JP2007275740A - Treatment method of sludge - Google Patents

Treatment method of sludge Download PDF

Info

Publication number
JP2007275740A
JP2007275740A JP2006104407A JP2006104407A JP2007275740A JP 2007275740 A JP2007275740 A JP 2007275740A JP 2006104407 A JP2006104407 A JP 2006104407A JP 2006104407 A JP2006104407 A JP 2006104407A JP 2007275740 A JP2007275740 A JP 2007275740A
Authority
JP
Japan
Prior art keywords
sludge
hypochlorous acid
treatment tank
acid solution
orp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006104407A
Other languages
Japanese (ja)
Other versions
JP4704265B2 (en
Inventor
Tomoya Okamura
知也 岡村
Teruhisa Yoshida
輝久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006104407A priority Critical patent/JP4704265B2/en
Publication of JP2007275740A publication Critical patent/JP2007275740A/en
Application granted granted Critical
Publication of JP4704265B2 publication Critical patent/JP4704265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method of sludge which enables the stable sterilization of excess sludge by effectively adding hypochlorous acid. <P>SOLUTION: The treatment method of excess sludge comprises killing microbes in the excess sludge by loading the excess sludge produced in a water treatment system with a hypochlorous acid solution when organic wastewater is biologically treated, then repeatedly recirculating it to the water treatment system, and biologically decomposing/treating it, wherein an oxidation-reduction potential in a sludge treatment tank is measured to control the loading of the hypochlorous acid solution in the sludge treatment tank from the measured oxidation-reduction potential. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機性廃水を生物学的に処理することによって水処理系で発生する余剰汚泥に対し、次亜塩素酸による汚泥微生物の殺菌を行った後、再び水処理系の活性汚泥微生物によって生物学的に分解・処理するようにした汚泥の処理方法に関するものである。   The present invention sterilizes sludge microorganisms with hypochlorous acid against surplus sludge generated in the water treatment system by biologically treating organic wastewater, and then again with activated sludge microorganisms in the water treatment system. The present invention relates to a method for treating sludge that is biologically decomposed and treated.

近年、下水処理場の水処理系において発生する余剰汚泥を、物理学的、化学的あるいは生物学的の少なくともひとつ以上の手段を用いて処理する、すなわち、余剰汚泥中の微生物を殺菌し、再び水処理系に返流することで水処理系内の活性汚泥微生物に分解・処理させる汚泥減量化技術が開発されている。   In recent years, surplus sludge generated in the water treatment system of a sewage treatment plant is treated using at least one of physical, chemical or biological means, that is, microorganisms in the surplus sludge are sterilized, and again A sludge reduction technology has been developed in which activated sludge microorganisms in the water treatment system are decomposed and treated by returning them to the water treatment system.

ところで、本件出願人は、このような余剰汚泥中の微生物の殺菌方法として、次亜塩素酸が有する酸化力及び殺菌力を利用する方法に着目し、余剰汚泥に次亜塩素酸溶液を添加する方法を提案している。
次亜塩素酸は、溶液中では次亜塩素酸あるいは次亜塩素酸イオンの形態で存在し、合わせて遊離塩素と呼ばれる。遊離塩素は強力な酸化力を有しており、その酸化力により余剰汚泥中の汚泥微生物を殺菌することができる。
By the way, the present applicant pays attention to a method using the oxidizing power and sterilizing power of hypochlorous acid as a method for sterilizing microorganisms in such excess sludge, and adds a hypochlorous acid solution to the excess sludge. Proposed method.
Hypochlorous acid exists in solution in the form of hypochlorous acid or hypochlorite ions, and is collectively called free chlorine. Free chlorine has a strong oxidizing power, and the oxidizing power can sterilize sludge microorganisms in excess sludge.

余剰汚泥へ次亜塩素酸溶液を添加するに当たり、その添加量を制御することが必要となるが、次亜塩素酸溶液は保存中にその成分が分解され、塩素ガスとして系外に排出されるなどして、殺菌効果が弱くなることがある。
したがって、定量的に添加を制御している場合、殺菌に必要とされるだけの殺菌成分が添加されず、これに伴い、汚泥微生物の十分な殺菌処理が達成できないことが懸念される。
When adding hypochlorous acid solution to excess sludge, it is necessary to control the amount of addition, but the components of hypochlorous acid solution are decomposed during storage and discharged out of the system as chlorine gas. For example, the bactericidal effect may be weakened.
Therefore, when the addition is controlled quantitatively, only the sterilizing components required for sterilization are not added, and accordingly, there is a concern that sufficient sterilization treatment of sludge microorganisms cannot be achieved.

あるいは、時間を区切って断続的に次亜塩素酸溶液を添加している場合、添加しない時間が長くなれば、処理槽内の遊離塩素濃度が低くなることで、十分な殺菌効果が得られないことが懸念され、逆に添加する時間が長ければ過剰に添加しすぎることになるなどの問題がある。   Alternatively, when the hypochlorous acid solution is intermittently added at intervals of time, if the non-addition time is lengthened, the free chlorine concentration in the treatment tank is lowered, so that a sufficient sterilizing effect cannot be obtained. In contrast, if the time of addition is long, there is a problem that it is excessively added.

本発明は、上記従来の汚泥の処理方法が有する問題点に鑑み、次亜塩素酸溶液を効果的に添加することにより、余剰汚泥の殺菌を安定して実施することができる汚泥の処理方法を提供することを目的とする。   In view of the problems of the conventional sludge treatment method, the present invention provides a sludge treatment method capable of stably sterilizing excess sludge by effectively adding a hypochlorous acid solution. The purpose is to provide.

上記目的を達成するため、本発明の汚泥の処理方法は、有機性廃水を生物学的に処理するに際し、水処理系で発生した余剰汚泥に次亜塩素酸溶液を添加することにより、余剰汚泥中の微生物を殺傷せしめた後、再び水処理系に返流し、生物学的に分解・処理する余剰汚泥の処理方法において、汚泥処理槽内の酸化還元電位(以下、本明細書において、「ORP」という。)を測定し、該測定したORPに基づいて汚泥処理槽における次亜塩素酸溶液の添加を制御することを特徴とする。   In order to achieve the above-mentioned object, the sludge treatment method of the present invention adds surplus sludge by adding a hypochlorous acid solution to surplus sludge generated in a water treatment system when biologically treating organic wastewater. In the method of surplus sludge that is returned to the water treatment system again and biologically decomposed / treated, the oxidation-reduction potential in the sludge treatment tank (hereinafter referred to as “ It is characterized by controlling the addition of the hypochlorous acid solution in the sludge treatment tank based on the measured ORP.

この場合において、汚泥処理槽内のORPの時間的変化を測定し、その時間的変化が概ねゼロとなった時に次亜塩素酸溶液の添加を開始することができる。   In this case, the temporal change of the ORP in the sludge treatment tank is measured, and the addition of the hypochlorous acid solution can be started when the temporal change becomes substantially zero.

また、汚泥処理槽におけるORPとともに、汚泥処理槽の前段に設けた調整槽でのORPを併せて測定し、それらの差に基づいて次亜塩素酸溶液の添加を制御することができる。   Moreover, ORP in the adjustment tank provided in the front | former stage of the sludge treatment tank can be measured together with the ORP in the sludge treatment tank, and the addition of the hypochlorous acid solution can be controlled based on the difference therebetween.

また、汚泥処理槽内のpHが3〜6程度となるように、汚泥処理槽あるいは汚泥処理槽の前段に設けた調整槽において酸を添加することができる。   Moreover, an acid can be added in the adjustment tank provided in the front | former stage of a sludge treatment tank or a sludge treatment tank so that pH in a sludge treatment tank may be set to about 3-6.

本発明の汚泥の処理方法によれば、汚泥処理槽内のORPを測定し、該測定したORPに基づいて汚泥処理槽における次亜塩素酸溶液の添加を制御することから、次亜塩素酸溶液の添加量を常に適切に制御し、もって効率的に汚泥微生物を殺菌することができる。   According to the sludge treatment method of the present invention, the ORP in the sludge treatment tank is measured, and the addition of the hypochlorous acid solution in the sludge treatment tank is controlled based on the measured ORP. Therefore, the sludge microorganisms can be sterilized efficiently by always appropriately controlling the amount of the added.

この場合、汚泥処理槽内のORPの時間的変化を測定し、その時間的変化が概ねゼロとなった時に次亜塩素酸溶液の添加を開始することにより、汚泥処理槽内の遊離塩素がほぼなくなった時点から、新たに次亜塩素酸溶液の添加をはじめる制御をとることができる。   In this case, the temporal change of the ORP in the sludge treatment tank is measured, and when the temporal change becomes almost zero, the addition of the hypochlorous acid solution is started, so that the free chlorine in the sludge treatment tank is almost reduced. It is possible to take control to start adding a new hypochlorous acid solution from the point when it disappears.

また、汚泥処理槽におけるORPとともに、汚泥処理槽の前段に設けた調整槽でのORPを併せて測定し、それらの差に基づいて次亜塩素酸溶液の添加を制御することにより、添加前の余剰汚泥の状況にかかわらず、実際に添加する次亜塩素酸溶液の量を把握することができる。   Moreover, together with the ORP in the sludge treatment tank, the ORP in the adjustment tank provided in the previous stage of the sludge treatment tank is also measured, and the addition of the hypochlorous acid solution is controlled based on the difference between them. Regardless of the state of excess sludge, the amount of hypochlorous acid solution actually added can be grasped.

また、汚泥処理槽内のpHが3〜6程度となるように、汚泥処理槽あるいは汚泥処理槽の前段に設けた調整槽において酸を添加することにより、汚泥処理槽内のORPを測定する際に、次亜塩素酸の存在比率が少なくとも90%以上となるpH領域に調整し、その時のORPで次亜塩素酸溶液の添加を制御することができる。   Moreover, when measuring ORP in a sludge treatment tank by adding an acid in a sludge treatment tank or the adjustment tank provided in the front | former stage of a sludge treatment tank so that pH in a sludge treatment tank may be set to about 3-6. In addition, the addition of the hypochlorous acid solution can be controlled by adjusting the pH range so that the abundance ratio of hypochlorous acid is at least 90% or more and ORP at that time.

以下、本発明の汚泥の処理方法の実施の形態を、図面を用いて説明する。   Hereinafter, embodiments of the sludge treatment method of the present invention will be described with reference to the drawings.

汚泥微生物の殺菌処理における制御方法では、有機性廃水を汚泥微生物を用いて生物学的に処理する廃水処理施設において、水処理系で発生した余剰汚泥に次亜塩素酸溶液を添加することで、当該汚泥中の微生物を殺菌せしめた後、再び水処理系に返流することで、当該水処理系に存在する汚泥微生物によって殺菌汚泥を生物学的に分解・処理させるようにしている。
本発明の汚泥の処理方法は、このような余剰汚泥の処理系において、汚泥処理槽内のORPを測定し、もって汚泥処理槽において添加する次亜塩素酸溶液の量を制御するようにしている。
In the control method in the sterilization treatment of sludge microorganisms, in a wastewater treatment facility that biologically treats organic wastewater using sludge microorganisms, by adding a hypochlorous acid solution to excess sludge generated in the water treatment system, The microorganisms in the sludge are sterilized and then returned to the water treatment system, so that the sterilized sludge is biologically decomposed and treated by the sludge microorganisms present in the water treatment system.
The sludge treatment method of the present invention measures the ORP in the sludge treatment tank and controls the amount of hypochlorous acid solution added in the sludge treatment tank in such a surplus sludge treatment system. .

汚泥に添加する次亜塩素酸溶液には、遊離塩素(次亜塩素酸及び次亜塩素酸イオン)が含まれるが、これらはいずれも強力な酸化剤であり、汚泥処理槽において汚泥に次亜塩素酸溶液を添加すると、当該処理槽における酸化剤の量が増えるため、当該処理槽内のORPが上昇する。
この場合、ORPの上昇は、汚泥微生物に対する殺菌能力を高めることをも意味する。
したがって、汚泥微生物の殺菌に必要となる遊離塩素濃度と、そのときの汚泥中のORPの増加分をあらかじめ把握しておくことにより、次亜塩素酸溶液の必要添加量を汚泥処理槽内のORPによって制御することができる。
The hypochlorous acid solution added to the sludge contains free chlorine (hypochlorous acid and hypochlorite ions), both of which are strong oxidizers. When the chloric acid solution is added, the amount of the oxidizing agent in the treatment tank increases, so that the ORP in the treatment tank rises.
In this case, an increase in ORP also means increasing the sterilizing ability against sludge microorganisms.
Therefore, by grasping in advance the concentration of free chlorine necessary for sterilization of sludge microorganisms and the increment of ORP in the sludge at that time, the required amount of hypochlorous acid solution added can be determined in the ORP in the sludge treatment tank. Can be controlled by.

一方、汚泥に添加された次亜塩素酸溶液中の遊離塩素は、汚泥中の微生物と反応すなわち微生物の殺菌に用いられるが、これにより遊離塩素は酸化力を失い、もって汚泥処理槽内のORPは低下する。
したがって、当該処理槽内のORPを経時的に観察することで、遊離塩素が完全に消失したのか、あるいはまだ残存しているのかを判断することができる。
そこで、汚泥処理槽内のORPの時間的変化を測定し、その変化が概ねゼロとなった時に、当該処理槽内の遊離塩素がほぼなくなったと判断し、新たに次亜塩素酸溶液の添加をはじめる制御をとることができる。
On the other hand, the free chlorine in the hypochlorous acid solution added to the sludge is used for reaction with microorganisms in the sludge, that is, for sterilization of the microorganisms. Will decline.
Therefore, by observing the ORP in the treatment tank over time, it can be determined whether the free chlorine has completely disappeared or still remains.
Therefore, the temporal change of the ORP in the sludge treatment tank was measured, and when the change became almost zero, it was judged that the free chlorine in the treatment tank was almost gone, and a new hypochlorous acid solution was added. The first control can be taken.

あるいは、汚泥処理槽内のORPだけでなく、当該処理槽に投入する前の汚泥中のORPを測定し、それらの差によって次亜塩素酸溶液の添加を制御することができる。
すなわち、あらかじめ余剰汚泥中のORPを測定するとともに、汚泥微生物の殺菌に要する次亜塩素酸溶液を添加した時のORPの増加分(V1)を測定しておくことで、汚泥処理槽の前後におけるORPの増加から、所定量の次亜塩素酸溶液が添加されたことを検知し、当該溶液注入ポンプを停止させることができる。
同様に、殺菌処理が終了した時のORPを測定し、次亜塩素酸溶液を添加する前の余剰汚泥中のORPとの差(V2)を求めておくことで、殺菌処理の終了を検知するとともに、新たに次亜塩素酸溶液を添加するタイミングを計ることができる。
このように、次亜塩素酸溶液を添加する前後のORPの差によって当該溶液の添加を制御することで、添加前の汚泥の状況にかかわらず実際に添加する当該溶液の量を把握することができる。
Alternatively, not only the ORP in the sludge treatment tank but also the ORP in the sludge before being put into the treatment tank can be measured, and the addition of the hypochlorous acid solution can be controlled by the difference between them.
That is, the ORP in the excess sludge is measured in advance, and the increase (V1) of the ORP when the hypochlorous acid solution required for sterilization of the sludge microorganisms is measured in advance, before and after the sludge treatment tank. From the increase in ORP, it can be detected that a predetermined amount of hypochlorous acid solution has been added, and the solution injection pump can be stopped.
Similarly, the end of the sterilization treatment is detected by measuring the ORP when the sterilization treatment is finished and obtaining the difference (V2) from the ORP in the excess sludge before adding the hypochlorous acid solution. At the same time, the timing for newly adding the hypochlorous acid solution can be measured.
Thus, by controlling the addition of the solution according to the ORP difference before and after adding the hypochlorous acid solution, it is possible to grasp the amount of the solution actually added regardless of the state of the sludge before the addition. it can.

一方、次亜塩素酸溶液中の次亜塩素酸及び次亜塩素酸イオンは、その酸化力に大きな違いがあるだけでなく、当該溶液中のpHによってその存在比率を変化させる。すなわち、次亜塩素酸は次亜塩素酸イオンに比べて数十倍の酸化力を有しているため殺菌能力についても次亜塩素酸の方が高くなり、ORPに関しても次亜塩素酸の方が高くなる。
また、存在比率については、pHが7.5程度の時に50%ずつであり、酸性領域になるにつれ次亜塩素酸の比率が高くなり、pH5近辺で100%となる。
したがって、汚泥処理槽内のORPを測定する際、次亜塩素酸の存在比率が少なくとも90%以上となるpH領域、すなわち3以上6以下となるように酸を添加することで調整し、その時のORPで次亜塩素酸溶液の添加を制御することができる。
なお、本発明の請求項3にあるように、次亜塩素酸溶液を添加する前後のORPによって添加の制御を行う場合、当該溶液の添加によってpHが1程度上昇することを踏まえ、調整槽でのpHは3以上5以下となるように酸の添加を制御することができる。
On the other hand, hypochlorous acid and hypochlorite ions in a hypochlorous acid solution not only have a great difference in oxidizing power, but also change their abundance ratio depending on the pH in the solution. In other words, hypochlorous acid has an oxidizing power several tens of times higher than that of hypochlorite ion, so that hypochlorous acid has higher sterilizing ability, and hypochlorite also has an ORP. Becomes higher.
Further, the existence ratio is 50% each when the pH is about 7.5, and the ratio of hypochlorous acid increases as the acidic region is reached, and becomes 100% near pH 5.
Therefore, when measuring the ORP in the sludge treatment tank, it is adjusted by adding acid so that the abundance ratio of hypochlorous acid is at least 90% or more, that is, 3 or more and 6 or less. The addition of hypochlorous acid solution can be controlled by ORP.
As described in claim 3 of the present invention, when the addition is controlled by ORP before and after adding the hypochlorous acid solution, the pH is increased by about 1 by adding the solution. The addition of acid can be controlled so that the pH of the solution is 3 or more and 5 or less.

図1に、本発明の汚泥の処理方法の第1実施例を示す。
水処理系において発生した余剰汚泥Aは、連続的又は間欠的に汚泥処理槽1に投入される。当該処理槽1には、pHセンサー2が設置されており、当該処理槽1内のpHが測定され、pH値信号BとしてpH制御装置3に送られる。
汚泥処理槽1におけるpH領域を4.5〜5.5で運転する場合、汚泥処理槽1内のpHが上限値の5.5以上であった場合、酸注入ポンプ制御指令CがpH制御装置3より発せられることで酸注入ポンプ4を作動させ、もって酸貯留タンク5から酸Dが汚泥処理槽1に添加される。
汚泥処理槽1内のpHは連続的に測定されており、酸Dの添加によってpHが下限値の4.5にまで達した場合、新たに酸注入ポンプ制御指令Cが発せられ、酸注入ポンプ4が停止する。
FIG. 1 shows a first embodiment of the sludge treatment method of the present invention.
Excess sludge A generated in the water treatment system is charged into the sludge treatment tank 1 continuously or intermittently. A pH sensor 2 is installed in the treatment tank 1, and the pH in the treatment tank 1 is measured and sent to the pH controller 3 as a pH value signal B.
When operating the pH region in the sludge treatment tank 1 at 4.5 to 5.5, when the pH in the sludge treatment tank 1 is 5.5 or more of the upper limit value, the acid injection pump control command C is a pH controller. 3, the acid injection pump 4 is operated, and the acid D is added from the acid storage tank 5 to the sludge treatment tank 1.
The pH in the sludge treatment tank 1 is continuously measured. When the pH reaches the lower limit of 4.5 due to the addition of the acid D, an acid injection pump control command C is newly issued, and the acid injection pump 4 stops.

同様に、汚泥処理槽1内にはORPセンサー6が設置されており、当該処理槽1内のORPが連続的に測定され、次亜塩素酸溶液Gが添加される。このときの、汚泥処理槽1内のORPの状況と次亜塩素酸溶液添加の制御方法を示したのが図2である。
すなわち、汚泥処理槽1内のORPは連続的にORP値信号EとしてORP制御装置7に送られているが、当該制御装置7においてORPに変化がないことを検出した時間が、設定時間τに達すると、当該制御装置7から次亜塩素酸溶液注入ポンプ制御指令Fが発せられることで次亜塩素酸溶液注入ポンプ8が作動し、次亜塩素酸溶液貯留タンク9から次亜塩素酸溶液Gが汚泥処理槽1に注入される。
Similarly, an ORP sensor 6 is installed in the sludge treatment tank 1, the ORP in the treatment tank 1 is continuously measured, and the hypochlorous acid solution G is added. FIG. 2 shows the state of the ORP in the sludge treatment tank 1 and the control method of the hypochlorous acid solution addition at this time.
That is, the ORP in the sludge treatment tank 1 is continuously sent to the ORP control device 7 as the ORP value signal E, but the time when the control device 7 detects that the ORP has not changed is the set time τ. When the control device 7 reaches, a hypochlorous acid solution injection pump control command F is issued to operate the hypochlorous acid solution injection pump 8, and the hypochlorous acid solution G is transferred from the hypochlorous acid solution storage tank 9. Is injected into the sludge treatment tank 1.

次亜塩素酸溶液Gを添加することで、汚泥処理槽1内の遊離塩素すなわち酸化剤の濃度が高くなるため、当該処理槽1内のORPは上昇するが、あらかじめ決められた設定ORP値αに達すると、ORP制御装置7から新たに次亜塩素酸溶液注入ポンプ制御指令Fが発せられ次亜塩素酸溶液注入ポンプ8が停止する。なお、設定ORP値αに関しては、余剰汚泥A中の微生物を殺菌するのに必要となる次亜塩素酸溶液の濃度を求め、このときのORP値に設定する。   By adding the hypochlorous acid solution G, the concentration of free chlorine, that is, the oxidizing agent in the sludge treatment tank 1 increases, so that the ORP in the treatment tank 1 rises, but a predetermined set ORP value α Is reached, a hypochlorous acid solution injection pump control command F is newly issued from the ORP control device 7, and the hypochlorous acid solution injection pump 8 is stopped. Regarding the set ORP value α, the concentration of the hypochlorous acid solution necessary for sterilizing the microorganisms in the excess sludge A is obtained and set to the ORP value at this time.

汚泥処理槽1に添加された次亜塩素酸溶液G中の遊離塩素は、余剰汚泥A中の微生物の殺菌に用いられることでその酸化力を失うが、これとともに当該処理槽1内のORPも徐々に低下していく。最終的に、汚泥処理槽1内の遊離塩素がなくなると、当該処理槽1内のORPに変化はなくなり、その期間が設定時間τに達すると再び次亜塩素酸溶液注入ポンプ8の運転が開始する。
なお、汚泥処理槽1において一定時間滞留し殺菌処理された汚泥は、処理汚泥Hとして槽外に排出され、水処理系に再び返流されるが、当該処理系に保持された活性汚泥微生物によって分解・処理される。
なお、汚泥処理槽1の内部は、十分に攪拌混合されている状態が望ましいため、図1や後述する図3には図示していないものの、攪拌羽根や散気管を用いて緩やかな攪拌を行う必要がある。
The free chlorine in the hypochlorous acid solution G added to the sludge treatment tank 1 loses its oxidizing power by being used for sterilization of microorganisms in the excess sludge A, but with this, the ORP in the treatment tank 1 also It gradually decreases. Finally, when there is no free chlorine in the sludge treatment tank 1, there is no change in the ORP in the treatment tank 1, and when the period reaches the set time τ, the operation of the hypochlorous acid solution injection pump 8 starts again. To do.
In addition, the sludge which stayed in the sludge treatment tank 1 for a certain period of time and has been sterilized is discharged out of the tank as the treated sludge H and returned to the water treatment system again, but the activated sludge microorganisms retained in the treatment system Disassembled and processed.
In addition, since it is desirable that the inside of the sludge treatment tank 1 is sufficiently agitated and mixed, although not shown in FIG. 1 or FIG. 3 described later, gentle agitation is performed using a stirring blade or a diffuser tube. There is a need.

図3に、本発明の汚泥の処理方法の第2実施例を示す。
水処理系において発生した余剰汚泥Aは、連続的又は間欠的に調整槽10に流入するが、調整槽10では、設置されたpHセンサー2及びpH制御装置3によって酸注入ポンプ4の運転が制御されることにより、当該調整槽10内のpHが3.5〜4.5になるように酸Dが添加される。
なお、このときの設定pHは、後段の汚泥処理槽1において次亜塩素酸溶液を添加した際に、pHが1程度増加することを踏まえ、当該処理槽1におけるpHが4.5〜5.5程度になるように設定した。
FIG. 3 shows a second embodiment of the sludge treatment method of the present invention.
Excess sludge A generated in the water treatment system flows into the adjustment tank 10 continuously or intermittently. In the adjustment tank 10, the operation of the acid injection pump 4 is controlled by the installed pH sensor 2 and pH controller 3. By doing so, the acid D is added so that the pH in the said adjustment tank 10 may be set to 3.5-4.5.
In addition, when the hypochlorous acid solution is added in the subsequent sludge treatment tank 1, the pH in the treatment tank 1 is 4.5 to 5. It was set to be about 5.

調整槽10では、pHの調整が行われるとともに、当該調整槽10に設置された前段ORPセンサー11によって当該調整槽10内のORPが測定され、初期ORP値βとしてORP制御装置7に前段ORP値信号Iが連続的に送られる。
pHが調整された汚泥は、調整汚泥Jとして流出し、汚泥処理槽1に流入する。当該処理槽1にはORPセンサー6が設置されており、当該処理槽1内のORPが連続的に測定され、ORP値信号EとしてORP制御装置7へ送られる。
In the adjustment tank 10, the pH is adjusted, the ORP in the adjustment tank 10 is measured by the preceding ORP sensor 11 installed in the adjustment tank 10, and the preceding ORP value is sent to the ORP controller 7 as the initial ORP value β. Signal I is sent continuously.
The sludge whose pH has been adjusted flows out as adjusted sludge J and flows into the sludge treatment tank 1. An ORP sensor 6 is installed in the processing tank 1, and the ORP in the processing tank 1 is continuously measured and sent to the ORP controller 7 as an ORP value signal E.

ここで、汚泥処理槽1におけるORPの変化と、次亜塩素酸溶液添加の制御方法の一例を示したのが図4である。
汚泥処理槽1において、調整汚泥Jに次亜塩素酸溶液Gが添加されると、次第に当該処理槽1内のORPは初期ORP値βと比べて増加し、その増加分があらかじめ設定された設定上限値γに達すると、次亜塩素酸溶液注入ポンプ制御指令Fが発生され、次亜塩素酸溶液注入ポンプ8は停止する。
このとき、汚泥処理槽1内には汚泥微生物の殺菌に必要となる次亜塩素酸溶液Gが注入されており、汚泥微生物の殺菌処理が進行する。
Here, FIG. 4 shows an example of a control method for changing the ORP in the sludge treatment tank 1 and adding the hypochlorous acid solution.
In the sludge treatment tank 1, when the hypochlorous acid solution G is added to the adjusted sludge J, the ORP in the treatment tank 1 gradually increases compared to the initial ORP value β, and the increment is set in advance. When the upper limit value γ is reached, a hypochlorous acid solution injection pump control command F is generated, and the hypochlorous acid solution injection pump 8 stops.
At this time, the hypochlorous acid solution G required for the sterilization of the sludge microorganisms is injected into the sludge treatment tank 1, and the sterilization process of the sludge microorganisms proceeds.

殺菌処理が進行するにつれ、添加した遊離塩素の濃度が低下するため、汚泥処理槽1内のORPは低下していく。
その後、当該処理槽1内のORPと初期ORP値βとの差が設定下限値δになった時に、新たな次亜塩素酸溶液注入ポンプ制御指令FがORP制御装置7から発生され、次亜塩素酸溶液注入ポンプ8が作動し、次亜塩素酸溶液貯留タンク9から次亜塩素酸溶液Gが注入される。なお、設定下限値δを検出した時は、汚泥処理槽1においては汚泥微生物の殺菌処理に要する遊離塩素の量が不足している状態である。
As the sterilization process proceeds, the concentration of the added free chlorine decreases, so the ORP in the sludge treatment tank 1 decreases.
Thereafter, when the difference between the ORP in the treatment tank 1 and the initial ORP value β reaches the set lower limit value δ, a new hypochlorous acid solution injection pump control command F is generated from the ORP control device 7, and The chloric acid solution injection pump 8 is operated, and the hypochlorous acid solution G is injected from the hypochlorous acid solution storage tank 9. When the set lower limit value δ is detected, the sludge treatment tank 1 is in a state where the amount of free chlorine required for the sterilization treatment of sludge microorganisms is insufficient.

このような制御により、汚泥処理槽1では汚泥微生物の殺菌処理が行われるが、一定時間滞留し殺菌処理された汚泥は、処理汚泥Hとして槽外に排出され、水処理系に再び返流されて、当該処理系に保持された活性汚泥微生物によって分解・処理される。   By such control, the sludge microorganisms are sterilized in the sludge treatment tank 1, but the sludge that remains for a certain period of time and is sterilized is discharged out of the tank as treated sludge H and returned to the water treatment system again. Then, it is decomposed and treated by the activated sludge microorganisms held in the treatment system.

以上、本発明の汚泥の処理方法について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the processing method of the sludge of the present invention was explained based on the example, the present invention is not limited to the composition described in the above-mentioned example, suitably combining the composition described in the example, The configuration can be changed as appropriate without departing from the spirit of the invention.

本発明の汚泥の処理方法は、次亜塩素酸溶液を効果的に添加することにより、余剰汚泥の殺菌を安定して実施することができることから、例えば、余剰汚泥の効率的な可溶化の用途に好適に用いることができる。   Since the sludge treatment method of the present invention can stably carry out sterilization of excess sludge by effectively adding a hypochlorous acid solution, for example, use of efficient solubilization of excess sludge Can be suitably used.

本発明の汚泥の処理方法の第1実施例を示す説明図である。It is explanatory drawing which shows 1st Example of the processing method of the sludge of this invention. 同実施例による制御方法を利用した1点式ORP制御の一例を示すグラフである。It is a graph which shows an example of 1 point type | mold ORP control using the control method by the Example. 本発明の汚泥の処理方法の第2実施例を示す説明図である。It is explanatory drawing which shows 2nd Example of the processing method of the sludge of this invention. 同実施例による制御方法を利用した2点式ORP制御の一例を示すグラフであるIt is a graph which shows an example of 2 point | piece type ORP control using the control method by the Example.

符号の説明Explanation of symbols

1 汚泥処理槽
2 pHセンサー
3 pH制御装置
4 酸注入ポンプ
5 酸貯留タンク
6 ORPセンサー
7 ORP制御装置
8 次亜塩素酸溶液注入ポンプ
9 次亜塩素酸溶液貯留タンク
10 調整槽
11 前段ORPセンサー
A 余剰汚泥
B pH値信号
C 酸注入ポンプ制御指令
D 酸
E ORP値信号
F 次亜塩素酸溶液注入ポンプ制御指令
G 次亜塩素酸溶液
H 処理汚泥
I 前段ORP値信号
J 調整汚泥
α 設定ORP値
β 初期ORP値
γ 設定上限値
δ 設定下限値
τ 設定時間
DESCRIPTION OF SYMBOLS 1 Sludge processing tank 2 pH sensor 3 pH control device 4 Acid injection pump 5 Acid storage tank 6 ORP sensor 7 ORP control device 8 Hypochlorous acid solution injection pump 9 Hypochlorous acid solution storage tank 10 Adjustment tank 11 Pre-stage ORP sensor A Excess sludge B pH value signal C Acid injection pump control command D Acid E ORP value signal F Hypochlorous acid solution injection pump control command G Hypochlorous acid solution H Treated sludge I Pre-stage ORP value signal J Adjusted sludge α Setting ORP value β Initial ORP value γ Setting upper limit value δ Setting lower limit value τ Setting time

Claims (4)

有機性廃水を生物学的に処理するに際し、水処理系で発生した余剰汚泥に次亜塩素酸溶液を添加することにより、余剰汚泥中の微生物を殺傷せしめた後、再び水処理系に返流し、生物学的に分解・処理する余剰汚泥の処理方法において、汚泥処理槽内の酸化還元電位を測定し、該測定した酸化還元電位に基づいて汚泥処理槽における次亜塩素酸溶液の添加を制御することを特徴とする汚泥の処理方法。   When biologically treating organic wastewater, a hypochlorous acid solution is added to the excess sludge generated in the water treatment system to kill microorganisms in the excess sludge and then return to the water treatment system again. In the treatment method of surplus sludge that is biologically decomposed and treated, the oxidation-reduction potential in the sludge treatment tank is measured, and the hypochlorous acid solution is added to the sludge treatment tank based on the measured oxidation-reduction potential. A method of treating sludge characterized by controlling. 汚泥処理槽内の酸化還元電位の時間的変化を測定し、その時間的変化が概ねゼロとなった時に次亜塩素酸溶液の添加を開始することを特徴とする請求項1記載の汚泥の処理方法。   2. The sludge treatment according to claim 1, wherein the temporal change of the oxidation-reduction potential in the sludge treatment tank is measured, and the addition of the hypochlorous acid solution is started when the temporal change becomes substantially zero. Method. 汚泥処理槽における酸化還元電位とともに、汚泥処理槽の前段に設けた調整槽での酸化還元電位を併せて測定し、それらの差に基づいて次亜塩素酸溶液の添加を制御することを特徴とする請求項1又は2記載の汚泥の処理方法。   In addition to the oxidation-reduction potential in the sludge treatment tank, the oxidation-reduction potential in the adjustment tank provided in the previous stage of the sludge treatment tank is also measured, and the addition of the hypochlorous acid solution is controlled based on the difference between them. The method for treating sludge according to claim 1 or 2. 汚泥処理槽内のpHが3〜6程度となるように、汚泥処理槽あるいは汚泥処理槽の前段に設けた調整槽において酸を添加することを特徴とする請求項1、2又は3記載の汚泥の処理方法。   The sludge according to claim 1, 2, or 3, wherein an acid is added in a sludge treatment tank or an adjustment tank provided in front of the sludge treatment tank so that the pH in the sludge treatment tank is about 3 to 6. Processing method.
JP2006104407A 2006-04-05 2006-04-05 Sludge treatment method Expired - Fee Related JP4704265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104407A JP4704265B2 (en) 2006-04-05 2006-04-05 Sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104407A JP4704265B2 (en) 2006-04-05 2006-04-05 Sludge treatment method

Publications (2)

Publication Number Publication Date
JP2007275740A true JP2007275740A (en) 2007-10-25
JP4704265B2 JP4704265B2 (en) 2011-06-15

Family

ID=38677803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104407A Expired - Fee Related JP4704265B2 (en) 2006-04-05 2006-04-05 Sludge treatment method

Country Status (1)

Country Link
JP (1) JP4704265B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190799A (en) * 1984-10-08 1986-05-08 Mitsubishi Gas Chem Co Inc Method for controlling rancidity of sludge
JPS62234600A (en) * 1986-04-03 1987-10-14 Kurita Water Ind Ltd Method for concentrating organic sludge
JPH06320195A (en) * 1993-05-10 1994-11-22 Kurita Water Ind Ltd Deodorization method of dewatered sludge cake
JPH10109100A (en) * 1996-10-04 1998-04-28 Terunaito:Kk Volume reduction treatment of high water containing dreading bottom mud
JP2000166524A (en) * 1998-12-02 2000-06-20 Kurita Water Ind Ltd Washing and sterilizing apparatus for fresh food and method therefor
JP2002126795A (en) * 2000-10-27 2002-05-08 Nippon Kankyo Create Kk Sludge weight-reduction method and device
JP2004223448A (en) * 2003-01-24 2004-08-12 Kawasaki Heavy Ind Ltd Method for automatically controlling injection rate of sterilant to waste water and system for the same
JP2004275882A (en) * 2003-03-14 2004-10-07 Yoshiyuki Sawada Treatment apparatus for organic sludge
JP2005066566A (en) * 2003-08-28 2005-03-17 Hitachi Maxell Ltd Waste sludge treatment method
JP2005081237A (en) * 2003-09-08 2005-03-31 Hitachi Plant Eng & Constr Co Ltd Method for reducing volume of sludge
JP2005169251A (en) * 2003-12-11 2005-06-30 Hitachi Maxell Ltd Treating method of excess sludge
JP2005246328A (en) * 2004-03-08 2005-09-15 Hitachi Kiden Kogyo Ltd Treatment apparatus for reduction of sludge
JP2005254080A (en) * 2004-03-10 2005-09-22 Hitachi Maxell Ltd Surplus sludge reduction system
JP2005296852A (en) * 2004-04-13 2005-10-27 Sumiju Kankyo Engineering Kk Facilities and method for biological treatment
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190799A (en) * 1984-10-08 1986-05-08 Mitsubishi Gas Chem Co Inc Method for controlling rancidity of sludge
JPS62234600A (en) * 1986-04-03 1987-10-14 Kurita Water Ind Ltd Method for concentrating organic sludge
JPH06320195A (en) * 1993-05-10 1994-11-22 Kurita Water Ind Ltd Deodorization method of dewatered sludge cake
JPH10109100A (en) * 1996-10-04 1998-04-28 Terunaito:Kk Volume reduction treatment of high water containing dreading bottom mud
JP2000166524A (en) * 1998-12-02 2000-06-20 Kurita Water Ind Ltd Washing and sterilizing apparatus for fresh food and method therefor
JP2002126795A (en) * 2000-10-27 2002-05-08 Nippon Kankyo Create Kk Sludge weight-reduction method and device
JP2004223448A (en) * 2003-01-24 2004-08-12 Kawasaki Heavy Ind Ltd Method for automatically controlling injection rate of sterilant to waste water and system for the same
JP2004275882A (en) * 2003-03-14 2004-10-07 Yoshiyuki Sawada Treatment apparatus for organic sludge
JP2005066566A (en) * 2003-08-28 2005-03-17 Hitachi Maxell Ltd Waste sludge treatment method
JP2005081237A (en) * 2003-09-08 2005-03-31 Hitachi Plant Eng & Constr Co Ltd Method for reducing volume of sludge
JP2005169251A (en) * 2003-12-11 2005-06-30 Hitachi Maxell Ltd Treating method of excess sludge
JP2005246328A (en) * 2004-03-08 2005-09-15 Hitachi Kiden Kogyo Ltd Treatment apparatus for reduction of sludge
JP2005254080A (en) * 2004-03-10 2005-09-22 Hitachi Maxell Ltd Surplus sludge reduction system
JP2005296852A (en) * 2004-04-13 2005-10-27 Sumiju Kankyo Engineering Kk Facilities and method for biological treatment
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge

Also Published As

Publication number Publication date
JP4704265B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
Del Moro et al. Comparison of UV/H2O2 based AOP as an end treatment or integrated with biological degradation for treating landfill leachates
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
JP4673709B2 (en) Water treatment system
CN107207297B (en) Water treatment device and water treatment method
KR101459376B1 (en) Water treatment apparatus having control system and water treatment process using thereof
JP2010179272A (en) Wastewater treatment apparatus and wastewater treatment method
JP2007044612A (en) Apparatus for treating sludge
JP4704265B2 (en) Sludge treatment method
JP2007196207A (en) Wastewater treatment apparatus and wastewater treatment method
JP4509644B2 (en) Ozone gas injection control system
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
JP2006198544A (en) System and method for controlling water treatment
JP2009531159A (en) Excess sludge digestion method and equipment
CN107473519A (en) A kind of biochemical processing method of ultrahigh concentration ammonia nitrogen waste water
JP4683977B2 (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2010075872A (en) Drainage treating method and apparatus
JP2005021865A (en) Method for treating waste water containing sulfur-containing organic compound
JP2009112992A (en) Method and apparatus for treating waste water containing organic matter
JP2006272234A (en) Sludge digestion method
JP2005081237A (en) Method for reducing volume of sludge
JP2007007546A (en) Sludge treatment method
JP2003136085A (en) Organic wastewater treatment method
JP2007216186A (en) Treatment method of sludge
JP2007203234A (en) Treatment method of sludge
JP2007098257A (en) Sludge treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees