is lowered, and sufficient bare corrosion resistance and defect corrosion resistance cannot be expressed.

また、処理液の温度は、常温〜60℃であることが好ましい。すなわち、60℃を超えると、反応層の形成における効率が悪くなる。さらに、処理液を鋼板に接触させる時間は、5〜120sであることが好ましい。なぜなら、5s未満であると、鋼板表面との反応時間が短く、均一な反応層の形成が困難となる。一方、120sを超えても反応層形成量はほとんど変わらず、経済的に不利になる。   Moreover, it is preferable that the temperature of a process liquid is normal temperature-60 degreeC. That is, when the temperature exceeds 60 ° C., the efficiency in forming the reaction layer deteriorates. Furthermore, it is preferable that the time for which the treatment liquid is brought into contact with the steel plate is 5 to 120 s. This is because if it is less than 5 s, the reaction time with the steel plate surface is short, and it becomes difficult to form a uniform reaction layer. On the other hand, even if it exceeds 120 s, the reaction layer formation amount hardly changes, which is economically disadvantageous.

上記処理液での反応層形成処理において、基材の鋼種は特に限定されないが、予め基材である鋼板の表面にFeめっきを施しておくと、反応層を形成させた後の耐食性がさらに向上する。この理由は明らかではないが、Feめっきを施すことにより、反応層の形成素地として、組成や組織の観点で均一な表面が形成され、その全面にわたって反応層が均一に形成されるためと推察される。上記Feめっきの付着量は、2g/m2以上であることが好ましい。2g/m2未満であると、鋼板の全表面を均一に被覆することが難しくなり、Feめっきによる上記効果が減少する。なお、Feめっきは、電気めっき法、蒸着法など全面が均一にFeで被覆可能な方法であれば、いずれの方法でも良い。 In the reaction layer forming treatment with the above treatment liquid, the steel type of the base material is not particularly limited, but if the surface of the steel plate which is the base material is preliminarily plated with Fe, the corrosion resistance after forming the reaction layer is further improved. To do. The reason for this is not clear, but it is presumed that by applying Fe plating, a uniform surface is formed from the viewpoint of composition and structure as a base for forming the reaction layer, and the reaction layer is uniformly formed over the entire surface. The The adhesion amount of the Fe plating is preferably 2 g / m 2 or more. If it is less than 2 g / m 2 , it is difficult to uniformly coat the entire surface of the steel sheet, and the above-described effects due to Fe plating are reduced. The Fe plating may be any method as long as the entire surface can be uniformly coated with Fe, such as an electroplating method or a vapor deposition method.

また、上記処理液での反応層形成処理において、鋼板表面またはFeめっき面を酸性水溶液により処理した後に反応層を形成することが好ましい。というのは、鋼板表面には、酸化物や、成分の偏析などが存在しており、処理液と接触させても反応性が乏しい場合があり、この場合に反応性を向上させる効果を有する。   Moreover, in the reaction layer formation process with the said process liquid, it is preferable to form a reaction layer, after processing the steel plate surface or Fe plating surface with acidic aqueous solution. This is because there are oxides, segregation of components, and the like on the surface of the steel sheet, and the reactivity may be poor even when brought into contact with the treatment liquid. In this case, the reactivity is improved.

上記酸性水溶液は特に限定されず、例えば、硫酸、塩酸、硝酸、ふっ化水素酸、塩素酸、しゅう酸、リン酸、これらの混合物などの酸が挙げられる。また、酸性水溶液には、金属イオンが存在してもよく、例えばTi、Zr、V、Mo、Co、Fe、Ni、Zn、Al、Mg、La、Ceなどがあげられる。これら成分を含む酸素酸イオンや、これら成分がキレート化された錯イオンなどを添加しても良い。酸性水溶液のpHが5を超えると効果が十分でない。   The acidic aqueous solution is not particularly limited, and examples thereof include acids such as sulfuric acid, hydrochloric acid, nitric acid, hydrofluoric acid, chloric acid, oxalic acid, phosphoric acid, and mixtures thereof. Further, metal ions may be present in the acidic aqueous solution, and examples thereof include Ti, Zr, V, Mo, Co, Fe, Ni, Zn, Al, Mg, La, and Ce. You may add the oxyacid ion containing these components, the complex ion by which these components were chelated, etc. If the pH of the acidic aqueous solution exceeds 5, the effect is not sufficient.

上記反応層上の被覆層は、被膜として酸素還元電流を1/10以下に低減できるものであればよく、とくに限定しないが、有機被膜、無機被膜、および有機無機複合被膜のうち少なくとも1つからなることが好ましい。有機被膜、無機被膜、および有機無機複合被膜のうち少なくとも1つからなることにより、広範囲のpH域にて化学的に安定である高バリアー性の被覆層となり、裸耐食性および欠陥部耐食性の向上がはかられる。   The coating layer on the reaction layer is not particularly limited as long as it can reduce the oxygen reduction current to 1/10 or less as a coating, but from at least one of an organic coating, an inorganic coating, and an organic-inorganic composite coating It is preferable to become. By comprising at least one of an organic coating, an inorganic coating, and an organic-inorganic composite coating, it becomes a highly barrier coating layer that is chemically stable in a wide pH range, and the improvement of bare corrosion resistance and defect corrosion resistance is improved. I can take off.

次に、被覆層の形成方法を説明する。被覆層の形成方法は、スプレー法、バーコーター塗布、ロールコーター塗布、浸漬法、電解処理など表面に被覆物質を付与できる方法なら何でもよく、その後、そのまま乾燥又はさらに加熱することにより被覆層を形成する。   Next, a method for forming the coating layer will be described. The coating layer can be formed by any method that can impart a coating material to the surface, such as spraying, bar coater coating, roll coater coating, dipping method, or electrolytic treatment, and then the coating layer is formed by drying or further heating. To do.

次に、本発明の実施例について述べる。
(サンプルの作製方法)
表1に示す組成の冷延鋼板(70×150×0.8mm)に、以下の条件で反応層および被覆層を形成し、表面処理鋼板を製造した。
まず、鋼板に前処理として、脱脂処理を施した。すなわち、ユケン工業(株)製のパクナ(登録商標)電清添加剤25を5g/lとNaOHを50g/l含む水溶液を70℃に昇温し、その液に鋼板を浸漬処理し、鋼板を+極として5A/dmの電流を20s間流すことで鋼板表面の油を除去した後、水洗した。次に、表2記載の酸性処理液にて鋼板を浸漬処理後に水洗した。No.28とNo.29は表2記載の酸性処理液への浸漬を行わなかった。または、上記脱脂処理、水洗、硫酸酸洗(5質量%硫酸水溶液、50℃、10s浸漬処理)、水洗後、電気Feめっき処理を施した。次に、表2記載の酸性処理液にて浸漬処理後に水洗した。No.30は表2記載の酸性処理液への浸漬を行わなかった。
Next, examples of the present invention will be described.
(Sample preparation method)
A reaction layer and a coating layer were formed on a cold-rolled steel sheet (70 × 150 × 0.8 mm) having the composition shown in Table 1 under the following conditions to produce a surface-treated steel sheet.
First, the steel sheet was subjected to a degreasing treatment as a pretreatment. That is, an aqueous solution containing 5 g / l of Pakuna (registered trademark) electrification additive 25 manufactured by Yuken Industry Co., Ltd. and 50 g / l of NaOH is heated to 70 ° C., and the steel sheet is immersed in the liquid. The oil on the surface of the steel sheet was removed by flowing a current of 5 A / dm 2 as a positive electrode for 20 s, and then washed with water. Next, the steel sheet was immersed in the acidic treatment liquid shown in Table 2 and then washed with water. No. 28 and No. 29 were not immersed in the acid treatment liquid shown in Table 2. Alternatively, after the above degreasing treatment, water washing, sulfuric acid pickling (5 mass% sulfuric acid aqueous solution, 50 ° C., 10 s immersion treatment), water washing, and electro Fe plating treatment. Next, it was washed with water after the immersion treatment with the acidic treatment liquid described in Table 2. No. 30 was not immersed in the acid treatment liquid described in Table 2.

なお、Feめっき処理は、硫酸めっき浴(FeSO4・7H2O=300g/L、Na2SO4=50g/L、pH=1.8、浴温=60℃)を用いて、電流密度=50A/dm2、流速=1m/s、電解時間=0〜10sの条件に従って行った。 Note that the Fe plating treatment uses a sulfuric acid plating bath (FeSO 4 .7H 2 O = 300 g / L, Na 2 SO 4 = 50 g / L, pH = 1.8, bath temperature = 60 ° C.), current density = 50 A / It was performed according to the conditions of dm 2 , flow rate = 1 m / s, electrolysis time = 0-10 s.

その後、表3に示す処理液で表4に示す条件にて反応層を形成後、水洗してブロアーにて水分を除去した。さらに、表5に示す被覆層となるように塗料をバーコーター塗装し、200℃に設定した電気炉にて2分間乾燥させ、表5に示す付着量とした。   Then, after forming the reaction layer on the conditions shown in Table 4 with the process liquid shown in Table 3, it washed with water and removed the water | moisture content with the blower. Furthermore, the coating material was applied with a bar coater so as to form the coating layer shown in Table 5, and dried in an electric furnace set at 200 ° C. for 2 minutes to obtain an adhesion amount shown in Table 5.

(Ti付着量評価)
高周波誘導プラズマ(ICP)分析により得られたTi重量をもとに作成した検量線を用い、蛍光X線分析にてTi付着量を評価した。
(Ti adhesion amount evaluation)
Using a calibration curve created based on the Ti weight obtained by high frequency induction plasma (ICP) analysis, the amount of Ti adhesion was evaluated by fluorescent X-ray analysis.

(反応層構成物質の評価)
集束イオンビーム(FIB)加工装置により断面サンプルを作製後、反応層中央部を倍率50万倍にてEDX分析を実施し、反応層中のFe/(Fe+Ti)質量比を求めた。
(Evaluation of reaction layer constituents)
After producing a cross-sectional sample with a focused ion beam (FIB) processing apparatus, EDX analysis was performed at a magnification of 500,000 times in the center of the reaction layer to determine the Fe / (Fe + Ti) mass ratio in the reaction layer.

(遊離フッ素濃度評価)
Ti反応層形成処理液中の遊離フッ素イオン濃度は、市販のフッ素イオンメーター(Ti-5101;(株)東興化学研究所製)で測定した。
(Evaluation of free fluorine concentration)
The free fluorine ion concentration in the Ti reaction layer forming treatment solution was measured with a commercially available fluorine ion meter (Ti-5101; manufactured by Toko Chemical Laboratory Co., Ltd.).

(酸素還元電流評価)
5質量%NaCl水溶液中においてカソード動電位分極曲線を測定して評価した。
(Oxygen reduction current evaluation)
The cathodic potentiodynamic polarization curve was measured and evaluated in a 5 mass% NaCl aqueous solution.

(耐食性評価)
得られた表面処理鋼板を、70mm×70mmのサイズにせん断し、端面、背面をシールしたのち、クロスカットを入れ、以下の条件にて、腐食試験を行った。
まず、人工海塩をイオン交換水に希釈し、0.035質量%となる水溶液を作製し、この水溶液を、70mm×70mmサイズの試験片に対して、水溶液として1試験片あたり140mgとなるように調整しながら噴霧し、水溶液を乾燥させることによって、塩分を10mg/m2付着させた。
(Corrosion resistance evaluation)
The obtained surface-treated steel sheet was sheared to a size of 70 mm × 70 mm, the end face and the back face were sealed, then a cross cut was made, and a corrosion test was performed under the following conditions.
First, artificial sea salt is diluted in ion-exchanged water to prepare an aqueous solution of 0.035% by mass, and this aqueous solution is adjusted to 140 mg as an aqueous solution for a test piece of 70 mm × 70 mm size. The solution was sprayed and the aqueous solution was dried to deposit 10 mg / m 2 of salt.

引き続き、この試験片を、環境試験機に入れ、乾燥(60℃、35%)3時間→湿潤(40℃、95%)3時間、となるよう乾湿繰り返し保持した。なお、移行時間は1時間とした。また、3、7、10、14、17日目には、環境試験機からサンプルを取り出し、塩分を水洗除去、乾燥した後、再び10mg/mの人工海塩を付着させ、環境試験機に再度投入した。21日目もしくは49日目に、塩分を水洗除去、乾燥した後、裸耐食性は、カット部以外の赤錆発生面積率にて評価し、欠陥部耐食性は、傷部からの糸状錆発生率を評価した。糸状錆発生率はカット長さに対する派生した全糸状錆の幅を合計した値の割合で評価した。
評価点は、以下のとおりとする。
[裸耐食性:赤錆発生面積率]
50%以上:×
5%以上、50%未満:△
5%未満:○
発錆なし:◎
[欠陥部耐食性:糸状錆発生率]
50%以上:×
10%以上、50%未満:△
10%未満:○
発生無し:◎
Subsequently, the test piece was placed in an environmental test machine and repeatedly held in a dry and wet state so that the condition of drying (60 ° C., 35%) for 3 hours → wetting (40 ° C., 95%) for 3 hours. The transition time was 1 hour. On the third, seventh, tenth, fourteenth, and seventeenth days, the sample is taken out from the environmental test machine, the salt content is removed by washing with water and dried, and then 10 mg / m 2 of artificial sea salt is attached again to the environmental test machine. It was thrown in again. On the 21st or 49th day, the salt content was removed by washing with water and dried, and then the bare corrosion resistance was evaluated based on the red rust occurrence area ratio other than the cut part, and the defect corrosion resistance was evaluated based on the rate of occurrence of thread rust from the scratched part. did. The rate of occurrence of thread rust was evaluated by the ratio of the total value of the widths of all derived thread rust with respect to the cut length.
The evaluation points are as follows.
[Nude corrosion resistance: Area ratio of red rust]
50% or more: ×
5% or more, less than 50%: △
Less than 5%: ○
No rusting: ◎
[Defect corrosion resistance: Rate of occurrence of thread rust]
50% or more: ×
10% or more, less than 50%: △
Less than 10%: ○
No occurrence: ◎

表4に、各サンプルの鋼種、反応層形成条件、Ti付着量、Fe/(Fe+Ti)質量比、被覆層種類並びに評価結果を示した。
これらの結果より、本発明で得られた表面処理鋼板は、塩分付着、乾湿繰り返し環境下において、優れた裸耐食性および欠陥部耐食性を示すことがわかる。
Table 4 shows the steel type, reaction layer formation conditions, Ti adhesion amount, Fe / (Fe + Ti) mass ratio, coating layer type, and evaluation results of each sample.
From these results, it can be seen that the surface-treated steel sheet obtained in the present invention exhibits excellent bare corrosion resistance and defect corrosion resistance in a salt adhesion and repeated wet and dry environment.

Figure 2007284780
Figure 2007284780

Figure 2007284780
Figure 2007284780

Figure 2007284780
Figure 2007284780

Figure 2007284780
Figure 2007284780

Figure 2007284780
Figure 2007284780

Claims (7)

鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を有し、該被膜を形成後の酸素還元電流が同被膜形成前の酸素還元電流の1/10以下であることを特徴とする表面処理鋼板。   At least one surface of the steel sheet has a coating composed of a reaction layer containing Ti and Fe and a coating layer laminated on the reaction layer, and the oxygen reduction current after forming the coating is the oxygen reduction current before forming the coating 1/10 or less of the surface-treated steel sheet. 前記反応層のTi付着量が5〜80mg/m2であることを特徴とする請求項1記載の表面処理鋼板。 The surface-treated steel sheet according to claim 1, wherein the reaction layer has a Ti adhesion amount of 5 to 80 mg / m 2 . 鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。   In forming a coating comprising a reaction layer containing Ti and Fe on at least one side of a steel plate and a coating layer laminated on the reaction layer, Ti: 100 to 5000 mass ppm, oxidizing agent on at least one side of the steel plate : 1000 to 50000 mass ppm and free fluorine ions: 50 to 1000 mass ppm, and a treatment solution having a pH of 3 to 6 is brought into contact at a relative flow rate of 0.1 m / s or more to form the reaction layer. A method for producing a surface-treated steel sheet characterized by the following. 鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面にFeめっきを施したのち、該めっき面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。   In forming a coating composed of a reaction layer containing Ti and Fe and a coating layer laminated on the reaction layer on at least one surface of the steel plate, after applying Fe plating on at least one surface of the steel plate, , Ti: 100-5000 mass ppm, oxidizing agent: 1000-50000 mass ppm and free fluorine ions: 50-1000 mass ppm, and a pH of 3-6, with a relative flow rate of 0.1 m / s or more A method for producing a surface-treated steel sheet, wherein the reaction layer is formed by contact. 鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面を、pHが5以下の酸性水溶液に浸漬処理した後、該処理面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。   When forming a coating composed of a reaction layer containing Ti and Fe and a coating layer laminated on the reaction layer on at least one surface of the steel plate, at least one surface of the steel plate is immersed in an acidic aqueous solution having a pH of 5 or less. After that, a treatment liquid containing Ti: 100 to 5000 mass ppm, oxidizing agent: 1000 to 50000 mass ppm and free fluorine ions: 50 to 1000 mass ppm, and having a pH of 3 to 6 on the treated surface is used as a relative flow rate. A method for producing a surface-treated steel sheet, wherein the reaction layer is formed by contact at 0.1 m / s or more. 鋼板の少なくとも片面に、TiおよびFeを含む反応層と、該反応層上に積層した被覆層とからなる被膜を形成するに当り、鋼板の少なくとも片面にFeめっきを施したのち、該めっき面をpHが5以下の酸性水溶液に浸漬処理した後、該処理面に、Ti:100〜5000質量ppm、酸化剤:1000〜50000質量ppmおよび遊離フッ素イオン:50〜1000質量ppmを含み、pHが3〜6である処理液を、相対流速0.1m/s以上にて接触させて、前記反応層を形成することを特徴とする表面処理鋼板の製造方法。   In forming a coating composed of a reaction layer containing Ti and Fe and a coating layer laminated on the reaction layer on at least one surface of the steel plate, after applying Fe plating on at least one surface of the steel plate, After immersion treatment in an acidic aqueous solution having a pH of 5 or less, the treated surface contains Ti: 100 to 5000 mass ppm, oxidizing agent: 1000 to 50000 mass ppm, and free fluorine ions: 50 to 1000 mass ppm, and the pH is 3 A method for producing a surface-treated steel sheet, wherein the reaction layer is formed by contacting a treatment liquid of ˜6 at a relative flow rate of 0.1 m / s or more. 請求項3〜6のいずれか一項において、前記反応層の形成後に、該反応層上に、有機被膜、無機被膜および有機無機複合被膜のうちの少なくとも1つによる被覆層を形成することを特徴とする表面処理鋼板の製造方法。   7. The coating layer according to claim 3, wherein after the formation of the reaction layer, a coating layer of at least one of an organic coating, an inorganic coating, and an organic-inorganic composite coating is formed on the reaction layer. A method for producing a surface-treated steel sheet.
JP2006268971A 2006-03-22 2006-09-29 Surface-treated steel sheet and manufacturing method thereof Active JP5092332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268971A JP5092332B2 (en) 2006-03-22 2006-09-29 Surface-treated steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006078668 2006-03-22
JP2006078668 2006-03-22
JP2006268971A JP5092332B2 (en) 2006-03-22 2006-09-29 Surface-treated steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007284780A true JP2007284780A (en) 2007-11-01
JP5092332B2 JP5092332B2 (en) 2012-12-05

Family

ID=38756838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268971A Active JP5092332B2 (en) 2006-03-22 2006-09-29 Surface-treated steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5092332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177677A (en) * 2013-03-15 2014-09-25 Jfe Steel Corp Manufacturing method of surface-treated steel plate and surface-treated steel plate, resin-coated steel plate, and can and can top
JP2014209102A (en) * 2013-03-26 2014-11-06 Jfeスチール株式会社 Method for evaluating anticorrosion after coating, method for manufacturing high intensity steel plate excellent in anticorrosion after coating, and high intensity steel plate excellent in anticorrosion after coating
JP2015199995A (en) * 2014-04-09 2015-11-12 新日鐵住金株式会社 Manufacturing method of automotive member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103080A1 (en) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Treating solution for surface treatment of metal and surface treatment method
JP2004190121A (en) * 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd Treatment liquid for surface treating metal, and surface treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103080A1 (en) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Treating solution for surface treatment of metal and surface treatment method
JP2004190121A (en) * 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd Treatment liquid for surface treating metal, and surface treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177677A (en) * 2013-03-15 2014-09-25 Jfe Steel Corp Manufacturing method of surface-treated steel plate and surface-treated steel plate, resin-coated steel plate, and can and can top
JP2014209102A (en) * 2013-03-26 2014-11-06 Jfeスチール株式会社 Method for evaluating anticorrosion after coating, method for manufacturing high intensity steel plate excellent in anticorrosion after coating, and high intensity steel plate excellent in anticorrosion after coating
JP2015199995A (en) * 2014-04-09 2015-11-12 新日鐵住金株式会社 Manufacturing method of automotive member

Also Published As

Publication number Publication date
JP5092332B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
EP2551377B1 (en) Method for producing a steel sheet for a container
JP5884947B2 (en) Ni-plated steel sheet and method for producing Ni-plated steel sheet
Maurya et al. An environment-friendly phosphate chemical conversion coating on novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys with remarkable corrosion protection
JP5845563B2 (en) Manufacturing method of steel plate for containers
JP5571277B2 (en) Surface treatment liquid for zinc-based metal material and surface treatment method for zinc-based metal material
MXPA03011389A (en) Treating solution for surface treatment of metal and surface treatment method.
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
MXPA05006156A (en) Treating fluid for surface treatment of metal and method for surface treatment.
JP2006161117A (en) Composition for surface treatment of metal, treating liquid for surface treatment, surface treatment method, and surface treated metallic material
JP2018135569A (en) Sn PLATED STEEL SHEET AND PRODUCTION METHOD THEREOF
JP4975378B2 (en) Metal surface treatment liquid, surface treatment method, surface treatment material
WO2018042980A1 (en) Surface-treated steel sheet, organic resin-coated steel sheet, and container using same
EP2302096B1 (en) Method for treatment of a metallic surface
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JP2005325402A (en) Surface treatment method for tin or tin based alloy plated steel
JP5092332B2 (en) Surface-treated steel sheet and manufacturing method thereof
JPH0813154A (en) Zinc-containing metal plated steel sheet composite body excellent in coating suitability and its production
WO2013153682A1 (en) Method for chemically converting steel member, method for manufacturing coated steel member having been electrodeposition-coated, and coated steel member
JP2010163641A (en) Metallic material for surface treatment, and surface treatment method for metal
JP5309651B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP2005325401A (en) Surface treatment method for zinc or zinc alloy coated steel
JP2011241436A (en) Chemical conversion-treated ferrous material
JP2018135570A (en) Sn BASED ALLOY PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
WO2016125911A1 (en) Tin-plated steel sheet, chemical conversion treated steel sheet and manufacturing method therefor
JP2011127141A (en) Metallic material whose surface is treated for electrodeposition coating and method for conversion coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250