JP2007277023A - High-concentration silica slurry and method for producing the same - Google Patents

High-concentration silica slurry and method for producing the same Download PDF

Info

Publication number
JP2007277023A
JP2007277023A JP2006102380A JP2006102380A JP2007277023A JP 2007277023 A JP2007277023 A JP 2007277023A JP 2006102380 A JP2006102380 A JP 2006102380A JP 2006102380 A JP2006102380 A JP 2006102380A JP 2007277023 A JP2007277023 A JP 2007277023A
Authority
JP
Japan
Prior art keywords
silica
concentration
slurry
silica slurry
slurry according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006102380A
Other languages
Japanese (ja)
Inventor
Kazuaki Yamamoto
和明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006102380A priority Critical patent/JP2007277023A/en
Publication of JP2007277023A publication Critical patent/JP2007277023A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-concentration silica slurry which has a solid concentration of 20 wt.% or more and is stable for a long time with a positive charge. <P>SOLUTION: There is used a high-concentration silica slurry having a silica concentration of 20-50%, a pH of 1.5-5.5, a conductivity of 300-1,500 μS/cm, and a zeta potential of silica particles in the high-concentration silica slurry of +10 to +80 mV. Such a high-concentration silica slurry is produced by grinding and dispersing a silica gel in water to obtain a negatively charged slurry, mixing the obtained slurry with a cationic polymer having a molecular weight of 2,000-100,000, washing the obtained water-containing silica with water to remove a salt, and then re-dispersing the resulting gel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高濃度シリカスラリ−及びその製造方法に関するものである。本発明の方法により製造された高濃度シリカスラリ−は、例えば、記録紙、研磨材、化粧品等各種の用途に有用である。   The present invention relates to a high-concentration silica slurry and a method for producing the same. The high-concentration silica slurry produced by the method of the present invention is useful for various applications such as recording paper, abrasives and cosmetics.

本発明で言うシリカスラリ−とは、SiOで表されるシリカが沈降せずに溶媒に安定的に分散したシリカコロイドである。 The silica slurry referred to in the present invention is a silica colloid in which silica represented by SiO 2 is stably dispersed in a solvent without being precipitated.

一般的なシリカコロイドとしては、シリカゾルがある。シリカゾルは、工業的にはイオン交換樹脂法等の方法で製造される。例えば、Du Pont社製Ludox、日産化学株式会社製スノ−テックス、触媒化成工業株式会社製カタロイド等がある。   A common silica colloid is silica sol. Silica sol is industrially produced by a method such as an ion exchange resin method. For example, there are Ludox manufactured by Du Pont, Snotex manufactured by Nissan Chemical Co., Ltd., Cataloid manufactured by Catalytic Chemical Industry Co., Ltd., and the like.

シリカゾルの粒子径は0.007〜0.04μm程度で、BET法により測定される比表面積は70〜400m/g程度であり、シリカゾルは0.007〜0.04μm程度のシリカ微粒子が溶媒中に凝集することなく分散したものである。又、高純度シリカコロイドとしては、アルコキシシランを原料とするゾルゲル法で合成したシリカコロイドが知られている。例えば、扶桑化学工業株式会社製クオ−トロン等がある。ゾルゲル法で合成したシリカコロイドの粒子径は、0.3〜25μmで比表面積は0.3〜12m/g程度であり、0.3〜25μm程度のシリカ微粒子が溶媒中に凝集することなく分散したものである。 The particle size of silica sol is about 0.007 to 0.04 μm, the specific surface area measured by BET method is about 70 to 400 m 2 / g, and silica sol has silica fine particles of about 0.007 to 0.04 μm in the solvent. And dispersed without agglomeration. As a high-purity silica colloid, a silica colloid synthesized by a sol-gel method using alkoxysilane as a raw material is known. For example, there is a quatron made by Fuso Chemical Industry Co., Ltd. The particle diameter of the silica colloid synthesized by the sol-gel method is 0.3 to 25 μm, the specific surface area is about 0.3 to 12 m 2 / g, and the silica fine particles of about 0.3 to 25 μm are not aggregated in the solvent. It is distributed.

これらシリカコロイドは、シリカ粒子表面のシラノール基の解離による負電荷のゼータ電位による静電的反発力により安定に分散している。   These silica colloids are stably dispersed by the electrostatic repulsion due to the zeta potential of negative charges due to the dissociation of silanol groups on the surface of the silica particles.

例えば、負電荷を有すシリカコロイドを近年広く応用されているインクジェット紙用の塗工液に使用すると、インク成分が負電荷である場合が多く、定着性や耐水性の問題が生じ易く、インクジェット紙用の塗工液には正の電荷を有すアルミナ水和物コロイドが使用されることがある。しかしながら、アルミナ水和物コロイドはインク吸収性に課題が生じ易く、インク吸収性に優れたシリカコロイドで正の電荷を有す安定なシリカスラリーが望まれている。   For example, if a silica colloid having a negative charge is used in a coating liquid for inkjet paper that has been widely applied in recent years, the ink component often has a negative charge, which tends to cause problems with fixability and water resistance. An alumina hydrate colloid having a positive charge may be used for a paper coating solution. However, the alumina hydrate colloid tends to cause a problem in ink absorbability, and a stable silica slurry having a positive charge with a silica colloid excellent in ink absorbability is desired.

又、負電荷シリカゾルは、酸性領域で使用すると不安定となり易く、例えば、弱酸性領域で使用されるインクジェット紙の塗工液用には正の電荷を有すシリカコロイドが望まれている。   Further, the negatively charged silica sol tends to be unstable when used in the acidic region. For example, a silica colloid having a positive charge is desired for a coating liquid for ink jet paper used in the weakly acidic region.

近年、正電荷ゾルとして例えば、シリカアルミナ複合ゾルが、シリカとアルミナとを含む凝集粒子が水性溶媒中に分散したコロイド溶液であって、シリカは一次粒子が球状で平均粒子直径が2〜30nm、凝集粒子の平均粒子直径が100〜1000nm、凝集粒子のゼータ電位が+10mV以上、溶液のpHが3〜9であるシリカアルミナ複合ゾル(例えば、特許文献1)、無機微粒子が分散された無機微粒子分散液において、無機微粒子(例えば、気相法シリカ)と水溶性多価金属化合物(例えば、塩基性ポリ水酸化アルミニウム)を含み、かつゼータ電位が+60mV以上である無機微粒子分散液(例えば、特許文献2)、が開示されている。   In recent years, as a positively charged sol, for example, a silica-alumina composite sol is a colloidal solution in which agglomerated particles containing silica and alumina are dispersed in an aqueous solvent, and the silica has a spherical primary particle and an average particle diameter of 2 to 30 nm, Silica-alumina composite sol (for example, Patent Document 1) in which the average particle diameter of the aggregated particles is 100 to 1000 nm, the zeta potential of the aggregated particles is +10 mV or more, and the pH of the solution is 3 to 9, inorganic fine particle dispersion in which inorganic fine particles are dispersed Liquid containing inorganic fine particles (for example, vapor phase method silica) and a water-soluble polyvalent metal compound (for example, basic polyaluminum hydroxide), and having a zeta potential of +60 mV or more (for example, patent literature) 2) is disclosed.

一方、シリカとカチオン性樹脂を混合する方法が提案されている。   On the other hand, a method of mixing silica and a cationic resin has been proposed.

例えば、平均粒子径が200nm未満のシリカ微粒子とカチオン性樹脂とを極性溶媒中で混合して得られる混合液を、処理圧力300Kgf/cm以上で対向衝突させるか、或いはオリフィスの入り口側と出口側の圧差が300Kgf/cm以上である条件下でオリフィスを通過させることにより、再度、元の分散状態まで再分散した分散液が報告されている。(例えば、特許文献3)また、極性溶媒中に湿式シリカ及びカチオン性樹脂を分散せしめた分散液であって、該分散液中のシリカ濃度が22重量%超であり、且つ、該分散液中のシリカ粒子の平均粒子径が0.5μm未満であって、該カチオン性樹脂が平均分子量1万以下の環状アンモニウム塩型のカチオン性樹脂であるカチオン性樹脂変性シリカ分散液が開示されている。(例えば、特許文献4)
一般的に、負電荷のシリカ粒子とカチオン性高分子を混合すると粘度の上昇、更にはゲル化や凝集がみられる。特許文献3及び特許文献4ではシリカ粒子とカチオン性樹脂の不安定な混合物を再分散させることで正の電荷を有すシリカ分散液を得ている。
For example, a mixed liquid obtained by mixing silica fine particles having an average particle diameter of less than 200 nm and a cationic resin in a polar solvent is allowed to collide at a treatment pressure of 300 kgf / cm 2 or more, or the inlet side and the outlet side of the orifice It has been reported that the dispersion liquid is re-dispersed to the original dispersion state by passing through the orifice under the condition that the pressure difference on the side is 300 kgf / cm 2 or more. (For example, patent document 3) Moreover, it is the dispersion liquid which disperse | distributed wet silica and cationic resin in the polar solvent, Comprising: The silica density | concentration in this dispersion liquid is over 22 weight%, and in this dispersion liquid There is disclosed a cationic resin-modified silica dispersion in which the silica particles have an average particle diameter of less than 0.5 μm and the cationic resin is a cyclic ammonium salt type cationic resin having an average molecular weight of 10,000 or less. (For example, Patent Document 4)
Generally, when negatively charged silica particles and a cationic polymer are mixed, the viscosity increases, and further gelation and aggregation occur. In Patent Document 3 and Patent Document 4, a silica dispersion having a positive charge is obtained by redispersing an unstable mixture of silica particles and a cationic resin.

しかしながら、特許文献3、特許文献4ではシリカ粒子とカチオン性高分子を混合し得た混合溶液を機械的に分散させたものであり、分散液中にはアンモニウム塩型のカチオン性高分子や硫酸等の電解質を多量に含有し導電率が高いものとなり、高濃度シリカスラリ−の安定性はまだ十分とは言えなかった。   However, in Patent Document 3 and Patent Document 4, a mixed solution obtained by mixing silica particles and a cationic polymer is mechanically dispersed, and an ammonium salt type cationic polymer or sulfuric acid is contained in the dispersion. Therefore, the stability of the high concentration silica slurry has not been sufficient yet.

又、シリカとカチオン性樹脂の混合液の保存に関する方法が提案されている。例えば、シリカとして乾式シリカを用い、該乾式シリカをカチオン性樹脂と共に極性溶媒中に分散させた後、5〜45℃の範囲の温度で10日以上熟成を行うカチオン性樹脂変性シリカ分散液(例えば、特許文献5)や、極性溶媒中にシリカ及びカチオン性樹脂を分散したカチオン性樹脂変性シリカ分散液を、5℃以上30℃以下の温度範囲で保存するカチオン性樹脂変性シリカ分散液(例えば、特許文献6)が開示されている。   In addition, a method for storing a mixed solution of silica and a cationic resin has been proposed. For example, using a dry silica as the silica, the dry silica is dispersed in a polar solvent together with a cationic resin, and then a cationic resin-modified silica dispersion (for example, aging at a temperature in the range of 5 to 45 ° C. for 10 days or more) Patent Document 5) and a cationic resin-modified silica dispersion in which a cationic resin-modified silica dispersion in which silica and a cationic resin are dispersed in a polar solvent is stored in a temperature range of 5 ° C. to 30 ° C. (for example, Patent Document 6) is disclosed.

しかしながら、特許文献5及び特許文献6のカチオン性樹脂変性シリカ分散液は、特許文献5では長期間の熟成はしているが洗浄処理したものではなく、特許文献6では30℃以下の温度での保存及び輸送がされているが、やはり洗浄処理されたものではなく、安定性は十分とは言えなかった。   However, the cationic resin-modified silica dispersions of Patent Document 5 and Patent Document 6 are not washed after being aged for a long time in Patent Document 5, but at a temperature of 30 ° C. or less in Patent Document 6. Although it has been stored and transported, it was not washed, and the stability was not sufficient.

特開2001−180926(請求項4)JP-A-2001-180926 (Claim 4) 特開2004−285308(0010欄)JP-A-2004-285308 (column 0010) 特開2000−239536(0009欄)JP 2000-239536 (column 0009) 特開2005−762(請求項1)JP-A-2005-762 (Claim 1) 特開2001−207078(請求項2)JP-A-2001-207078 (Claim 2) 特開2003−129395(請求項1)JP 2003-129395 A (Claim 1)

本発明は、高い安定性を有すシリカ濃度が20〜50%、pHが1.5〜5.5、導電率が300〜1500μS/cm、高濃度シリカスラリー中のシリカ粒子のゼータ電位が+10〜+80mVの高濃度シリカスラリ−及びその製造方法を提供するものである。   In the present invention, the silica concentration having high stability is 20 to 50%, the pH is 1.5 to 5.5, the conductivity is 300 to 1500 μS / cm, and the zeta potential of the silica particles in the high concentration silica slurry is +10. The present invention provides a high concentration silica slurry of ˜ + 80 mV and a production method thereof.

本発明者は、本発明の高濃度微細シリカスラリ−を工業的に容易に且つ低コストで製造する方法において、コロイド粒子の安定性機構に着目して鋭意検討した結果、シリカ濃度が20〜50%、pHが1.5〜5.5、導電率が300〜1500μS/cmであって、且つ、高濃度シリカスラリー中のシリカ粒子のゼータ電位が+10〜+80mVである高濃度シリカスラリ−では、長期間沈降せず、安定であること、またそのような高濃度シリカスラリーはシリカゲルを0.5〜5mmの純度99.95%以上の高純度シリカボ−ルをメディアとして使用するメディアミルにより粉砕、分散化し負電荷高濃度スラリーを得た後に、分子量2000〜100000のカチオン性高分子を混合し得られたシリカ含水ゲルを、水洗して塩を除去した後、再分散することにより得られることを見出し、本発明を完成したものである。   As a result of intensive studies focusing on the stability mechanism of colloidal particles in the method for producing the high-concentration fine silica slurry of the present invention industrially easily and at low cost, the inventor has found that the silica concentration is 20 to 50%. In a high concentration silica slurry in which the pH is 1.5 to 5.5, the conductivity is 300 to 1500 μS / cm, and the zeta potential of the silica particles in the high concentration silica slurry is +10 to +80 mV, It is stable without sedimentation, and such high-concentration silica slurry is pulverized and dispersed by a media mill using silica gel with a high purity silica ball of 0.5 to 5 mm and a purity of 99.95% or more as a medium. After obtaining a negative charge high-concentration slurry, the silica hydrogel obtained by mixing a cationic polymer having a molecular weight of 2,000 to 100,000 is washed with water to remove salts. The present invention has been completed by finding out that it can be obtained by redispersion.

本発明は、コロイド粒子の安定性機構、特にコロイド粒子の安定性に及ぼす電解質濃度の影響に着目したものであって、高濃度シリカスラリーの導電率に特に特徴があり、製造法としてはシリカ粒子とカチオン性高分子を混合し、得られるカチオン性高分子や酸等の電解質を含有したカチオン性高分子含有シリカ含水ゲルを水洗して塩を除去することに特徴がある。   The present invention focuses on the stability mechanism of colloidal particles, particularly the influence of electrolyte concentration on the stability of colloidal particles, and is particularly characterized in the conductivity of high-concentration silica slurry. And a cationic polymer, and the resulting cationic polymer-containing silica-containing silica gel containing an electrolyte such as a cationic polymer or an acid is washed with water to remove salts.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の高濃度シリカスラリ−のシリカ濃度は20〜50%であり、好ましくは25%を超え45%以下である。シリカ濃度が20%未満では工業的な利用価値が低く、一方、シリカ濃度50%を超える場合、本発明の範囲の粘度が得難い。   The silica concentration of the high concentration silica slurry of the present invention is 20 to 50%, preferably more than 25% and 45% or less. When the silica concentration is less than 20%, the industrial utility value is low. On the other hand, when the silica concentration exceeds 50%, it is difficult to obtain the viscosity within the range of the present invention.

尚、本発明におけるシリカ濃度は、高濃度シリカスラリ−中の溶媒を蒸発させた残りの固形分から計算される重量%を言う。   The silica concentration in the present invention refers to the weight percent calculated from the remaining solid content obtained by evaporating the solvent in the high concentration silica slurry.

本発明の高濃度シリカスラリ−のpHは、特に1.5〜5.5が好ましい。pHが5.5を超える場合、本発明の範囲の粒子状態が得られ難く、安定性に問題がある。一方、pHが1.5未満の場合にも安定性に問題が生じ易い。   The pH of the high concentration silica slurry of the present invention is particularly preferably 1.5 to 5.5. When the pH exceeds 5.5, it is difficult to obtain a particle state in the range of the present invention, and there is a problem in stability. On the other hand, when the pH is less than 1.5, a problem with stability is likely to occur.

本発明の高濃度シリカスラリーは、導電率が300〜1500μS/cmであることが必要である。この様な導電率は電解質濃度が低いことにより達成される。   The high-concentration silica slurry of the present invention needs to have a conductivity of 300 to 1500 μS / cm. Such conductivity is achieved by a low electrolyte concentration.

導電率が1500μS/cmを超える場合、安定性に問題があり、一方300μS/cm未満のスラリ−は精製が非常に困難となり、工業的に製造することが難しい。   If the conductivity exceeds 1500 μS / cm, there is a problem in stability, while a slurry of less than 300 μS / cm becomes very difficult to purify and is difficult to manufacture industrially.

本発明で得られる高濃度シリカスラリ−の表面電荷は高く安定性に優れたものであり、特にゼ−タ電位は+10〜+80mVである。ゼータ電位が+10未満の場合、安定性に問題が生じ易い。一方、上限は特に限定するものではないが、+80mVを超えるものを製造することは難しい。   The high concentration silica slurry obtained by the present invention has a high surface charge and excellent stability, and in particular, the zeta potential is +10 to +80 mV. If the zeta potential is less than +10, problems with stability are likely to occur. On the other hand, the upper limit is not particularly limited, but it is difficult to produce a product exceeding +80 mV.

尚、ゼ−タ電位の測定は特に限定するものではなく、電気泳動法、超音波法、ESA(Electrokinetic Sonic Amplitude)法等で測定できる。   The zeta potential is not particularly limited, and can be measured by electrophoresis, ultrasonic method, ESA (Electrokinetic Sonic Amplitude) method or the like.

本発明の高濃度シリカスラリーにおいてカチオン性高分子は、負電荷のシリカ粒子表面に吸着し正の電荷を生じさせることにあるが、一方でシリカ粒子の凝集を促進する。   In the high-concentration silica slurry of the present invention, the cationic polymer is adsorbed on the surface of the negatively charged silica particles to generate a positive charge, while promoting the aggregation of the silica particles.

本発明の高濃度シリカスラリ−中のシリカ粒子は、平均粒子径が0.01〜0.5μm、比表面積が150〜700m/gであることが好ましい。 The silica particles in the high concentration silica slurry of the present invention preferably have an average particle size of 0.01 to 0.5 μm and a specific surface area of 150 to 700 m 2 / g.

一般に、粒子が小さく、濃度が高いほどシリカコロイドは不安定になり、安定なシリカコロイドを得ることは困難となることが知られている。本発明の高濃度スラリ−は0.004〜0.02μmの微細粒子(比表面積値から計算した相当径、相当径D2(μm)=(2720/As)/1000、Asは比表面積(m/g))が0.01〜0.5μmの大きさに集合した形態の凝集粒子が溶媒中に安定的に分散した高濃度スラリ−であることが好ましく、従来の一般的なシリカゾルやシリカコロイドとは異なるものである。 In general, it is known that the smaller the particle and the higher the concentration, the more unstable the silica colloid becomes and it becomes difficult to obtain a stable silica colloid. The high concentration slurry of the present invention is fine particles of 0.004 to 0.02 μm (equivalent diameter calculated from specific surface area value, equivalent diameter D2 (μm) = (2720 / As) / 1000, As is specific surface area (m 2 / G)) is preferably a high-concentration slurry in which agglomerated particles having a size of 0.01 to 0.5 μm are stably dispersed in a solvent. Is different.

本発明において、シリカ粒子の平均粒子径が0.01μm以上0.1μm未満のものが粒子の沈降が長期にわたり起こらない点で特に好ましく、平均粒子径が0.1μm以上0.5μm以下のものは、ゲル化しにくく、取扱いが容易であるという点で特に好ましい。   In the present invention, silica particles having an average particle size of 0.01 μm or more and less than 0.1 μm are particularly preferable in that the particles do not settle for a long time, and those having an average particle size of 0.1 μm or more and 0.5 μm or less It is particularly preferred in that it is difficult to gel and is easy to handle.

平均粒子径が0.5μmを超えると粒子の沈降が起こり安定なスラリ−が得られにくい。一方、平均粒子径が0.01μm未満の粒子を製造するのは工業的に難しい。   If the average particle diameter exceeds 0.5 μm, particles will settle and it will be difficult to obtain a stable slurry. On the other hand, it is industrially difficult to produce particles having an average particle size of less than 0.01 μm.

尚、本発明の平均粒子径の測定方法は特に限定するものではないが、例えば、レ−ザ−回折散乱法や遠心沈降法で容易に測定出来る。   In addition, although the measuring method of the average particle diameter of this invention is not specifically limited, For example, it can measure easily by a laser diffraction scattering method or the centrifugal sedimentation method.

本発明の高濃度シリカスラリ−中のシリカ粒子の比表面積は、150〜700m/gであることが好ましい。ここで言う比表面積とは、シリカスラリ−中の溶媒を蒸発乾固させて得られたシリカゲルをBET法により測定した値を言う。 The specific surface area of the silica particles in the high-concentration silica slurry of the present invention is preferably 150 to 700 m 2 / g. The specific surface area as used herein refers to a value obtained by measuring the silica gel obtained by evaporating and drying the solvent in the silica slurry by the BET method.

比表面積が150m/g未満では、粘度が本発明の範囲を超える。一方、700m/gを超える超微細なシリカ粒子を工業的に製造することは難しい。 When the specific surface area is less than 150 m 2 / g, the viscosity exceeds the range of the present invention. On the other hand, it is difficult to industrially produce ultrafine silica particles exceeding 700 m 2 / g.

さらに本発明の高濃度シリカスラリーは、平均粒子径が0.01〜0.5μm(D1)、比表面積が150〜700m/g(相当径D2=0.004〜0.02μm)、凝集度D1/D2=3以上の凝集シリカ粒子を含む高濃度シリカスラリー(ここで、相当径D2(μm)=(2720/As)/1000、Asは比表面積(m/g))であることが特に好ましい。 Furthermore, the high concentration silica slurry of the present invention has an average particle diameter of 0.01 to 0.5 μm (D1), a specific surface area of 150 to 700 m 2 / g (equivalent diameter D2 = 0.004 to 0.02 μm), and a degree of aggregation. D1 / D2 = high concentration silica slurry containing aggregated silica particles of 3 or more (here, equivalent diameter D2 (μm) = (2720 / As) / 1000, As is specific surface area (m 2 / g)) Particularly preferred.

従来のシリカゾルでは、BET比表面積が70〜400m/g(BET相当径D2=0.007〜0.04μm)、又は粒子径(D1)が0.007〜0.04μmを夫々単独で満足するものはあったが、同時に満足するものはなく、特にD1/D2比が3未満のシリカ微粒子が溶媒中に凝集することなく分散したものでしかなかった。 In the conventional silica sol, a BET specific surface area of 70 to 400 m 2 / g (BET equivalent diameter D2 = 0.007 to 0.04 μm) or a particle diameter (D1) of 0.007 to 0.04 μm is satisfied alone. There were some, but none at the same time. Particularly, silica fine particles having a D1 / D2 ratio of less than 3 were only dispersed in a solvent without agglomeration.

それに対して本発明の高濃度シリカスラリーは、0.004〜0.02μm程度の微粒子(D2)が0.01〜0.5μm(D1)に凝集し、D1/D2が3以上となり、D1/D2比、すなわち凝集度において従来のシリカゾルとは異なる。   On the other hand, in the high-concentration silica slurry of the present invention, fine particles (D2) of about 0.004 to 0.02 μm aggregate to 0.01 to 0.5 μm (D1), D1 / D2 becomes 3 or more, and D1 / It differs from the conventional silica sol in the D2 ratio, that is, the degree of aggregation.

例えば、比表面積において、従来のゾルゲル法によるシリカコロイドは、比表面積が0.3〜12m/g程度であり、本発明の高濃度シリカスラリーの比表面積の150〜700m/gとは異なる。 For example, the specific surface area, the silica colloid by a conventional sol-gel method, specific surface area of about 0.3~12m 2 / g, different from the 150~700m 2 / g of specific surface area of the high concentration silica slurry of the present invention .

本発明の高濃度シリカスラリ−の粘度は5〜300mPa・sであることが好ましい。300mPa・sを超える場合、取り扱いに問題が生じる。一方、下限は特に制限するものではないが、5mPa・s未満のスラリ−を製造することは難しい。尚、粘度の測定方法は特に制限するものではないが、例えば、B型粘度計等が一般的な方法として例示できる。   The viscosity of the high concentration silica slurry of the present invention is preferably 5 to 300 mPa · s. When it exceeds 300 mPa · s, a problem occurs in handling. On the other hand, the lower limit is not particularly limited, but it is difficult to produce a slurry of less than 5 mPa · s. In addition, although the measuring method in particular of a viscosity is not restrict | limited, For example, a B-type viscosity meter etc. can be illustrated as a general method.

本発明の高濃度シリカスラリーは正電荷を有しているために、なおかつ長期にわたって安定である。本発明の高濃度シリカスラリ−は、1ヶ月間室温放置後の粘度の変化率が、初期粘度に対して±50%以下であることが好ましい。粘度の変化率が±50%を超える場合、取り扱いに問題が生じる。一方、下限は特に制限するものではなく変化率0%が好ましい。   Since the high concentration silica slurry of the present invention has a positive charge, it is stable over a long period of time. In the high-concentration silica slurry of the present invention, the rate of change in viscosity after standing at room temperature for 1 month is preferably ± 50% or less with respect to the initial viscosity. When the rate of change of viscosity exceeds ± 50%, a problem occurs in handling. On the other hand, the lower limit is not particularly limited, and a change rate of 0% is preferable.

次に本発明の高濃度シリカスラリ−の製造方法を説明する。   Next, the manufacturing method of the high concentration silica slurry of this invention is demonstrated.

本発明の高濃度シリカスラリ−は、シリカゲル、特に好ましくは珪酸ソ−ダから得た高比表面積のシリカゲルを、0.5〜5mmの純度99.95%以上の高純度シリカボ−ルをメディアとして使用するメディアミルにより粉砕、分散化し負電荷シリカスラリーを得た後に、得られた負電荷シリカスラリーと分子量2000〜100000のカチオン性高分子を混合し、得られたカチオン性高分子含有シリカ含水ゲルを、水洗し塩を除去した後、再分散することにより製造することが出来る。   The high-concentration silica slurry of the present invention is a silica gel, particularly preferably a silica having a high specific surface area obtained from silicate soda, and a high-purity silica ball having a purity of 0.5 to 5 mm of 99.95% or more is used as a medium. To obtain a negatively charged silica slurry by mixing and dispersing the obtained negatively charged silica slurry and a cationic polymer having a molecular weight of 2,000 to 100,000. It can be produced by re-dispersing after washing with water and removing the salt.

本発明の高濃度シリカスラリーは、強く吸着し脱離が起こり難い比較的分子量の大きいカチオン性高分子を用い、カチオン性高分子が吸着したシリカ粒子から余分な塩や未吸着高分子を除いたことに特徴がある。   The high-concentration silica slurry of the present invention uses a cationic polymer having a relatively large molecular weight that is strongly adsorbed and hardly desorbed. Excess salt and unadsorbed polymer are removed from silica particles adsorbed by the cationic polymer. There is a special feature.

カチオン性高分子としては、水に溶解したときにカチオン性を示すものであれば特に限定されないが、第一〜第三級アミン基(アルキルアミン塩、ジアルキルアミン塩等)、第四アンモニウム基(テトラアルキルアンモニウム塩、ベンザルコニウム塩、アルキルピリジウム塩、イミダゾリニウム塩等)を有する高分子、ポリエチレンイミン、ポリビニルイミダゾリン、アミノアルキル(メタ)アクリレートアクリルアミド共重合体、ポリアクリルアミドマンニッヒ変成物、キトサン等を用いることができる。   The cationic polymer is not particularly limited as long as it shows cationicity when dissolved in water, but primary to tertiary amine groups (alkylamine salts, dialkylamine salts, etc.), quaternary ammonium groups ( Tetraalkylammonium salt, benzalkonium salt, alkylpyridium salt, imidazolinium salt, etc.), polyethyleneimine, polyvinylimidazoline, aminoalkyl (meth) acrylate acrylamide copolymer, polyacrylamide Mannich modified product, chitosan Etc. can be used.

カチオン性高分子の分子量は2000〜100000である。分子量が2000未満の場合、安定性に問題が生じ易い。一方、分子量が100000を超える場合、取り扱いが困難になり易い。このカチオン性高分子はシリカに対して0.5〜10重量%含まれていることが好ましい。   The molecular weight of the cationic polymer is 2000-100000. If the molecular weight is less than 2000, problems with stability are likely to occur. On the other hand, when the molecular weight exceeds 100,000, handling tends to be difficult. This cationic polymer is preferably contained in an amount of 0.5 to 10% by weight based on silica.

本発明の正電荷を有す高濃度シリカスラリーの製造は、原料シリカゲルを高純度シリカボ−ルをメディアとしたメディアミルにより粉砕、分散化し負電荷シリカスラリーを得るスラリー化工程、得られた負電荷シリカスラリーにカチオン性高分子を混合しゲル化させるカチオン性高分子吸着工程、得られたゲルを水洗する洗浄工程、水洗ゲルを再分散させる分散工程、よりなる。   The production of the high-concentration silica slurry having a positive charge according to the present invention includes a slurrying step of pulverizing and dispersing the raw silica gel with a media mill using a high-purity silica ball as a medium to obtain a negatively-charged silica slurry, and the obtained negative charge. It comprises a cationic polymer adsorption step in which a cationic polymer is mixed with a silica slurry to form a gel, a washing step in which the obtained gel is washed with water, and a dispersion step in which the washed gel is redispersed.

本発明における原料シリカゲルは、珪酸ソ−ダを原料として製造したものを使用することが好ましい。他の原料、例えば、四塩化珪素を原料とした乾式法シリカを原料としたゾルゲル法シリカ等があるが、高い比表面積を得るのは難しく、アルコキシシランを原料としたゾルゲル法のシリカゲルは高コストであり工業的に大量生産が難しい。   As the raw material silica gel in the present invention, it is preferable to use a silica gel produced from silicate soda. There are other raw materials, for example, sol-gel silica using dry process silica using silicon tetrachloride as a raw material, but it is difficult to obtain a high specific surface area, and sol-gel silica gel using alkoxysilane as a raw material is expensive. It is difficult to mass-produce industrially.

本発明の高濃度シリカスラリーに用いるシリカゲル原料段階での比表面積は、特に制限するものではないが150〜800m/gが好ましい。150m/g未満、800m/gを超えた場合、本発明の高濃度シリカスラリ−を得るのは難しい。 Although the specific surface area in the silica gel raw material stage used for the high concentration silica slurry of the present invention is not particularly limited, it is preferably 150 to 800 m 2 / g. 150m less than 2 / g, if it exceeds 800 m 2 / g, a high concentration silica slurry of the present invention - it is difficult to obtain a.

本発明の負電荷高濃度シリカスラリーは、シリカゲルを、平均径が0.5〜5mmの純度99.95%以上の高純度シリカボ−ルをメディアとしたメディアミルにより、粉砕、分散化することが好ましい。また本発明では、メディアミルにより粉砕、分散化する前に、シリカゲルを純水に加え、アルカリを加えて調整したスラリ−を樹脂製ボ−ルで予備粉砕することが好ましい。   The negative charge high concentration silica slurry of the present invention can be obtained by pulverizing and dispersing silica gel by a media mill using a high purity silica ball having an average diameter of 0.5 to 5 mm and a purity of 99.95% or more as a medium. preferable. In the present invention, it is preferable to preliminarily pulverize a slurry prepared by adding silica gel to pure water and adding alkali before pulverizing and dispersing by a media mill using a resin ball.

本発明で粉砕メディアとして用いる高純度シリカボ−ルの平均径は0.5〜5mmであることが好ましい。0.5mm未満ではボ−ルと高濃度シリカスラリ−の分離が難しい。一方、5mmを超えた場合は本発明の0.1〜0.5μmの微細シリカ粒子を得るのが難しい。   The average diameter of the high purity silica balls used as the grinding media in the present invention is preferably 0.5 to 5 mm. If it is less than 0.5 mm, it is difficult to separate the ball from the high concentration silica slurry. On the other hand, when it exceeds 5 mm, it is difficult to obtain 0.1 to 0.5 μm fine silica particles of the present invention.

また本発明で粉砕メディアとして用いる高純度シリカボ−ルの純度は、99.95%以上である。ここで言う純度とは、シリカボ−ル中に含まれるAl、Ba、Ca、Cr、Cu、Fe、K、Li、Mg、Mn、Na、Ni、P、Pb、Sn、Sr、Ti、Zn、Zr、U及びTh量を不純物として換算して求めたものである。   The purity of the high purity silica ball used as the grinding media in the present invention is 99.95% or more. The purity mentioned here means Al, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sn, Sr, Ti, Zn, contained in the silica ball. It is obtained by converting the amounts of Zr, U and Th as impurities.

高純度シリカボ−ルの純度が99.95%未満では、例えば、粉砕、分散用のメディアとして使用した場合、金属不純物の混入が起こり易い。純度99.95%以上の上限については特に制限はなく用途に合わせて100%まで使用出来る。   When the purity of the high-purity silica ball is less than 99.95%, for example, when used as a medium for pulverization and dispersion, metal impurities are likely to be mixed. The upper limit of the purity of 99.95% or more is not particularly limited, and can be used up to 100% according to the application.

本発明では高純度シリカボ−ルを粉砕メディアとして用いて粉砕、分散化するが、粉砕に用いるメディアミルは特に制限するものではなく本発明のシリカボ−ルを用いれば適宜選択することができる。例えば、ボ−ルミル、サンドミル、ビ−ズミル及びアトライタ−等が使用出来る。   In the present invention, a high-purity silica ball is used as a pulverization medium for pulverization and dispersion. However, the media mill used for pulverization is not particularly limited, and can be appropriately selected if the silica ball of the present invention is used. For example, a ball mill, a sand mill, a bead mill and an attritor can be used.

高純度シリカボ−ルを粉砕メディアとして用いて粉砕、分散化するスラリー化において、高濃度でシリカ微粒子が安定的に分散したスラリ−とするためには、コロイド粒子が安定に分散状態を取り得る高い表面電位状態であることが必要である。   In a slurry that is pulverized and dispersed using a high-purity silica ball as a pulverizing medium, the colloidal particles can be stably dispersed in order to obtain a slurry in which silica fine particles are stably dispersed at a high concentration. It must be in a surface potential state.

本発明を満足するものであれば特に制限するものではないが、シリカ濃度が20〜50%、導電率が10〜1500μS/cm、高濃度シリカスラリー中のシリカ粒子のゼータ電位はこの段階において−30mV以上、が好ましい。   There is no particular limitation as long as the present invention is satisfied, but the silica concentration is 20 to 50%, the conductivity is 10 to 1500 μS / cm, and the zeta potential of the silica particles in the high concentration silica slurry is − 30 mV or more is preferable.

又、高濃度シリカスラリー中のシリカ粒子は、本発明を満足するものであれば特に制限するものではないが、平均粒子径が0.01〜0.5μm(D1)、比表面積が150〜700m/g(相当径D2=0.004〜0.02μm)、凝集度D1/D2=3以上、が好ましい。 The silica particles in the high-concentration silica slurry are not particularly limited as long as they satisfy the present invention, but the average particle diameter is 0.01 to 0.5 μm (D1) and the specific surface area is 150 to 700 m. 2 / g (equivalent diameter D2 = 0.004 to 0.02 μm) and aggregation degree D1 / D2 = 3 or more are preferable.

スラリ−化条件としては、シリカゲルに水を加え、アルカリ性水溶液の添加等によりpHを4〜9.5に調整することが好ましい。そのアルカリ性水溶液としては、特に制限するものではないが、アンモニア水、水酸化ナトリウム水溶液、アミン溶液、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤等が使用出来る。   As slurrying conditions, it is preferable to add water to silica gel and adjust the pH to 4 to 9.5 by adding an alkaline aqueous solution or the like. The alkaline aqueous solution is not particularly limited, and ammonia water, sodium hydroxide aqueous solution, amine solution, cationic surfactant, anionic surfactant, nonionic surfactant and the like can be used.

ここまでの方法より、まずシリカ濃度が20〜50%、導電率が10〜1500μS/cm、高濃度シリカスラリー中のシリカ粒子のゼータ電位が−30mV以上、平均粒子径が0.01〜0.5μm(D1)、比表面積が150〜700m/g(相当径D2=0.004〜0.02μm)、凝集度D1/D2=3以上の負電荷シリカスラリーが得られる。 From the method described so far, first, the silica concentration is 20 to 50%, the conductivity is 10 to 1500 μS / cm, the zeta potential of the silica particles in the high concentration silica slurry is −30 mV or more, and the average particle size is 0.01 to 0.00. A negatively charged silica slurry having 5 μm (D1), a specific surface area of 150 to 700 m 2 / g (equivalent diameter D2 = 0.004 to 0.02 μm), and a degree of aggregation D1 / D2 = 3 or more is obtained.

本発明では次に上記の方法で得られた負電荷シリカスラリーとカチオン性高分子を混合し、混合溶液を得る。   In the present invention, the negatively charged silica slurry obtained by the above method and the cationic polymer are then mixed to obtain a mixed solution.

混合方法は特に制限するものではないが、pH1〜4の酸性領域での混合が好ましい。pHが4を超えると粒子の凝集が起こり易く、一方、pHが1未満では取り扱いが難しい。   The mixing method is not particularly limited, but mixing in the acidic region of pH 1 to 4 is preferable. When the pH exceeds 4, the particles tend to aggregate, while when the pH is less than 1, handling is difficult.

得られた混合液は2000μS/cm以上の導電率を有し、室温で数時間から数日の放置でゲル化する。ゲル化の状態は特に制限するものではないが、30℃〜80℃の温度で数時間〜数十時間水分の蒸発を防ぐ密閉容器中で静置するのが好ましい。尚、ここで言うゲル化は破砕が可能な程度の強度を有す状態である。   The obtained mixed solution has a conductivity of 2000 μS / cm or more, and gels upon standing for several hours to several days at room temperature. The state of gelation is not particularly limited, but it is preferably left in a closed container that prevents evaporation of moisture for several hours to several tens of hours at a temperature of 30 ° C to 80 ° C. In addition, the gelation said here is a state which has the intensity | strength which can be crushed.

次に得られたカチオン性高分子含有の含水シリカゲルを水洗し塩を除去する。   Next, the obtained water-containing silica gel containing the cationic polymer is washed with water to remove the salt.

水洗の方法は特に制限するものではないが、例えば洗浄を均一かつ効率的に行うため、カチオン性高分子含有の含水シリカゲルを数ミリから数センチ角の大きさに破砕した後に純水で洗浄するのが好ましい。   The washing method is not particularly limited. For example, in order to perform washing uniformly and efficiently, the water-containing silica gel containing a cationic polymer is crushed into a size of several millimeters to several centimeters and then washed with pure water. Is preferred.

洗浄方法としては、ゲルに純水を通過させるろ過洗浄やゲルに純水を加え上澄みを除去するデカンテーション洗浄等が好ましい。水洗量は本発明の条件を満足するものであれば特に制限するものではないが、洗浄水の導電率が100〜700μS/cmとなるまで純水で洗浄するのが好ましい。洗浄水の導電率が700μS/cmを超える場合は最終的に得られる本発明の高濃度シリカスラリーの導電率を満足することが難しく、洗浄水の導電率を100μS/cm未満とすることは工業的に難しい。   As the washing method, filtration washing in which pure water is passed through the gel, decantation washing in which pure water is added to the gel and the supernatant is removed are preferable. The amount of water washing is not particularly limited as long as the conditions of the present invention are satisfied, but it is preferable to wash with pure water until the conductivity of the washing water becomes 100 to 700 μS / cm. When the conductivity of the cleaning water exceeds 700 μS / cm, it is difficult to satisfy the conductivity of the high-concentration silica slurry of the present invention finally obtained, and the conductivity of the cleaning water is less than 100 μS / cm. Difficult.

上記の方法で得られたカチオン性高分子含有の含水シリカゲルを水に再分散し、本発明の条件を満足する安定な正電荷を有す高濃度シリカスラリーを得ることが出来る。   The high-concentration silica slurry having a stable positive charge that satisfies the conditions of the present invention can be obtained by re-dispersing the water-containing silica gel containing the cationic polymer obtained by the above method in water.

再分散の方法は本発明の条件を満足するものであれば特に制限するものではなく、例えば攪拌羽根による攪拌分散化や超音波分散、高純度シリカボールをメディアとしたメディアミル等を使用することで容易に再分散させることが出来る。   The redispersion method is not particularly limited as long as the conditions of the present invention are satisfied. For example, stirring dispersion using a stirring blade or ultrasonic dispersion, use of a media mill using a high-purity silica ball as a medium, etc. Can be easily redispersed.

以上の方法により、高い安定性を有すシリカ濃度が20〜50%、pHが1.5〜5.5、導電率が300〜1500μS/cm、高濃度シリカスラリー中のシリカ粒子のゼータ電位が+10〜+80mVである高濃度シリカスラリ−が得られる。   By the above method, the silica concentration having high stability is 20 to 50%, the pH is 1.5 to 5.5, the conductivity is 300 to 1500 μS / cm, and the zeta potential of the silica particles in the high concentration silica slurry is high. A high concentration silica slurry of +10 to +80 mV is obtained.

本発明の高濃度シリカスラリーは、シリカ濃度が20〜50%と高濃度で、粘度が長期間安定な高濃度シリカスラリ−である。更に、製造プロセスが簡単で、且つ、原料に安価な珪酸ソ−ダを用いることが出来るため、低コストである。   The high concentration silica slurry of the present invention is a high concentration silica slurry having a high silica concentration of 20 to 50% and a stable viscosity for a long period of time. Furthermore, since the manufacturing process is simple and inexpensive silicate soda can be used as a raw material, the cost is low.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

尚、以下の記載における、平均粒子径、比表面積、粘度、シリカ濃度及び純度(不純物分析)の測定は下記の方法によるものである。   In the following description, the average particle diameter, specific surface area, viscosity, silica concentration and purity (impurity analysis) are measured by the following method.

平均粒子径はMICROTRC(日機装社製 UPA150粒度分析計)により測定した体積平均粒子径である。比表面積はシリカスラリ−やシリカゲルを110℃乾燥の後、前処理温度200℃でMONOSORB(QUANTA CHROME社製)を用いBET法で測定した値である。   The average particle diameter is a volume average particle diameter measured by MICROTRC (UPA150 particle size analyzer manufactured by Nikkiso Co., Ltd.). The specific surface area is a value measured by BET method using MONOSORB (manufactured by QUANTA CHROME) at a pretreatment temperature of 200 ° C. after drying silica slurry or silica gel at 110 ° C.

粘度は、TOKIMEC VISCOMETER(TOKYO KEIKI社 B8L)によるロ−タ−No.2、30RPMで測定した値である。   Viscosity was measured according to rotor No. according to TOKIMEC VISCOMETER (TOKYO KEIKI B8L). It is a value measured at 2, 30 RPM.

導電率は、CONDUCTIVITY METER DS−14(堀場製作所)を用い測定した値である。   The conductivity is a value measured using CONDUCTIVITY METER DS-14 (Horiba Seisakusho).

シリカ濃度は、シリカスラリ−を110℃で蒸発乾固させた重量から計算した重量%である。   Silica concentration is weight percent calculated from the weight of silica slurry evaporated to dryness at 110 ° C.

純度はシリカに硫酸、フッ化水素酸を添加し、加熱して蒸発乾固した後、不純物成分を硝酸及び水に溶解させ、IMPA・Sで定量して得たAl、Ba、Ca、Cr、Cu、Fe、K、Li、Mg、Mn、Na、Ni、P、Pb、Sn、Sr、Ti、Zn、Zr、U及びThを不純物として換算した重量%の計算値である。   The purity is obtained by adding sulfuric acid and hydrofluoric acid to silica, heating and evaporating to dryness, then dissolving the impurity components in nitric acid and water, and quantifying with IMPA · S, Al, Ba, Ca, Cr, It is a calculated value by weight% converted from Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sn, Sr, Ti, Zn, Zr, U, and Th as impurities.

ゼ−タ電位の測定は、Matec Applied Science社のES9.800Zeta Potential Analyzerを用いて、スラリ−そのもののゼ−タ電位とpH2.5〜9.5の範囲のデ−タ電位を硝酸水溶液と水酸化カリウム水溶液を用いたPotentiometric Titration法で測定した。   The zeta potential was measured using an ES 9.800 Zeta Potential Analyzer manufactured by Matec Applied Science, and the zeta potential of the slurry itself and a data potential in the range of pH 2.5 to 9.5 were adjusted with aqueous nitric acid and water. The measurement was performed by the potentiometric titration method using an aqueous potassium oxide solution.

実施例1
1Lポリエチレン製容器に、平均径1.5mm(0.5〜3mm)の純度99.98%の高純度シリカボ−ル700gと、市販のシリカゲルであるニップシールLP(東ソーシリカ社製)90gに純水185gを加えスラリ−とし、80時間ボ−ルミルで粉砕し、スラリ−濃度30%のシリカスラリー(A)を得た。
Example 1
In a 1 L polyethylene container, pure water is added to 700 g of high-purity silica balls having an average diameter of 1.5 mm (0.5 to 3 mm) and a purity of 99.98%, and 90 g of nip seal LP (manufactured by Tosoh Silica Co., Ltd.) which is a commercially available silica gel. 185 g was added to make a slurry, and pulverized with a ball mill for 80 hours to obtain a silica slurry (A) having a slurry concentration of 30%.

次に得られたシリカスラリーに塩酸を加えpHを2.0とし酸性シリカスラリーとした。酸性シリカスラリーと市販のカチオン性高分子である分子量7900のPD−30(四日市合成株式会社製)をカチオン性高分子/SiO=4%(重量%)になるように混合し、60℃で15時間密閉容器中でゲル化させ、含水ゲル(C)を得た。 Next, hydrochloric acid was added to the obtained silica slurry to adjust the pH to 2.0 to obtain an acidic silica slurry. Acidic silica slurry and PD-30 (manufactured by Yokkaichi Gosei Co., Ltd.), which is a commercially available cationic polymer, are mixed so that the cationic polymer / SiO 2 = 4% (% by weight) is obtained, and at 60 ° C. Gelation was performed in a sealed container for 15 hours to obtain a hydrogel (C).

得られた含水ゲル(C)を1mmから2cm角程度の大きさに解砕し、純水を加え1時間放置後、上澄み液を除去した。この操作を上澄み液の導電率が300μS/cmまで繰り返した。   The obtained hydrogel (C) was pulverized to a size of about 1 mm to 2 cm square, pure water was added and left for 1 hour, and then the supernatant was removed. This operation was repeated until the supernatant had a conductivity of 300 μS / cm.

洗浄した含水ゲルをポリ容器に入れ、超音波分散器で1時間分散させ高濃度シリカスラリーを得た。得られたスラリーは、スラリ−濃度28%、平均粒子径0.045μm(D1)、比表面積221m/g(D2=0.014μm)、D1/D2=3.2、pH3.12、導電率686μS/cm、粘度35mPa・s、ゼータ電位+37mVの高濃度シリカスラリー(B)であった。 The washed hydrogel was put in a plastic container and dispersed for 1 hour with an ultrasonic disperser to obtain a high-concentration silica slurry. The resulting slurry had a slurry concentration of 28%, an average particle size of 0.045 μm (D1), a specific surface area of 221 m 2 / g (D2 = 0.014 μm), D1 / D2 = 3.2, pH 3.12, conductivity. It was a high concentration silica slurry (B) having a viscosity of 686 μS / cm, a viscosity of 35 mPa · s, and a zeta potential of +37 mV.

次に、pH2.5〜9.5の範囲のデ−タ電位を硝酸水溶液と水酸化カリウム水溶液を用いたPotentiometric Titration法で測定した。上記に示したシリカスラリー(A)と本発明の高濃度スラリー(B)のpHとゼータ電位の関係を図1に示す。   Next, the data potential in the range of pH 2.5 to 9.5 was measured by the potentiometric titration method using an aqueous nitric acid solution and an aqueous potassium hydroxide solution. FIG. 1 shows the relationship between the pH and zeta potential of the silica slurry (A) shown above and the high concentration slurry (B) of the present invention.

本発明の高濃度シリカスラリー(B)の1ヶ月間室温放置後の粘度は35mPa・sで長期間粘度上昇がなく、安定であった。   The viscosity of the high-concentration silica slurry (B) of the present invention after standing at room temperature for 1 month was 35 mPa · s and was stable with no increase in viscosity for a long period of time.

実施例2
実施例1と同様な条件で得られた含水ゲル(C)を1mmから2cm角程度に解砕し、純水を加え1時間放置後、上澄み液を除去した。この操作を上澄み液の導電率が200μS/cmまで繰り返した。
Example 2
The hydrogel (C) obtained under the same conditions as in Example 1 was crushed to about 1 mm to 2 cm square, pure water was added and allowed to stand for 1 hour, and then the supernatant was removed. This operation was repeated until the supernatant had a conductivity of 200 μS / cm.

洗浄した含水ゲルをポリ容器に入れ、超音波分散器で1時間分散させ高濃度シリカスラリーを得た。高濃度シリカスラリーは、スラリ−濃度28%、平均粒子径0.045μm(D1)、比表面積221m/g(D2=0.014μm)、D1/D2=3.2、pH5.1、導電率350μS/cm、粘度210mPa・s、ゼータ電位+48mVの高濃度シリカスラリーであった。 The washed hydrogel was put in a plastic container and dispersed for 1 hour with an ultrasonic disperser to obtain a high-concentration silica slurry. The high concentration silica slurry has a slurry concentration of 28%, an average particle size of 0.045 μm (D1), a specific surface area of 221 m 2 / g (D2 = 0.014 μm), D1 / D2 = 3.2, pH 5.1, conductivity. It was a high concentration silica slurry having 350 μS / cm, a viscosity of 210 mPa · s, and a zeta potential of +48 mV.

実施例3
実施例1と同様な条件で得られたシリカスラリー(A)に塩酸を加えpHを1.8としシリカスラリーを得た。
Example 3
Hydrochloric acid was added to the silica slurry (A) obtained under the same conditions as in Example 1 to adjust the pH to 1.8 to obtain a silica slurry.

該シリカスラリーとカチオン性高分子に分子量70000のポリエチレンイミン(試薬)をカチオン性高分子/SiO=4%(重量%)になるように混合し、60℃で15時間密閉容器中でゲル化させ、含水ゲルを得た。 Polyethyleneimine (reagent) having a molecular weight of 70000 is mixed with the silica slurry and the cationic polymer so as to be a cationic polymer / SiO 2 = 4% (weight%), and gelled in a sealed container at 60 ° C. for 15 hours. To obtain a hydrous gel.

得られた含水ゲルを1mmから2cm角程度に解砕し、純水を加え1時間放置後、上澄み液を除去した。この操作を上澄み液の導電率が500μS/cmまで繰り返した。   The obtained hydrogel was crushed to about 1 to 2 cm square, pure water was added, and the mixture was allowed to stand for 1 hour, and then the supernatant was removed. This operation was repeated until the supernatant had a conductivity of 500 μS / cm.

洗浄した含水ゲルをポリ容器に入れ、超音波分散器で1時間分散させ本発明の高濃度シリカスラリーを得た。得られた高濃度シリカスラリーは、スラリ−濃度25%、平均粒子径0.08μm、比表面積210m/g、pH2.20、導電率1300μS/cm、粘度55mPa・s、ゼータ電位+24mVの高濃度シリカスラリーであり、1ヶ月間室温放置後の粘度は30mPa・sであった。 The washed hydrogel was put in a plastic container and dispersed for 1 hour with an ultrasonic disperser to obtain a high concentration silica slurry of the present invention. The resulting high-concentration silica slurry has a slurry concentration of 25%, an average particle size of 0.08 μm, a specific surface area of 210 m 2 / g, a pH of 2.20, a conductivity of 1300 μS / cm, a viscosity of 55 mPa · s, and a high concentration of zeta potential +24 mV. This was a silica slurry, and its viscosity after standing at room temperature for 1 month was 30 mPa · s.

実施例4
SiO濃度が25重量%、NaO濃度が8重量%の珪酸ソ−ダ水溶液と40重量%の硫酸水溶液を混合ノズルを用いて混合し、SiO濃度が17重量%、pHが0.8のシリカゾルを製造した。シリカゾルは約5分後にゲル化した。得られたゲルを解砕し70℃の純水で洗浄した後、1mmフルイで篩い、110℃で15時間乾燥してシリカゲルを得た。得られたシリカゲルの比表面積は760m/gであった。
Example 4
SiO 2 concentration of 25 wt%, Na 2 O concentration of 8% by weight of silica source - mixed with da solution and mixing nozzle 40 weight percent aqueous sulfuric acid solution, SiO 2 concentration of 17% by weight, pH is 0. 8 silica sols were produced. The silica sol gelled after about 5 minutes. The obtained gel was crushed and washed with pure water at 70 ° C., sieved with 1 mm sieve, and dried at 110 ° C. for 15 hours to obtain silica gel. The specific surface area of the obtained silica gel was 760 m 2 / g.

当該シリカゲル180gに純水3.70gを加え、アンモニア水でpHを9.2としたスラリ−を調整した(スラリ−C)。2Lポリエチレン製容器に、スラリ−Cと15mmφの鉄心入り樹脂製ボ−ル2Kgを入れ、15時間ボ−ルミルで粉砕し平均粒子径15μmのスラリ−Dを得た。   A slurry was prepared by adding 3.70 g of pure water to 180 g of the silica gel and adjusting the pH to 9.2 with aqueous ammonia (Slurry-C). A 2 L polyethylene container was charged with 2 kg of slurry C and a 15 mmφ cored resin ball, and pulverized with a ball mill for 15 hours to obtain slurry D having an average particle diameter of 15 μm.

次に、1Lポリエチレン製容器に、平均径0.5mm(0.3〜3mm)の純度99.9.8%のシリカボ−ル700gと上記スラリ−D400mlを入れ、24時間ボ−ルミルで粉砕しスラリ−濃度31%のシリカスラリーを得、該シリカスラリーに塩酸を加えpHを2.0とし酸性シリカスラリーとした。   Next, 700 g of 99.9.8% silica ball having an average diameter of 0.5 mm (0.3 to 3 mm) and 400 ml of the above slurry D are put into a 1 L polyethylene container and pulverized with a ball mill for 24 hours. A silica slurry having a slurry concentration of 31% was obtained, and hydrochloric acid was added to the silica slurry to adjust the pH to 2.0 to obtain an acidic silica slurry.

酸性シリカスラリーと市販のカチオン性高分子である分子量7900のPD−30(四日市合成株式会社製)をカチオン性高分子/SiO=4%(重量%)になるように混合し、60℃で15時間密閉容器中でゲル化させ、含水ゲルを得た。 Acidic silica slurry and PD-30 (manufactured by Yokkaichi Gosei Co., Ltd.), which is a commercially available cationic polymer, are mixed so that the cationic polymer / SiO 2 = 4% (% by weight) is obtained, and at 60 ° C. Gelation was performed in a sealed container for 15 hours to obtain a hydrous gel.

得られた含水ゲルを1mmから2cm角程度に解砕し、純水を加え1時間放置後、上澄み液を除去した。この操作を上澄み液の導電率が300μS/cmまで繰り返した。   The obtained hydrogel was crushed to about 1 to 2 cm square, pure water was added, and the mixture was allowed to stand for 1 hour, and then the supernatant was removed. This operation was repeated until the supernatant had a conductivity of 300 μS / cm.

洗浄した含水ゲルをポリ容器に入れ、超音波分散器で1時間分散させ高濃度シリカスラリーを得た。得られた高濃度シリカスラリーは、スラリ−濃度31%、平均粒子径0.25μm(D1)、比表面積380m/g、pH4.50、導電率880μS/cm、粘度25mPa・s、ゼータ電位+30mVで、1ヶ月間室温放置後の粘度は45mPa・sであった。 The washed hydrogel was put in a plastic container and dispersed for 1 hour with an ultrasonic disperser to obtain a high-concentration silica slurry. The resulting high-concentration silica slurry has a slurry concentration of 31%, an average particle size of 0.25 μm (D1), a specific surface area of 380 m 2 / g, a pH of 4.50, an electrical conductivity of 880 μS / cm, a viscosity of 25 mPa · s, and a zeta potential of +30 mV. The viscosity after standing at room temperature for 1 month was 45 mPa · s.

比較例1
実施例1と同様な条件で得られたシリカスラリー(A)に塩酸を加えpHを2.0とし酸性シリカスラリーを得た。
Comparative Example 1
Hydrochloric acid was added to the silica slurry (A) obtained under the same conditions as in Example 1 to adjust the pH to 2.0 to obtain an acidic silica slurry.

酸性シリカスラリーと市販のカチオン性高分子である分子量7900のPD−30(四日市合成株式会社製)をカチオン性高分子/SiO=4%(重量%)になるように混合し、洗浄せずそのまま混合溶液とした。得られた混合溶液の導電率は11000μS/cmであり、本発明の条件を満足するものではなかった。 Acidic silica slurry and PD-30 (manufactured by Yokkaichi Gosei Co., Ltd.), which is a commercially available cationic polymer, are mixed so as to be cationic polymer / SiO 2 = 4% (% by weight), without washing. The mixed solution was used as it was. The conductivity of the obtained mixed solution was 11000 μS / cm, which did not satisfy the conditions of the present invention.

得られた混合溶液の粘度は不安定であり、室温で4時間後にゲル化した。   The viscosity of the resulting mixed solution was unstable and gelled after 4 hours at room temperature.

比較例2
実施例1と同様な条件で得られたシリカスラリー(A)に塩酸を加えpHを2.0とし酸性シリカスラリーを得た。
Comparative Example 2
Hydrochloric acid was added to the silica slurry (A) obtained under the same conditions as in Example 1 to adjust the pH to 2.0 to obtain an acidic silica slurry.

得られた酸性シリカスラリーの導電率は7000μS/cm、スラリー中のシリカ粒子のゼータ電位は−2mVであり、本発明の条件を満足するものではなかった。   The obtained acidic silica slurry had an electrical conductivity of 7000 μS / cm, and the zeta potential of the silica particles in the slurry was −2 mV, which did not satisfy the conditions of the present invention.

得られた酸性高濃度シリカスラリーは不安定であり、室温で5日後にゲル化した。   The resulting acidic high concentration silica slurry was unstable and gelled after 5 days at room temperature.

比較例3
カチオン性高分子を混合し得た含水ゲルの洗浄上澄み液の導電率が900μS/cmであること以外は実施例1と同様に下記条件で実施した。実施例1と同様な条件で得られたシリカスラリー(A)に塩酸を加えpHを2.0とし、酸性シリカスラリーを得た。
Comparative Example 3
This was carried out in the same manner as in Example 1 except that the conductivity of the washing supernatant of the hydrous gel obtained by mixing the cationic polymer was 900 μS / cm. Hydrochloric acid was added to the silica slurry (A) obtained under the same conditions as in Example 1 to adjust the pH to 2.0 to obtain an acidic silica slurry.

該酸性シリカスラリーと市販のカチオン性高分子である分子量7900のPD−30(四日市合成株式会社製)をカチオン性高分子/SiO=4%(重量%)になるように混合し、60℃で15時間密閉容器中でゲル化させ、実施例1と同様な含水ゲル(C)を得た。得られた含水ゲル(C)を1mmから2cm角程度に解砕し純水を加え1時間放置後、上澄み液を除去し含水ゲルを得た。得られた含水ゲルをポリ容器に入れ、超音波分散器で1時間分散させ濃度30%の高濃度シリカスラリーを得た。 The acidic silica slurry and a commercially available cationic polymer, PD-30 having a molecular weight of 7900 (manufactured by Yokkaichi Gosei Co., Ltd.), are mixed so as to be a cationic polymer / SiO 2 = 4% (wt%), and 60 ° C. And gelled in a sealed container for 15 hours to obtain a water-containing gel (C) similar to Example 1. The obtained hydrogel (C) was crushed to about 1 to 2 cm square, added with pure water, allowed to stand for 1 hour, and then the supernatant was removed to obtain a hydrogel. The obtained hydrogel was placed in a plastic container and dispersed with an ultrasonic disperser for 1 hour to obtain a high-concentration silica slurry having a concentration of 30%.

得られた混合溶液の導電率は2100μS/cmであり、本発明の条件を満足するものではなく、粘度は不安定であり、5時間程度から粘度の上昇が見られ15時間後にはゲル化した。   The conductivity of the obtained mixed solution is 2100 μS / cm, which does not satisfy the conditions of the present invention, the viscosity is unstable, the viscosity is increased from about 5 hours, and gelled after 15 hours. .

比較例4
カチオン性高分子の分子量が1800であること以外は実施例2と同様に下記条件で実施した。
Comparative Example 4
It implemented on the following conditions similarly to Example 2 except the molecular weight of cationic polymer being 1800.

酸性シリカスラリーとカチオン性高分子に分子量1800のポリエチレンイミン(試薬)をカチオン性高分子/SiO=4%(重量%)になるように混合し、60℃で15時間密閉容器中でゲル化させ、含水ゲルを得た。 Polyethyleneimine (reagent) having a molecular weight of 1800 is mixed with the acidic silica slurry and the cationic polymer so as to be a cationic polymer / SiO 2 = 4% (weight%), and gelled in a sealed container at 60 ° C. for 15 hours. To obtain a hydrous gel.

得られた含水ゲルを1mmから2cm角程度に解砕し純水を加え1時間放置後、上澄み液を除去した。この操作を上澄み液の導電率が300μS/cmまで繰り返した。洗浄した含水ゲルをポリ容器に入れ、超音波分散器で1時間分散させ濃度30%の高濃度シリカスラリーを得た。   The obtained hydrogel was crushed to about 1 to 2 cm square, pure water was added and the mixture was allowed to stand for 1 hour, and then the supernatant was removed. This operation was repeated until the supernatant had a conductivity of 300 μS / cm. The washed hydrogel was put in a plastic container and dispersed with an ultrasonic disperser for 1 hour to obtain a high concentration silica slurry having a concentration of 30%.

得られたスラリーは、ゼータ電位−8mVの負電荷であり、本発明を満足する高濃度シリカスラリーは得られなかった。   The obtained slurry was a negative charge having a zeta potential of −8 mV, and a high-concentration silica slurry satisfying the present invention was not obtained.

実施例1で得られた高濃度シリカスラリーのpHによるゼータ電位の変化を示す図である。(A)高分子添加/洗浄再分散未実施(B)本発明の高濃度シリカスラリーIt is a figure which shows the change of the zeta potential by pH of the high concentration silica slurry obtained in Example 1. (A) Polymer addition / washing re-dispersion not performed (B) High concentration silica slurry of the present invention

Claims (10)

シリカ濃度が20〜50%、pHが1.5〜5.5、導電率が300〜1500μS/cmであって、且つ、高濃度シリカスラリー中のシリカ粒子のゼータ電位が+10〜+80mVである高濃度シリカスラリ−。 The silica concentration is 20 to 50%, the pH is 1.5 to 5.5, the conductivity is 300 to 1500 μS / cm, and the zeta potential of the silica particles in the high concentration silica slurry is +10 to +80 mV. Concentration silica slurry. 高濃度シリカスラリーに含まれるシリカ粒子の平均粒子径が0.01〜0.5μm、比表面積が150〜700m/gである事を特徴とする請求項1に記載の高濃度シリカスラリ−。 2. The high-concentration silica slurry according to claim 1, wherein the silica particles contained in the high-concentration silica slurry have an average particle diameter of 0.01 to 0.5 μm and a specific surface area of 150 to 700 m 2 / g. シリカ粒子の凝集度D1/D2が3以上である請求項2に記載の高濃度シリカスラリー(ここで、D1(μm)=平均粒子径、D2(μm)=(2720/As)/1000、Asは比表面積(m/g)である)。 The high-concentration silica slurry according to claim 2, wherein the aggregation degree D1 / D2 of the silica particles is 3 or more (where D1 (μm) = average particle diameter, D2 (μm) = (2720 / As) / 1000, As Is the specific surface area (m 2 / g). 分子量2000〜100000のカチオン性高分子がシリカ粒子表面に吸着していることを特徴とする請求項1〜請求項3に記載の高濃度シリカスラリ−。 The high-concentration silica slurry according to claim 1, wherein a cationic polymer having a molecular weight of 2,000 to 100,000 is adsorbed on the surface of silica particles. カチオン性高分子がシリカ粒子に対して0.5〜10重量%含まれている事を特徴とする請求項4記載の高濃度シリカスラリー。 The high-concentration silica slurry according to claim 4, wherein the cationic polymer is contained in an amount of 0.5 to 10% by weight based on the silica particles. 粘度が5〜300mPa・sである請求項1〜請求項5に記載の高濃度スラリー。 The high-concentration slurry according to claim 1, which has a viscosity of 5 to 300 mPa · s. 1ヶ月間室温放置後の粘度の変化率が初期粘度に対し±50%以下である請求項1〜請求項6に記載の高濃度シリカスラリー。 The high-concentration silica slurry according to claim 1, wherein the rate of change in viscosity after standing at room temperature for 1 month is ± 50% or less with respect to the initial viscosity. シリカゲルと水を、平均径が0.5〜5mmの純度99.95%以上の高純度シリカボ−ルをメディアとして使用するメディアミルにより粉砕、分散化して負電荷高濃度スラリーを得た後に、分子量2000〜100000のカチオン性高分子と混合し、得られたシリカ含水ゲルを水洗して塩を除去した後、再分散することを特徴とする請求項1〜請求項7に記載の高濃度シリカスラリ−の製造方法。 After the silica gel and water were pulverized and dispersed by a media mill using a high purity silica ball having an average diameter of 0.5 to 5 mm and a purity of 99.95% or more as a medium, a negative charge high concentration slurry was obtained. The high-concentration silica slurry according to any one of claims 1 to 7, wherein the high-concentration silica slurry according to claim 1 is mixed with 2000 to 100,000 cationic polymer, washed with water to remove the salt, and then redispersed. Manufacturing method. メディアミルにより粉砕、分散化する前に、シリカゲルを純水に加え、アルカリを加えてスラリ−とし、樹脂製ボ−ルで粉砕することを特徴とする請求項8に記載の高濃度シリカスラリ−の製造方法。 9. The high-concentration silica slurry according to claim 8, wherein the silica gel is added to pure water, added with alkali to form a slurry, and pulverized with a resin ball before being pulverized and dispersed by a media mill. Production method. シリカゲルが珪酸ソ−ダを原料としたシリカゲルであることを特徴とする請求項8〜請求項9に記載の高濃度シリカスラリ−の製造方法。
10. The method for producing a high-concentration silica slurry according to claim 8, wherein the silica gel is silica gel made from silicate soda.
JP2006102380A 2006-04-03 2006-04-03 High-concentration silica slurry and method for producing the same Pending JP2007277023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102380A JP2007277023A (en) 2006-04-03 2006-04-03 High-concentration silica slurry and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102380A JP2007277023A (en) 2006-04-03 2006-04-03 High-concentration silica slurry and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007277023A true JP2007277023A (en) 2007-10-25

Family

ID=38678878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102380A Pending JP2007277023A (en) 2006-04-03 2006-04-03 High-concentration silica slurry and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007277023A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239536A (en) * 1998-12-24 2000-09-05 Tokuyama Corp Cationic resin-modified silica dispersion and its production
JP2001207078A (en) * 1999-11-18 2001-07-31 Tokuyama Corp Cationic resin modified silica dispersion
JP2002241122A (en) * 2001-02-13 2002-08-28 Tosoh Corp Method for manufacturing high-purity silica
WO2004094158A1 (en) * 2003-04-17 2004-11-04 Eastman Kodak Company Inkjet recording element comprising particles and polymers
JP2005145812A (en) * 2003-10-06 2005-06-09 Tosoh Corp High concentration silica slurry and method of producing the same
JP2005231954A (en) * 2004-02-20 2005-09-02 Tokuyama Corp Wet type silica dispersion liquid and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239536A (en) * 1998-12-24 2000-09-05 Tokuyama Corp Cationic resin-modified silica dispersion and its production
JP2001207078A (en) * 1999-11-18 2001-07-31 Tokuyama Corp Cationic resin modified silica dispersion
JP2002241122A (en) * 2001-02-13 2002-08-28 Tosoh Corp Method for manufacturing high-purity silica
WO2004094158A1 (en) * 2003-04-17 2004-11-04 Eastman Kodak Company Inkjet recording element comprising particles and polymers
JP2005145812A (en) * 2003-10-06 2005-06-09 Tosoh Corp High concentration silica slurry and method of producing the same
JP2005231954A (en) * 2004-02-20 2005-09-02 Tokuyama Corp Wet type silica dispersion liquid and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Hyung Mi et al. Comparative study of various preparation methods of colloidal silica
JP3517913B2 (en) Manufacturing method of elongated silica sol
JP5334385B2 (en) Production and use of polysilicate particulate material
KR100197149B1 (en) Concentrated suspension of precipitation silica, methods of preparation and utilization of said suspension
JP5103707B2 (en) High concentration silica slurry and method for producing the same
Asadi et al. Synthesis of colloidal nanosilica from waste glass powder as a low cost precursor
TW387859B (en) Amorphous precipitated silica
JP5673957B2 (en) Porous secondary agglomerated silica sol and method for producing the same
JPWO2003055800A1 (en) Inorganic oxide
JPH0597420A (en) Novel silica, method for its production and its use particularly as paper filler
JP6023554B2 (en) Method for producing scaly silica particles
RU2393114C2 (en) Grinding silicon dioxide using chemical methods
JP2007277023A (en) High-concentration silica slurry and method for producing the same
SADEGH et al. Facile and economic method for preparation of nano-colloidal Silica with controlled size and stability
JP3967538B2 (en) Method for producing cationic resin-modified silica dispersion
JP4846193B2 (en) Easily dispersible precipitated silica cake and method for producing the same
Nagao et al. Synthesis of silica particles in the hydrolysis of tetraethyl orthosilicate with amine catalysts
Tsai et al. Aluminum modified colloidal silica via sodium silicate
Tsai et al. Formation mechanisms of colloidal silica via sodium silicate
JP4574614B2 (en) Method for producing anisotropic silica aggregate
JPH04214022A (en) Production of flat silica sol
JP4421343B2 (en) Method for producing silica-calcium carbonate composite particles
JP2007527351A6 (en) Method for producing anisotropic silica aggregate
JP7269541B2 (en) Dispersion of amorphous aluminosilicate particles and method for producing the same
JP2006335635A (en) Method for producing ceria sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319