JP2007275153A - Illumination device for endoscope - Google Patents

Illumination device for endoscope Download PDF

Info

Publication number
JP2007275153A
JP2007275153A JP2006102667A JP2006102667A JP2007275153A JP 2007275153 A JP2007275153 A JP 2007275153A JP 2006102667 A JP2006102667 A JP 2006102667A JP 2006102667 A JP2006102667 A JP 2006102667A JP 2007275153 A JP2007275153 A JP 2007275153A
Authority
JP
Japan
Prior art keywords
light emitting
light
light guide
endoscope
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006102667A
Other languages
Japanese (ja)
Inventor
Kunio Ando
邦郎 安藤
Masahiko Nagano
雅彦 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I SYSTEMS KK
MEDIA TECHNOLOGY KK
Systems Kk I
Media Technology Corp
Original Assignee
I SYSTEMS KK
MEDIA TECHNOLOGY KK
Systems Kk I
Media Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I SYSTEMS KK, MEDIA TECHNOLOGY KK, Systems Kk I, Media Technology Corp filed Critical I SYSTEMS KK
Priority to JP2006102667A priority Critical patent/JP2007275153A/en
Publication of JP2007275153A publication Critical patent/JP2007275153A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a compact illumination device for an endoscope for making radiated light emitted by a solid light emitting element enter a light guide efficiently by a simple mechanism. <P>SOLUTION: In the illumination device for an endoscope comprising the solid light emitting element and the light guide part for transmitting light emitted by the solid light emitting element, the light emitted by the solid light emitting element is efficiently taken in the light guide by mounting an incident plane of the light guide with a greater numerical aperture on a light emitting surface of the solid light emitting element in a manner to face directly, and simultaneously, the solid light emitting element is mounted inside the operational portion of an endoscope by reducing the size of the illumination device for an endoscope. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、体腔内の観察や機械装置の内部観察に適した内視鏡装置の照明装置に関するもので、特に照明装置の光の利用効率を高め、同時に照明装置部分を小型、軽量にすることで内視鏡の操作部内に固体発光素子を装着可能とし、内視鏡の操作性を向上させることが可能になる内視鏡用照明装置に関する。 The present invention relates to an illumination device for an endoscopic device suitable for observation inside a body cavity and internal observation of a mechanical device, and in particular, increases the light use efficiency of the illumination device, and at the same time makes the illumination device portion small and light. Thus, the present invention relates to an endoscope illuminating device that enables a solid-state light-emitting element to be mounted in an operation portion of an endoscope, thereby improving the operability of the endoscope.

硬性鏡、ファイバースコープ、電子内視鏡として広い分野で使用されている内視鏡装置は、人体の体腔内の観察やエンジン等の機器内部の観察に広く用いられている。
これらの内視鏡は観察対象物の像を形成、観察する手段は異なるものの、いずれも先端部、挿入部と呼ばれる細長い筒状部分と、挿入部の他の端面に挿入部より外形が大きな操作部と呼ばれる内視鏡を保持・操作する部分より構成されており、挿入部の先端に設けられた先端部には観察対象物を撮像する対物レンズが組み込まれているが、内視鏡の構造によっては、対物レンズで撮像された像を挿入部、操作部を介して画像として観察する手段が異なる。
Endoscopic devices used in a wide range of fields as rigid endoscopes, fiberscopes, and electronic endoscopes are widely used for observing inside the body cavity of a human body or inside equipment such as an engine.
Although these endoscopes have different means for forming and observing an image of the object to be observed, they all have an elongated cylindrical part called the tip part and the insertion part, and an operation whose outer shape is larger than the insertion part on the other end face of the insertion part It consists of a part that holds and manipulates an endoscope called a part, and an objective lens that captures an object to be observed is built into the tip provided at the tip of the insertion part. Depending on the case, the means for observing the image picked up by the objective lens as an image via the insertion section and the operation section differs.

硬性鏡では、図1に示すように先端部101の先端に設けられた対物レンズ104によって撮像された観察対象物の像を、挿入部102の中に組込まれたリレーレンズ群105で操作部103まで伝送し、操作部103に設けられた接眼レンズ106を介して拡大観察する構造を有している。硬性鏡の場合、挿入部102は可撓性の無い筒状のパイプが用いられる。最近では硬性鏡においてもCCDのような小型固体撮像素子を挿入部の先端に設けられた対物レンズの結像面に配置し、固体撮像素子で電気信号に変換された画像信号を外部に設けられた信号処理装置まで伝送し、モニターで映像として観察する構造を持つものも実用化されており硬性電子内視鏡とも呼ばれている。 In the rigid endoscope, as shown in FIG. 1, an image of an observation object imaged by an objective lens 104 provided at the distal end of the distal end portion 101 is used as an operation unit 103 by a relay lens group 105 incorporated in the insertion unit 102. And an enlarged observation through the eyepiece 106 provided in the operation unit 103. In the case of a rigid mirror, the insertion portion 102 is a non-flexible cylindrical pipe. Recently, even in rigid endoscopes, a small solid-state image sensor such as a CCD is placed on the imaging surface of an objective lens provided at the tip of the insertion section, and an image signal converted into an electrical signal by the solid-state image sensor can be provided outside A device having a structure for transmitting to a signal processing device and observing it as an image on a monitor has been put into practical use and is also called a rigid electronic endoscope.

ファイバースコープでは、図1に示したリレーレンズ105の代りに、可撓性を持った多数の光ファイバーで形成されたイメージガイドが装着され、先端部に設けられた対物レンズの像をイメージガイドで操作部まで伝送し接眼レンズを介して拡大観察する構造を有している。ファイバースコープの場合はイメージガイドが可撓性を持つので、挿入部も可撓性のある筒状物で構成され、先端部も屈曲性を持たせて操作部に設けられた屈曲操作手段(図示していない)で屈曲操作が出来るような構造を有している。 In the fiberscope, in place of the relay lens 105 shown in FIG. 1, an image guide formed by a number of flexible optical fibers is mounted, and the image of the objective lens provided at the tip is operated by the image guide. It has a structure for transmitting to a part and magnifying observation through an eyepiece. In the case of a fiberscope, since the image guide is flexible, the insertion portion is also made of a flexible cylindrical material, and the bending operation means (Fig. (Not shown) so that it can be bent.

電子内視鏡では、図2に示すように、CCDのような小型固体撮像素子120を先端部101に設けられた対物レンズ104の結像面に配置し、固体撮像素子120で電気信号に変換された画像信号をケーブル121で操作部103を経由し、操作部103の外部に設けられた信号処理装置122まで伝送し、画像信号を信号処理装置122で映像信号に処理してモニター123で観察対象物を観察する構造を有している。 In the electronic endoscope, as shown in FIG. 2, a small solid-state image sensor 120 such as a CCD is arranged on the imaging surface of the objective lens 104 provided at the tip 101 and converted into an electric signal by the solid-state image sensor 120. The transmitted image signal is transmitted through the operation unit 103 via the cable 121 to the signal processing device 122 provided outside the operation unit 103, and the image signal is processed into a video signal by the signal processing device 122 and observed on the monitor 123. It has a structure for observing an object.

具体的な構造は異なるものの、前記内視鏡と呼ばれるものはいずれも観察対象物を照明する照明装置を必要とする。内視鏡用照明装置は光源装置と光を伝達するライトガイドより構成されている。図1、図2に示す光源装置111は光源となるランプ113の形状、発熱等の問題から内視鏡の外部に別体として用意され、ランプ113よりの放射光を集光光学系112でライトガイド110の端面(入射面)に入射させる構造を持ち、ライトガイド110を操作部103、挿入部102内を挿通させ、先端部101の前面にライトガイド110の他の端面(射出面)を配置したものが一般に用いられている。ライトガイドは直径30ミクロンから50ミクロンの細い光ファイバーを多数本束にまとめたものなので機械的な強度は弱く、このような照明装置を使うとライトガイドを保護するために比較的丈夫な可撓性のある保護管を必要とし、保護管を含めてライトガイドで光源装置と内視鏡の間を連結するので内視鏡の操作性を損なっている。 Although the specific structure is different, all of the so-called endoscopes require an illumination device that illuminates the observation object. The endoscope illumination device includes a light source device and a light guide that transmits light. The light source device 111 shown in FIG. 1 and FIG. 2 is prepared as a separate body outside the endoscope due to problems such as the shape of the lamp 113 serving as a light source and heat generation, and the light emitted from the lamp 113 is written by the condensing optical system 112. The light guide 110 has a structure to be incident on the end surface (incident surface) of the guide 110, the light guide 110 is inserted through the operation unit 103 and the insertion unit 102, and another end surface (exit surface) of the light guide 110 is disposed on the front surface of the distal end portion 101. Is generally used. Since the light guide is a bundle of many thin optical fibers with a diameter of 30 to 50 microns, the mechanical strength is weak. With such a lighting device, the light guide is relatively strong and flexible to protect it. Since the protective tube is required and the light source including the protective tube is connected between the light source device and the endoscope, the operability of the endoscope is impaired.

近年、半導体技術の著しい進歩で固体発光素子として高輝度発光ダイオード(LED)が実用化されるようになってきた。特に高輝度白色ダイオードが実用化されるに伴ってこれを内視鏡の光源に利用する提案がなされている。 In recent years, high-intensity light-emitting diodes (LEDs) have come into practical use as solid-state light-emitting devices due to remarkable progress in semiconductor technology. In particular, as a high-intensity white diode is put into practical use, proposals have been made to use it as a light source for an endoscope.

固体発光素子を内視鏡の光源装置に使用する場合には、従来と同じように内視鏡の外部に用意された光源装置のランプの代替光源として利用する構造や、内視鏡の先端部に直接発光ダイオードを配置する構造、内視鏡の操作部に発光ダイオードを配置する構造など種々の提案がなされている。 When a solid state light emitting device is used for an endoscope light source device, the structure used as an alternative light source for the lamp of the light source device prepared outside the endoscope as in the past, or the tip of the endoscope Various proposals have been made, such as a structure in which a light emitting diode is directly disposed on the screen, and a structure in which a light emitting diode is disposed in an operation portion of an endoscope.

このうち、内視鏡の外部に用意された光源装置の発光体として発光ダイオードを利用する案は、消費電力の軽減等効果はあるが、前述のように光源装置と内視鏡の間をライトガイド連結するので、可撓性のある保護管が必要なのは従来の照明装置と同じであり、内視鏡の操作性の向上は望めない。また発光ダイオードの発光面から発光される光を効率よくライトガイドに入射させるために種々の形態の集光光学系も検討され提案されているが十分な効果が得られていない。 Among these, the proposal of using a light emitting diode as a light emitter of a light source device prepared outside the endoscope has an effect of reducing power consumption, but as described above, a light is provided between the light source device and the endoscope. Since the guide connection is used, a flexible protective tube is required in the same manner as in the conventional illumination device, and improvement in the operability of the endoscope cannot be expected. Further, various types of condensing optical systems have been studied and proposed in order to make light emitted from the light emitting surface of the light emitting diode efficiently enter the light guide, but sufficient effects have not been obtained.

また、内視鏡の先端部に直接発光ダイオードを配置する構造は機構の簡単さ、発光ダイオードの発光する光を効率よく使える等有利な面もあるが、発熱の問題を解決する困難さがある。 In addition, the structure in which the light emitting diode is directly arranged at the distal end portion of the endoscope has advantages such as simple mechanism and efficient use of light emitted from the light emitting diode, but there is a difficulty in solving the problem of heat generation. .

上記の問題点を解決する案として、内視鏡の操作部に発光ダイオードを配置し、発光ダイオードからの発光光をライトガイドによって挿入部先端の所要の位置まで伝達する構成も提案されている。 As a proposal for solving the above-described problems, a configuration in which a light emitting diode is arranged in an operation portion of an endoscope and light emitted from the light emitting diode is transmitted to a required position at the distal end of the insertion portion by a light guide has been proposed.

この場合も発光ダイオードの発光光を効率よくライトガイドに取込むためには発光ダイオードの発光面とライトガイドの入射面の間に集光光学系を配置した構造が提案されている。しかし、集光光学系はかなりの空間を必要とし光の利用率も決して十分ではないのでまだ広く実用化される状態になっていないという問題点を有している。
特開2003-126034号公報 特開2003-255236号公報 特開2005-312829号公報 消化器内視鏡 Vol.17 No.6 2005 P.759
In this case as well, a structure in which a condensing optical system is arranged between the light emitting surface of the light emitting diode and the incident surface of the light guide has been proposed in order to efficiently take in the light emitted from the light emitting diode. However, the condensing optical system has a problem that it has not yet been put into practical use because it requires a considerable space and the utilization rate of light is not sufficient.
Japanese Patent Laid-Open No. 2003-126034 JP 2003-255236 A Japanese Patent Laying-Open No. 2005-312829 Gastrointestinal endoscope Vol. 17 No. 6 2005 p. 759

前述のように、固体発光素子の発光面から発光される光を効率よくライトガイドに入射させるために種々の形態の集光光学系が検討され提案されており、固体発光素子の発光する光を効率よくライトガイドに取り込むことが重要な課題となっている。   As described above, various types of condensing optical systems have been studied and proposed in order to efficiently cause light emitted from the light emitting surface of the solid light emitting element to enter the light guide. Efficient incorporation into the light guide is an important issue.

本発明は上述の問題点に着目してなされたもので、特に固体発光素子が発光する光を最小の機械的な空間でライトガイドに効率よく取込むことの出来る構造を持った内視鏡の照明装置を提供することにあり、さらに照明装置の光源部に相当する固体発光素子を操作部内に装着することを可能とすることで、光源装置と内視鏡の間を連結するライトガイドを保護する可撓性のある保護管も不要な構造をとることが出来、内視鏡の操作性を向上させることができる。 The present invention has been made paying attention to the above-mentioned problems, and in particular, an endoscope having a structure capable of efficiently incorporating light emitted from a solid state light emitting device into a light guide in a minimum mechanical space. The purpose of the present invention is to provide an illuminating device, and further to protect the light guide connecting the light source device and the endoscope by enabling a solid light emitting element corresponding to the light source unit of the illuminating device to be mounted in the operation unit. The flexible protective tube can also take an unnecessary structure, and the operability of the endoscope can be improved.

上記目的を達成するために、請求項1に関わる発明は、固体発光素子と、固体発光素子が発光する光を伝達するライトガイド部より構成される内視鏡用照明装置において、前記固体発光素子を内視鏡操作部内に装着し、固体発光素子の発光面に開口数の大きなライトガイドの入射面を直接対面させて装着させる構造の内視鏡用照明装置を特徴としている。 In order to achieve the above object, an invention according to claim 1 is directed to an endoscope illumination apparatus including a solid light emitting element and a light guide portion that transmits light emitted from the solid light emitting element. Is mounted in the endoscope operation section, and the endoscope illumination device has a structure in which the incident surface of the light guide having a large numerical aperture directly faces the light emitting surface of the solid state light emitting device.

請求項2にかかわる発明は、前記ライトガイドの開口数が0.8より大きいことを特徴としている。 The invention according to claim 2 is characterized in that the numerical aperture of the light guide is larger than 0.8.

請求項3にかかわる発明は、前記固体発光素子に設けられた放熱部材の一部に、固体発光素子の発光面に対面してライトガイドの入射面が装着可能となるようにライトガイド取付部を設けたことを特徴とする。 According to a third aspect of the present invention, the light guide mounting portion is provided on a part of the heat dissipating member provided in the solid light emitting element so that the incident surface of the light guide can be mounted facing the light emitting surface of the solid light emitting element. It is provided.

請求項4にかかわる発明は、前記ライトガイドの入射面を複数個に分岐させ、分岐した入射面にそれぞれ固体発光素子の発光面を直接対面させて装着する構造を特徴とする。   The invention according to claim 4 is characterized in that the incident surface of the light guide is branched into a plurality of portions, and the light emitting surface of the solid state light emitting element is directly mounted on the branched incident surface.

さらに詳細な説明を加えると、操作部内に発光ダイオードのような固体発光素子を組込んだ場合固体発光素子の発熱が問題となる。発光ダイオードの発光光量が大きくなると発熱量も大きくなり、発光ダイオードを操作部内に装着すると局部的な発熱が大きくなり放熱が問題となる。この場合、発光光量も小さいが発熱量の小さい発光ダイオードを複数個設けて、それぞれの発光ダイオードを複数個に分岐したライトガイドの入射面に装着することで、操作部内で発光ダイオードの装着位置を分散させることが出来、局部的な発熱を小さく抑えることが可能になる。   More specifically, when a solid light emitting element such as a light emitting diode is incorporated in the operation unit, heat generation of the solid light emitting element becomes a problem. When the amount of light emitted from the light emitting diode increases, the amount of heat generation also increases. When the light emitting diode is mounted in the operation unit, local heat generation increases and heat dissipation becomes a problem. In this case, a plurality of light emitting diodes with a small amount of emitted light but a small amount of heat generation are provided, and each light emitting diode is mounted on the incident surface of the light guide branched into a plurality, so that the mounting position of the light emitting diode within the operation unit can be determined. It can be dispersed and local heat generation can be kept small.

本発明による内視鏡用照明装置では、内視鏡操作部内に固体発光素子を装着することで内視鏡外部に用意された光源部と連結するライトガイドと保護管が不要になるため、内視鏡の操作性の向上が期待でき、さらに固体発光素子の発光面と開口数の大きなライトガイドの入射面を直接対面させて装着するので、集光光学系を組みこむ大きなスペースを必要とせずに、効率よく固体発光素子の発光する光をライトガイドに取込み照明に利用することが出来る。 In the endoscope illuminating device according to the present invention, the light guide and the protective tube connected to the light source unit prepared outside the endoscope are not required by mounting the solid light emitting element in the endoscope operation unit. It can be expected to improve the operability of the endoscope, and the light emitting surface of the solid state light emitting device and the light guide incident surface with a large numerical aperture are directly facing each other, so there is no need for a large space for incorporating the condensing optical system. In addition, the light emitted from the solid state light emitting element can be efficiently taken into the light guide and used for illumination.

以下、図面を参照して本発明の実施の形態を説明する。なお実施例の説明で使用する図面は内視鏡用照明装置を容易に把握、理解出来るようライトガイド、固体発光素子等の大きさは実際のものを誇張したスケールで示してあり、さらに本発明と直接関係ない機構等は省略して示している。また固体発光素子を発光ダイオードで代表して説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings used in the description of the embodiments, the size of the light guide, the solid state light emitting element, etc. are shown on an exaggerated scale so that the endoscope illumination apparatus can be easily understood and understood, and the present invention is further illustrated. The mechanism etc. not directly related to is omitted. A solid light emitting element will be described as a light emitting diode.

通常市販されている発光ダイオードは、発光ダイオードの配光特性を使用目的にあわせるために、発光面の前面に凸レンズを配置したものが多い。しかし発光ダイオードの発光面からの配光特性は発光面前方に対し広い角度の配光特性を持っており、発光面の前面に凸レンズを配置した構造では発光面からの光を十分に利用できない場合が多い。図3は、発光面の前面に凸レンズを持たない発光ダイオードが発光する配光特性の1例を示したもので、図中垂直軸201で示すY軸は、発光ダイオードの発光面に垂直に立てた軸で中心を1とした光量の相対比を示し、水平軸202で示すX軸は中心軸(垂直軸)からの光の放射方向を角度で示している。図3に示すように発光ダイオードの配光特性は広い角度を持ち、配光角70°(±35°)以内を使う場合は全発光光量の60%程度しか利用できないが、配光角110°(±55°)以内を使う場合は全発光光量の80%程度が利用でき、配光角120°(±60°)以内を使う場合は全発光光量の90%程度が利用できる。 Many commercially available light-emitting diodes have a convex lens disposed on the front surface of the light-emitting surface in order to match the light distribution characteristics of the light-emitting diode with the intended use. However, the light distribution characteristic of the light emitting diode from the light emitting surface has a light distribution characteristic of a wide angle with respect to the front of the light emitting surface, and the structure in which the convex lens is arranged in front of the light emitting surface cannot sufficiently utilize the light from the light emitting surface. There are many. FIG. 3 shows an example of the light distribution characteristic of a light emitting diode that does not have a convex lens on the front surface of the light emitting surface. The Y axis indicated by the vertical axis 201 in the drawing stands vertically to the light emitting surface of the light emitting diode. The X axis indicated by the horizontal axis 202 indicates the light emission direction from the central axis (vertical axis) as an angle. As shown in FIG. 3, the light distribution characteristic of the light emitting diode has a wide angle. When the light distribution angle is within 70 ° (± 35 °), only about 60% of the total light emission amount can be used, but the light distribution angle is 110 °. When using within (± 55 °), about 80% of the total amount of emitted light can be used, and when using within the light distribution angle of 120 ° (± 60 °), about 90% of the total amount of emitted light can be used.

一方、ライトガイドを構成する光ファイバーは図4に示すように円筒状の透明なコアー(芯)材205と、その外周を被覆する透明なクラッド材206で構成されている。この構造の光ファイバーは、コアー材の屈折率をn1とすると、クラッド材はコアー材より屈折率の低い材質、即ちn1>n2の屈折率n2を持つクラッド材が選択され、光ファイバーの一端(入射端)に光が入射すると光はコアー内をクラッドとの界面で全反射を繰り返し多端(射出端)に伝達される。 On the other hand, the optical fiber constituting the light guide is composed of a cylindrical transparent core material 205 and a transparent clad material 206 covering the outer periphery thereof as shown in FIG. For the optical fiber of this structure, if the refractive index of the core material is n1, the cladding material is selected to be a material having a refractive index lower than that of the core material, that is, a clad material having a refractive index n2 of n1> n2, and one end (incident end) of the optical fiber is selected. ) Light is incident on the core, the light is repeatedly reflected at the interface with the clad and transmitted to multiple ends (exit ends).

光ファイバーで伝達できる光の入射角θ(受光角は2θ)は開口数(NA)できまり、図4にも示してあるがNA=sinθ=((n1)−(n2)1/2で示される。通常よく使われるライトガイドには、n1=1.62程度の屈折率を持つコアー材とn2=1.52程度の屈折率を持つクラッド材で構成する光ファイバーが用いられており、開口数はNA=0.57(受光角2θ=70度)程度のものが多い。また光ファイバーの直径は可撓性を持たせるため、30ミクロンから50ミクロンのものがよく使われており、ライトガイドはこのような光ファイバーを多数本束にしたものである。 The incident angle θ (light receiving angle is 2θ) of light that can be transmitted by the optical fiber is determined by the numerical aperture (NA), and NA = sin θ = ((n1) 2 − (n2) 2 ) 1/2 as shown in FIG. Indicated by In a light guide that is usually used, an optical fiber composed of a core material having a refractive index of n1 = 1.62 and a clad material having a refractive index of n2 = 1.52 is used, and the numerical aperture is NA. = 0.57 (light receiving angle 2θ = 70 degrees). Further, in order to give flexibility to the diameter of the optical fiber, those having a diameter of 30 to 50 microns are often used, and the light guide is a bundle of many such optical fibers.

発光ダイオードとライトガイドを用いて内視鏡用照明装置を構成する場合は、発光ダイオードからの発光する光を有効にライトガイドに入射させる手段が必要となる。NA=0.57の開口数のライトガイドを使用する場合を考えると、ライトガイドの受光角が70°程度であるので、発光ダイオードの発光面に直接ライトガイドを配置しても前述のように発光ダイオードの発光光量の60%程度しか伝達できない。 In the case where an endoscope illumination device is configured using a light emitting diode and a light guide, a means for effectively making light emitted from the light emitting diode incident on the light guide is required. Considering the case of using a light guide with a numerical aperture of NA = 0.57, the light guide has a light receiving angle of about 70 °. Therefore, even if the light guide is arranged directly on the light emitting surface of the light emitting diode, as described above. Only about 60% of the amount of light emitted from the light emitting diode can be transmitted.

一般に市販されている発光ダイオードは、発光面の前に配光特性を変える凸レンズを装着したものが多く、配光特性も比較的狭い。このため多くの内視鏡用照明装置では発光ダイオードとライトガイドの間に集光光学系を配置する構成が提案されているが、発光ダイオードの配光角と光ファイバーの受光角2θを考えると、光ファイバーの受光角内に発光ダイオードの発光する光を十分に取り入れるのは難しい。 In general, many commercially available light emitting diodes are provided with a convex lens that changes the light distribution characteristic in front of the light emitting surface, and the light distribution characteristic is relatively narrow. For this reason, in many endoscope illumination devices, a configuration in which a condensing optical system is arranged between a light emitting diode and a light guide has been proposed. It is difficult to sufficiently incorporate the light emitted from the light emitting diode within the light receiving angle of the optical fiber.

図5は発光ダイオード211とライトガイド210の間に集光光学系212を配置した例を示すが、ライトガイド211の伝達可能な入射角は35°程度であるので、有効に発光ダイオード211の光量をライトガイド210に入射させるにはライトガイドの入射端側での集光光学系の有効Fナンバーは0.9(F=1/2NA)程度のものが必要になり、発光ダイオード側ではさらに明るい有効Fナンバーが要求される。集光光学系としてこのような明るいレンズ系を考えた場合、収差を考慮するとライトガイド内に発光ダイオードの発光する光を有効に取込むことには無理があり、このような明るい集光光学系を用いることは現実的でない。 FIG. 5 shows an example in which the condensing optical system 212 is disposed between the light emitting diode 211 and the light guide 210. Since the incident angle that the light guide 211 can transmit is about 35 °, the light quantity of the light emitting diode 211 is effectively increased. Is incident on the light guide 210, the effective F number of the condensing optical system on the incident end side of the light guide is required to be about 0.9 (F = 1/2 NA), which is brighter on the light emitting diode side. A valid F number is required. When considering such a bright lens system as the condensing optical system, it is impossible to effectively incorporate the light emitted from the light emitting diode into the light guide in consideration of aberrations. It is not realistic to use.

図6は、クラッド材の屈折率n2=1.52を用いたときコアー材の屈折率で光ファイバーの開口数がどのように変わるかを示したもので、横軸はコアー材の屈折率n1を示し、左側の縦軸は開口数(NA)を、右側の縦軸は伝達可能な入射角を示し、NAの変化は実線で、入射角の変化は点線で示している。たとえばコアー材の屈折率n1=1.75と、クラッド材の屈折率n2=1.52を用いた光ファイバーはNA=0.87となり、伝達可能な入射角は60°、受光角は約120°となる。 FIG. 6 shows how the numerical aperture of the optical fiber changes depending on the refractive index of the core material when the refractive index n2 = 1.52 of the clad material. The horizontal axis indicates the refractive index n1 of the core material. The left vertical axis indicates the numerical aperture (NA), the right vertical axis indicates the incident angle at which transmission is possible, the change in NA is indicated by a solid line, and the change in incident angle is indicated by a dotted line. For example, an optical fiber using the refractive index n1 = 1.75 of the core material and the refractive index n2 = 1.52 of the clad material has NA = 0.87, the transmittable incident angle is 60 °, and the receiving angle is about 120 °. It becomes.

図7は本発明による内視鏡用照明装置の基本構成を示すもので、図中210はライトガイド、211は発光ダイオード、215は発光ダイオードの放熱材、216は発光ダイオードの電極を示している。前述のようにライトガイド210を構成する光ファイバーとしてNA=0.87のような大きな開口数を持ったものを使用することで、発光ダイオードの発光する光の90%近くをライトガイドに取込むことが可能になる。またNA=0.8程度のような開口数の光ファイバーをライトガイドに使うと、発光ダイオードの発光する光の80%近くをライトガイドに取込むことが可能になるので、少なくともNA0.8以上のライトガイドを用いることが望ましい。 FIG. 7 shows a basic configuration of an endoscope illumination apparatus according to the present invention, in which 210 is a light guide, 211 is a light emitting diode, 215 is a heat dissipation material of the light emitting diode, and 216 is an electrode of the light emitting diode. . As described above, by using the optical fiber constituting the light guide 210 having a large numerical aperture such as NA = 0.87, nearly 90% of the light emitted from the light emitting diode is taken into the light guide. Is possible. If an optical fiber having a numerical aperture of about NA = 0.8 is used for the light guide, nearly 80% of the light emitted from the light emitting diode can be taken into the light guide. It is desirable to use a light guide.

このような開口数(NA)の大きな光ファイバーを用いたライトガイドでは、ライトガイドの入射面を発光ダイオードの発光面に直接対面させて配置することで発光ダイオードの発光光量の80〜90%近くを取込むことが出来る。さらに発光ダイオード211の発光する光を有効にライトガイド210に取込むためには、発光ダイオード221の発光面とライトガイドの入射面の間隔dは極力小さくすることが望ましく、発光ダイオード221の発光面とライトガイド210の入射面を接着することも可能である。 In such a light guide using an optical fiber having a large numerical aperture (NA), the light guide is disposed so that the incident surface of the light guide directly faces the light emitting surface of the light emitting diode. I can take it in. Further, in order to effectively capture the light emitted from the light emitting diode 211 into the light guide 210, it is desirable that the distance d between the light emitting surface of the light emitting diode 221 and the incident surface of the light guide be as small as possible, and the light emitting surface of the light emitting diode 221. It is also possible to bond the incident surface of the light guide 210.

また、発光ダイオードの発光面は矩形(正方形を含む)のものが多いので、ライトガイドの入射端の形状も従来よく使用されている丸型でなく発光ダイオードの発光面の形状に合わせることにより、発光ダイオードの発光光をさらに効率よく照明に利用できる。 In addition, since the light emitting surface of the light emitting diode is often rectangular (including square), the shape of the incident end of the light guide is not the round shape often used in the past, but by matching the shape of the light emitting surface of the light emitting diode, Light emitted from the light emitting diode can be used for illumination more efficiently.

このように、大きな開口数を持ったライトガイドを用いることで集光光学系が不必要になり、発光ダイオードの発光する光を有効にライトガイドに取込むことが出来、また集光レンズ系を持たないので機械的な空間を小さくすることが可能になるので、発光ダイオードを容易に操作部内に設置することも可能になる。 In this way, the use of a light guide having a large numerical aperture eliminates the need for a condensing optical system, allows the light emitted from the light-emitting diode to be effectively taken into the light guide, and provides a condensing lens system. Since it is not provided, the mechanical space can be reduced, so that the light emitting diode can be easily installed in the operation unit.

図8は、図7に示した内視鏡用照明装置を構成する発光ダイオードにライトガイドを結合する具体例を示したもので、図中210はライトガイドを示しており、その端面にはライトガイド口金219が取付けられている。すでに説明したように、発光ダイオードを光源として使用する場合発熱が伴うので発光だいオード211に放熱部材217を装着する必要がある。放熱部材217の一部に図に見られるようにライトガイドの口金219が結合出来る様なライトガイド結合部218が設けられている。このような構造でライトガイドと発光ダイオードを結合すことで、内視鏡操作部内少ない空間で発光ダイオードとライトガイドを装着でき、放熱部材217は操作部を構成する金属部分の一部に連結することで放熱効果を上げることも容易である。 FIG. 8 shows a specific example in which a light guide is coupled to a light-emitting diode that constitutes the endoscope illumination device shown in FIG. 7. In FIG. 8, reference numeral 210 denotes a light guide. A guide base 219 is attached. As already described, when a light-emitting diode is used as a light source, heat is generated, so it is necessary to attach a heat dissipation member 217 to the light-emitting diode 211. As shown in the figure, a light guide coupling portion 218 that can couple a light guide base 219 is provided on a part of the heat radiating member 217. By combining the light guide and the light emitting diode in such a structure, the light emitting diode and the light guide can be mounted in a small space in the endoscope operation portion, and the heat dissipation member 217 is connected to a part of the metal portion constituting the operation portion. Therefore, it is easy to improve the heat dissipation effect.

図9は本発明による内視鏡用照明装置を電子内視鏡に適用した具体適な実施例を示したもので、図2と同じように、CCDのような小型固体撮像素子120を先端部101に設けられた対物レンズ104の結像面に配置し、固体撮像素子120で電気信号に変換された画像信号をケーブル121で挿入部102、操作部103を経由し、操作部103の外部に設けられた信号処理装置122までケーブル124で伝送し、信号処理装置122で画像信号を処理した映像信号をモニター123に伝送し、モニター123で観察対象物を観察する構造を有している。この場合光源となる発光ダイオード221は操作部103の内部に図8で示した構造で放熱部材222とともに装着されており、ライトガイド220の射出端は挿入部102を挿通して先端部101の前面に装着されている。図8に示すように発光ダイオード221とライトガイド220との結合する構造が簡単であり、空間的な大きな場所も必要としないので従来の内視鏡操作部を大きく変更せずに内視鏡用照明装置を操作部に組込むことができる。なお発光ダイオードを駆動する電源は信号処理装置122よりケーブル223によって供給されるが、操作部内に電池を組込んで電源とすることも容易である。 FIG. 9 shows a specific embodiment in which the endoscope illumination device according to the present invention is applied to an electronic endoscope. As in FIG. 2, a small solid-state imaging device 120 such as a CCD is connected to the tip portion. An image signal, which is arranged on the imaging surface of the objective lens 104 provided in 101 and converted into an electrical signal by the solid-state imaging device 120, is connected to the outside of the operation unit 103 via the insertion unit 102 and the operation unit 103 by the cable 121. The image signal is transmitted to the signal processing device 122 provided by the cable 124, the image signal processed by the signal processing device 122 is transmitted to the monitor 123, and the monitor 123 observes the observation object. In this case, the light emitting diode 221 serving as a light source is mounted inside the operation unit 103 together with the heat dissipation member 222 with the structure shown in FIG. It is attached to. As shown in FIG. 8, since the structure for coupling the light emitting diode 221 and the light guide 220 is simple and does not require a large space, the conventional endoscope operation unit is not greatly changed. The lighting device can be incorporated in the operation unit. Note that power for driving the light emitting diode is supplied from the signal processing device 122 via the cable 223, but it is also easy to incorporate a battery into the operation unit to make the power.

図9の実施例では、発光ダイオード221を駆動する電源は外部に設けられた信号処理装置からケーブル223で供給されるが、ケーブルはライトガイドに比べて細く丈夫なので可撓性のある保護管を必ずしも必要とせず、特に操作部内に電池を組込んだ場合にはケーブルも不要となり、内視鏡の操作性を著しく向上させることが可能となる。 In the embodiment of FIG. 9, the power for driving the light emitting diode 221 is supplied from a signal processing device provided outside by a cable 223. However, since the cable is thinner and stronger than the light guide, a flexible protective tube is used. This is not always necessary, and in particular, when a battery is incorporated in the operation section, no cable is required, and the operability of the endoscope can be remarkably improved.

図10は本発明による内視鏡用照明装置を電子内視鏡に適用した他の実施例を示したもので基本構成は図9の実施例と同じである。この実施例の場合はライトガイド220の光の入射端を操作部103内で225,226として示すように2系統に分岐し、分岐したそれぞれのライトガイド225、226の入射端に図8に示した構造で発光ダイオード227、228が放熱部材229、230と共に結合され、操作部内に装着されている。 FIG. 10 shows another embodiment in which the endoscope illumination apparatus according to the present invention is applied to an electronic endoscope. The basic configuration is the same as that of the embodiment of FIG. In the case of this embodiment, the light incident end of the light guide 220 is branched into two systems as indicated by 225 and 226 in the operation unit 103, and the incident ends of the branched light guides 225 and 226 are shown in FIG. In this structure, the light emitting diodes 227 and 228 are coupled together with the heat dissipating members 229 and 230 and mounted in the operation unit.

このようにライトガイド110の入射端を複数系統に分岐し、分岐されたそれぞれの入射端に発光ダイオードを装着することで、発熱量の少ない小型発光ダイオードを用いることが可能になり、さらに発光ダイオードとライトガイドとの結合部も小型になるので操作部内に発光ダイオードを装着する空間を選択する自由度が大きくなり、また所要の光量を得るための発光ダイオードを分散して配置できるので、発光ダイオードよりの放熱を操作部内で分散させることが可能になる。 In this way, by splitting the incident end of the light guide 110 into a plurality of systems and attaching a light emitting diode to each branched incident end, it becomes possible to use a small light emitting diode with a small amount of heat generation. Since the coupling part between the light guide and the light guide is also small, the degree of freedom in selecting a space for mounting the light emitting diode in the operation part is increased, and the light emitting diodes for obtaining the required light quantity can be distributed and arranged. It is possible to dissipate more heat in the operation unit.

以上ライトガイドの入射端を2個に分岐する実施例を説明したが、目的によってはライトガイドの入射端を2個以上の複数本に分岐しそれぞれの入射端に発光ダイオードを装着させることも可能である。 In the above description, the light guide incident end is branched into two. However, depending on the purpose, the light guide incident end can be branched into two or more and a light emitting diode can be attached to each incident end. It is.

以上、本発明による内視鏡用照明装置を、電子内視鏡に装着する例で説明したがこの内視鏡用照明装置は種々の形態を持つ内視鏡すべてに適用される。 As described above, the endoscope illumination device according to the present invention has been described as being mounted on an electronic endoscope. However, this endoscope illumination device is applicable to all endoscopes having various forms.

照明装置を外部に設けた従来型の硬性内視鏡の基本的な構造示す概略説明図である。It is a schematic explanatory drawing which shows the basic structure of the conventional rigid endoscope which provided the illuminating device outside. 照明装置を外部に設けた従来型の電子内視鏡の基本的な構造示す概略説明図である。It is a schematic explanatory drawing which shows the basic structure of the conventional electronic endoscope which provided the illuminating device outside. 発光ダイオードが発光する光の配光を示す説明図である。It is explanatory drawing which shows the light distribution of the light which a light emitting diode light-emits. ライトガイドを構成する光学ファイバーの構造を示す説明図である。It is explanatory drawing which shows the structure of the optical fiber which comprises a light guide. 発光ダイオードとライトガイド間に集光光学系を用いた構造の説明図である。It is explanatory drawing of the structure which used the condensing optical system between the light emitting diode and the light guide. クラッド材の屈折率n2=1.52を用いたときコアー材の屈折率で光ファイバーの開口数がどのように変わるかを示した説明図である。It is explanatory drawing which showed how the numerical aperture of an optical fiber changes with the refractive index of a core material, when the refractive index n2 = 1.52 of a clad material is used. 本発明による開口数の大きなライトガイドと発光ダイオードを用いた照明装置を説明する概略説明図である。It is a schematic explanatory drawing explaining the illuminating device using the light guide and light emitting diode with a large numerical aperture by this invention. 本発明によるライトガイドと発光ダイオードを結合する構造の1例を示す概略説明図である。It is a schematic explanatory drawing which shows one example of the structure which couple | bonds the light guide and light emitting diode by this invention. 本発明による内視鏡用照明装置の具体的な実施例を示す概略構成図である。It is a schematic block diagram which shows the specific Example of the illuminating device for endoscopes by this invention. 本発明による内視鏡用照明装置の他の実施例を示す概略構成図である。It is a schematic block diagram which shows the other Example of the illuminating device for endoscopes by this invention.

符号の説明Explanation of symbols

101 先端部
102 挿入部
103 操作部
104 対物レンズ
105 リレーレンズ
106 接眼レンズ
110、210、220 ライトガイド
111 光源装置
112、212 集光光学系
113 ランプ
211、221、227、228 発光ダイオード
120 固体撮像素子
122 信号処理装置
123 モニター
215、217、222、229、230 放熱部材
225、226 ライトガイド分岐部
DESCRIPTION OF SYMBOLS 101 Tip part 102 Insertion part 103 Operation part 104 Objective lens 105 Relay lens 106 Eyepiece lens 110,210,220 Light guide 111 Light source device 112,212 Condensing optical system 113 Lamp 211,221,227,228 Light-emitting diode 120 Solid-state image sensor 122 Signal processor 123 Monitors 215, 217, 222, 229, 230 Heat radiation member 225, 226 Light guide branch

Claims (4)

固体発光素子と、固体発光素子が発光する光を伝達するライトガイド部より構成される内視鏡用照明装置において、前記固体発光素子を内視鏡操作部内に装着し、固体発光素子の発光面に開口数の大きなライトガイドの入射面を直接対面させて装着する構造を特徴とした内視鏡用照明装置。 In an endoscope illuminating device including a solid light emitting element and a light guide part that transmits light emitted from the solid light emitting element, the solid light emitting element is mounted in an endoscope operation unit, and a light emitting surface of the solid light emitting element An endoscope illumination device characterized in that the light guide having a large numerical aperture is mounted so that the incident surface of the light guide faces directly. 前記ライトガイドの開口数が0.8より大きいことを特徴とした請求項1に記載の内視鏡用照明装置。 The endoscope illumination device according to claim 1, wherein the numerical aperture of the light guide is larger than 0.8. 前記固体発光素子に設けられた放熱部材の一部に、固体発光素子の発光面に対面してライトガイドの入射面が装着可能となるようにライトガイド取付部を設けたことを特徴とする請求項1、請求項2、記載の内視鏡用照明装置。 The light guide mounting portion is provided on a part of the heat radiating member provided in the solid light emitting element so that an incident surface of the light guide can be mounted facing the light emitting surface of the solid light emitting element. The endoscope illumination device according to claim 1 or 2. 前記ライトガイドの光の入射面を複数個に分岐させ、分岐した入射面にそれぞれ固体発光素子の発光面を直接対面させて装着する構造を特徴とした請求項1、請求項2、請求項3記載の内視鏡用照明装置。
4. The structure according to claim 1, wherein the light guide surface of the light guide is branched into a plurality of portions, and the light emitting surface of the solid state light emitting device is directly attached to each of the branched light entrance surfaces. The endoscope illumination device described.
JP2006102667A 2006-04-04 2006-04-04 Illumination device for endoscope Pending JP2007275153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102667A JP2007275153A (en) 2006-04-04 2006-04-04 Illumination device for endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102667A JP2007275153A (en) 2006-04-04 2006-04-04 Illumination device for endoscope

Publications (1)

Publication Number Publication Date
JP2007275153A true JP2007275153A (en) 2007-10-25

Family

ID=38677319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102667A Pending JP2007275153A (en) 2006-04-04 2006-04-04 Illumination device for endoscope

Country Status (1)

Country Link
JP (1) JP2007275153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205849A (en) * 2011-03-30 2012-10-25 Fujifilm Corp Electronic endoscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205849A (en) * 2011-03-30 2012-10-25 Fujifilm Corp Electronic endoscope

Similar Documents

Publication Publication Date Title
JP5274719B2 (en) Endoscope and endoscope illumination device
US9261662B2 (en) Photoelectric conversion connector, optical transmission module, imaging apparatus, and endoscope
JP5178239B2 (en) Medical system
US20120209072A1 (en) Endoscope
GB2357856B (en) Annular light source in borescopes and endoscopes
US9072450B2 (en) Endoscope apparatus
CN101551515B (en) Industrial electronic endoscope
JPWO2016121160A1 (en) Endoscope
WO2019176601A1 (en) Imaging unit and oblique endoscope
JP2009198736A (en) Illuminating device and endoscope
JP2012055342A (en) Luminaire of fiberscope apparatus
US20200110257A1 (en) Imaging unit and endoscope
JP2007275153A (en) Illumination device for endoscope
KR101516318B1 (en) Endoscopy lighting module improving light efficiency
JP2007044402A (en) Endoscope
US6790176B2 (en) Probe of endoscope
CN203217173U (en) Optical-fiber door bottom speculum
JP2011200338A (en) Electronic endoscope
CN2817722Y (en) Photoelectric integrated endoscopic imager
US20060159409A1 (en) Boroscope with selectable stiffness light shaft
KR20000053868A (en) vision system for diagnosis
JP5185699B2 (en) Endoscope adapter for endoscope, endoscope device
US11213192B2 (en) Endoscope device and method with illumination fiber bundles having multiple numerical apertures
CN215502903U (en) Rigid electronic endoscope
JP2013099469A (en) Imaging device and endoscope