JP2007277628A - Austenitic stainless steel - Google Patents

Austenitic stainless steel Download PDF

Info

Publication number
JP2007277628A
JP2007277628A JP2006104416A JP2006104416A JP2007277628A JP 2007277628 A JP2007277628 A JP 2007277628A JP 2006104416 A JP2006104416 A JP 2006104416A JP 2006104416 A JP2006104416 A JP 2006104416A JP 2007277628 A JP2007277628 A JP 2007277628A
Authority
JP
Japan
Prior art keywords
less
content
oxidation resistance
high temperature
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006104416A
Other languages
Japanese (ja)
Other versions
JP4577256B2 (en
Inventor
Tetsuo Hanami
徹夫 花見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006104416A priority Critical patent/JP4577256B2/en
Publication of JP2007277628A publication Critical patent/JP2007277628A/en
Application granted granted Critical
Publication of JP4577256B2 publication Critical patent/JP4577256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic stainless steel exhibiting excellent oxidation resistance even in use under the conditions in an oxidizing atmosphere under a high temperature environment heated to ≥1,000°C. <P>SOLUTION: The austenitic stainless steel has a composition comprising 0.04 to 0.15% C, 1.5 to 3.0% Si, ≤2.0% Mn, ≤0.04% P, ≤0.03% S, 15 to 30% Cr, 8 to 15% Ni, 0.05 to 0.20% Al, 0.001 to 0.010% B, 0.15 to 0.30% N and 0.01 to 0.10% Ca and/or REM, and the balance Fe with impurities, and in which Ni(bal) prescribed by a formula, Ni(bal)=30×(C+N)+Ni+0.5×Mn-1.1×(Cr+1.5×Si)+8.2, is -1.0 to +2.0, and Al and Ni satisfy an inequality of log(Al×N)≥-1.845. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、オーステナイト系ステンレス鋼に関し、例えば、1000℃以上の高温環境下における酸化性雰囲気の条件下での使用においても優れた耐酸化特性を示すオーステナイト系ステンレス鋼に関する。   The present invention relates to an austenitic stainless steel, for example, an austenitic stainless steel exhibiting excellent oxidation resistance even when used in an oxidizing atmosphere under a high temperature environment of 1000 ° C. or higher.

特に近年に至り、地球環境保全の観点から各種排出ガス中のNOx、SOxさらにはCO等の有害ガスの濃度を低減することが強く要望されている。一方、従来より、化石エネルギー資源の有効活用の面から効率的なエネルギー利用の必要性が強調されている。これら両者の要望を満足させるために、火力発電、化学工業あるいは鉄鋼製造などの各産業分野では、1000℃を超えるようなより高温での操業を行う必要性が高まっており、そのための高温装置用材料には、より優れた耐酸化性が要求されている。 In particular to reach the recently, NOx in the perspective various emissions from a gas to protect the global environment, SOx further reducing the concentration of harmful gases such as CO 2 have been strongly desired. On the other hand, the necessity of efficient energy use has been emphasized from the viewpoint of effective utilization of fossil energy resources. In order to satisfy both of these demands, there is an increasing need to operate at a higher temperature exceeding 1000 ° C in each industrial field such as thermal power generation, chemical industry, and steel manufacturing. The material is required to have better oxidation resistance.

従来、このような高温用途には、オーステナイト系ステンレス鋼が多用されている。例えば、SUS304に代表される18Cr−8Ni系、SUS310Sを代表とする25Cr−20Ni系、Alloy800として知られる20Cr−32Ni鋼等の高Cr−高Ni鋼がある。また、高Si化により高温特性の向上を図ったステンレス鋼としてAlSI302B、JISXM15J1、AISI314鋼等が知られている。   Conventionally, austenitic stainless steel is frequently used for such high temperature applications. For example, there are high Cr-high Ni steels such as 18Cr-8Ni type represented by SUS304, 25Cr-20Ni type represented by SUS310S, and 20Cr-32Ni steel known as Alloy 800. Moreover, AlSI302B, JISXM15J1, AISI314 steel, etc. are known as stainless steels whose high temperature characteristics are improved by increasing the Si content.

一般に、18Cr−8Ni系は溶接性及び経済性に優れるものの、耐酸化性や、高温強度等の高温特性に劣る。高Cr−高Ni鋼は高温強度を確保できるが、1000℃を超える環境下での耐酸化性が不芳である。さらに、コスト面からも、Ni含有量が高いことは問題である。   In general, the 18Cr-8Ni system is excellent in weldability and economy, but is inferior in high temperature characteristics such as oxidation resistance and high temperature strength. High Cr-high Ni steel can ensure high temperature strength, but its oxidation resistance in an environment exceeding 1000 ° C. is poor. Further, from the viewpoint of cost, a high Ni content is a problem.

これまでにも、高温装置用材料の高温特性を改善するために、例えば、特許文献1〜22の各公報により開示された発明が知られている。特許文献1〜22により開示された発明では、Si含有量を増加することにより高温特性を改善できるとするものが多く、その他、Mo、Cu、N、TiさらにはNb等の合金元素の添加により改善できるとするものもある。   In the past, in order to improve the high-temperature characteristics of materials for high-temperature devices, for example, the inventions disclosed in the publications of Patent Documents 1 to 22 are known. In the inventions disclosed in Patent Documents 1 to 22, there are many things that can improve the high-temperature characteristics by increasing the Si content, and by addition of alloy elements such as Mo, Cu, N, Ti, and Nb. Some say it can be improved.

さらに、特許文献23には、800℃以上の高温環境下での耐酸化性を改善する発明が開示されている。
特開昭53−90167号公報 特公昭53−43370号公報 特公昭54−12890号公報 特公昭54−33207号公報 特公昭56−17424号公報 特公昭56−25507号公報 特公昭57−16187号公報 特公昭57−42701号公報 特公昭57−54543号公報 特公昭57−59299号公報 特公昭58−2268号公報 特公昭58−42264号公報 特開昭59−185763号公報 特開昭60−92454号公報 特開昭63−69949号公報 特開昭63−213643号公報 特開昭63−69950号公報 特開昭63−69951号公報 特開昭63−157840号公報 特開昭63−213643号公報 特公平1−8695号公報 特開平1−159351号公報 特開平8−319541号公報
Furthermore, Patent Document 23 discloses an invention for improving oxidation resistance in a high temperature environment of 800 ° C. or higher.
JP-A-53-90167 Japanese Patent Publication No.53-43370 Japanese Patent Publication No.54-12890 Japanese Patent Publication No.54-33207 Japanese Patent Publication No. 56-17424 Japanese Patent Publication No.56-25507 Japanese Patent Publication No.57-16187 Japanese Patent Publication No.57-42701 Japanese Patent Publication No.57-54543 Japanese Patent Publication No.57-59299 Japanese Patent Publication No.58-2268 Japanese Patent Publication No. 58-42264 JP 59-185663 A JP-A-60-92454 JP-A-63-69949 Japanese Patent Laid-Open No. 63-213643 JP 63-69950 A JP-A-63-69951 JP-A 63-157840 Japanese Patent Laid-Open No. 63-213643 Japanese Patent Publication No. 1-8695 JP-A-1-159351 JP-A-8-319541

特許文献1〜22に開示されるように、確かに、高Si化を図ることにより耐酸化性を大幅に向上させることが可能であるが、1000℃を超える環境下での使用では、耐酸化性は十分ではない。また、特許文献23により開示された発明によっても、1000℃を超える酸化性雰囲気下における環境では耐酸化性に問題があり、実用化には至ってない。   As disclosed in Patent Documents 1 to 22, it is possible to significantly improve the oxidation resistance by increasing the Si content. However, in the use in an environment exceeding 1000 ° C., the oxidation resistance Sex is not enough. Further, even the invention disclosed in Patent Document 23 has a problem in oxidation resistance in an oxidizing atmosphere exceeding 1000 ° C. and has not been put into practical use.

本発明者は上記課題を解決するために鋭意検討を重ねた結果、特許文献23により開示された発明において、Niバランス及び(Al×N)積の関係を規定することにより、1000℃以上の高温環境下における酸化性雰囲気の条件下での使用においても優れた耐酸化特性を得られることを知見し、さらに検討を重ねて本発明を完成した。   As a result of intensive studies in order to solve the above problems, the inventor of the present invention disclosed in Patent Document 23 defines the relationship between the Ni balance and the (Al × N) product, thereby increasing the temperature to 1000 ° C. or higher. The inventors have found that excellent oxidation resistance can be obtained even under use in an oxidizing atmosphere under the environment, and have further studied and completed the present invention.

本発明は、C:0.04〜0.15%(本明細書では特にことわりがない限り組成に関する「%」は「質量%」を意味する)、Si:1.5〜3.0%、Mn:2.0%以下、P:0.04%以下、S:0.03%以下、Cr:15〜30%、Ni:8〜15%、Al:0.05〜0.20%、B:0.001〜0.010%、N:0.15〜0.3%、Ca及び/又はREM:0.01〜0.10%、残部Fe及び不純物からなり、(1)式により規定されるNi(bal)が−1.0〜+2.0であるとともに、Al及びNが(2)式を満足することを特徴とするオーステナイト系ステンレス鋼である。なお、(1)及び(2)式における元素記号はそれぞれその元素の含有量(質量%)を示す。   In the present invention, C: 0.04 to 0.15% (in the present specification, “%” in terms of composition means “mass%” unless otherwise specified), Si: 1.5 to 3.0%, Mn: 2.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 15-30%, Ni: 8-15%, Al: 0.05-0.20%, B : 0.001 to 0.010%, N: 0.15 to 0.3%, Ca and / or REM: 0.01 to 0.10%, balance Fe and impurities, defined by the formula (1) The austenitic stainless steel is characterized in that Ni (bal) is -1.0 to +2.0 and Al and N satisfy the formula (2). In addition, the element symbol in (1) and (2) type | formula shows content (mass%) of the element, respectively.

Ni(bal)=30×(C+N)+Ni+0.5×Mn−1.1×(Cr+1.5×Si)+8.2 ・・・・・(1)
log(Al×N)≧-1.845 ・・・・・(2)
この本発明に係るオーステナイト系ステンレス鋼は、さらに、Cu:2.0%以下、及び/又は、Mo:1.0%以下を含有することが望ましい。
Ni (bal) = 30 × (C + N) + Ni + 0.5 × Mn−1.1 × (Cr + 1.5 × Si) +8.2 (1)
log (Al × N) ≧ -1.845 (2)
The austenitic stainless steel according to the present invention preferably further contains Cu: 2.0% or less and / or Mo: 1.0% or less.

本発明により、1000℃以上の高温環境下における酸化性雰囲気の条件下での使用においても優れた耐酸化特性を示すオーステナイト系ステンレス鋼を提供できる。   According to the present invention, it is possible to provide an austenitic stainless steel that exhibits excellent oxidation resistance even when used in an oxidizing atmosphere under a high temperature environment of 1000 ° C. or higher.

以下、本発明に係るオーステナイト系ステンレス鋼を実施するための最良の形態を、説明する。
はじめに、本実施の形態のオーステナイト系ステンレス鋼の組成、Niバランス値、Al及びNの関係、及び初期結晶粒径について説明する。
C:0.04%以上0.15%以下
Cは、オーステナイト形成元素であり、オーステナイト組織の安定化を促進するとともに母相の高温強度及びクリープ破断強度を高めるのに有効な元素である。Cの低減は、鋼板強度低下を招くため、特に1000℃超える高温環境下での強度を確保するためにC含有量の下限は0.04%とする。一方、C含有量が0.15%を超えると、熱間加工性を阻害する。そこで、本発明では、C含有量は0.04%以上0.15%以下と限定する。好ましい範囲は、0.06%以上0.12%以下である。
Si:1.5%以上3.0%以下
Siは、鋼の溶製時に脱酸剤として添加されるが、フェライト形成元素でありオーステナイト相中へのδ−フェライトの析出に有効な元素である。また、生成される酸化皮膜と合金との界面にSi系内部酸化物を形成し、酸化皮膜の密着性を高め耐食性を向上させることから、Si含有量は高いほうが望ましい。特に1000℃超える高温環境下でのδ―フェライト析出による結晶粒成長抑制と耐酸化性とを高めるためにSi含有量の下限を1.5%とする。しかし、Si含有量が3.0%を超えると、溶接性及び熱間加工性が低下する。そこで、本発明では、Si含有量は1.5%以上3.0%以下と限定する。好ましい範囲は、1.8%以上2.5%以下である。
Mn:2.0%以下
Mnは、オーステナイト形成元素であり、オーステナイト組織の安定化とともにNiの代替としても含有される。しかし、Mn含有量が2.0%を超えると、加熱初期の酸化皮膜に含まれるMn量が増加し、耐水蒸気酸化性を劣化させる。そこで、Mn含有量は2.0%以下と限定する。好ましい範囲は、1.2%以下である。
P:0.04%以下
Pは、鋼中において偏析して溶接性及び熱間加工性を阻害する元素のひとつであるので、P含有量は0.04%以下と限定する。好ましくは0.02%以下である。
S:0.03%以下
Sは、Pと同様に、鋼中に偏析して溶接性及び熱間加工性を阻害する。そのため、S含有量の上限を0.03%とする。好ましくは0.01%以下である。
Cr:15%以上30%以下
Crは、フェライト形成元素でオーステナイト相中へのδ−フェライトの析出に有効な元素であるとともに耐酸化性、耐高温磨耗性及びクリープ強度の向上に有効な元素である。Cr含有量が15%未満ではこのような効果を得られず、一方30%を超えると熱間加工性を劣化させる。そこで、本発明では、Cr含有量は15%以上30%以下と限定する。特に1000℃を超える高温環境下でのδ―フェライト析出による結晶粒の成長抑制と耐酸化性の向上とを図るためには、Cr含有量は24%以上26%以下であることが望ましい。
Ni:8%以上15%以下
Niは、オーステナイト形成元素であり、オーステナイト組織の安定化とともに耐酸化性及びクリープ強度の向上に重要な元素である。Ni含有量が8%未満ではこのような効果が得られず、他方Ni含有量が15%を越えると溶接性を阻害するとともに、高温での使用中に粗大なCrNの析出を促進し、クリープ破断強度が低下する。そこで、Ni含有量は8%以上15%以下と限定する。好ましくは11%以上15%以下である。
Al:0.05%以上0.20%以下
Alは、Cr、Siと同様に合金の耐酸化性を改善する元素でもあり、またSi同様に鋼の溶製時に脱酸剤としても含有される。Alは、また鋼中のNと結合して生成したAlNの微粒子として鋼中に微細分散することから結晶粒の細粒化と、特に1000℃超える高温環境下で起こる結晶粒の粗大化に対して結晶粒の成長抑制の釘付けに有効な元素である。同様な元素としてTi、Nbがあるが鋼中のC、Nとの化合物Ti(C,N)、Nb(C,N)は900℃以下の環境では有効であるが、これを超える温度ではこれら化合物の分解から異常酸化の原因ともなり有効な元素とはいえない。
Hereinafter, the best mode for carrying out the austenitic stainless steel according to the present invention will be described.
First, the composition of the austenitic stainless steel of the present embodiment, the Ni balance value, the relationship between Al and N, and the initial crystal grain size will be described.
C: 0.04% or more and 0.15% or less C is an austenite-forming element, and is an element effective for promoting the stabilization of the austenite structure and increasing the high-temperature strength and creep rupture strength of the parent phase. Since the reduction of C causes a reduction in steel plate strength, the lower limit of the C content is 0.04% particularly in order to ensure the strength in a high temperature environment exceeding 1000 ° C. On the other hand, when the C content exceeds 0.15%, hot workability is impaired. Therefore, in the present invention, the C content is limited to 0.04% or more and 0.15% or less. A preferable range is 0.06% or more and 0.12% or less.
Si: 1.5% or more and 3.0% or less Si is added as a deoxidizer during the melting of steel, but is a ferrite-forming element and an effective element for precipitation of δ-ferrite in the austenite phase. . Moreover, since the Si type internal oxide is formed in the interface of the oxide film produced | generated and an alloy and the adhesiveness of an oxide film is improved and corrosion resistance is improved, the one where the Si content is higher is desirable. In particular, the lower limit of the Si content is set to 1.5% in order to improve crystal grain growth suppression and oxidation resistance due to δ-ferrite precipitation in a high temperature environment exceeding 1000 ° C. However, when the Si content exceeds 3.0%, the weldability and hot workability deteriorate. Therefore, in the present invention, the Si content is limited to 1.5% or more and 3.0% or less. A preferable range is 1.8% or more and 2.5% or less.
Mn: 2.0% or less Mn is an austenite forming element and is contained as an alternative to Ni together with stabilization of the austenite structure. However, if the Mn content exceeds 2.0%, the amount of Mn contained in the oxide film at the initial stage of heating increases and the steam oxidation resistance is deteriorated. Therefore, the Mn content is limited to 2.0% or less. A preferable range is 1.2% or less.
P: 0.04% or less P is one of elements that segregate in steel and impair weldability and hot workability, so the P content is limited to 0.04% or less. Preferably it is 0.02% or less.
S: 0.03% or less S, like P, segregates in steel and inhibits weldability and hot workability. Therefore, the upper limit of the S content is 0.03%. Preferably it is 0.01% or less.
Cr: 15% or more and 30% or less Cr is an element effective for precipitation of δ-ferrite in an austenite phase and an element effective for improving oxidation resistance, high temperature wear resistance and creep strength. is there. If the Cr content is less than 15%, such an effect cannot be obtained. On the other hand, if it exceeds 30%, the hot workability is deteriorated. Therefore, in the present invention, the Cr content is limited to 15% or more and 30% or less. In particular, the Cr content is preferably 24% or more and 26% or less in order to suppress the growth of crystal grains due to δ-ferrite precipitation and improve the oxidation resistance in a high temperature environment exceeding 1000 ° C.
Ni: 8% or more and 15% or less Ni is an austenite forming element, and is an important element for stabilizing the austenite structure and improving oxidation resistance and creep strength. If the Ni content is less than 8%, such an effect cannot be obtained. On the other hand, if the Ni content exceeds 15%, weldability is impaired and coarse Cr 2 N precipitation is promoted during use at high temperatures. , Creep rupture strength decreases. Therefore, the Ni content is limited to 8% or more and 15% or less. Preferably they are 11% or more and 15% or less.
Al: 0.05% or more and 0.20% or less Al is an element that improves the oxidation resistance of the alloy in the same manner as Cr and Si, and is also contained as a deoxidizer during the melting of steel as in Si. . Al is also finely dispersed in the steel as AlN fine particles formed by combining with N in the steel, so that the crystal grains are refined, especially for the coarsening of the grains that occurs in a high temperature environment exceeding 1000 ° C. Therefore, it is an effective element for nailing the suppression of crystal grain growth. There are Ti and Nb as similar elements, but the compounds Ti (C, N) and Nb (C, N) with C and N in steel are effective in an environment of 900 ° C. or lower. It is not an effective element that causes abnormal oxidation due to decomposition of the compound.

0.30%以下のNの共存においてAl含有量が0.05%未満ではAlNの生成量から結晶粒の成長抑制の釘付けに不十分であり、一方0.20%を超える含有は、表面欠陥の増加を招く。そこで、本発明では、Al含有量は0.05%以上0.20%以下と限定する。好ましくは0.05%以上0.10%以下である。
B:0.001%以上0.010%以下
Bは、0.001%以上含有することにより、クリープ強度およびフェライトとオーステナイト相が共存した状態で熱間加工を行う場合にBが結晶粒界に優先析出することから異相間の結合力を高めて熱間加工性の向上に有効な元素である。しかし、B含有量が0.010%を超えると、かえって金属間化合物を形成することにより熱間加工性を阻害する。そこで、B含有量は0.001%以上0.010%以下と限定する。好ましい範囲は、0.001%以上0.007%以下である。
N:0.15%以上0.3%以下
Nは、オーステナイト形成元素であり、オーステナイト組織の安定化とともにクリープ強度の向上に有効な元素である。また、Alの含有によりAlNとして合金母相中に微細分散し、特に1000℃超える高温環境下で起こる結晶粒の粗大化に対して結晶粒の成長抑制の釘付け作用を奏する。1.5%以上のSiおよび0.15%以下のCの共存において0.15%未満ではクリープ強度の向上に寄与せず、また、AlNの微細分散析出に対して不十分であり、一方0.3%超える含有は顕著なクリープ強度の向上が見られないばかりか、δ―フェライト析出による結晶粒の成長抑制効果も期待できなくなり、さらに熱間加工性を阻害する。そこで、N含有量は0.15%以上0.3%以下と限定する。
Caおよび/またはREM:0.01%以上0.10%以下
Cr、SiOおよびAlは、緻密であるが脆く密着性に乏しい。Caおよび、Y、La、Ce等の希土類元素(REM)の含有は、これらの酸化物の機械的性質(塑性変形能など)の向上、耐クラック性の改善と密着性の向上に有効であり、これらの元素を1種もしくは2種以上を含有する。これら元素の含有は、合計で0.01%未満ではその効果を発揮し得ず、一方0.10%を超える含有は熱間加工性及び溶接性を阻害する。そこで、Caおよび/またはREMは、合計で0.01%以上0.10%以下含有する。
Cu:2.0%以下、及び/又は、Mo:1.0%以下
本発明では、Cu及びMoはいずれも任意添加元素であり、必要に応じて含有される。
In the coexistence of N of 0.30% or less, if the Al content is less than 0.05%, the amount of AlN produced is insufficient for staking the growth of crystal grains, while the content exceeding 0.20% is a surface defect. Increase. Therefore, in the present invention, the Al content is limited to 0.05% or more and 0.20% or less. Preferably they are 0.05% or more and 0.10% or less.
B: 0.001% or more and 0.010% or less B is contained in 0.001% or more, so that when hot working is performed in a state where the creep strength and the ferrite and austenite phases coexist, B becomes a grain boundary. Since it precipitates preferentially, it is an element effective in improving hot workability by increasing the bonding strength between different phases. However, when the B content exceeds 0.010%, hot workability is inhibited by forming an intermetallic compound. Therefore, the B content is limited to 0.001% or more and 0.010% or less. A preferable range is 0.001% or more and 0.007% or less.
N: 0.15% or more and 0.3% or less N is an austenite forming element, and is an element effective for stabilizing the austenite structure and improving the creep strength. In addition, Al is finely dispersed as AlN in the alloy matrix due to the inclusion of Al, and has a nailed action of suppressing the growth of crystal grains against the coarsening of crystal grains particularly occurring in a high temperature environment exceeding 1000 ° C. In the coexistence of Si of 1.5% or more and C of 0.15% or less, if it is less than 0.15%, it does not contribute to the improvement of creep strength, and is insufficient for the finely dispersed precipitation of AlN. If the content exceeds 0.3%, not only a significant improvement in creep strength is observed, but also the effect of suppressing the growth of crystal grains due to the precipitation of δ-ferrite cannot be expected, and hot workability is further inhibited. Therefore, the N content is limited to 0.15% or more and 0.3% or less.
Ca and / or REM: 0.01% or more and 0.10% or less Cr 2 O 3 , SiO 2 and Al 2 O 3 are dense but brittle and have poor adhesion. Inclusion of rare earth elements (REM) such as Ca, Y, La, and Ce is effective for improving the mechanical properties (plastic deformability, etc.), crack resistance and adhesion of these oxides. These elements contain one or more of these elements. If the content of these elements is less than 0.01% in total, the effect cannot be exhibited. On the other hand, the content exceeding 0.10% inhibits hot workability and weldability. Therefore, Ca and / or REM is contained in a total of 0.01% or more and 0.10% or less.
Cu: 2.0% or less, and / or Mo: 1.0% or less In the present invention, Cu and Mo are both optional added elements and are contained as necessary.

Cuはオーステナイト形成元素であり、オーステナイト組織の安定化とともにクリープ強度の向上に有効な元素であり、また本発明ではNiの一部を置換する形で必要に応じて含有される。含有量が2.0%を超えると熱間加工性及び溶接性を著しく阻害する。そこで、Cuを含有する場合には、その含有量は2.0%以下と限定することが望ましい。一方、Cu含有量が0.05%以上であると上述した効果を確実に得られるので、さらに望ましくは0.05%以上2.0%以下であり、よりいっそう望ましくは0.10%以上1.80%以下である。   Cu is an austenite-forming element and is an element effective for stabilizing the austenite structure and improving the creep strength. In the present invention, Cu is contained as needed in the form of replacing part of Ni. When the content exceeds 2.0%, hot workability and weldability are significantly impaired. Therefore, when Cu is contained, the content is desirably limited to 2.0% or less. On the other hand, if the Cu content is 0.05% or more, the above-described effects can be obtained with certainty, so it is more preferably 0.05% or more and 2.0% or less, and even more preferably 0.10% or more and 1%. .80% or less.

一方、Moはフェライト形成元素でオーステナイト相中へのδ−フェライトの析出に有効な元素である。また、Moは、耐食性の向上に有効であるとともに高温保持中に炭窒化物となって微細に分散し高温強度を上昇させるため必要に応じて含有される。含有量が1.0%を超えると、1000℃以上の高温では低融点の揮発性の高い酸化物MoOが生成する危験があり、また800〜900℃の温度域では硬くて脆いσ相の析出感受性を高める。そこで、Moを含有する場合には、その含有量は1.0%以下と限定することが望ましい。一方、Mo含有量が0.01%以上であれば上述した効果を確実に得られるので、さらに望ましくは0.01%以上1.0%以下である。 On the other hand, Mo is a ferrite forming element and is an effective element for precipitation of δ-ferrite into the austenite phase. Mo is effective for improving the corrosion resistance, and becomes carbonitride during high temperature holding and is finely dispersed to increase the high temperature strength. If the content exceeds 1.0%, there is a danger that a low-melting and highly volatile oxide MoO 3 is produced at a high temperature of 1000 ° C. or higher, and a hard and brittle σ phase in the temperature range of 800 to 900 ° C. Increases the precipitation sensitivity. Therefore, when Mo is contained, the content is desirably limited to 1.0% or less. On the other hand, if the Mo content is 0.01% or more, the above-described effects can be obtained with certainty, and more preferably 0.01% or more and 1.0% or less.

これら以外の残部は、Fe及び不純物である。
(1)式により規定されるNi(bal):−1.0〜+2.0
Ni(bal)=30×(C+N)+Ni+0.5×Mn−1.1×(Cr+1.5×Si)+8.2 ・・・・・(1)
(1)式における元素記号はそれぞれの元素の含有量(質量%)を示す。
The balance other than these is Fe and impurities.
Ni (bal) defined by the formula (1): -1.0 to +2.0
Ni (bal) = 30 × (C + N) + Ni + 0.5 × Mn−1.1 × (Cr + 1.5 × Si) +8.2 (1)
The element symbol in the formula (1) indicates the content (% by mass) of each element.

(1)式により規定されるNiバランス値は、冶金学的には凝固組織におけるオーステナイト相の安定度を示すが、Niバランス値が小さくなるとδーフェライト相がオーステナイト相中に生成することを意味する。オーステナイト相に微細析出したδ―フェライト相は、結晶粒の微細化と、1000℃を超える温度域でのオーステナイト結晶粒の粗大化を抑制する釘付けとして作用し、Crが結晶粒界を通って外方へ拡散することを促進することにより早期にCrが生成されて耐酸化性を向上させる効果がある。また、適度の析出はP、Sをδ−フェライトに吸収させることから溶接性、熱間加工性の向上にも有効となる。しかし、過度の析出は高温強度及びクリープ強度を低下させる。他方、Niバランス値が大きくなるとオーステナイト単相組織となりP、Sがオーステナイト結晶粒界に偏析することから溶接性、熱間加工性を悪化させる。そこで、本発明では、高温特性、溶接性及び熱間加工性の面から考慮して、Niバランス値の範囲を−1.0以上+2.0以下とする。
Al及びNが(2)式を満足すること
log(Al×N)≧-1.845 ・・・・・(2)
(2)式における元素記号はそれぞれその元素の含有量(質量%)を示す。
The Ni balance value defined by the formula (1) indicates the stability of the austenite phase in the solidified structure metallurgically, but means that the δ-ferrite phase is formed in the austenite phase when the Ni balance value decreases. . The δ-ferrite phase finely precipitated in the austenite phase acts as a nail that suppresses the refinement of crystal grains and the coarsening of austenite grains in the temperature range exceeding 1000 ° C, and Cr passes through the grain boundaries. By promoting the diffusion to the direction, Cr 2 O 3 is generated at an early stage, and there is an effect of improving the oxidation resistance. Further, moderate precipitation is effective in improving weldability and hot workability because P and S are absorbed by δ-ferrite. However, excessive precipitation reduces high temperature strength and creep strength. On the other hand, when the Ni balance value is increased, an austenite single phase structure is formed, and P and S are segregated at the austenite grain boundaries, so that weldability and hot workability are deteriorated. Therefore, in the present invention, considering the high temperature characteristics, weldability and hot workability, the range of the Ni balance value is set to -1.0 or more and +2.0 or less.
Al and N satisfy the formula (2)
log (Al × N) ≧ -1.845 (2)
Each element symbol in the formula (2) indicates the content (% by mass) of the element.

(2)式の左辺はAlNの溶解度積を表し、この値が大きいと高温でAlNが安定であることを示す。すなわち、AlN析出物の釘付け効果によりオーステナイト結晶粒の成長を抑制する効果が大きくなる。この値が−1.845以上であれば、1000℃を超える高温においてもAlNが安定で存在し、δフェライト相と同様に、1000℃を超える温度域でのオーステナイト結晶粒の粗大化を抑制する釘付けとして作用し、結晶粒界を通って外方へのCrの拡散を促進し、早期にCrが生成され耐酸化性を向上させる効果がある。好ましくは−0.173以上である。
初期結晶粒経:40μm以上200μm以下
高温強度及びクリープ強度の面からは、ある程度結晶粒経が大きいほうがよい。一方、耐高温腐食性及び耐高温酸化性には細粒組織であるほうが有利となる。高温強度とクリープ強度を配慮し、耐高温腐食性と耐高温酸化性の確保を両立させる観点から、熱間圧延後の固溶化熱処理を合金内部の平均結晶粒経が40μm以上200μm以下となるように調整した鋼板とすることが望ましい。
The left side of equation (2) represents the solubility product of AlN, and a large value indicates that AlN is stable at high temperatures. That is, the effect of suppressing the growth of austenite crystal grains is increased by the effect of nailed AlN precipitates. If this value is −1.845 or more, AlN is stably present even at a high temperature exceeding 1000 ° C., and the coarsening of austenite crystal grains in a temperature range exceeding 1000 ° C. is suppressed similarly to the δ ferrite phase. It acts as a nail, promotes the diffusion of Cr outward through the grain boundaries, and has the effect of improving the oxidation resistance by early generation of Cr 2 O 3 . Preferably it is -0.173 or more.
Initial crystal grain size: 40 μm or more and 200 μm or less From the viewpoint of high temperature strength and creep strength, the crystal grain size should be large to some extent. On the other hand, a fine grain structure is advantageous for high temperature corrosion resistance and high temperature oxidation resistance. Considering high-temperature strength and creep strength, from the viewpoint of ensuring both high-temperature corrosion resistance and high-temperature oxidation resistance, the solution heat treatment after hot rolling is performed so that the average grain size inside the alloy is 40 μm or more and 200 μm or less. It is desirable to use a steel plate adjusted to.

本実施の形態のオーステナイト系ステンレス鋼の組成、Niバランス値、Al及びNの関係、及び初期結晶粒径は、以上のとおりである。
次に、本実施の形態のオーステナイト系ステンレス鋼により、1000℃以上の高温環境下における酸化性雰囲気の条件下での使用においても優れた耐酸化特性が得られる理由を説明する。
The composition of the austenitic stainless steel of the present embodiment, the Ni balance value, the relationship between Al and N, and the initial crystal grain size are as described above.
Next, the reason why the austenitic stainless steel of the present embodiment can provide excellent oxidation resistance even when used in an oxidizing atmosphere under a high temperature environment of 1000 ° C. or higher will be described.

1000℃を超える温度域における耐酸化性の劣化原因は、素地界面に生成する酸化皮膜の生成と結晶粒の粗大化とが同時に進行するため、素地界面に生成した酸化皮膜が粒成長に伴ってクラックや剥離現象を誘発し、安定した保護皮膜にならないことにあると考えられる。つまり、1000℃を超える高温環境下では結晶粒が粗大化するため、これによるCrの結晶粒界を通っての外方への拡散の遅れによるCrの生成の遅れ、結晶粒の粗大化による生成した酸化皮膜におけるクラックの発生や剥離等を生じるため、十分な耐酸化性が得られない。 The cause of deterioration of oxidation resistance in the temperature range exceeding 1000 ° C is that the formation of an oxide film formed on the substrate interface and the coarsening of the crystal grains proceed at the same time. It is thought that it is because a crack or peeling phenomenon is induced and a stable protective film is not obtained. That is, since the crystal grains are coarsened in a high temperature environment exceeding 1000 ° C., the delay of Cr 2 O 3 generation due to the delay of the outward diffusion through the Cr grain boundary due to this, the coarseness of the crystal grains Oxidation resistance cannot be obtained because of the occurrence of cracks and peeling in the oxide film produced by the conversion.

そこで、Crリッチな酸化皮膜が素地界面に生成し安定して密着する間、素地界面の結晶粒の成長を抑制できれば、酸化皮膜と素地界面で発生する酸化皮膜と結晶粒の粗大化による熱膨張差によって生ずる応力差に起因して、酸化皮膜のクラック発生や剥離等による急速な異常酸化の進行を防止でき、耐酸化性の維持向上を図ることができる。同時に、結晶粒の微細化は、結晶粒界を通ってのCrの外方への拡散を促進することからCrリッチな酸化皮膜を素地表層部に早期に生成させることに有効である。このため、1000℃を超える温度域では、結晶粒の細粒化維持と粗大化抑制とを図ることによって、耐酸化性を向上させて優れた高温酸化特性を得ることができる。結晶粒の微細化維持及び成長抑制を図るには、高温域でも安定で分解しない第二相を金属結晶内に微細分散させることが有効である。   Therefore, if the growth of crystal grains at the base interface can be suppressed while the Cr-rich oxide film is formed and stably adhered to the base interface, thermal expansion due to the coarsening of the oxide film and crystal grains generated at the base interface is possible. Due to the difference in stress caused by the difference, it is possible to prevent rapid abnormal oxidation from progressing due to the occurrence of cracking or peeling of the oxide film, and to maintain and improve oxidation resistance. At the same time, the refinement of the crystal grains promotes the outward diffusion of Cr through the crystal grain boundaries, and is thus effective for early generation of a Cr-rich oxide film on the surface layer portion. For this reason, in a temperature range exceeding 1000 ° C., it is possible to improve oxidation resistance and obtain excellent high-temperature oxidation characteristics by maintaining the refinement of the crystal grains and suppressing the coarsening. In order to maintain the refinement of the crystal grains and suppress the growth, it is effective to finely disperse the second phase that is stable and does not decompose even in a high temperature region in the metal crystal.

本実施の形態のオーステナイト系ステンレス鋼は、上述した組成、Niバランス値、Al及びNの関係、及び初期結晶粒径を有するので、
(a)δ−フェライトを第二相としてオーステナイト結晶粒界に析出させることができ、これにより、結晶粒の細粒化及び粗大化防止を図れること、さらに
(b)AlNを第二相として金属組織内に微細分散析出させることができ、これにより、結晶粒の細粒化及び粗大化防止を図れることにより、1000℃を超える高温環境下における酸化性雰囲気の条件下においても、耐酸化性を向上させて優れた高温酸化特性、具体的には、後述する実施例においても説明するように、加熱前に予め3個の試験片の寸法(板厚、巾、長さ)と重量とを測定しておき、大気雰囲気で1200℃×200時間連続加熱を行い、連続加熱終了後の試験片を脱スケールした後の重量測定値との差を単位表面積当りに換算した平均値として求められる腐食減量が、50mg/cm以下の範囲にあるという、これまでにはない優れた高温での耐酸化性を得られる。
Since the austenitic stainless steel of the present embodiment has the above-described composition, Ni balance value, relationship between Al and N, and the initial crystal grain size,
(A) δ-ferrite can be precipitated in the austenite grain boundary as a second phase, thereby making it possible to prevent grain refinement and coarsening, and (b) metal with AlN as the second phase. It can be finely dispersed and precipitated in the structure, thereby preventing crystal grains from becoming finer and preventing coarsening, thereby improving oxidation resistance even under conditions of an oxidizing atmosphere in a high temperature environment exceeding 1000 ° C. Improved high-temperature oxidation characteristics, specifically, the dimensions (plate thickness, width, length) and weight of three test pieces are measured in advance before heating, as will be described in the examples described later. In addition, the corrosion weight loss obtained as an average value obtained by converting the difference from the weight measurement value after performing the continuous heating at 1200 ° C. for 200 hours in the air atmosphere and descaling the test piece after the continuous heating is converted per unit surface area. But, An excellent oxidation resistance at a high temperature, which has never been seen before, is in the range of 50 mg / cm 2 or less.

さらに、本発明を、実施例を参照しながらより具体的に説明する。
(1)供試材の製作
高周波電気炉(真空溶解)により溶製した17Kg鋼塊を板厚20mmに熱間鍛造した後に板厚14mmに冷間圧延し、1100℃、30分の熱処理後水冷することによって、表1に示す化学組成(質量%、残部Fe)を有する本発明鋼(又は比較鋼からなる評価用試験片を製造した。
Furthermore, the present invention will be described more specifically with reference to examples.
(1) Production of test material A 17Kg steel ingot melted by a high-frequency electric furnace (vacuum melting) was hot-forged to a plate thickness of 20 mm, then cold-rolled to a plate thickness of 14 mm, water-cooled after heat treatment at 1100 ° C for 30 minutes By doing this, the test piece for evaluation which consists of this invention steel (or comparative steel) which has the chemical composition (mass%, remainder Fe) shown in Table 1 was manufactured.

Figure 2007277628
Figure 2007277628

(2)耐酸化性試験方法及び結果
これらの試験片に対して、下記試験方法によって試験を行い、下記結果を得た。
(a)試験方法
大気雰囲気で1200℃×200時間連続加熱を行い、腐食減量を測定し、耐酸化性を評価した。腐食減量は、加熱前に予め3個の試験片の寸法(板厚、巾、長さ)と重量とを測定しておき、連続加熱終了後の試験片を脱スケールした後の重量測定値との差を単位表面積当りに換算した平均値として、求めた。結果を表2にまとめて示す。
(2) Oxidation resistance test method and results These test pieces were tested by the following test methods, and the following results were obtained.
(A) Test method Continuous heating at 1200 ° C. for 200 hours in an air atmosphere was performed to measure the weight loss of the corrosion and evaluate the oxidation resistance. Corrosion weight loss is determined by measuring the dimensions (plate thickness, width, length) and weight of three test pieces in advance before heating, and measuring the weight after descaling the test piece after completion of continuous heating. Was obtained as an average value converted per unit surface area. The results are summarized in Table 2.

Figure 2007277628
Figure 2007277628

(b)試験結果:
(i)Al添加による結晶粒の粗大化抑制効果について
Alを積極的に添加した試料No.7と、Alを積極的に添加しなかった試料No.8および9に、1200℃に30分間保持後に水冷する熱処理を行って得られた供試材の金属組織を調べた。その結果、Alを積極的に添加した試料No.7は結晶粒径に殆ど変化がなかったのに対し、Alを積極的に添加しなかった試料No.8及び9は、いずれも、結晶粒が著しく粗大化していた。
(B) Test result:
(I) Regarding the effect of suppressing the coarsening of crystal grains by the addition of Al. 7 and Sample No. in which Al was not actively added. 8 and 9 were examined for the metallographic structure of the specimens obtained by performing a heat treatment of holding at 1200 ° C. for 30 minutes and then water cooling. As a result, sample no. Sample No. 7 in which the crystal grain size hardly changed, whereas Al was not positively added. In both 8 and 9, crystal grains were extremely coarse.

以上の結果から、Al添加によって生成したAlNが金属組織内で微細に分散析出することにより、結晶粒の成長温度域における結晶粒の粗大化を有効に抑制できることがわかる。
(ii)耐酸化性試験結果
表3に1200、1250℃の連続加熱200時間大気酸化試験の平均腐食減量の測定結果を示す。
From the above results, it can be seen that the coarsening of crystal grains in the growth temperature range of crystal grains can be effectively suppressed by the fine dispersion and precipitation of AlN produced by the addition of Al in the metal structure.
(Ii) Oxidation resistance test results Table 3 shows the measurement results of the average corrosion weight loss in the 200-hour atmospheric oxidation test at 1200 and 1250 ° C continuous heating.

Figure 2007277628
Figure 2007277628

表3に示す結果から、Alを積極的に添加した試料No.7は、AlN微細析出による結晶粒の粗大化の抑制効果により平均腐食減量は、Alを積極的に添加しなかった試料No.8及び9に比較して約1/2であり、また1200と1250℃においても殆ど重量変化がなく、良好な耐酸化性を確保できたことがわかる。   From the results shown in Table 3, sample No. 1 to which Al was positively added was obtained. No. 7 shows the effect of suppressing the coarsening of crystal grains due to AlN fine precipitation, so that the average corrosion weight loss is the sample No. 7 in which Al was not actively added. It is about 1/2 compared to 8 and 9, and there is almost no change in weight at 1200 and 1250 ° C., indicating that good oxidation resistance can be secured.

また、熱処理温度と平均腐食減量との関係では、より高温側で熱処理したほうが良好な結果を得られることがわかる。これは、より高温での熱処理のほうが加熱中の結晶粒の粒成長の割合を低く抑えられることによる。   Further, it can be seen that a better result can be obtained when the heat treatment is performed on the higher temperature side in relation to the heat treatment temperature and the average corrosion weight loss. This is because the rate of grain growth of the crystal grains being heated can be kept lower by heat treatment at a higher temperature.

以上の結果から、Al添加によるAlNの金属組織内への微細分散析出が、結晶粒成長温度域の酸化雰囲気に対して酸化皮膜直下の結晶粒の細粒維持と粗大化抑制に効果的に作用し、酸化皮膜の早期生成と密着安定化に有効に作用することがわかる。   From the above results, the finely dispersed precipitation of AlN in the metal structure due to the addition of Al effectively works to maintain fine grains and suppress coarsening of the grains directly under the oxide film in an oxidizing atmosphere in the grain growth temperature range. It can be seen that it acts effectively on the early generation of the oxide film and stabilization of adhesion.

Claims (2)

質量%で、C:0.04〜0.15%、Si:1.5〜3.0%、Mn:2.0%以下、P:0.04%以下、S:0.03%以下、Cr:15〜30%、Ni:8〜15%、Al:0.05〜0.20%、B:0.001〜0.010%、N:0.15〜0.3%、Ca及び/又はREM:0.01〜0.10%、残部Fe及び不純物からなり、(1)式により規定されるNi(bal)が−1.0〜+2.0であるとともに、Al及びNが(2)式を満足することを特徴とするオーステナイト系ステンレス鋼。
Ni(bal)=30×(C+N)+Ni+0.5×Mn−1.1×(Cr+1.5×Si)+8.2 ・・・・・(1)
log(Al×N)≧-1.845 ・・・・・(2)
(1)及び(2)式における元素記号はそれぞれその元素の含有量(質量%)を示す。
In mass%, C: 0.04 to 0.15%, Si: 1.5 to 3.0%, Mn: 2.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 15-30%, Ni: 8-15%, Al: 0.05-0.20%, B: 0.001-0.010%, N: 0.15-0.3%, Ca and / Or REM: 0.01 to 0.10%, balance Fe and impurities, Ni (bal) defined by the formula (1) is -1.0 to +2.0, and Al and N are (2 Austenitic stainless steel characterized by satisfying the formula
Ni (bal) = 30 × (C + N) + Ni + 0.5 × Mn−1.1 × (Cr + 1.5 × Si) +8.2 (1)
log (Al × N) ≧ -1.845 (2)
The element symbols in the expressions (1) and (2) indicate the content (% by mass) of the element.
さらに、質量%で、Cu:2.0%以下、及び/又は、Mo:1.0%以下を含有する請求項1に記載されたオーステナイト系ステンレス鋼。 The austenitic stainless steel according to claim 1, further comprising, by mass%, Cu: 2.0% or less and / or Mo: 1.0% or less.
JP2006104416A 2006-04-05 2006-04-05 Austenitic stainless steel Active JP4577256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104416A JP4577256B2 (en) 2006-04-05 2006-04-05 Austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104416A JP4577256B2 (en) 2006-04-05 2006-04-05 Austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2007277628A true JP2007277628A (en) 2007-10-25
JP4577256B2 JP4577256B2 (en) 2010-11-10

Family

ID=38679371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104416A Active JP4577256B2 (en) 2006-04-05 2006-04-05 Austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP4577256B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892437B (en) * 2009-05-22 2012-09-19 宝山钢铁股份有限公司 Mirror polishability superior low-magnetic austenitic stainless steel and manufacturing method thereof
JP2016089200A (en) * 2014-10-31 2016-05-23 新日鐵住金ステンレス株式会社 Heat resistant austenite stainless steel sheet
CN114941107A (en) * 2022-05-31 2022-08-26 哈尔滨汽轮机厂有限责任公司 Austenitic stainless steel material for 630 ℃ ultra-supercritical turbine blade and preparation method thereof
CN115058632A (en) * 2022-06-20 2022-09-16 东北大学 Method for improving super austenitic stainless steel solidification structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462443A (en) * 1987-09-02 1989-03-08 Nisshin Steel Co Ltd Austenitic stainless steel excellent in corrosion resistance in warm water
JPH07188869A (en) * 1993-11-11 1995-07-25 Sumitomo Metal Ind Ltd Stainless steel for high temp. service and its manufacture
JPH08103802A (en) * 1994-09-30 1996-04-23 Nisshin Steel Co Ltd Production of austenitic stainless steel excellent in surface condition
JPH08319541A (en) * 1995-05-23 1996-12-03 Sumitomo Metal Ind Ltd Austenitic stainless steel for high temperature use excellent in weldability
JPH09209035A (en) * 1996-01-31 1997-08-12 Sumitomo Metal Ind Ltd Production of austenitic stainless steel for high temperature use
JP2003129192A (en) * 2001-10-24 2003-05-08 Nisshin Steel Co Ltd AUSTENITIC STAINLESS STEEL SUPERIOR IN STEAM OXIDATION RESISTANCE, CARBURIZATION RESISTANCE, AND sigma EMBRITTLEMENT RESISTANCE
JP2003286005A (en) * 2002-03-28 2003-10-07 Nisshin Steel Co Ltd Fuel reformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462443A (en) * 1987-09-02 1989-03-08 Nisshin Steel Co Ltd Austenitic stainless steel excellent in corrosion resistance in warm water
JPH07188869A (en) * 1993-11-11 1995-07-25 Sumitomo Metal Ind Ltd Stainless steel for high temp. service and its manufacture
JPH08103802A (en) * 1994-09-30 1996-04-23 Nisshin Steel Co Ltd Production of austenitic stainless steel excellent in surface condition
JPH08319541A (en) * 1995-05-23 1996-12-03 Sumitomo Metal Ind Ltd Austenitic stainless steel for high temperature use excellent in weldability
JPH09209035A (en) * 1996-01-31 1997-08-12 Sumitomo Metal Ind Ltd Production of austenitic stainless steel for high temperature use
JP2003129192A (en) * 2001-10-24 2003-05-08 Nisshin Steel Co Ltd AUSTENITIC STAINLESS STEEL SUPERIOR IN STEAM OXIDATION RESISTANCE, CARBURIZATION RESISTANCE, AND sigma EMBRITTLEMENT RESISTANCE
JP2003286005A (en) * 2002-03-28 2003-10-07 Nisshin Steel Co Ltd Fuel reformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892437B (en) * 2009-05-22 2012-09-19 宝山钢铁股份有限公司 Mirror polishability superior low-magnetic austenitic stainless steel and manufacturing method thereof
JP2016089200A (en) * 2014-10-31 2016-05-23 新日鐵住金ステンレス株式会社 Heat resistant austenite stainless steel sheet
CN114941107A (en) * 2022-05-31 2022-08-26 哈尔滨汽轮机厂有限责任公司 Austenitic stainless steel material for 630 ℃ ultra-supercritical turbine blade and preparation method thereof
CN114941107B (en) * 2022-05-31 2023-09-29 哈尔滨汽轮机厂有限责任公司 Preparation method of austenitic stainless steel material for 630 ℃ ultra-supercritical turbine blade
CN115058632A (en) * 2022-06-20 2022-09-16 东北大学 Method for improving super austenitic stainless steel solidification structure
CN115058632B (en) * 2022-06-20 2023-05-12 东北大学 Method for improving solidification structure of super austenitic stainless steel

Also Published As

Publication number Publication date
JP4577256B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
KR101600735B1 (en) Heat-resistant austenitic stainless steel highly inhibited from releasing scale, and stainless-steel pipe
JP5600012B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5780716B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary workability
JP5143960B1 (en) Heat-resistant austenitic stainless steel with excellent high-temperature strength and cyclic oxidation resistance
JP2013199663A (en) Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
JP2009235555A (en) Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2009235573A (en) Ferritic stainless steel with excellent heat resistance and toughness
JPWO2017171050A1 (en) Welded structural members
JP2011190468A (en) Ferritic stainless steel sheet superior in heat resistance, and method for manufacturing the same
JP5605996B2 (en) Austenitic stainless steel for heat-resistant materials
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP2009197307A (en) Ferritic stainless steel excellent in high-temperature strength, water-vapor-oxidizing resistance, and workability
JP4577256B2 (en) Austenitic stainless steel
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP5866628B2 (en) Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance
JP5464037B2 (en) Austenitic stainless steel, stainless steel products, and methods for producing them
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP5786491B2 (en) Ferritic stainless steel for EGR cooler
JP6587881B2 (en) Ferritic stainless steel wire for fastening parts
JP5521490B2 (en) Spark plug electrode material
JP2020125518A (en) Al-containing ferritic stainless steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4577256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350