JP2007278479A - Excess flow preventing valve - Google Patents

Excess flow preventing valve Download PDF

Info

Publication number
JP2007278479A
JP2007278479A JP2006109131A JP2006109131A JP2007278479A JP 2007278479 A JP2007278479 A JP 2007278479A JP 2006109131 A JP2006109131 A JP 2006109131A JP 2006109131 A JP2006109131 A JP 2006109131A JP 2007278479 A JP2007278479 A JP 2007278479A
Authority
JP
Japan
Prior art keywords
valve
primary pressure
pedestal
overflow prevention
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006109131A
Other languages
Japanese (ja)
Other versions
JP4666225B2 (en
Inventor
Yutaka Tano
裕 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006109131A priority Critical patent/JP4666225B2/en
Publication of JP2007278479A publication Critical patent/JP2007278479A/en
Application granted granted Critical
Publication of JP4666225B2 publication Critical patent/JP4666225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excess flow preventing valve capable of restraining fluctuation of closed operation characteristic with respect to mass flow rate which is produced by the level of primary pressure. <P>SOLUTION: The excess flow preventing valve is configured so that a valve element 62 which is supported on a plinth 49 via a valve element spring 61 moves by opposing to bias force of the valve element spring 61 and then closes a flow passage by seating on a valve seat 47. It is adapted to make it possible to adjust relative position with respect to the valve seat 47 of the plinth 49 by the primary pressure in the upstream side. Preferably, it includes a primary pressure receiving pressure part 63 which receives the primary pressure in the direction making a support 60 of the valve element spring 61 spaced apart from the valve seat 47 because the plinth 49 is capable of moving. It is provided with a plinth spring 58 which urges the plinth 49 to the direction opposed to the receiving pressure direction of the primary pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、弁体に供給される燃料ガスの流量が所定以上となる過流時に弁体が弁体バネの付勢力に抗して移動して閉弁状態となる過流防止弁に関し、特にその作動特性の向上に関する。   The present invention relates to an overflow prevention valve in which a valve body moves against a biasing force of a valve body spring and closes when the flow rate of fuel gas supplied to the valve body exceeds a predetermined value. It relates to the improvement of its operating characteristics.

例えば、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池の発電電力で走行用モータを駆動する燃料電池自動車や、天然ガス(CNG)を内燃機関で燃焼させて走行用の駆動力を直接得る天然ガス自動車等においては、燃料ガスタンクからの燃料ガスの過流を防止するため、燃料ガスタンクの吐出流路に、燃料ガスの過流を自動的に防止する過流防止弁が設けられることになる。   For example, a fuel cell vehicle that drives a traveling motor with power generated by a fuel cell that generates electricity by an electrochemical reaction between fuel gas and oxidizing gas, or a natural gas (CNG) burned by an internal combustion engine to generate driving force for traveling. In a directly obtained natural gas vehicle or the like, an overflow prevention valve that automatically prevents overflow of the fuel gas is provided in the discharge passage of the fuel gas tank in order to prevent overflow of the fuel gas from the fuel gas tank. become.

この過流防止弁は、二次側(下流側)の圧力が正常範囲を超えて下がった場合に、弁体が一次側(上流側)と二次側との差圧で弁体バネの付勢力に抗して移動して弁座に着座することで流路を閉止するものである(例えば特許文献1参照)。
特開2002−310314号公報
When the pressure on the secondary side (downstream side) falls below the normal range, this overflow prevention valve is attached to the valve spring by the differential pressure between the primary side (upstream side) and the secondary side. The flow path is closed by moving against the force and seating on the valve seat (see, for example, Patent Document 1).
JP 2002-310314 A

従来の過流防止弁においては、弁体バネが一次圧の高低にかかわらず弁体と弁座との距離を一定に保持する構造となっているため、図5にXで示すように一次圧が高くなると閉作動時の質量流量が大きくなる閉作動特性がある。つまり、弁体と弁座との隙間を通過する燃料ガスの体積流量は一次圧の高低によらずにほぼ一定であるものの、一次圧が高圧であるほど燃料ガスの密度が高くなることから、閉作動時の質量流量は高くなってしまうのである。   In the conventional overflow prevention valve, the valve body spring has a structure that keeps the distance between the valve body and the valve seat constant regardless of the primary pressure level. Therefore, as shown by X in FIG. As the value increases, the mass flow rate at the time of closing operation increases, and there is a closing operation characteristic. In other words, although the volume flow rate of the fuel gas passing through the gap between the valve body and the valve seat is substantially constant regardless of the primary pressure level, the higher the primary pressure, the higher the density of the fuel gas. The mass flow rate during the closing operation becomes high.

本発明は、かかる事情に鑑みてなされたものであり、一次圧の高低によって生じる質量流量に対する閉作動特性の変動を抑制可能な過流防止弁の提供を目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an overflow prevention valve capable of suppressing the variation of the closed operation characteristic with respect to the mass flow rate caused by the level of the primary pressure.

前記目的を達成するため、本発明に係る過流防止弁は、弁体バネを介して台座に支持された弁体が前記弁体バネの付勢力に抗して移動して弁座に着座することで流路を閉止する過流防止弁であって、前記台座の前記弁座に対する相対位置を上流側の一次圧によって調整可能としている。   In order to achieve the above object, the overflow prevention valve according to the present invention is such that the valve body supported by the pedestal via the valve body spring moves against the biasing force of the valve body spring and is seated on the valve seat. Thus, the overflow prevention valve closes the flow path, and the relative position of the pedestal with respect to the valve seat can be adjusted by the primary pressure on the upstream side.

この構成によれば、台座の弁座に対する相対位置を上流側の一次圧によって調整可能としているため、台座に弁体バネを介して支持された弁体と弁座との隙間を一次圧の高低に応じて可変にできる。したがって、一次圧の高低によって生じる質量流量に対する閉作動特性の変動を抑制可能となる。   According to this configuration, the relative position of the pedestal with respect to the valve seat can be adjusted by the primary pressure on the upstream side. It can be made variable according to. Therefore, it is possible to suppress the variation in the closing operation characteristic with respect to the mass flow rate caused by the primary pressure level.

この場合、前記台座が移動可能であって前記弁体バネの支持部を前記弁座から離間させる方向に前記一次圧を受ける一次圧受圧部を有しており、該台座を前記一次圧の受圧方向とは反対向きに付勢する台座バネを備えているのが好ましい。   In this case, the pedestal is movable and has a primary pressure receiving portion that receives the primary pressure in a direction in which the support portion of the valve body spring is separated from the valve seat, and the pedestal receives the primary pressure. It is preferable to provide a pedestal spring that biases in the direction opposite to the direction.

この構成によれば、上流側の一次圧が高いと台座バネの付勢力に抗して台座が弁体バネの支持部を弁座から離間させる方向に移動して、支持部に弁体バネを介して支持された弁体と弁座との隙間を小さくする。また、上流側の一次圧が低いと台座が弁体バネの支持部を弁座から離間させる方向に移動せず、弁体と弁座との隙間を大きくする。したがって、一次圧が高い場合に弁体と弁座との隙間を狭くして体積流量を減らすことで、質量流量の増大を抑制できるため、一次圧の高低によって生じる質量流量に対する閉作動特性の変動を抑制できる。   According to this configuration, when the upstream primary pressure is high, the pedestal moves in a direction to separate the support portion of the valve body spring from the valve seat against the biasing force of the pedestal spring, and the valve body spring is moved to the support portion. The gap between the valve body and the valve seat supported via the gap is reduced. Further, when the upstream primary pressure is low, the pedestal does not move in the direction of separating the support portion of the valve body spring from the valve seat, and the gap between the valve body and the valve seat is increased. Therefore, when the primary pressure is high, the increase in mass flow rate can be suppressed by reducing the volume flow rate by narrowing the gap between the valve body and the valve seat. Can be suppressed.

また、この場合、前記台座が、前記一次圧の受圧方向とは反対向きに大気圧を受圧する大気圧受圧部を備えているのが好ましい。   In this case, it is preferable that the pedestal includes an atmospheric pressure receiving portion that receives atmospheric pressure in a direction opposite to the pressure receiving direction of the primary pressure.

この構成によれば、台座が大気圧受圧部で一次圧の受圧方向とは反対向きに大気圧を受圧するため、二次圧を受圧する場合のように二次圧による影響つまり下流側の運転状況による影響を抑制して台座の位置を調整できる。   According to this configuration, since the pedestal receives the atmospheric pressure in the direction opposite to the primary pressure receiving direction at the atmospheric pressure receiving portion, the influence of the secondary pressure, that is, downstream operation as in the case of receiving the secondary pressure. The position of the pedestal can be adjusted while suppressing the influence of the situation.

本発明によれば、一次圧の高低によって生じる質量流量に対する閉作動特性の変動を抑制可能となる。   According to the present invention, it is possible to suppress the variation of the closed operation characteristic with respect to the mass flow rate caused by the primary pressure level.

次に、本発明に係る過流防止弁の第1実施形態を図1〜図3を参照しつつ説明する。   Next, a first embodiment of the overflow prevention valve according to the present invention will be described with reference to FIGS.

図1はガスタンク搭載車両1を示すもので、このガスタンク搭載車両1は、車体2に四つの走行車輪3を有する四輪自動車であり、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池システム(駆動手段)10と、この燃料電池システム10の発電電力により例えば前側の車輪3を駆動する走行モータ(駆動手段)11とを車体2に搭載して構成されている。なお、図1において車両1の前方を矢印Frで車両1の後方を矢印Rrで示している。   FIG. 1 shows a vehicle 1 equipped with a gas tank. This vehicle 1 equipped with a gas tank is a four-wheeled vehicle having four traveling wheels 3 on a vehicle body 2 and receives power from reaction gas (oxidizing gas and fuel gas). The vehicle body 2 includes a fuel cell system (driving means) 10 that generates the power and a travel motor (driving means) 11 that drives, for example, the front wheels 3 with the power generated by the fuel cell system 10. In FIG. 1, the front of the vehicle 1 is indicated by an arrow Fr, and the rear of the vehicle 1 is indicated by an arrow Rr.

燃料電池システム10は、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池スタック12を車体2に備えるとともに、この燃料電池スタック12への酸化ガスとしての空気のガス供給を調整する酸化ガス配管系13と、燃料ガスとしての水素ガスのガス供給を調整する燃料ガス配管系14とを備えている。   The fuel cell system 10 includes a fuel cell stack 12 that generates power by receiving supply of reaction gases (oxidizing gas and fuel gas) in the vehicle body 2, and supplies gas to the fuel cell stack 12 with air as an oxidizing gas. And an oxidizing gas piping system 13 for adjusting the supply of hydrogen gas as a fuel gas.

燃料ガス配管系14は、高圧(例えば35〜70MPa)の燃料ガスをそれぞれ貯留可能な複数、具体的には4本の燃料ガスタンク20a〜20dを備えている。これら燃料ガスタンク20a〜20dは車体2に搭載されている。   The fuel gas piping system 14 includes a plurality, specifically, four fuel gas tanks 20a to 20d that can store high-pressure (for example, 35 to 70 MPa) fuel gas, respectively. These fuel gas tanks 20 a to 20 d are mounted on the vehicle body 2.

上記のように車載されたすべての燃料ガスタンク20a〜20dは燃料ガスを吐出させる吐出口を備え、これらの吐出口には燃料ガスタンク20a〜20d内の燃料ガスを吐出させる個別の吐出流路22a〜22dが接続されている。これらの吐出流路22a〜22dは、同じ流路断面積とされており、共通の供給流路23に接続され、この供給流路23を介して燃料電池スタック12に連通している。   All the fuel gas tanks 20a to 20d mounted on the vehicle as described above are provided with discharge ports for discharging the fuel gas, and these discharge ports have individual discharge flow paths 22a to 22 for discharging the fuel gas in the fuel gas tanks 20a to 20d. 22d is connected. These discharge channels 22 a to 22 d have the same channel cross-sectional area, are connected to a common supply channel 23, and communicate with the fuel cell stack 12 through the supply channel 23.

すべての燃料ガスタンク20a〜20dには、制御装置15で制御されて吐出流路22a〜22dのうち接続されたものへの燃料ガスの供給及び供給停止を切り替える主止弁24a〜24dが内部に設けられている。また、供給流路23にはすべての燃料ガスタンク20a〜20dよりも下流となる位置に圧力センサ25が設けられており、この圧力センサ25よりも下流側に減圧弁26が設けられている。   All the fuel gas tanks 20a to 20d are internally provided with main stop valves 24a to 24d that are controlled by the control device 15 to switch between supply and stop of supply of fuel gas to the connected discharge passages 22a to 22d. It has been. Further, the supply flow path 23 is provided with a pressure sensor 25 at a position downstream of all the fuel gas tanks 20 a to 20 d, and a pressure reducing valve 26 is provided downstream of the pressure sensor 25.

制御装置15には、図示は略すが運転者によって操作されるアクセルペダルの開度を検出するペダルセンサを含む種々のセンサが接続されており、ペダルセンサにより検出されるペダル開度及び圧力センサ25により検出される供給圧力を含む複数のセンサの検出信号等に基づいて主止弁24a〜24dを制御して、燃料ガスタンク20a〜20dから燃料電池スタック12への燃料ガスの供給を制御する。   Although not shown, the control device 15 is connected to various sensors including a pedal sensor that detects the opening degree of an accelerator pedal that is operated by a driver. The pedal opening degree and pressure sensor 25 that are detected by the pedal sensor. The main stop valves 24a to 24d are controlled based on the detection signals of the plurality of sensors including the supply pressure detected by the control, and the fuel gas supply from the fuel gas tanks 20a to 20d to the fuel cell stack 12 is controlled.

そして、すべての燃料ガスタンク20a〜20d用の吐出流路22a〜22dそれぞれに、一次側(上流側つまり燃料ガスタンク側)の圧力に対して二次側(下流側つまり燃料電池スタック側)の圧力が下がって差圧が大きくなると、機械的に閉じる第1実施形態の過流防止弁(EFV:Excess flow valve)27a〜27dが設けられている。   Then, the pressure on the secondary side (downstream side, that is, the fuel cell stack side) with respect to the pressure on the primary side (upstream side, that is, the fuel gas tank side) is set in each of the discharge flow paths 22a to 22d for all the fuel gas tanks 20a to 20d. When the pressure difference decreases and the differential pressure increases, mechanically closed overflow prevention valves (EFV: Excess flow valves) 27a to 27d of the first embodiment are provided.

これらの過流防止弁27a〜27dは、同一のものであるため、過流防止弁27aを例にとり図2を参照してさらに説明する。   Since these overflow prevention valves 27a to 27d are the same, the overflow prevention valve 27a will be described as an example with reference to FIG.

過流防止弁27aは、その外側部分を構成するケーシング31を有しており、このケーシング31には、燃料ガスタンク20aへの連通側(図2左側)に第1穴部32が形成され、この第1穴部32の燃料ガスタンク20aとは反対側にこの第1穴部32よりも小径の第2穴部33が形成されている。   The overflow prevention valve 27a has a casing 31 that constitutes an outer portion thereof, and a first hole portion 32 is formed in the casing 31 on the communication side (left side in FIG. 2) to the fuel gas tank 20a. A second hole 33 having a smaller diameter than the first hole 32 is formed on the opposite side of the first hole 32 from the fuel gas tank 20a.

また、このケーシング31には、第2穴部33の第1穴部32とは反対側にこの第2穴部33よりも小径の第3穴部34が形成されており、この第3穴部34の第2穴部33とは反対側にこの第3穴部34よりも大径の第4穴部35が形成されている。   The casing 31 is formed with a third hole 34 having a smaller diameter than the second hole 33 on the side opposite to the first hole 32 of the second hole 33. A fourth hole 35 having a diameter larger than that of the third hole 34 is formed on the side opposite to the second hole 33 of 34.

さらに、ケーシング31には、この第4穴部35の第3穴部34とは反対側にこの第4穴部35よりも小径で燃料電池スタック12へ連通する第5穴部36が形成されている。ここで、これら第1穴部32〜第5穴部36は同一軸線上に形成されている。   Further, the casing 31 is formed with a fifth hole portion 36 having a smaller diameter than the fourth hole portion 35 and communicating with the fuel cell stack 12 on the opposite side of the fourth hole portion 35 from the third hole portion 34. Yes. Here, the first hole portion 32 to the fifth hole portion 36 are formed on the same axis.

加えて、ケーシング31には、これら第1穴部32〜第5穴部36と同心の円筒状の収容空間部38が第4穴部35を囲むように外側に形成されており、第4穴部35及び収容空間部38の軸線方向中間部分は全周にわたって連通空間部39で連通している。さらに、ケーシング31には、収容空間部38の軸線方向における第1穴部32側の端面と第1穴部32とを連通させる分岐流路41が形成されており、また、収容空間部38の軸線方向の連通空間部39を挟んで両側の内径側それぞれに円環状のシール溝42,43が形成されている。加えて、ケーシング31には収容空間部38の第5穴部36側に大気開放の大気圧ポート44が形成されている。   In addition, a cylindrical housing space 38 concentric with the first hole portion 32 to the fifth hole portion 36 is formed outside the casing 31 so as to surround the fourth hole portion 35. The intermediate portion in the axial direction of the portion 35 and the accommodation space portion 38 communicates with the communication space portion 39 over the entire circumference. Further, the casing 31 is formed with a branch channel 41 for communicating the end face on the first hole portion 32 side in the axial direction of the accommodation space portion 38 with the first hole portion 32. Circular seal grooves 42 and 43 are formed on the inner diameter sides on both sides of the communication space 39 in the axial direction. In addition, an atmospheric pressure port 44 that is open to the atmosphere is formed in the casing 31 on the fifth hole 36 side of the accommodation space 38.

また、過流防止弁27aは、第2穴部33の内周面に嵌合される円環状のシート部材46を有しており、このシート部材46には、第1穴部32側の内周側に面取りされた弁座47が形成されている。   The overflow prevention valve 27a has an annular seat member 46 fitted to the inner peripheral surface of the second hole portion 33. The seat member 46 includes an inner seat on the first hole portion 32 side. A valve seat 47 chamfered on the circumferential side is formed.

過流防止弁27aは、上記したケーシング31内に摺動可能に設けられる台座49を有している。この台座49はケーシング31の収容空間部38に摺動可能に設けられる円筒状の摺動ベース部50と、この摺動ベース部50の軸線方向中間部から内側に円環状に延出し主として連通空間部39内に配置される内フランジ部51とを有しており、この内フランジ部51の内周部は、第4穴部35内まで延出している。また、この台座49の摺動ベース部50の外周面には円環状のシール溝52が形成されている。   The overflow prevention valve 27a has a pedestal 49 that is slidably provided in the casing 31 described above. The pedestal 49 has a cylindrical sliding base portion 50 slidably provided in the accommodation space portion 38 of the casing 31, and extends in an annular shape inward from an axially intermediate portion of the sliding base portion 50 to mainly communicate with the space. And an inner flange portion 51 disposed in the portion 39, and the inner peripheral portion of the inner flange portion 51 extends into the fourth hole portion 35. An annular seal groove 52 is formed on the outer peripheral surface of the slide base portion 50 of the pedestal 49.

ここで、ケーシング31の第1穴部32側のシール溝42には台座49の摺動位置にかかわらず常に台座49との隙間をシールするシールリング53が配設され、第5穴部36側のシール溝43にも台座49の摺動位置にかかわらず常に台座49との隙間をシールするシールリング54が配設され、台座49のシール溝52にも台座49の位置にかかわらずケーシング31との隙間をシールするシールリング55が配設されている。   Here, in the seal groove 42 on the first hole 32 side of the casing 31, a seal ring 53 that always seals the gap with the pedestal 49 regardless of the sliding position of the pedestal 49 is disposed. A seal ring 54 that always seals the gap with the pedestal 49 regardless of the sliding position of the pedestal 49 is also provided in the seal groove 43 of the pedestal 49. A seal ring 55 for sealing the gap is provided.

加えて、過流防止弁27aは、ケーシング31の収容空間部38内に、その軸線方向における第5穴部36側の端面と台座49の摺動ベース部50との間に介装されるコイルスプリングからなる台座バネ58が設けられている。この台座バネ58は、台座49を軸線方向における第1穴部32側に付勢する。   In addition, the overflow prevention valve 27 a is a coil that is interposed in the housing space 38 of the casing 31 between the end surface on the fifth hole 36 side in the axial direction and the sliding base portion 50 of the pedestal 49. A base spring 58 made of a spring is provided. This base spring 58 biases the base 49 toward the first hole 32 in the axial direction.

さらに、過流防止弁27aは、台座49の内フランジ部51の内周側の支持部60に一端側が固定され他端側がシート部材46の内側を通過して第1穴部32側まで延出するコイルスプリングからなる弁体バネ61と、第1穴部32内でこの弁体バネ61の他端側に固定される球形状の弁体62とを有している。   Further, the overflow prevention valve 27a is fixed at one end side to the support portion 60 on the inner peripheral side of the inner flange portion 51 of the base 49, and the other end side passes through the inside of the seat member 46 and extends to the first hole portion 32 side. And a spherical valve body 62 fixed to the other end side of the valve body spring 61 in the first hole portion 32.

このような構造の過流防止弁27aは、ケーシング31の第1穴部32が燃料ガスタンク20aへ、第5穴部36が燃料電池スタック12側に向けた状態で吐出流路22aに配置されることになる。この状態で、過流防止弁27aは、弁体バネ61を介して台座49に支持された弁体62が弁体バネ61の付勢力に抗して移動して弁座47に着座することで流路を閉止することになる。   The overflow prevention valve 27a having such a structure is disposed in the discharge flow path 22a with the first hole 32 of the casing 31 facing the fuel gas tank 20a and the fifth hole 36 facing the fuel cell stack 12 side. It will be. In this state, the overflow prevention valve 27a is configured such that the valve body 62 supported by the base 49 via the valve body spring 61 moves against the urging force of the valve body spring 61 and is seated on the valve seat 47. The flow path is closed.

また、このとき、一次圧が分岐流路41を介して台座49の摺動ベース部50の第1穴部32側の端面に、台座49を台座バネ58の方向に移動させるように作用することになり、その結果、この端面が、弁体バネ61の支持部60を弁座47から離間させる方向に一次圧を受ける一次圧受圧部63となっている。   At this time, the primary pressure acts on the end surface of the sliding base portion 50 of the pedestal 49 on the first hole portion 32 side via the branch channel 41 so as to move the pedestal 49 in the direction of the pedestal spring 58. As a result, this end surface serves as a primary pressure receiving portion 63 that receives a primary pressure in a direction in which the support portion 60 of the valve body spring 61 is separated from the valve seat 47.

さらに、台座49の摺動ベース部50の一次圧受圧部63とは反対の端面が一次圧の受圧方向とは反対向きに大気圧を受圧する大気圧受圧部64となっている。そして、台座バネ58は、この台座49を一次圧の受圧方向とは反対向きに付勢する。   Further, the end surface of the pedestal 49 opposite to the primary pressure receiving portion 63 of the sliding base portion 50 is an atmospheric pressure receiving portion 64 that receives atmospheric pressure in the direction opposite to the primary pressure receiving direction. The pedestal spring 58 biases the pedestal 49 in the direction opposite to the primary pressure receiving direction.

以上の構造の過流防止弁27aによれば、台座49の弁座47に対する相対位置を上流側の一次圧によって調整可能としているため、台座49に弁体バネ61を介して支持された弁体62と弁座47との隙間を一次圧の高低に応じて可変にできる。   According to the overflow prevention valve 27a having the above structure, the relative position of the pedestal 49 with respect to the valve seat 47 can be adjusted by the primary pressure on the upstream side. Therefore, the valve body supported by the pedestal 49 via the valve body spring 61. The clearance between the valve 62 and the valve seat 47 can be made variable according to the level of the primary pressure.

具体的には、上流側の一次圧が高いと、図2に示すように、分岐流路41を介して一次圧受圧部63に加わる圧力で台座49が台座バネ58の付勢力に抗して支持部60を弁座47から離間させる方向に移動することになり、支持部60に弁体バネ61を介して支持された弁体62を軸線方向に沿って下流側に移動させて弁体62と弁座47との隙間を小さくする。   Specifically, when the upstream primary pressure is high, the pedestal 49 resists the urging force of the pedestal spring 58 by the pressure applied to the primary pressure receiving portion 63 via the branch flow path 41 as shown in FIG. The support portion 60 is moved away from the valve seat 47, and the valve body 62 supported by the support portion 60 via the valve body spring 61 is moved to the downstream side along the axial direction so that the valve body 62 is moved. And the clearance between the valve seat 47 and the valve seat 47 are reduced.

また、上流側の一次圧が低いと、分岐流路41を介して一次圧受圧部63に圧力が加わっても、台座49が台座バネ58の付勢力で移動せず、弁体62と弁座47との隙間を大きくすることになる。したがって、一次圧が高い場合に弁体62と弁座47との隙間を狭くして体積流量を減らすことで、質量流量の増大を抑制できるため、図3にX1で示すように、一次圧の高低によって生じる質量流量に対する閉作動特性の変動を抑制でき、一定に制御できる。   If the primary pressure on the upstream side is low, the pedestal 49 does not move by the urging force of the pedestal spring 58 even when pressure is applied to the primary pressure receiving portion 63 via the branch flow path 41, and the valve body 62 and the valve seat The gap with 47 is increased. Therefore, when the primary pressure is high, an increase in the mass flow rate can be suppressed by narrowing the gap between the valve body 62 and the valve seat 47 to reduce the volume flow rate. Therefore, as shown by X1 in FIG. The fluctuation of the closed operation characteristic with respect to the mass flow rate caused by the height can be suppressed and can be controlled to be constant.

しかも、台座49が大気圧受圧部64で一次圧の受圧方向とは反対向きに大気圧を受圧するため、二次圧を受圧する場合のように二次圧による影響つまり下流側の燃料電池スタック12の運転状況による影響を抑制して台座49の位置を調整できる。   Moreover, since the pedestal 49 receives the atmospheric pressure in the direction opposite to the direction of receiving the primary pressure at the atmospheric pressure receiving portion 64, the influence of the secondary pressure as in the case of receiving the secondary pressure, that is, the fuel cell stack on the downstream side. The position of the pedestal 49 can be adjusted while suppressing the influence of the 12 driving situations.

なお、以上においては、弁座47を位置固定で台座49を一次圧に応じて移動可能にしたが、台座49の弁座47に対する相対位置を上流側の一次圧によって調整可能にできれば良く、台座49を位置固定で弁座47を一次圧に応じて移動可能にすることも可能である。   In the above description, the position of the valve seat 47 is fixed and the pedestal 49 can be moved according to the primary pressure. However, it is sufficient that the relative position of the pedestal 49 with respect to the valve seat 47 can be adjusted by the upstream primary pressure. It is also possible to move the valve seat 47 according to the primary pressure while fixing the position 49.

次に、本発明に係る過流防止弁の第2実施形態を図4を参照しつつ第1実施形態との相違部分を中心に説明する。なお、第1実施形態と同様の部分には同一の符号を付しその説明は略す。   Next, a second embodiment of the overflow prevention valve according to the present invention will be described with reference to FIG. 4 focusing on the differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the part similar to 1st Embodiment, and the description is abbreviate | omitted.

第2実施形態においても、過流防止弁27a〜27dは、同一のものであるため、過流防止弁27aを例にとり説明する。   Also in the second embodiment, since the overflow prevention valves 27a to 27d are the same, the overflow prevention valve 27a will be described as an example.

第2実施形態の過流防止弁27aは、ケーシング31が第1大気圧ポート44を有しておらず、また、収容空間部38の第5穴部36側のシール溝43及びシールリング54を有していない。このため、台座49の一次圧受圧部63とは反対の端面が一次圧の受圧方向とは反対向きに下流側の二次圧を受圧する二次圧受圧部65となっている。   In the overflow prevention valve 27a of the second embodiment, the casing 31 does not have the first atmospheric pressure port 44, and the seal groove 43 and the seal ring 54 on the fifth hole 36 side of the accommodation space 38 are provided. I don't have it. Therefore, the end surface opposite to the primary pressure receiving portion 63 of the pedestal 49 is a secondary pressure receiving portion 65 that receives the downstream secondary pressure in the direction opposite to the primary pressure receiving direction.

このような第2実施形態においても、第1実施形態と同様に、一次圧の高低によって生じる質量流量に対する閉作動特性の変動を抑制できることになり、これに加えて、大気圧ポート、シールリング及びシール溝を減らすことができるため、製造コスト及び部品点数を低減できる。   In the second embodiment as well, similarly to the first embodiment, it is possible to suppress the variation of the closed operation characteristic with respect to the mass flow rate caused by the level of the primary pressure. In addition, the atmospheric pressure port, the seal ring, and the Since the sealing groove can be reduced, the manufacturing cost and the number of parts can be reduced.

なお、以上においては、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池システム10を備え、その発電電力で走行用モータ11を駆動する燃料電池自動車を例にとり説明したが、天然ガス(CNG)を内燃機関で燃焼させて走行用の駆動力を直接得る天然ガス自動車等の種々の燃料ガスタンク搭載車両にも適用可能である。勿論、燃料ガスタンク搭載車両用に限らず、他の種々の流体回路に適用可能である。   In the above description, the fuel cell system 10 that generates power by the electrochemical reaction between the fuel gas and the oxidizing gas is described, and the fuel cell vehicle that drives the traveling motor 11 with the generated power is described as an example. The present invention can also be applied to vehicles equipped with various fuel gas tanks such as a natural gas vehicle in which CNG) is burned by an internal combustion engine to directly obtain a driving force for traveling. Of course, the present invention is not limited to a vehicle equipped with a fuel gas tank but can be applied to other various fluid circuits.

本発明の第1実施形態に係る過流防止弁が適用されたガスタンク搭載車両の構成図である。It is a lineblock diagram of a gas tank loading vehicle to which an overflow prevention valve concerning a 1st embodiment of the present invention is applied. 本発明の第1実施形態に係る過流防止弁の断面図である。It is sectional drawing of the overflow prevention valve which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る過流防止弁の閉作動特性を示す特性線図である。It is a characteristic diagram which shows the closing operation characteristic of the overflow prevention valve which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る過流防止弁の断面図である。It is sectional drawing of the overflow prevention valve which concerns on 2nd Embodiment of this invention. 過流防止弁の閉作動特性を示す特性線図である。It is a characteristic diagram which shows the closing operation characteristic of an overflow prevention valve.

符号の説明Explanation of symbols

27a〜27d…過流防止弁、49…台座、58…台座バネ、60…支持部、61…弁体バネ、62…弁体、63…一次圧受圧部、64…大気圧受圧部。   27a-27d ... Overflow prevention valve, 49 ... Base, 58 ... Base spring, 60 ... Supporting part, 61 ... Valve body spring, 62 ... Valve body, 63 ... Primary pressure receiving part, 64 ... Atmospheric pressure receiving part.

Claims (3)

弁体バネを介して台座に支持された弁体が前記弁体バネの付勢力に抗して移動して弁座に着座することで流路を閉止する過流防止弁であって、
前記台座の前記弁座に対する相対位置を上流側の一次圧によって調整可能とした過流防止弁。
An overflow prevention valve that closes the flow path by the valve body supported by the pedestal via the valve body spring moving against the urging force of the valve body spring and seating on the valve seat,
The overflow prevention valve which enabled adjustment of the relative position with respect to the said valve seat by the upstream primary pressure.
請求項1記載の過流防止弁であって、
前記台座が移動可能であって前記弁体バネの支持部を前記弁座から離間させる方向に前記一次圧を受ける一次圧受圧部を有しており、
該台座を前記一次圧の受圧方向とは反対向きに付勢する台座バネを備えた過流防止弁。
The overflow prevention valve according to claim 1,
The pedestal is movable and has a primary pressure receiving portion that receives the primary pressure in a direction in which a support portion of the valve body spring is separated from the valve seat;
An overflow prevention valve provided with a pedestal spring that urges the pedestal in a direction opposite to the pressure receiving direction of the primary pressure.
請求項2記載の過流防止弁であって、
前記台座が、前記一次圧の受圧方向とは反対向きに大気圧を受圧する大気圧受圧部を備えている過流防止弁。
The overflow prevention valve according to claim 2,
The overflow prevention valve in which the said base is provided with the atmospheric pressure receiving part which receives atmospheric pressure in the direction opposite to the pressure receiving direction of the said primary pressure.
JP2006109131A 2006-04-11 2006-04-11 Overflow prevention valve Expired - Fee Related JP4666225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109131A JP4666225B2 (en) 2006-04-11 2006-04-11 Overflow prevention valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109131A JP4666225B2 (en) 2006-04-11 2006-04-11 Overflow prevention valve

Publications (2)

Publication Number Publication Date
JP2007278479A true JP2007278479A (en) 2007-10-25
JP4666225B2 JP4666225B2 (en) 2011-04-06

Family

ID=38680114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109131A Expired - Fee Related JP4666225B2 (en) 2006-04-11 2006-04-11 Overflow prevention valve

Country Status (1)

Country Link
JP (1) JP4666225B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485860Y1 (en) * 1968-12-31 1973-02-14
JPS4996316A (en) * 1972-11-29 1974-09-12
JPS6397772U (en) * 1986-12-16 1988-06-24
JPH06235470A (en) * 1993-01-14 1994-08-23 Fuji Seiko Kk Constant flow rate valve
JPH10231943A (en) * 1997-02-24 1998-09-02 Toyooki Kogyo Co Ltd Emergency shutoff valve
JP2004076803A (en) * 2002-08-12 2004-03-11 Asahi Enterp:Kk Shut-off valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485860Y1 (en) * 1968-12-31 1973-02-14
JPS4996316A (en) * 1972-11-29 1974-09-12
JPS6397772U (en) * 1986-12-16 1988-06-24
JPH06235470A (en) * 1993-01-14 1994-08-23 Fuji Seiko Kk Constant flow rate valve
JPH10231943A (en) * 1997-02-24 1998-09-02 Toyooki Kogyo Co Ltd Emergency shutoff valve
JP2004076803A (en) * 2002-08-12 2004-03-11 Asahi Enterp:Kk Shut-off valve

Also Published As

Publication number Publication date
JP4666225B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
US9416756B2 (en) Flow control valve and vapor fuel processing apparatus having the same
JP6277835B2 (en) Fuel vapor control device
US9587751B2 (en) Flow control valves
JP2012087672A (en) Fuel gas supplying/charging system
JP5458178B2 (en) Hydrogen gas supply device for fuel cell system
JP2004052686A (en) Complex type air vent valve and air vent mechanism for fuel tank
KR20130052618A (en) Gas pressure regulating valve
JP2011108057A (en) Pressure reducing valve
JP2008052474A (en) Pressure reducing valve
JP2006164210A (en) Pressure-reducing valve
JP4575141B2 (en) Pressure reducing valve for high pressure gas
JP4666225B2 (en) Overflow prevention valve
JP2008196599A (en) Solenoid valve
WO2018116734A1 (en) Evaporated fuel treatment device
JP2005163836A (en) Connector with built-in valve
US7143782B2 (en) Pressure regulator module for controlling a gas
JP2017227308A (en) Pressure reduction valve for gas
JP7340112B2 (en) pressure regulating valve
JP6004925B2 (en) Fuel utilization system
US20050056319A1 (en) Regulator for fuel cell systems
JP2009180377A (en) Connector with built-in valve
JP6683594B2 (en) Evaporative fuel processor
JP7437911B2 (en) fluid control device
JP2016184260A (en) Pressure control valve
WO2023157570A1 (en) Overflow prevention valve and tank valve device provided with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4666225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees