JP2007271701A - Obstacle recognition device for wheelchair for visually impaired person - Google Patents
Obstacle recognition device for wheelchair for visually impaired person Download PDFInfo
- Publication number
- JP2007271701A JP2007271701A JP2006094121A JP2006094121A JP2007271701A JP 2007271701 A JP2007271701 A JP 2007271701A JP 2006094121 A JP2006094121 A JP 2006094121A JP 2006094121 A JP2006094121 A JP 2006094121A JP 2007271701 A JP2007271701 A JP 2007271701A
- Authority
- JP
- Japan
- Prior art keywords
- wheelchair
- distance
- obstacle
- obstacles
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Rehabilitation Tools (AREA)
Abstract
Description
本発明は視覚障害を持つ者が既存の車椅子を運転する際想定される障害物や人との接触等のリスクの認識を可能とし、多元的な空間認識を元に車椅子の運転を高度化する物である。 The present invention makes it possible to recognize risks such as contact with obstacles and people assumed when a visually impaired person drives an existing wheelchair, and enhances driving of the wheelchair based on multidimensional spatial recognition It is a thing.
従来の発明で障害物との距離をセンサーで認識し、音や振動の強弱・種類等で伝達するやり方が存在している。 In the conventional invention, there is a method of recognizing the distance from an obstacle with a sensor and transmitting it by the intensity and type of sound and vibration.
車で障害物との距離をセンサーで認識、音や振動の強弱に変換し運転手に伝達する技術が存在している。
この技術は車をバックさせる際に後方の視覚的な把握を補助する物である。
This technology assists the visual grasp of the rear when the vehicle is backed.
車椅子をレバーで運転出来る技術が存在している。
この技術により車椅子移動時に両腕を使用する事から腕を解放させ移動以外の目的で活用する事が可能となる。
This technique allows both arms to be used when moving a wheelchair, so that the arms can be released and used for purposes other than movement.
視覚障害者の杖にセンサーを取り付け、振動で障害物との距離を伝達する技術が存在する。
この技術はセンサーを揺動させる事により前方同心円状に存在する障害物の認識を可能とし、杖の丈以上の距離の障害の把握を可能とする物である。
This technology makes it possible to recognize obstacles that exist concentrically in the forward direction by swinging the sensor, and to grasp obstacles at a distance greater than the length of the cane.
従来の車椅子では視覚障害を持っている人が運転する場合、人や物、壁、障害物、階段等がどこに存在するのかの認識装置が存在せず、一人で運転するに際し危険性が伴い同伴者の多大な補助を必要とした。 In a conventional wheelchair, when a person with visual impairments drives, there is no recognition device for where people, objects, walls, obstacles, stairs, etc. exist, and there is danger when driving alone Required great assistance.
また、既存の発明・技術を用いる事によりセンサーによる直線上に存在する障害物の認識が可能であっても、リアルタイムで様々な方向、距離に存在する障害物の動きや車椅子の運転に伴う障害物との位置の相関関連性の変化を同時に認識する事が出来ず運転に必要な情報が極度に限定される為、視覚障害者の想像に空間認識を依拠する部分が多大となり、周囲の状況把握からの位置確認の認識にも情報が不足する。 In addition, even if obstacles existing on a straight line can be recognized by sensors using existing inventions and technologies, obstacles that exist in various directions and distances in real time and obstacles associated with wheelchair driving Because the information necessary for driving cannot be recognized at the same time because the change in the correlation between the position and the object can not be recognized at the same time, the area that relies on the space recognition based on the imagination of the visually impaired person becomes large, and the surrounding situation There is also insufficient information for recognizing position confirmation from grasp.
直線的な距離の認識から空間的な相関関連性の認知を可能とする為に車椅子の五方向と五本の指等の様に身体各位と対応させた複数のセンサーから得た情報を解析し、バイブレーターの振動の強弱・振動のバリエーション等に変換して各々の方向に対応させた部位に同時に伝達する事で、リアルタイムに複数の障害物やそれらの移動等を同時に把握する事が出来、状況の変化の高度な認識の元に運転する事が可能とする。 In order to recognize the spatial correlation from the recognition of the linear distance, the information obtained from multiple sensors corresponding to each body position, such as the five directions of the wheelchair and five fingers, is analyzed. By simultaneously transmitting to the parts corresponding to each direction by converting to vibration intensity and vibration variations of the vibrator, it is possible to simultaneously grasp multiple obstacles and their movement in real time. It is possible to drive based on advanced recognition of changes.
単純にセンサーを複数併用する事とは次元が異なる空間認識を可能とし、複数の障害物との位置関係を同時並行で把握出来る様になり、障害物の移動、自己の回転・移動双方に伴う相関関連性の把握によりより高度な認識に伴う移動が可能となる事で運転の安全性を向上させる。 Simply using multiple sensors enables spatial recognition with a different dimension, and allows you to grasp the positional relationship with multiple obstacles in parallel, accompanying both the movement of obstacles and their own rotation and movement. By grasping the correlation, it is possible to move with a higher level of recognition, thereby improving driving safety.
五指への刺激を意識する事により広範な感覚が総合的に動員され、自己の周囲の空間に対する認識を活性化させる事により脳の機能が多元的に活用され脳のリハビリにも効果が想定され、指先と身体の医学的な連携から脳〜全身への効果の波及が伴う事で身体的なリハビリにも効果が期待される。 A wide range of sensations are mobilized comprehensively by being conscious of stimuli to the five fingers, and brain functions are utilized in multiple ways by activating recognition of the surrounding space of the self, and effects on brain rehabilitation are expected. The effect of physical rehabilitation is expected due to the spread of effects from the medical cooperation between the fingertip and the body to the brain to the whole body.
以下、本発明の実施の形態を図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1の様に車椅子前方の五方向A〜Eに対応させたセンサーA'〜E'から障害物との距離の情報を収集、センサーから得た障害物との距離の情報をCPUで解析、振動の強弱としてバイブレーターA#〜E#で五指に伝達する。 As shown in Fig. 1, information on the distance to the obstacle is collected from the sensors A 'to E' corresponding to the five directions A to E in front of the wheelchair, and the information on the distance to the obstacle obtained from the sensor is analyzed by the CPU. The vibration is transmitted to the five fingers with vibrators A # to E #.
A〜Eの角度aは親指〜小指までを開いた角度に対応させるので人によっては直角以上に開く場合もあるが自然に開いて80度程とすると各々16度程度に分割する事により認識をし易くなるが、各々の角度を任意に増減する事も可とする。 The angle a of A to E corresponds to the angle from the thumb to the little finger, so some people may open more than a right angle, but if it opens naturally and is about 80 degrees, it will be recognized by dividing each into about 16 degrees. However, it is also possible to arbitrarily increase or decrease each angle.
X1〜X3の長・中・短距離区分にして一メートル毎とし振動の強弱を三段階で伝達する事で把握が可能だが、距離区分数や距離、対応する振動の強弱の度合いを任意に変更させても良い。 It can be grasped by transmitting the strength of vibration in three stages by changing the length of X1, X3, X3 to X3 for each meter, but the number of distance categories and distance, and the level of corresponding vibration strength can be changed arbitrarily. You may let them.
X1〜X3の様に距離区分に応じて振動を区分けせずにセンサーで認識した距離に応じて振動の強弱の変化を連続化しても良い。 As in X1 to X3, the vibration intensity may be continuously changed according to the distance recognized by the sensor without dividing the vibration according to the distance classification.
応用例として五本の指による前方認識以外にも後方の障害物認知の為のセンサーFを設け、手首部位にバイブレーターの振動の強弱で伝達する事も可能である。
この場合、後方の認識の角度f・距離区分Y1〜Y3は前方の認識よりも限定されるので10度、50センチ程度でも良いが距離区分数や距離、それに対応する振動の強弱のバリエーションを任意に変更する事も良い。
As an application example, it is possible to provide a sensor F for obstacle recognition in the rear in addition to the front recognition with five fingers, and transmit it to the wrist part with the strength of vibration of the vibrator.
In this case, the rear recognition angle f and distance sections Y1 to Y3 are limited to those of the front recognition, and may be about 10 degrees or 50 centimeters. It is good to change to.
Y1〜Y3の様に距離区分に応じて振動を区分けせずにセンサーで認識した距離に応じて振動の強弱の変化を連続化しても良い。 As in Y1 to Y3, changes in vibration intensity may be continued according to the distance recognized by the sensor without dividing the vibration according to the distance classification.
バイブレーターの設置は五指以外でも座位部分や足裏部分等でも良い。 Vibrators may be installed on the sitting or soles other than the five fingers.
図4は足元の障害を認識するセンサーGから得た情報をCPUで解析し、水平面上の障害Uと水平面下の障害Dの振動の種類を分け判別可能とし自己との距離を振動数の強弱で足裏に設置したバイブレーターGに伝達、子供との接触や転落・転倒等のリスクを回避させる事を目的とした図である。
距離区分H〜Jや角度h〜jは3段階、40度程度としても良いが、区分・角度・振動のバリエーションを任意に変更する事も可能とする。
Fig. 4 shows the information obtained from the sensor G that recognizes the obstacle at the foot, analyzed by the CPU, and the types of vibrations of the obstacle U on the horizontal plane and the fault D below the horizontal plane can be distinguished and discriminated. It is a figure aiming at avoiding the risk of transmission to the vibrator G installed on the sole of the foot, contact with the child, and falling and falling.
The distance sections H to J and the angles h to j may be three steps and about 40 degrees, but the section, angle, and vibration variations can be arbitrarily changed.
H〜Jの様に距離区分に応じて振動を区分けせずにセンサーで認識した距離に応じて振動の強弱の変化を連続化しても良い。 As in H to J, changes in vibration intensity may be made continuous according to the distance recognized by the sensor without dividing vibration according to the distance classification.
転落等のリスクは運転者にとって非常に大きな物なのでセンサーで障害との距離が15センチ以下等の一定値を切った場合、自動的に停止するストッパーを設け足裏に危険を伝達する振動を与え、方向を変え危険が回避される事でストッパーが外れる様にしても良い。 Because the risk of falling is very large for the driver, when the distance from the obstacle with the sensor falls below a certain value such as 15 centimeters or less, a stopper that automatically stops is provided to give vibration to convey the danger to the sole. The stopper may be removed by changing the direction and avoiding danger.
図3の掌を置く台座に設置されたバイブレーターA#〜E#(F#)にセンサーA'〜E'(F')で認識した距離に対応する振動の強弱が伝達される事でどの方向にどれだけの距離に障害が存在するかの認識が可能となる。 How much and in what direction the vibrations corresponding to the distances recognized by sensors A 'to E' (F ') are transmitted to vibrators A # to E # (F #) installed on the pedestal on which the palm of FIG. It becomes possible to recognize whether there is an obstacle in the distance.
五方向よりも方向を細分化したい場合には五指では不足するのでセンサーの数に応じて掌等の平面部位を該当する方位毎に区分しバイブレーターの数を増やしていく事で認識の細分化が可能となる。 If you want to subdivide the direction more than the five directions, it is not enough with five fingers, so you can subdivide the recognition by increasing the number of vibrators by dividing the plane part such as palm according to the number of sensors according to the corresponding direction. It becomes possible.
図4の様に左から右へと前方を人が横切った場合、距離を三区分化して表現すると小指側から弱→中→強→中→弱と移動速度に従って振動が移動する形態で認識が可能となる。 When a person crosses the front from left to right as shown in FIG. 4, when the distance is divided into three sections, the vibration moves from the little finger side according to the moving speed from weak → medium → strong → medium → weak. It becomes possible.
図5に記された様に左側の壁に接近した状態で平行に前進・後進した場合、三区分化で表現すると小指側から強・中・0・0・0の状態で同時並行で認識し得るので壁からの距離の増減や曲がり角の有無も振動の変化で認識する事が可能となる。 As shown in Fig. 5, when moving forward and backward in parallel with approaching the left wall, it is recognized in parallel in the strong, medium, 0, 0, 0 state from the little finger side when expressed in three sections. Therefore, it is possible to recognize the increase / decrease of the distance from the wall and the presence / absence of a corner by the change of vibration.
図6の様に車椅子をその場で左回りに回転した場合には左側に隣接した障害が強→強→強→強→強と順次小指側から伝達され、自己の移動や回転・障害物の移動に伴う相関関連性の把握が容易となる。 When the wheelchair is rotated counterclockwise on the spot as shown in Fig. 6, the obstacles adjacent to the left side are transmitted from the little finger side in the order of strong → strong → strong → strong → strong. It becomes easy to grasp the correlation related to movement.
前記の認識例を参考とし複数の障害が存在した場合、五本の指で同時に障害との距離・位置関係を把握しつつ静的状態、あるいは車椅子の移動・方向転換に伴う振動の変化により障害物の数や種類等を判別する事も容易となり高度な空間認識を可能とする。 If there are multiple obstacles with reference to the above recognition example, it is possible to grasp the distance / positional relationship with the obstacles simultaneously with five fingers, and either the static state or the vibration change due to wheelchair movement / direction change. It becomes easy to discriminate the number and type of objects, and enables advanced spatial recognition.
車椅子に取り付け可能な物と装置が設置されている車椅子双方の障害物認識・伝達装置を制作・販売する事が出来る。 It is possible to produce and sell obstacle recognition / communication devices for both wheelchairs that can be attached to a wheelchair and devices.
A〜E(F) 車椅子からの各方向
A'〜E'(F') A〜E(F)に対応したセンサー
A#〜E#(F#) A〜E(F)に対応したバイブレーター
X1〜X3(Y1〜Y3) 車椅子からの距離区分
a・f 各々のセンサーで認識する角度
U 水平面上に存在する障害物
D 水平面下の段差等の障害リスク
x〜z 車椅子の足元からのセンサー設置角度
G' 足元の障害を認知するセンサー
G# 障害との距離を伝達するバイブレーター
H〜J 車椅子からの足元の距離区分
h〜j 各々のセンサーで認識する足元の角度
A ~ E (F) Each direction from wheelchair
A '~ E' (F ') Sensors corresponding to A ~ E (F)
A # ~ E # (F #) Vibrators compatible with A ~ E (F)
X1-X3 (Y1-Y3) Distance from wheelchair
a ・ f Angle recognized by each sensor
U Obstacles on a horizontal plane
D Risk of obstacles such as steps below the horizontal plane
x to z Sensor installation angle from the wheelchair foot
G 'Sensor for recognizing a foot disorder
G # Vibrator that conveys distance to obstacles
H ~ J Distance classification of foot from wheelchair
h to j Foot angle recognized by each sensor
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006094121A JP2007271701A (en) | 2006-03-30 | 2006-03-30 | Obstacle recognition device for wheelchair for visually impaired person |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006094121A JP2007271701A (en) | 2006-03-30 | 2006-03-30 | Obstacle recognition device for wheelchair for visually impaired person |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007271701A true JP2007271701A (en) | 2007-10-18 |
Family
ID=38674594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006094121A Pending JP2007271701A (en) | 2006-03-30 | 2006-03-30 | Obstacle recognition device for wheelchair for visually impaired person |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007271701A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010271926A (en) * | 2009-05-21 | 2010-12-02 | Kanto Auto Works Ltd | Work guide system, work guide method, and recording medium recording the same |
JP2014225248A (en) * | 2013-04-18 | 2014-12-04 | パナソニックIpマネジメント株式会社 | Information presentation method and electronic device |
JP2019012252A (en) * | 2017-06-30 | 2019-01-24 | 日本放送協会 | Tactile sense providing device, tactile sense providing system, information processing apparatus, and program |
WO2019123622A1 (en) * | 2017-12-21 | 2019-06-27 | 株式会社ニコン | Guiding device |
-
2006
- 2006-03-30 JP JP2006094121A patent/JP2007271701A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010271926A (en) * | 2009-05-21 | 2010-12-02 | Kanto Auto Works Ltd | Work guide system, work guide method, and recording medium recording the same |
JP2014225248A (en) * | 2013-04-18 | 2014-12-04 | パナソニックIpマネジメント株式会社 | Information presentation method and electronic device |
JP2019012252A (en) * | 2017-06-30 | 2019-01-24 | 日本放送協会 | Tactile sense providing device, tactile sense providing system, information processing apparatus, and program |
JP6993825B2 (en) | 2017-06-30 | 2022-01-14 | 日本放送協会 | Tactile providing device, tactile providing system, information processing device, and program |
WO2019123622A1 (en) * | 2017-12-21 | 2019-06-27 | 株式会社ニコン | Guiding device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shoval et al. | NavBelt and the Guide-Cane [obstacle-avoidance systems for the blind and visually impaired] | |
Katzschmann et al. | Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device | |
Wachaja et al. | Navigating blind people with walking impairments using a smart walker | |
Lin et al. | Deep learning based wearable assistive system for visually impaired people | |
Flores et al. | Vibrotactile guidance for wayfinding of blind walkers | |
Amemiya et al. | Orienting kinesthetically: A haptic handheld wayfinder for people with visual impairments | |
KR101321187B1 (en) | Walking guide device for a blind man | |
KR20200089675A (en) | Device for use in virtual reality systems | |
JP2012525914A (en) | Vehicle handling and control system for disabled people | |
Liu et al. | Electronic travel aids for the blind based on sensory substitution | |
KR101082161B1 (en) | Human walking assistance system | |
JPWO2018047392A1 (en) | Mobility and mobility system | |
JP2007271701A (en) | Obstacle recognition device for wheelchair for visually impaired person | |
Ceres et al. | A robotic vehicle for disabled children | |
GB2487672A (en) | Active sensory augmentation device | |
KR20160097894A (en) | System for user oriented autonomous shopping cart by non-contacting user interface, and method for controlling autonomous shopping cart using the same | |
Ruíz-Serrano et al. | Obstacle avoidance embedded system for a smart wheelchair with a multimodal navigation interface | |
Bouzit et al. | Tactile feedback navigation handle for the visually impaired | |
Zhang et al. | A control system of driver assistance and human following for smart wheelchair | |
Hara et al. | Virtual environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired | |
Wahyufitriyani et al. | Review of intelligent wheelchair technology control development in the last 12 years | |
Vijayakumar et al. | Sensors based automated wheelchair | |
Ramaraj et al. | Development of a Modular Real-time Shared-control System for a Smart Wheelchair | |
Sucu et al. | Haptic interface for non-visual steering | |
Amemiya et al. | Navigation in eight cardinal directions with pseudo-attraction force for the visually impaired |