JP2007282648A - Antislip shoe sole member and manufacturing method - Google Patents

Antislip shoe sole member and manufacturing method Download PDF

Info

Publication number
JP2007282648A
JP2007282648A JP2006109656A JP2006109656A JP2007282648A JP 2007282648 A JP2007282648 A JP 2007282648A JP 2006109656 A JP2006109656 A JP 2006109656A JP 2006109656 A JP2006109656 A JP 2006109656A JP 2007282648 A JP2007282648 A JP 2007282648A
Authority
JP
Japan
Prior art keywords
slip
shoe sole
rubber
sole
sole member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006109656A
Other languages
Japanese (ja)
Other versions
JP4009654B2 (en
Inventor
Hajime Nakamura
元 中村
Yukio Fujii
幸男 藤井
Yoshinori Yamada
義則 山田
Hiroshi Uyama
寛 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKAICHO KK
Sekaicho Rubber Co Ltd
Original Assignee
SEKAICHO KK
Sekaicho Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKAICHO KK, Sekaicho Rubber Co Ltd filed Critical SEKAICHO KK
Priority to JP2006109656A priority Critical patent/JP4009654B2/en
Publication of JP2007282648A publication Critical patent/JP2007282648A/en
Application granted granted Critical
Publication of JP4009654B2 publication Critical patent/JP4009654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antislip shoe sole member which has comprementary improved hygroscopicity, cushioning property and water film removal of cork particulates and the spike-effect of glass-fibers on a frozen surface, and antislip-effect. <P>SOLUTION: In a ground contact sole of a shoe sole member which is obtained by applying hot press valcanization to unvulcanized rubber blended with natural rubber and synthetic rubber, a plurality of block antislip bodies which are mixed with cork particulates and glass-fibers and have the glass-fibers oriented so that they may project out of the cross-sectional surface are fitted and disposed at stomping sections on a weight-bearing curve of virtual gravity movement trajectory or/and a heel section. Furthermore, as for its molding method, special preparatory treatment is not needed even when the unvulcanized rubber is simultaneously vulcanized in addition to the adoption of a multistage molding for the manufacturing method, so that it can be advantageously manufactured industrially. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は防滑性靴底部材及び製造方法に関し、さらに詳しくは靴底基部にコルク粉粒体とガラス繊維を配合混入したブロック防滑体を、該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置させて複数個嵌装配設してなり、該コルク粉粒体は氷雪面の水膜除去と接地面積を増やすクッション性で防滑性を発揮し、またガラス繊維での略垂直方向に配向させた断面突出形態としたスパイク効果との相互補完並びに相乗効果による防滑性靴底部材の改良に関する。 The present invention relates to an anti-slip shoe sole member and a manufacturing method, and more specifically, a block anti-slip body in which cork powder particles and glass fiber are mixed and mixed into a shoe base, on a center-of-gravity movement virtual trajectory curve on a ground contact surface of the shoe base. The cork powder particles are placed in the area of the shoe sole stepping part and / or shoe sole heel part, and the cork powder is cushioned and slippery to remove the water film on the ice and snow surface and increase the contact area. Further, the present invention relates to the improvement of the slip-proof shoe sole member due to the mutual complement and the synergistic effect of the spike effect in which the cross-sectional protrusion is oriented in the substantially vertical direction with glass fiber.

靴はトータルフアッションの一部として認識されてきているが、従来、紳士婦人用に用いられる靴底部材としては、天然ゴム、合成ゴム等を適宜割合に配合した主成分に充填剤等を添加、混練りした後、加熱、加圧して靴底部材としたものが一般的に用いられている。また、従来より濡れた路面やマンホール面、磨かれた石材面等の床面で滑り易い問題があり、近年、特に寒冷地での氷雪面や凍結面で滑り防止を図った防滑性の高い靴底が要望されている。この為、例えば寒冷地での氷雪面又は凍結面での転倒を防止する目的で防滑性に工夫を凝らした靴底が種々提案されている。特に我が国における高齢化の波は顕著であり、その歩行における滑り現象に対して恐怖感が強い等、防滑性靴底部材への要望は不可避の緊急課題とされているが、寒冷地での氷雪面・凍結面などにおける防滑性が劣る問題はまだ解決されておらず、現状の製品を用い歩き方を工夫するといった履用者自身の対応に依るところが多いため、防滑性を図った靴底部材、加えて歩行性、快適性、安定性などを兼ね備えた防滑性の高い靴製品が望まれている。 Although shoes have been recognized as a part of total fashion, conventionally as a sole member used for gentlemen and ladies, fillers and the like are added to the main component in which natural rubber, synthetic rubber, etc. are blended in appropriate proportions, After kneading, a shoe sole member is generally used by heating and pressing. In addition, there is a problem of slippery on floors such as wet road surfaces, manhole surfaces, polished stone surfaces, etc., and shoes with high slip resistance that have been designed to prevent slipping on icy and snowy surfaces and frozen surfaces in cold regions in recent years. The bottom is desired. For this reason, for example, various shoe soles that have been devised for anti-slip properties have been proposed for the purpose of preventing falls on ice and snow surfaces or frozen surfaces in cold regions. In particular, the aging wave in Japan is remarkable, and the demand for anti-slip shoe soles is an unavoidable urgent issue, such as the fear of the slip phenomenon during walking. The problem of poor anti-slip properties on surfaces and frozen surfaces has not yet been solved, and it depends on the wearer's own response, such as devising how to walk using current products, so the sole member is designed to be anti-slip. In addition, there is a demand for a shoe product with high slip resistance that has walking ability, comfort, stability and the like.

従来の防滑性靴底については、靴底接地面側に靴底用防滑部品や金属スパイクの貼着または底面意匠の工夫等の他、剛性繊維や動植物繊維あるいは硬度粒状物などを混合して防滑性を図った提案が主流となっている。
たとえば、特開平11−164707号公報においては、防滑部材としてガラス繊維やウォラストナイトなどの先端形状に特徴のある剛性繊維が使用されているが、未加硫ゴムへの混入後のプレス加硫だけでは防滑部材が接地面へ露出せず、剛性繊維の属性を含めた特徴を生かした成形法となりにくい。 特開2004−49682号公報には、靴底金型の意匠を漏斗状としたガラス繊維や剛性繊維を混入した未加硫ゴム生地シートを用いて加硫せしめた際に、漏斗先端方向に繊維を誘導させて垂直方向への配向を目的としたものがあるが、靴底金型意匠が固定され、自由度が少なく、また既存金型への応用ないし転用も考えにくい。 実用新案登録第1860213号や実開平05−72201号公報等では、防滑部材にガラス繊維を使用し繊維方向を接地面に垂直に配向させた防滑部品を事前に加硫成形し作製し適宜靴底金型に配設する方法も開示されているが、防滑部品を加硫成形する毎に、繊維断面を露出せしめるバフ加工或いは漉き加工が伴い非効率的である。また、実用新案登録第2602710号公報では、防滑体用の未加硫ゴム生地にガラス繊維を接地面に垂直に配向させ且つ凹凸意匠を施す手段としてコールドプレスに着目した提案であるが、コールドプレス加工を含めた防滑体加硫に要する作業能率には難点がある。また、特開平7−79803号公報では、エポキシ化天然ゴム中に防滑要素として混入する高硬度粒子の粒径が大きすぎて、フロア等の床面を傷付けるという欠点がある。このように、従来より靴底面に多数の独立した突起成形凹部を有する靴底成形金型に、ガラス繊維等の硬質繊維を混入した未加硫ゴム生地を加熱加圧し、靴底と一体化された突起を有する靴底の成形法も一般に知られているが、該硬質繊維の方向性が定まらず不規則に散在される為、突起中に分散された硬質繊維による靴底の防滑性は殆ど期待できない難点があった。以上のように、従来の技術では、金属製或いは合成樹脂製スパイクの装着では、アイスバ−ン等の硬い表面ではかえって滑り易く、スパイクを取り付けたまま屋内に入れば床面を傷つけ、衝撃吸収性が悪く履き心地が悪い問題点があった。また、金属製スパイクの代替素材の使用として、ノルボ−ネンゴムの場合、ガラス転移点以下ではスパイクと同じで、アイスバ−ンではかえって滑り易く、温度によるクッション性等の物性変化を避けられない。さらにガラス繊維等の繊維材では、吸水性を有する繊維材では、吸水性の効果を期待できても飽和後は吸収しないし、氷雪面等では吸水後に再度凍結する虞れがある。また、これら繊維材を接地面に向けて配向させる必要があり、製造上の煩雑性ならびにコストアップにつながる難点がある。次に、靴底意匠の改良では、接地面積の増加による効果が期待されるが、使用時間経過により意匠面が摩耗すること、並びに均一な摩耗はなく、定常的な効果に問題があった。本発明は、これらの問題を改善するものであり、コルク材の特徴である吸湿性ないし放出性は濡れた面での水膜除去に効果を発揮するが、氷結面には弱い。その短所を補完する為、ガラス繊維との組み合わせの着想に基づき鋭意検討の結果、ガラス繊維を配合混入させて防滑性の向上を図ったものである。即ち、靴底部材として接地面における取り付け位置ないし領域の選択的な適用、並びに製造方法においても、本発明における該ブロック状防滑材は、未加硫ベースゴムにガラス繊維を配合混入し繊維の配向性を揃え加硫した後、繊維方向に直交する裁断でガラス繊維とゴムの多孔質の裁断面を露出せしめた防滑性の効果、並びに靴底基部を構成する未加硫ゴムとの同時加硫における成形を特別の前処理を施すことなく、ゴム投錨効果やゴム極性の相溶性を利用し容易に成形することができるように働き、防滑性機能を発揮しえる金型成形操作並びに品質安定維持を図り、工業的有利な製造方法を提供するものである。本発明は、上記の問題点にかんがみ、天然ゴムと合成ゴムを配合した主成分からなる未加硫と合成ゴム生地を加熱加圧し加硫してなる防滑性靴底部材において、前記接地底成形用の未加硫ゴム生地にコルク粉粒体及びガラス繊維を混入させてなる防滑性靴底部材であり、前記コルク粉粒体の備えた属性に基づく長所を維持すると共に、加えてガラス繊維の混入において、しかも該ガラス繊維を接地面に向かう方向に略垂直状に配向させ露出した断面突出形態を形成した防滑性靴底の構成により、該コルク粉粒体の短所の補完と共に、ガラス繊維を接地面に配向し露出突出とせしめ、これらの相乗効果によって、従来の防滑性靴底部材の欠点を克服することを目的とするものである。
For conventional non-slip soles, non-slip by mixing non-slip parts for shoe soles and metal spikes on the ground contact surface side of the sole or ingenuity of the bottom design, as well as mixing rigid fibers, animal and plant fibers, or hard granular materials. Proposals aimed at sex have become mainstream.
For example, in Japanese Patent Application Laid-Open No. 11-164707, a rigid fiber having a characteristic tip shape such as glass fiber or wollastonite is used as a non-slip member, but press vulcanization after mixing into unvulcanized rubber. The anti-slip member is not exposed to the grounding surface by itself, and it is difficult to achieve a molding method that takes advantage of the characteristics including the attributes of the rigid fiber. In Japanese Patent Application Laid-Open No. 2004-49682, when vulcanized using an unvulcanized rubber cloth sheet mixed with glass fiber or rigid fiber with a funnel-like design of the shoe sole mold, However, there is a shoe sole mold design that is fixed and has a low degree of freedom, and it is difficult to apply or divert to existing molds. In utility model registration No. 1860213 and Japanese Utility Model Laid-Open No. 05-72201, etc., an anti-slip component in which glass fiber is used for the anti-slip member and the fiber direction is oriented perpendicularly to the grounding surface is pre-cured and produced, and the shoe sole is appropriately adjusted. Although a method of disposing in a mold is also disclosed, every time a non-slip component is vulcanized, it is inefficient with buffing or squeezing that exposes the fiber cross section. In addition, Japanese Utility Model Registration No. 2602710 discloses a cold press as a means for orienting glass fibers in an unvulcanized rubber fabric for an anti-slip body perpendicularly to the ground surface and applying an uneven design. There is a difficulty in the work efficiency required for vulcanizing the anti-slip body including processing. Japanese Patent Application Laid-Open No. 7-79803 has a drawback that the particle size of the high hardness particles mixed as an anti-slip element in the epoxidized natural rubber is too large and damages the floor surface such as a floor. In this way, unvulcanized rubber fabric mixed with hard fibers such as glass fibers is heated and pressed into a shoe molding mold having a number of independent projection forming recesses on the shoe bottom so that it is integrated with the shoe sole. A method for forming a shoe sole having a protrusion is also generally known, but since the direction of the hard fiber is not determined and is scattered irregularly, the slip resistance of the shoe sole due to the hard fiber dispersed in the protrusion is almost the same. There was an unexpected difficulty. As described above, in the conventional technology, when a metal or synthetic resin spike is attached, it is easy to slip on a hard surface such as an ice vane. There was a problem that was bad and uncomfortable to wear. In addition, as an alternative material for metal spikes, norbornene rubber is the same as spikes below the glass transition point, and is more slippery with ice vanes, and changes in physical properties such as cushioning due to temperature cannot be avoided. Further, in a fiber material such as glass fiber, a fiber material having water absorption may not be absorbed after saturation even if a water absorption effect can be expected, and it may be frozen again after water absorption on a snowy snow surface or the like. In addition, it is necessary to orient these fiber materials toward the ground contact surface, and there are disadvantages that lead to complexity in manufacturing and an increase in cost. Next, in the improvement of the shoe sole design, an effect due to an increase in the contact area is expected, but there is a problem in the steady effect because the design surface is worn and the uniform wear does not occur with the passage of time of use. The present invention improves these problems, and the hygroscopicity or release property that is a characteristic of cork materials is effective for removing a water film on a wet surface, but is weak against an icing surface. In order to compensate for this disadvantage, as a result of intensive studies based on the idea of combination with glass fiber, glass fiber is mixed and mixed to improve anti-slip properties. That is, in the selective application of the mounting position or region on the ground contact surface as a sole member and the manufacturing method, the block-shaped anti-slip material according to the present invention contains glass fiber mixed with unvulcanized base rubber and fiber orientation. After vulcanization with uniform properties, the glass fiber and rubber porous cut surface exposed by cutting perpendicular to the fiber direction, and the simultaneous vulcanization with the unvulcanized rubber constituting the base of the shoe sole Molding operations that can be easily molded using the rubber throwing effect and rubber polarity compatibility without special pre-treatment, and mold stability that can provide anti-slip function and maintain stable quality Therefore, an industrially advantageous production method is provided. In view of the above problems, the present invention provides an anti-slip shoe sole member obtained by heating and pressurizing and vulcanizing an unvulcanized and synthetic rubber fabric composed of a main component containing natural rubber and synthetic rubber. It is an anti-slip shoe sole member obtained by mixing cork powder particles and glass fibers into unvulcanized rubber fabric for use, and maintains the advantages based on the attributes of the cork powder particles, in addition to glass fiber In addition, the configuration of the non-slip shoe sole in which the glass fiber is oriented substantially perpendicularly in the direction toward the ground surface to form an exposed cross-sectional protrusion form, with the complement of the shortcomings of the cork powder granules, It aims at overcoming the drawbacks of the conventional non-slip shoe sole member by synergistic effect with the exposed protrusions oriented on the ground contact surface.

本発明の防滑性靴底部材は、天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる防滑性靴底部材において、前記接地底成形用の未加硫ゴム生地にコルク粉粒体及びガラス繊維を混入させてなる防滑性靴底部材であり、その解決手段としては、靴底基部を天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる防滑性靴底部材において、該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置せしめて、該曲線上で交差ないし直交状態に設定したコルク粉粒体及びガラス繊維を混入したブロック防滑体を複数個嵌装配設してなる防滑性靴底部材の構成とし、コルク粉粒体の優れた属性の維持と併せて、ガラス繊維を接地面に向かう略垂直方向に配向させた断面突出形態とし、これらコルク粉粒体とガラス繊維とを配合混入してなる部材により形成した防滑性靴底部材に関する。
本発明に係る天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる防滑性靴底部材において、該未加硫ゴム生地にコルク粉粒体及びガラス繊維を混入させてなる防滑性靴底部材では、前記天然ゴムと合成ゴムの配合割合が10〜90:90〜10重量部であるゴム生地、さらに前記ゴム生地が、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、クロロプレンゴム、ブチルゴム等の1種又は2種以上より選ばれ防滑性靴底部材である。
The anti-slip shoe sole member of the present invention is an anti-slip shoe sole member obtained by heating and pressurizing and vulcanizing an unvulcanized rubber fabric composed of main components containing natural rubber and synthetic rubber. It is a non-slip shoe sole member made by mixing cork powder and glass fiber into a vulcanized rubber fabric. In a non-slip shoe sole member formed by heating and pressurizing and vulcanizing rubber fabric, it is positioned in the region of the shoe stepping portion and / or the shoe sole heel portion on the center-of-gravity movement virtual locus curve on the ground contact surface of the shoe base portion. In addition, the cork powder granules set in an intersecting or orthogonal state on the curve and the anti-slip shoe sole member in which a plurality of block anti-slip bodies mixed with glass fibers are fitted and disposed, Glass fiber facing the ground surface And it is allowed sectional projecting form oriented in a direction substantially perpendicular to a slip resistant sole member formed by a member made by mixing blended with these cork powder or granular material and glass fibers.
An anti-slip shoe sole member obtained by heating and pressurizing an unvulcanized rubber fabric composed of a main component in which natural rubber and synthetic rubber according to the present invention are blended, and cork powder particles and glass on the unvulcanized rubber fabric In an anti-slip shoe sole member mixed with fibers, a rubber fabric in which the blending ratio of the natural rubber and the synthetic rubber is 10 to 90:90 to 10 parts by weight, and the rubber fabric is natural rubber, isoprene rubber, butadiene It is an anti-slip shoe sole member selected from one or more of rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, chloroprene rubber, butyl rubber and the like.

本発明によれば、ガラス繊維の氷結面でのスパイク把持効果と、コルク粉粒体による水膜除去のそれぞれの長短所を相互に補完すると共に、接地面に向かう方向にガラス繊維を多数配向させたブロック防滑体が最も体重のかかる重心移動仮想軌跡曲線上の領域に複数個嵌装配設されており、複合的な優れた防滑機能を発揮する。また、成形上も靴底部材の加硫成形を工業的有利に製造できる等の優れた効果を奏する。 According to the present invention, the effect of holding the spikes on the frozen surface of the glass fiber and the advantages and disadvantages of removing the water film by the cork powder particles are mutually complemented, and a large number of glass fibers are oriented in the direction toward the ground plane. A plurality of block anti-slip bodies are fitted and arranged in an area on the center-of-gravity movement virtual trajectory curve, which is the heaviest weight, and exhibits an excellent anti-slip function. In addition, excellent effects such as that the vulcanization molding of the shoe sole member can be produced industrially advantageously are achieved.

本発明は上記目的を達成するために、本発明者等は、特に寒冷地での氷雪面または凍結面等での防滑性の改善について検討のところ、防滑性能を改善するためには、氷雪または凍結面での水膜を取り除く、接地面積を増やす、アイスバ−ンでの引っ掛かりを増やすこと等が要求されるが、特に上記氷雪または凍結面での水膜を取り除く為の改善については、少なくとも氷雪面等の水膜を取り除くことが最も重要であるにも拘わらず、決め手といえる改善手段がみられないのが現状であった。発明者等は、さきに氷雪面等の路面はなぜ滑るのかの課題では、氷の上にあるミクロの水膜の存在と因果関係があることが究明されているが、防滑性能の改善には、まず水膜を取り除くことが最も重要であり、さらに接地面積を増やす等とも併せ、防滑性の改善の手段として必要であることに着目し、上記のような条件を充足する材料を探索し、多孔質でかつ吸水性が低く、氷雪面等での水膜除去に適すると共に、ゴムとのなじみもよく前処理の必要もない、また、温度による物性変化が小さく断熱性を有し長期にわたる防滑性の定常的効果が維持でき、適度なクッション性を持ち、接地面積が大きくなりホ−ルド性を高める等の諸特性を備えたコルク材の使用を見だした。即ち、種子殻等での吸水性と違って、コルク材は吸水性が低く、いわゆる呼吸する吸放湿の特性に着目し氷雪面等での水膜除去の解決手段とする知見を得るに至り、特開2002−320503公報において、上記問題点の氷雪面等での水膜層の除去につき種々検討の結果、接地面にミクロの気孔があるものを採択することにより、ミクロの水が気孔に入り靴底接地時に水膜層を除去することにより防滑性の改善を図り得ることにつき開示している。さらに、例えばゴム又は樹脂の発泡品を靴底に採択することで仮に同等な効果を期待できても反復履用時での摩耗強度の条件を克服困難である。そこで、靴底ゴム組成物に混入可能な各種の防滑材料を検討の上、JIS K7125−1987法に準拠し、氷面及び非イオン界面活性剤(0.05%溶液)での動摩擦係数試験の結果、コルク粉粒体をベ−スゴム基材に混入したものが防滑性の改善に優れた効果を発揮するとの結論に達した。この為、コルク粉粒体をベ−スゴム基材に練り混みにより防滑性改善と靴底接地面での物性及び挙動を探索した結果、所定量かつ所望粉粒径のコルク粉粒体の練り込み、並びに練り込み後の靴底成形品の表面にバフ研磨加工を施すことにより防滑性改善のための解決手段として所期の目的を達成するに至った。
本発明は、上記コルク粉粒体による防滑性靴底部材では、コルク材の備えた属性に起因し、それなり防滑機能を改善し効果を発揮している。しかしながら、例えば硬い氷面或いは軟らかい氷面や溶けかかった氷面、圧雪面等のの硬軟いずれの氷面でも十分に防滑機能を発揮することが望まれ、前記コルク粉粒体による防滑性靴底部材による氷面防滑機能に加えて、特に氷面防滑効果の改善が望まれる。また従来より使用されているガラス繊維の場合でも、単なる混入では所望の防滑効果は期待できず、更に、ガラス繊維等の如き硬質部材の配合では表面損傷や亀裂発生等の阻害要因でもある取り扱いでの短所も看過できないが、いずれにしても防滑性効果にはガラス繊維の配向性ないし方向性が関与し、防滑効果の改善にはその解決手段として必要かつ十分条件であることを示している。 本発明は、靴底部材における防滑性効果の改良であって、コルク粉粒体及びガラス繊維を配合混入したブロック状防滑材を、該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置させて複数個嵌装配設してなり、該コルク粉粒体は氷雪面の水膜除去と接地面積を増やすクッション性で防滑性を発揮し、またガラス繊維での略垂直方向に配向させた断面突出形態としたスパイク効果との相互補完並びに相乗効果によって防滑性効果の改良を図った靴底部材に関する。
本発明は、靴底基部を天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる防滑性靴底部材において、該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置せしめて、コルク粉粒体及びガラス繊維を混入したブロック状防滑材を複数個嵌装配設してなる防滑性靴底部材において、前記接地底成形用の未加硫ゴム生地にコルク粉粒体及びガラス繊維を配合混入させてなる防滑性靴底部材であり、前記ゴム生地100重量部に対し、平均粒径が0.5〜3.0mmのコルク粉粒体を3〜30重量部、及び繊維長30〜100mm、直径が10〜100ミクロンのガラス繊維を15〜50重量部を混入してなる防滑性靴底部材の構成である。
本発明で防滑性材料として配合するコルク粉粒体は、地中海沿岸に生育するコルク樫の樹皮で、樹齢約20年で最初の剥皮を行い、以後9年周期で樹皮を剥ぎ、樹齢約250年といわれ森林資源を枯渇させることのない天産物といわれる。コルクの構造は6角柱の細胞が煉瓦を積むように交互になっており、低級脂肪酸を結合材とした細胞質でできており、1立法cm当たり2000万〜4000万個の小さな細胞からなり、細胞の中は空気と殆ど同じ気体で満たされているといわる。その為、軽くて弾力性がある、摩擦係数が高い、液体に対して不浸透性である、質感,感触がよい、腐りにくい等の特長を備えている。
本発明において、天然ゴムと合成ゴムを配合した未加硫化ゴム生地にコルク粉粒体とガラス繊維を配合混入したことを特徴とし、防滑性を発揮させるためには、該コルク粉粒体の平均粒径は、0.5〜3.0mm、ガラス繊維は繊維長30〜100mm、直径10〜100ミクロンの範囲が適当である。該コルク粉粒体の粒径分布を、0.5〜3.0mmとした理由は、粒径が0.5mm未満では滑り防止効果を発揮せず、また粒径が3.0mmを超えると軽く弾力性があるとはいえ露出コルクの破砕や破断が生じ易く、得られる防滑性が低下するきらいがある。より好ましくは、1.0〜2.0mmの範囲が平均粒径として適当である。また、該コルク粉粒体は、3重量部未満では十分な防滑効果が得られず、一方、30重量部を超えるとゴム生地を加熱加圧し加硫成形後の底部材の機械的性質が低下して該粉粒体を保持する機能が低下し、成形後での氷雪面等に対する食い込み量が小さくなる虞れがあり、好ましくは、5〜20重量部の範囲が適当である。
本発明に使用される靴底部材用の未加硫ゴム生地組成物は、通常靴底に使用されるゴムであって、例えば天然ゴムや、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、クロロプレンゴム、ブチルゴム等の1種又は2種以上より選ばれたものを主成分とする未加硫ゴムである。上記天然ゴムと合成ゴムとの配合比は、10〜90重量部:90〜10重量部である。
上記のごとく本発明では、靴底用ゴム生地に対しコルク粉粒体とガラス繊維を配合混入した構成とするが、該コルク粉粒体は温度による物性変化が少なく、長期間にわたり防滑性を発揮かつ維持でき定常的に防滑効果が期待でき、多孔質、吸湿性で吸水性材料が一般に飽和状態に達すると、吸水効果により得られる水膜との密着性が得られず、防滑機能が失われ、吸水部が凍結すると靴底部材の物性を低下させるが、コルク材では吸水性が低く、本来のすぐれた吸湿性を発揮できる。つまり吸水性が低く飽和状態で防滑機能が喪失する現象を回避し氷雪面等での水膜除去の妨げとならない。しかし、コルク材は上記の如く氷結面に弱いが、その短所をガラス繊維が補完し、またガラス繊維は水膜除去に対して阻害要因があるが、コルク材の吸湿性を利用する相互補完に基づく相乗効果を発揮し得るものである。該ガラス繊維は水膜除去に難点があるが氷結面でのスパイク把持効果を発揮し、一方コルク材は接地面積を増やし、優れた防滑性を発揮し、また適度なクッション性を備え、フロア等を傷つける虞れがない。
In order to achieve the above object, the present inventors have examined the improvement of slip resistance on a snowy surface or a frozen surface, particularly in cold regions. It is necessary to remove the water film on the frozen surface, increase the contact area, increase the catch on the ice vane, etc. Although it is most important to remove the water film such as the surface, there is no improvement means that can be considered decisive. The inventors have previously investigated the reason why the road surface such as ice and snow slides, but it has been investigated that there is a causal relationship with the presence of the micro water film on the ice. First, it is most important to remove the water film, and in addition to increasing the contact area, etc., paying attention to the need to improve the slip resistance, search for materials that satisfy the above conditions, Porous and low water absorption, suitable for water film removal on ice and snow surfaces, etc., well-familiar with rubber and does not require pre-treatment, and changes in physical properties due to temperature are small, heat insulation and long-term anti-slip We have found the use of cork material that can maintain a steady effect of sexuality, has an appropriate cushioning property, and has various characteristics such as a large contact area and increased holdability. That is, unlike water absorption in seed husks, etc., cork wood has low water absorption, leading to the knowledge as a solution for removing water film on ice and snow surfaces by focusing on so-called breathing moisture absorption and release characteristics. In Japanese Patent Laid-Open No. 2002-320503, as a result of various investigations regarding the removal of the water film layer on the above-mentioned problem ice / snow surface, etc., by adopting those having micro pores on the ground contact surface, micro water becomes pores. It is disclosed that the slip resistance can be improved by removing the water film layer when the shoe sole touches the ground. Furthermore, even if an equivalent effect can be expected by adopting, for example, a rubber or resin foam as a shoe sole, it is difficult to overcome the condition of wear strength during repeated use. Therefore, after examining various anti-slip materials that can be mixed into the shoe sole rubber composition, in accordance with JIS K 7125-1987 method, a dynamic friction coefficient test on an ice surface and a nonionic surfactant (0.05% solution) was conducted. As a result, it came to the conclusion that what mixed the cork powder particle | grain into the base rubber base material exhibited the effect excellent in the anti-slip property improvement. For this reason, as a result of searching for improved slip resistance and physical properties and behavior on the ground contact surface of the shoe sole by kneading the cork powder into a base rubber base material, kneading of a predetermined amount of cork powder with the desired powder size In addition, by buffing the surface of the molded shoe sole after kneading, the intended purpose as a solution for improving the slip resistance has been achieved.
According to the present invention, in the anti-slip shoe sole member made of the cork powder particles, the anti-slip function is improved as it is due to the attribute of the cork material. However, it is desirable to exhibit a sufficient anti-slip function on hard and soft ice surfaces such as hard ice surface, soft ice surface, melted ice surface, and compressed snow surface. In addition to the anti-slip function of the ice by the material, it is particularly desirable to improve the anti-slip effect of the ice. In addition, even in the case of glass fibers that have been used conventionally, the desired anti-slip effect cannot be expected by simple mixing, and the addition of hard members such as glass fibers can also be a hindrance to surface damage and cracking. However, in any case, the anti-slip effect is related to the orientation or direction of the glass fiber, which indicates that the improvement of the anti-slip effect is necessary and sufficient as a solution. The present invention is an improvement in the anti-slip effect in a shoe sole member, wherein a block-type anti-slip material mixed with cork powder particles and glass fibers is used as a shoe on a center-of-gravity movement virtual trajectory curve on the ground contact surface of the shoe base. A plurality of cork powder particles are placed in the bottom tread part and / or the sole part of the shoe sole, and the cork powder is anti-slipping with water film removal from the snowy surface and cushioning that increases the contact area. In addition, the present invention relates to a shoe sole member in which the anti-slip effect is improved by mutual complementarity and a synergistic effect with a spike effect in a cross-sectional protruding form oriented in a substantially vertical direction with glass fiber.
The present invention relates to an anti-slip sole member obtained by heating and pressurizing and vulcanizing an unvulcanized rubber fabric composed of a main component in which a natural rubber and a synthetic rubber are blended at the sole base, and the center of gravity of the sole base at the ground contact surface Anti-slip property, which is located in the area of the shoe stepping part and / or shoe sole heel part on the moving virtual trajectory curve, and in which a plurality of block-like anti-slip materials mixed with cork powder particles and glass fibers are fitted and arranged. The sole member is a non-slip sole member obtained by blending cork powder and glass fiber into the unvulcanized rubber fabric for ground contact bottom molding, and an average particle diameter with respect to 100 parts by weight of the rubber fabric. Slip shoes made by mixing 3 to 30 parts by weight of cork powder having a diameter of 0.5 to 3.0 mm and 15 to 50 parts by weight of glass fibers having a fiber length of 30 to 100 mm and a diameter of 10 to 100 microns. It is a structure of a bottom member.
The cork granule blended as an anti-slip material in the present invention is a bark of cork oak that grows on the Mediterranean coast. The bark is first peeled off at about 20 years of age, and then the bark is peeled off at a cycle of 9 years. It is said that it is a natural product that does not deplete forest resources. The cork structure is made up of hexagonal prisms that are stacked like bricks, made of cytoplasm with a lower fatty acid as a binder, and consists of 20 to 40 million small cells per cubic centimeter. The inside is said to be filled with almost the same gas as air. Therefore, it has features such as lightness and elasticity, high friction coefficient, impermeability to liquid, texture and feel, and resistance to decay.
In the present invention, the unvulcanized rubber fabric blended with natural rubber and synthetic rubber is characterized in that the cork powder and glass fiber are blended and mixed, in order to exhibit anti-slip properties, the average of the cork powder It is appropriate that the particle diameter is 0.5 to 3.0 mm, and the glass fiber has a fiber length of 30 to 100 mm and a diameter of 10 to 100 microns. The reason why the particle size distribution of the cork powder is 0.5 to 3.0 mm is that when the particle size is less than 0.5 mm, the anti-slip effect is not exhibited, and when the particle size exceeds 3.0 mm, it is light. Although it is elastic, the exposed cork is likely to be crushed and broken, and the resulting anti-slip property tends to be reduced. More preferably, the range of 1.0 to 2.0 mm is appropriate as the average particle diameter. Further, if the cork powder is less than 3 parts by weight, a sufficient anti-slip effect cannot be obtained. On the other hand, if it exceeds 30 parts by weight, the mechanical properties of the bottom member after vulcanization molding by heating and pressurizing the rubber fabric are lowered. Thus, there is a possibility that the function of holding the granular material is lowered, and the amount of biting into the ice and snow surface after molding may be reduced, and the range of 5 to 20 parts by weight is preferable.
The unvulcanized rubber fabric composition for a shoe sole member used in the present invention is a rubber usually used for a shoe sole. For example, natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, acrylonitrile- It is an unvulcanized rubber mainly composed of one or more selected from butadiene rubber, chloroprene rubber, butyl rubber and the like. The blending ratio of the natural rubber and the synthetic rubber is 10 to 90 parts by weight: 90 to 10 parts by weight.
As described above, in the present invention, the rubber material for shoe sole is mixed with cork powder and glass fiber, but the cork powder has little change in physical properties due to temperature and exhibits anti-slip properties over a long period of time. In addition, the anti-slip effect can be expected, and when the water-absorbing material is porous and hygroscopic, and the water-absorbing material generally reaches saturation, the adhesion with the water film obtained by the water absorption effect cannot be obtained and the anti-slip function is lost. When the water absorption part freezes, the physical properties of the shoe sole member are lowered, but the cork material has low water absorption and can exhibit excellent moisture absorption. That is, the phenomenon that the anti-slip function is lost in a saturated state due to low water absorption is avoided and does not hinder the removal of the water film on the ice or snow surface. However, although cork is weak against icing surfaces as mentioned above, glass fiber supplements its disadvantages, and glass fiber has a hindrance to water film removal, but it is mutually complementary using the hygroscopic property of cork. It can exhibit a synergistic effect based on it. The glass fiber has a difficulty in removing the water film, but demonstrates the effect of gripping spikes on the frozen surface, while the cork material increases the contact area, exhibits excellent anti-slip properties, and has an appropriate cushioning property, such as a floor. There is no fear of hurting.

また、本発明の構成においては、靴底基部を天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる防滑性靴底部材において、該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置せしめて、前記軌跡曲線上の領域に交差状、好ましくは略直交状にコルク粉粒体及びガラス繊維を混入したブロック防滑体を複数個嵌装配設した構成であるが、コルク粉粒体とガラス繊維とを配合混入したブロック防滑体では、ガラス繊維は接地面に向かう略垂直方向に配向させた断面突出形態として形成した防滑性靴底部材であり、これら構成の相乗効果により防滑性靴底部材としての機能を発揮するように働く。   Further, in the configuration of the present invention, in the anti-slip sole member formed by heating and pressurizing an unvulcanized rubber fabric made of a main component in which natural rubber and synthetic rubber are blended in the sole base, the sole base The cork powder particles are positioned in the region of the shoe stepping portion and / or the sole portion of the shoe sole on the virtual locus curve of the center-of-gravity movement on the ground contact surface, and intersect with the region on the locus curve, preferably in a substantially orthogonal shape. And block anti-slip bodies mixed with glass fibers, but with block anti-slip bodies containing mixed cork powder and glass fibers, the glass fibers are oriented in a substantially vertical direction toward the ground plane. It is an anti-slip shoe sole member formed as a cross-sectional protruding shape, and functions so as to exhibit a function as an anti-slip shoe sole member by the synergistic effect of these configurations.

以下、本発明に係る靴底部材のと、それの製造方法について説明する。
まず、実施例で用いた未加硫ゴム生地であるベ−スゴムの基本的配合を以下に示す。
Hereinafter, the sole member according to the present invention and the manufacturing method thereof will be described.
First, the basic composition of base rubber, which is an unvulcanized rubber fabric used in the examples, is shown below.

天然ゴム 42重量部
合成ゴム 27重量部
促進剤 3重量部
軟化剤 5重量部
充填剤 20重量部
老化防止剤他 3重量部
上記配合の未加硫ゴム生地を、ロ−ルを用いて混練りしたものをベ−スゴムとして用いる。練り上がりのム−ニ−粘度は40であった。
Natural rubber 42 parts by weight Synthetic rubber 27 parts by weight Accelerator 3 parts by weight Softener 5 parts by weight Filler 20 parts by weight Anti-aging agent 3 parts by weight Unvulcanized rubber dough with the above composition is kneaded using a roll This is used as a base rubber. The kneaded Mooney viscosity was 40.

次に、本発明において用いる靴底部材用ゴムの配合は、上記ベ−スゴム100重量部に対し、繊維長30〜100mm、直径が10〜100ミクロンのガラス繊維を15〜50重量部、さらに硫黄を1重量部配合して、各々靴底部材用ゴム組成物を得た。
本発明に係る靴底防滑部材は、図1の本発明に係る防滑性靴底部材の平面図に示す通りであり、防滑性靴底部材1の本底3及び靴底基部2からなる構成において、該防滑性靴底部材1の靴底接地面7における重心移動仮想軌跡曲線16上の靴底踏付部4及び/又は靴底踵部5の領域に位置せしめて、前記重心移動仮想軌跡曲線16上で少なくとも交差状で複数個のブロック防滑体6が嵌装状態に配設された構成である。8は凹陥部である。
図2は、本発明に係る防滑性靴底部材の要部説明図であり、防滑性靴底部材1の本底3及び靴底基部2からなる構成において、該防滑性靴底部材1の靴底接地面7における重心移動仮想軌跡曲線16上の靴底踏付部4及び/又は靴底踵部5の領域に位置せしめ前記重心移動仮想軌跡曲線16上で、少なくとも交差状であって、好ましくは略直交状に、靴底踏付部4並びに靴底踵部5では複数個のブロック防滑体6が嵌装状態に配設された構成である。凹陥部8は、前記複数個嵌装配設されたブロック防滑体6の相互間に隣接状態として形成されており、氷或いは水分の他、侵入物の残留又放出の挙動に関与するように働く。
図3は図2における防滑性靴底部材のAーA線断面図である。図3で防滑性靴底部材1は、本底3および靴底基部2とからなり、6はブロック防滑体、7は靴底接地面、9はガラス繊維である。
図4は本発明におけるブロック防滑体の斜視図である。該防滑体6は側面での縦軸でガラス繊維が略垂直方向に配向されており、ガラス繊維の切断突出面を上面とした弧状刻み型のブロック状の形態とした防滑材の構造である。図5は上面に刻みを設けた別実施例を示す模式図、図6は中央軸に沿って隔離した孔部を穿設した別実施例を示す模式図である。
図7は本発明に係るブロック防滑体成形用金型の断面図であり、図8は本発明における未加硫シート積層体の斜視図である。
Next, the rubber composition for the sole member used in the present invention is composed of 15 to 50 parts by weight of glass fiber having a fiber length of 30 to 100 mm and a diameter of 10 to 100 microns, and further sulfur to 100 parts by weight of the base rubber. 1 part by weight was blended to obtain rubber compositions for shoe sole members.
The sole anti-slip member according to the present invention is as shown in the plan view of the anti-slip sole member according to the present invention in FIG. 1, and is composed of the sole 3 and the sole base 2 of the anti-slip sole member 1. The center-of-gravity movement virtual trajectory curve is positioned in the region of the shoe sole stepping portion 4 and / or the shoe sole heel portion 5 on the center-of-gravity movement virtual locus curve 16 on the sole contact surface 7 of the slip-proof sole member 1. 16 is configured such that a plurality of block anti-slip bodies 6 are arranged in a fitted state at least in an intersecting manner. 8 is a recessed part.
FIG. 2 is an explanatory view of a main part of the slip resistant sole member according to the present invention. In the configuration comprising the sole 3 and the shoe base 2 of the slip resistant sole member 1, the shoe of the slip resistant sole member 1 is shown. It is positioned in the region of the shoe sole stepping part 4 and / or the shoe sole heel part 5 on the center-of-gravity movement virtual trajectory curve 16 on the bottom ground contact surface 7, and is preferably at least intersecting on the center-of-gravity movement virtual trajectory curve 16 Is a configuration in which a plurality of block anti-slip bodies 6 are arranged in a fitted state in the shoe sole stepping portion 4 and the shoe sole heel portion 5 in a substantially orthogonal shape. The recessed portion 8 is formed as an adjacent state between the plurality of block anti-sliding bodies 6 fitted and arranged, and acts so as to be involved in the behavior of residual or discharged intruders in addition to ice or moisture.
3 is a cross-sectional view taken along the line AA of the non-slip shoe sole member in FIG. In FIG. 3, an anti-slip shoe sole member 1 includes a bottom 3 and a shoe base 2, 6 is a block anti-slip body, 7 is a shoe ground contact surface, and 9 is glass fiber.
FIG. 4 is a perspective view of a block anti-slip body according to the present invention. The anti-slip body 6 has a structure of an anti-slip material in which the glass fibers are oriented in a substantially vertical direction along the vertical axis on the side surface, and the shape of the anti-slip material is in the form of an arc-shaped block with the cut protruding surface of the glass fibers as the upper surface. FIG. 5 is a schematic view showing another embodiment in which a notch is provided on the upper surface, and FIG. 6 is a schematic view showing another embodiment in which holes separated along the central axis are formed.
FIG. 7 is a cross-sectional view of a block anti-slip body molding die according to the present invention, and FIG. 8 is a perspective view of an unvulcanized sheet laminate in the present invention.

図7において、9はガラス繊維、17はコルク粉粒体、10はブロック防滑体成形用下金型、11はブロック防滑体成形用上金型、12は多段式金型狭隙部、13は未加硫シート積層体である。図8は未加硫シート積層体の斜視図であり、本発明において成形用多段式金型の採用による効果として、該未加硫シート積層体13で、ガラス繊維9は略横軸方向に配向されており、断面部はガラス繊維が露出突起の形態となっている。17はコルク粉粒体である。
本発明に係る防滑性靴底部材、すなわち靴底基部を天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる靴底部材の該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置せしめて、コルク粉粒体及びガラス繊維を混入したブロック防滑体を複数個嵌装配設してなる防滑性靴底部材の製造方法について、該防滑性靴底部材の成形工程を説明する。
工程1:混合機で混練した前記未加硫ゴム生地を、オープンロールを用い、前記ベースゴム100重量部に対し、平均粒径が0.5〜3.0mmのコルク粉粒体3〜30重量部、及び平均繊維長30mm、直径が17〜20ミクロンのガラス繊維15〜50重量部、さらに硫黄1重量部を徐々に加えながら、所定の生地出し厚とした該オープンロールの狭間において、30分間混練りすることによりガラス繊維の配向性が一定方向に定まった後、5mm厚の圧延生地シートを作製するが、該圧延生地シート表面への離型剤は施さない。工程2:前記圧延生地シートから所定寸法で圧延方向に揃えた予備シートを裁断し、成形用他段式金型に適宜枚数の未加硫シート積層体13を積層載置し、150度で920秒、加硫の後に脱型、冷却させ、ブロック防滑体6を作製する。
工程3:次に、圧延方向に直交する方向に該ブロック防滑体6を3mm厚に裁断し、上下裁断面にガラス繊維尖端を略垂直方向に露出せしめた裁断片15を得た。
工程4:前記裁断片15を配設しようとする靴底意匠形状に合わせ打ち抜き、ブロック防滑体を得、靴底成形用金型の所定の部位に適宜配設後、該未加硫ベースゴムをセットし、150度、420秒加硫せしめ、ブロック防滑体6が接地面に露出させた構成とする。 上記のように、本発明における該ブロック防滑体6は、図7に示すブロック防滑体成形用下金型10、ブロック防滑体成形用上金型11からなり、多段式金型狭隙部12を備えた多段式金型を使用することによって初めて所望のガラス繊維の配向性を備える条件を充足し解決課題を達成することができる。
本発明において、該ブロック防滑体は、成形用金型として成形用多段式金型を選択的に採択し、これを他工程との組み合わせとした工程結合であって、混合機で混練した未加硫ゴム生地をオープンロールを用い、コルク粉粒体及びガラス繊維、さらに硫黄を添加混合し、該オープンロールにて所定間隔に設定したロール狭隘部を複数回反復通過せしめて、ガラス繊維の配向性を一定方向に形成した圧延生地シートを、成形用多段式金型に適宜枚数の未加硫シート積層を載置し加硫後、脱型、冷却し、ガラス繊維の先端が略垂直方向に露出せしめるように適宜厚さとした裁断片を打抜き型にてブロック防滑体を形成し、次いで該ブロック防滑体を靴底成形用金型に入れ、別途未加硫ゴムをセットし、加硫一体化する防滑性靴底部材の製造方法である。これによって、前記のように未加硫ゴム生地の各々の積層面に介在するエアが加圧加硫中に抜けにくい難点、さらに加圧加硫中に発生するバリの箇所が一部に特定される為、予め配向させたガラス繊維が前記バリ発生箇所に流れてしまい、ガラス繊維の配向方向が崩れ易くなる阻害要因となる従来法ての実施上の難点を解消するように働く。
In FIG. 7, 9 is a glass fiber, 17 is a cork powder, 10 is a lower mold for molding a block anti-slip body, 11 is an upper mold for molding a block anti-slip body, 12 is a multi-stage mold narrow gap part, and 13 is It is an unvulcanized sheet laminate. FIG. 8 is a perspective view of an unvulcanized sheet laminate, and as an effect of adopting a multistage mold for molding in the present invention, the glass fiber 9 is oriented in a substantially horizontal axis direction in the unvulcanized sheet laminate 13. In the cross section, the glass fiber is in the form of an exposed protrusion. Reference numeral 17 denotes a cork powder.
The non-slip sole member according to the present invention, i.e., the sole base of the sole member formed by heating and pressurizing and vulcanizing an unvulcanized rubber cloth composed of a main component containing natural rubber and synthetic rubber at the sole base. A plurality of block anti-slip bodies mixed with cork powder particles and glass fibers are fitted and arranged in the region of the shoe sole stepping portion and / or the shoe sole heel portion on the center-of-gravity movement virtual locus curve on the ground surface. Regarding the manufacturing method of the slip-resistant sole member, the molding process of the slip-resistant sole member will be described.
Step 1: Using an open roll, the unvulcanized rubber dough kneaded with a mixer is 3 to 30 weights of cork powder having an average particle size of 0.5 to 3.0 mm with respect to 100 parts by weight of the base rubber. 30 minutes in the gap between the open rolls having a predetermined dough thickness while gradually adding 15 to 50 parts by weight of glass fiber having an average fiber length of 30 mm and a diameter of 17 to 20 microns and 1 part by weight of sulfur. After kneading to determine the orientation of the glass fibers in a certain direction, a rolled dough sheet having a thickness of 5 mm is produced, but no release agent is applied to the surface of the rolled dough sheet. Step 2: A preliminary sheet having a predetermined dimension and aligned in the rolling direction is cut from the rolled dough sheet, and an appropriate number of unvulcanized sheet laminates 13 are laminated and placed on another forming mold for molding, and 920 at 150 degrees. Second, after vulcanization, the mold is demolded and cooled to produce the block antiskid 6.
Step 3: Next, the block anti-slip member 6 was cut to a thickness of 3 mm in a direction perpendicular to the rolling direction to obtain a cut piece 15 in which the glass fiber tip was exposed in a substantially vertical direction on the upper and lower cut sections.
Step 4: The cut pieces 15 are punched in accordance with the shape of the shoe sole design to be arranged, a block anti-slip body is obtained, and the unvulcanized base rubber is placed on a predetermined part of a mold for molding a shoe sole as appropriate. It is set so that it is vulcanized at 150 degrees for 420 seconds, and the block antiskid 6 is exposed to the ground contact surface. As described above, the block anti-slip body 6 in the present invention includes the block anti-slip body forming lower mold 10 and the block anti-slip body forming upper mold 11 shown in FIG. Only when the provided multistage mold is used can the conditions for providing the desired glass fiber orientation be satisfied and the solution to be solved.
In the present invention, the block anti-slip body is a process combination in which a molding multi-stage mold is selectively adopted as a molding mold and is combined with other processes, and the block anti-skid body is kneaded with a mixer. Using an open roll for the vulcanized rubber fabric, cork powder and glass fiber, further adding and mixing sulfur, repeatedly passing the roll narrow part set at a predetermined interval with the open roll multiple times, the orientation of the glass fiber Rolled dough sheet formed in a certain direction is placed on an appropriate number of unvulcanized sheet stacks in a multistage mold for molding, vulcanized, demolded and cooled, and the tip of the glass fiber is exposed in a substantially vertical direction A block anti-slip body is formed with a punching die with an appropriate thickness so that it can squeeze, and then the block anti-slip body is placed in a mold for molding a shoe sole, and unvulcanized rubber is separately set and vulcanized and integrated. With the manufacturing method of slip-proof sole material That. As a result, as described above, the air that intervenes on each laminated surface of the unvulcanized rubber fabric is difficult to escape during the pressure vulcanization, and further, the part of the burr generated during the pressure vulcanization is specified in part. Therefore, the glass fiber that has been previously oriented flows to the burrs occurrence location, and works to eliminate the difficulty in implementation of the conventional method, which is an impeding factor that the orientation direction of the glass fiber tends to collapse.

本発明においては、上記(3)で成形用多段式金型を選択的に採択し、該ガラス繊維の尖端が略垂直方向に露出せしめるように適宜厚さした裁断片を打抜き型にてブロック防滑体を形成する。これによって、積層面のエア(空気)が抜け易くなり、さらにバリ発生箇所が各々の積層面の位置と同位置になることにより、ガラス繊維が略垂直方向の突出する防滑性効果を奏する配向性が崩れる阻害要因を解消することができる。
図9は本発明におけるブロック防滑体の斜視図であり、該ブロック防滑体層14では、ガラス繊維9は略一定の方向に配向されており、また、裁断片15の断面側には該ガラス繊維9の尖端突出形態が露出形成されている。17はコルク粉粒体である。
図10並びに図11は本発明に係る防滑性靴底部材にブロック防滑体を、靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に嵌装配設した別実施例を示す平面図であり、6はブロック防滑体、16は重心移動仮想軌跡曲線である。
[1]摩擦試験:
上記のように作成した本発明に係る防滑性靴底部材について、以下の方法で摩擦係数を測定した。 摩擦係数:ASTM法
試験方法 スライダーに試料を取り付けセットして引張試験機にて引っ張ったときの抵抗力を測定し、摩擦係数を求める。
・スライダー:64×65×8.5mm,200g ・摩擦対象:ステンレス板
・引張速度:100mm/min ・荷重:あり(1Kg)・なし
・動摩擦係数=摩擦抵抗力(N)/接触力(N)
*接触力(N)=[スライダー質量(Kg)+荷重(Kg)]×9.81
条件入力: スライダー質量 0.2Kg 荷重1.0Kg
(1)上記の測定結果は、<湿>では、本実施例のコルク粉粒体及びガラス繊維混入試料では、動摩擦力(Kg)0.845、動摩擦力(N)8.28945、試料重量(g)
3.3100、試料重量(Kg)0.0033100、接触力(N)11.8045、動摩擦係数0.702であった。
In the present invention, the multistage mold for molding is selectively adopted in the above (3), and the cutting pieces appropriately thickened so that the tips of the glass fibers are exposed in a substantially vertical direction are blocked with a punching die. Form the body. As a result, the air on the laminated surface can be easily released, and the burr generation location is the same as the position of each laminated surface, so that the glass fiber has an anti-slip effect that protrudes in a substantially vertical direction. The obstruction factor that collapses can be solved.
FIG. 9 is a perspective view of a block anti-slip body according to the present invention. In the block anti-slip body layer 14, the glass fibers 9 are oriented in a substantially constant direction. Nine pointed protrusions are exposed and formed. Reference numeral 17 denotes a cork powder.
FIGS. 10 and 11 show a block anti-slip body on the anti-slip shoe sole member according to the present invention, in the region of the shoe stepping portion and / or shoe sole heel portion on the center-of-gravity movement virtual locus curve on the ground contact surface of the shoe base. It is a top view which shows the other Example by which arrangement | positioning arrangement | positioning was carried out, 6 is a block antiskid body, 16 is a gravity center movement virtual locus | trajectory curve.
[1] Friction test:
The friction coefficient of the non-slip shoe sole member according to the present invention prepared as described above was measured by the following method. Friction coefficient: ASTM method Test method A sample is attached to a slider and set, and when a tensile tester is pulled, the resistance is measured to obtain the friction coefficient.
・ Slider: 64 × 65 × 8.5 mm, 200 g ・ Friction object: Stainless steel plate ・ Tensile speed: 100 mm / min ・ Load: Yes (1 Kg) ・ None ・ Dynamic friction coefficient = friction resistance (N) / contact force (N)
* Contact force (N) = [Slider mass (Kg) + Load (Kg)] × 9.81
Condition input: Slider mass 0.2kg Load 1.0kg
(1) The above measurement results are as follows. For <wet>, in the sample mixed with cork powder and glass fiber of this example, dynamic friction force (Kg) 0.845, dynamic friction force (N) 8.28945, sample weight ( g)
It was 3.3100, sample weight (Kg) 0.0033100, contact force (N) 11.8045, and dynamic friction coefficient 0.702.

これに対し、コルクのみでは、動摩擦力(Kg)0.794、動摩擦力(N)7.78914、試料重量(g)2.1527、試料重量(Kg)0.0021527、接触力
(N)11.7931、動摩擦係数0.660であった。また、ガラス繊維のみでは、
動摩擦力(Kg)0.789、動摩擦力(N)7.74009、試料重量(g)3.3437、接触力(N)11.8048、動摩擦係数0.656であった。
On the other hand, with cork alone, dynamic friction force (Kg) 0.794, dynamic friction force (N) 7.78914, sample weight (g) 2.1527, sample weight (Kg) 0.0021527, contact force (N) 11 7931 and the dynamic friction coefficient 0.660. Also, with only glass fiber,
The dynamic friction force (Kg) was 0.789, the dynamic friction force (N) was 7.74009, the sample weight (g) was 3.3437, the contact force (N) was 11.8048, and the dynamic friction coefficient was 0.656.

ブランクゴムでは、動摩擦力(Kg)0.576、動摩擦力(N)5.65056、試料重量(g)2.4046、接触力(N)11.7956、動摩擦係数0.479であった。
(2) また、<氷>で、条件入力 スライダー質量 0.2Kg、荷重2.0Kg
本実施例のコルク粉粒体及びガラス繊維混入試料では、動摩擦係数0.988に対し、コルク粉粒体では、0.287、ガラス繊維では1.159、ブランクゴムでは、動摩擦係数0.046であった。
[2]実地履用試験:
上記の試験と同じ配合の靴底ゴム部材を使用して、商品名「セカイチョ−TOPAZ」の靴を作成し、北海道札幌市郊外にて、実施履用試験を行った。試験体で比較例1はガラス繊維、比較例2はコルク粉粒体、比較例3はベースゴムのみのブランクである。
In the blank rubber, the dynamic friction force (Kg) was 0.576, the dynamic friction force (N) was 5.65056, the sample weight (g) was 2.4046, the contact force (N) was 11.7956, and the dynamic friction coefficient was 0.479.
(2) Also, with <Ice>, condition input Slider mass 0.2 kg, load 2.0 kg
In the cork powder and glass fiber mixed sample of this example, the dynamic friction coefficient is 0.988, the cork powder is 0.287, the glass fiber is 1.159, and the blank rubber is the dynamic friction coefficient is 0.046. there were.
[2] Practical use test:
Using a shoe sole rubber member having the same composition as in the above test, a shoe with the trade name “Sekaicho-TOPAZ” was created, and an implementation wear test was conducted in the suburbs of Sapporo, Hokkaido. In the test body, Comparative Example 1 is a glass fiber, Comparative Example 2 is a cork powder, and Comparative Example 3 is a blank containing only a base rubber.

各例につき、試験者10名を選び、雪上アイスバ−ン状態で、1滑り易い 2やや滑り易い 3中間 4やや滑り難い 5滑り難いの5段階点で評価した。上記の試験結果は、実施例,4.0、比較例1,4.0、比較例2,3.0、比較例3,1.0であった。
以上のように本発明の一実施例を示したが、本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない変更等は、本発明の範囲にに含まれる。
For each example, 10 testers were selected and evaluated in five grades: 1 slippery, 2 slippery, 3 slippery, 4 slippery, 5 slippery, in an ice vane state on snow. The above test results were Example, 4.0, Comparative Example 1, 4.0, Comparative Example 2, 3.0, and Comparative Example 3, 1.0.
As described above, one embodiment of the present invention has been described. However, the present invention is not limited to the above embodiment, and modifications and the like that do not depart from the gist of the present invention are included in the scope of the present invention.

本発明に係る防滑性靴底部材の平面図である。1 is a plan view of an anti-slip shoe sole member according to the present invention. 本発明に係る防滑性靴底部材の要部説明図である。It is principal part explanatory drawing of the slip-resistant shoe sole member which concerns on this invention. 図2における防滑性靴底部材のA−A線断面図である。It is the sectional view on the AA line of the slip-proof shoe sole member in FIG. 本発明に係るブロック防滑体の斜視図である。It is a perspective view of the block antiskid object concerning the present invention. 本発明に係るブロック防滑体の別実施例の模式図である。It is a schematic diagram of another example of the block anti-slip body according to the present invention. 本発明に係るブロック防滑体の別実施例の模式図である。It is a schematic diagram of another example of the block anti-slip body according to the present invention. 本発明に係るブロック防滑体の成形用金型の断面図であるIt is sectional drawing of the metal mold | die for shaping | molding of the block anti-slip body which concerns on this invention. 本発明に係る未加硫シート積層体の斜視図である。It is a perspective view of the unvulcanized sheet laminated body which concerns on this invention. 本発明に係るブロック防滑体の斜視図である。It is a perspective view of the block antiskid object concerning the present invention. 本発明に係るブロック防滑体を嵌装配設した別実施例を示す平面図である。It is a top view which shows the other Example which carried out arrangement | positioning arrangement | positioning of the block antiskid body based on this invention. 本発明に係るブロック防滑体を嵌装配設した別実施例を示す平面図である。It is a top view which shows the other Example which carried out arrangement | positioning arrangement | positioning of the block antiskid body based on this invention.

符号の説明Explanation of symbols

1 防滑性靴底部材
2 靴底基部
3 本底
4 靴底踏付部
5 靴底踵部
6 ブロック防滑体
7 靴底接地面
8 凹陥部
9 ガラス繊維
10 ブロック防滑体成形用下金型
11 ブロック防滑体成形用上金型
12 多段式金型狭隙部
13 未加硫シート積層体
14 ブロック状防滑体層
15 裁断片
16 重心移動仮想軌跡曲線
17 コルク粉粒体
DESCRIPTION OF SYMBOLS 1 Slip-proof sole member 2 Shoe base 3 Sole 4 Shoe bottom step part 5 Sole bottom part 6 Block anti-slip body 7 Shoe grounding surface 8 Recessed part 9 Glass fiber 10 Block lower mold 11 block anti-slip body molding 11 Block Anti-slip body upper mold 12 Multi-stage mold narrow gap 13 Unvulcanized sheet laminate 14 Block-shaped anti-slip body layer 15 Cutting piece 16 Center of gravity movement virtual locus curve 17 Cork powder

Claims (3)

靴底基部を天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる防滑性靴底部材において、該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置せしめて、コルク粉粒体及びガラス繊維を配合混入したブロック防滑体を複数個嵌装配設してなることを特徴とする防滑性靴底部材。 In a non-slip sole member obtained by heating and pressurizing an unvulcanized rubber fabric composed of a main component in which natural rubber and synthetic rubber are blended at the sole base, a center-of-gravity movement virtual trajectory curve on the contact surface of the sole base An anti-slip structure comprising a plurality of block anti-slip bodies that are mixed with cork powder particles and glass fibers and are located in the upper shoe sole stepping part and / or shoe sole heel area. Sex sole member. 前記靴底基部の天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を無地若しくは該未加硫ゴムにコルク粉粒体又はガラス繊維のいずれかを混入してなる請求項1記載の防滑性靴底部材。 2. An unvulcanized rubber fabric made of a main component containing a natural rubber and a synthetic rubber at the base of the shoe sole is plain or formed by mixing cork powder or glass fiber into the unvulcanized rubber. Non-slip sole material. 靴底基部を天然ゴムと合成ゴムを配合した主成分からなる未加硫ゴム生地を加熱加圧し加硫してなる靴底部材の該靴底基部の接地面における重心移動仮想軌跡曲線上の靴底踏付部及び/又は靴底踵部の領域に位置せしめて、コルク粉粒体及びガラス繊維を配合混入したブロック防滑体を複数個嵌装配設してなる防滑性靴底部材の製造方法であって、混合機で混練した前記未加硫ゴム生地をオープンロールを用い、コルク粉粒体及びガラス繊維、硫黄を添加混合し、該オープンロールにて所定間隔に設定したロール狭隘部を複数回反復通過せしめて前記ガラス繊維の配向性を一定方向に形成した圧延生地シートとし、次いで該圧延生地シートを成形用多段式金型に適宜枚数の未加硫シート積層体を載置し加硫後、脱型、冷却し、ガラス繊維の先端が略垂直方向に露出せしめるように適宜厚さとした裁断片を打抜き型にてブロック防滑体を形成し、該ブロック防滑体を靴底成形用金型に入れ、別途未加硫ゴムをセットし、加硫一体化したことを特徴とする防滑性靴底部材の製造方法。 Shoes on the center-of-gravity movement virtual trajectory curve of the ground contact surface of the sole base of a sole member obtained by heating and pressurizing and vulcanizing an unvulcanized rubber fabric composed of main components containing natural rubber and synthetic rubber at the sole base A method for producing an anti-slip shoe sole member comprising a plurality of block anti-slip members that are mixed and mixed with cork powder particles and glass fibers, positioned in the region of the bottom stepping part and / or the shoe sole heel part. The unvulcanized rubber dough kneaded by a mixer using an open roll, and added and mixed with cork powder, glass fiber, and sulfur, and the roll narrow portion set at a predetermined interval by the open roll is a plurality of times. Repeatedly passing the glass fiber into a rolled dough sheet in which the orientation of the glass fibers is formed in a certain direction, and then placing the rolled dough sheet on an appropriate number of unvulcanized sheet laminates in a multi-stage mold for vulcanization Demolding, cooling, glass fiber tip Forming a block anti-slip body with a punching die with an appropriate thickness so that it is exposed in a substantially vertical direction, placing the block anti-slip body in a shoe sole molding die, and separately setting unvulcanized rubber, A method for producing an anti-slip shoe sole member, which is vulcanized and integrated.
JP2006109656A 2006-04-12 2006-04-12 Non-slip sole member and manufacturing method Expired - Fee Related JP4009654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109656A JP4009654B2 (en) 2006-04-12 2006-04-12 Non-slip sole member and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109656A JP4009654B2 (en) 2006-04-12 2006-04-12 Non-slip sole member and manufacturing method

Publications (2)

Publication Number Publication Date
JP2007282648A true JP2007282648A (en) 2007-11-01
JP4009654B2 JP4009654B2 (en) 2007-11-21

Family

ID=38754967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109656A Expired - Fee Related JP4009654B2 (en) 2006-04-12 2006-04-12 Non-slip sole member and manufacturing method

Country Status (1)

Country Link
JP (1) JP4009654B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136476A2 (en) * 2010-04-26 2011-11-03 Ku Do Moon Slip-resistant rubber composition, outsole using the rubber composition and method of manufacturing the outsole
JP2015216984A (en) * 2014-05-14 2015-12-07 ミドリ安全株式会社 On-ice and snow antislip footwear sole, on-ice and snow antislip footwear, and production method of antislip block for on-ice and snow antislip footwear
USD784671S1 (en) * 2016-03-15 2017-04-25 Nike, Inc. Shoe outsole

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136476A2 (en) * 2010-04-26 2011-11-03 Ku Do Moon Slip-resistant rubber composition, outsole using the rubber composition and method of manufacturing the outsole
WO2011136476A3 (en) * 2010-04-26 2012-03-22 Ku Do Moon Slip-resistant rubber composition, outsole using the rubber composition and method of manufacturing the outsole
US8575233B2 (en) 2010-04-26 2013-11-05 Ku Do Moon Slip-resistant rubber composition, outsole using the rubber composition and method of manufacturing the outsole
JP2015216984A (en) * 2014-05-14 2015-12-07 ミドリ安全株式会社 On-ice and snow antislip footwear sole, on-ice and snow antislip footwear, and production method of antislip block for on-ice and snow antislip footwear
USD784671S1 (en) * 2016-03-15 2017-04-25 Nike, Inc. Shoe outsole

Also Published As

Publication number Publication date
JP4009654B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
EP3169177B1 (en) Soil-shedding article of footwear, components thereof, and methods of making the article
US10314364B2 (en) Soil-shedding article of footwear, and method of using the same
CN101899176B (en) Material for sole
JP2007282646A (en) Antislip shoe sole member and manufacturing method
JP4009654B2 (en) Non-slip sole member and manufacturing method
JP4864349B2 (en) Anti-slip material for frozen road surface and footwear bottom using the same
CN103450519A (en) Antiskid rubber and manufacturing method thereof
JP2002320503A (en) Anti-slippage shoes sole member
TWI254615B (en) Sole and method of manufacturing the sole
JP3986883B2 (en) Anti-icing snow mat
US9222005B2 (en) Slip prevention pad and method of manufacturing the same
JP2002320503A5 (en)
KR101984777B1 (en) The process of manufacture of the grass with a rubber mat epdm
CN112852024A (en) Anti-slip rubber material on ice
JP5377737B1 (en) Shoe sole suitable for walking on snow or ice
JPH03210342A (en) Tread rubber of studless tire
JPH10337203A (en) Slip preventive shoe sole and forming method thereof
JP2006136689A (en) Antislip member for sole, method of manufacturing antislip sole, antislip sole, and antislip shoes
JPH0352405Y2 (en)
JP2002300902A (en) Outsole and shoes provided with the same
EP4215578A1 (en) Anti-slip member for wearable article or sports article, wearable article, and sports article
JP2639619B2 (en) Anti-slip soles
WO2007007412A1 (en) Rubber composition for shoe sole
JP4441785B2 (en) Non-slip material for footwear and rubber composition for anti-slip bottom, mainly comprising rubber and / or thermoplastic synthetic resin
JP2008000520A (en) Slip resisting material for frozen road surface, and footwear sole using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees