JP2007271465A - Magnetic field distribution measuring instrument - Google Patents

Magnetic field distribution measuring instrument Download PDF

Info

Publication number
JP2007271465A
JP2007271465A JP2006097698A JP2006097698A JP2007271465A JP 2007271465 A JP2007271465 A JP 2007271465A JP 2006097698 A JP2006097698 A JP 2006097698A JP 2006097698 A JP2006097698 A JP 2006097698A JP 2007271465 A JP2007271465 A JP 2007271465A
Authority
JP
Japan
Prior art keywords
magnetic field
field distribution
probe
measured
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097698A
Other languages
Japanese (ja)
Inventor
Kenji Amaya
賢治 天谷
Shinichi Yamakawa
真一 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2006097698A priority Critical patent/JP2007271465A/en
Publication of JP2007271465A publication Critical patent/JP2007271465A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field distribution measuring instrument that has high resolution and that simplifies the position control of a probe. <P>SOLUTION: The magnetic field distribution measuring instrument comprises the probe having a thin-film magnetometric sensor for detecting magnetic field distribution very close to a measured object as an output signal of voltage or current, an actuator for one-dimensionally translation-scanning the probe in the thickness direction of the thin-film magnetometric sensor, a rotating mechanism for making the measured object rotate in the horizontal plane, an angle sensor for detecting the rotation angle of the measured object, and a magnetic field distribution reconstructing means for reconstructing the magnetic field distribution, based on the output signal from the probe, the position signal of the probe output from the actuator, and a rotation angle signal output from the angle sensor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気ヘッドや磁気ディスクのような磁性部品から空間に漏れ出す磁界を高解像度で計測することが可能な磁界分布計測装置に関する。   The present invention relates to a magnetic field distribution measuring apparatus capable of measuring a magnetic field leaking into a space from a magnetic component such as a magnetic head or a magnetic disk with high resolution.

近年、ハードディスク(HDD)や不揮発性磁気メモリ(MRAM)などの各種磁気記録デバイスの急激な高密度化が進んでいる。HDDなどの研究開発現場において各種デバイスの記録媒体の微小な磁化分布や、微小な磁気ヘッドの周りの磁界分布を評価したいという要求は多い(非特許文献1、2参照)。
研究が行われている磁界計測技術には、透過型電子顕微鏡を応用し電子線が磁界の中を通過するときに起こるローレンツ偏向から磁界分布を再構成する手法や(非特許文献1、3参照)、磁化したナノプローブを用いる磁気力顕微鏡(非特許文献4、5参照)、走査型ホール素子顕微鏡などがある(非特許文献6参照)。
電子線を利用した手法では、試料への偏向した電子の衝突を避けるために、試料の極近傍(〜50nm)での計測は困難であるという問題や、分解能が100nm〜200nm程度であるという問題がある。
In recent years, the density of various magnetic recording devices such as hard disks (HDD) and nonvolatile magnetic memories (MRAM) has been rapidly increasing. In R & D sites such as HDDs, there are many requests to evaluate the minute magnetization distribution of recording media of various devices and the magnetic field distribution around the minute magnetic head (see Non-Patent Documents 1 and 2).
For the magnetic field measurement technology being studied, a transmission electron microscope is applied to reconstruct a magnetic field distribution from Lorentz deflection that occurs when an electron beam passes through a magnetic field (see Non-Patent Documents 1 and 3). ), Magnetic force microscopes using magnetized nanoprobes (see Non-Patent Documents 4 and 5), scanning Hall element microscopes and the like (see Non-Patent Document 6).
In the method using an electron beam, in order to avoid the collision of deflected electrons with the sample, it is difficult to measure near the sample (up to 50 nm) and the resolution is about 100 nm to 200 nm. There is.

一方、磁気力顕微鏡や走査型ホール素子顕微鏡は、電子線を用いる場合に比べ、扱いが簡便で様々な開発現場で利用できるが、磁気力顕微鏡は微細な先端を有する針状のプローブの製作が困難であるという問題、ホール素子顕微鏡は分解能が1μmであるという問題、また両者ともプローブの精密な制御が必要となるという問題が存在する。   On the other hand, magnetic force microscopes and scanning Hall element microscopes are easier to handle and can be used at various development sites than using electron beams, but magnetic force microscopes can produce needle-like probes with fine tips. There are problems that it is difficult, Hall element microscopes have a resolution of 1 μm, and that both require precise control of the probe.

現在、薄膜技術を用いた磁気センサはHDDのヘッドをはじめ広く利用されている(非特許文献7、8参照)。薄膜磁気センサには誘導起電力を利用したもの、磁気抵抗(Magnetoresistive)効果(MR効果)を利用したものなどがある。MR効果とは外部からの磁界によって素子の抵抗が変化する現象である。MR効果を利用したHDDの読み取りヘッドには異方性磁気抵抗(Anisotropic Magnetoresistive)ヘッド、巨大磁気抵抗(Giant Magnetoresistive)ヘッドなどがある。現在のHDDの読み取りヘッドの主流であるGMRヘッドは膜厚が10nm以下となっており、数十nmの間隔で並んだディスク上の磁化分布を読み出している。
エイチ・スズキ(H.Suzuki)、ティ・シマクラ(T.Shimakura)、ケイ・イトウ(K.Itoh)、ケイ・ナカムラ(K.Nakamura)共著、「マグネチック・ヘッド・フィールド・オーバー・ジ・エア−ベアリング・サーフィス・アズ・ビジュアライズド・バイ・ザ・プロジェクション・オブ・ア・パターンド・エレクトロン・ビーム(Magnetic head field over the air-bearing surface as visualized bythe projection of a patterned electron beam)」、アイトリプルイー・トランザクションズ・オン・マグネティクス(IEEE TRANSACTIONS ON MAGNETICS)、2000年パート1、第36巻、5号、p3614-3617 シーエイチ・バック(CH.Back)、ジェイ・ハイドマン(J.Heidmann)、ジェイ・マッコード(J.McCord)共著、「タイム・レゾルブド・カー・マイクロスコピー:マグネティゼイション・ダイナミクス・イン・シン・フィルム・ライト・ヘッズ(Time resolved Kerr microscopy:Magnetization dynamics in thin filmwrite heads)」、アイトリプルイー・トランザクションズ・オン・マグネティクス(IEEE TRANSACTIONS ON MAGNETICS)、1999年パート1、第35巻、2号、p637-642 ケイ・ナカムラ(K.Nakamura)、ティ・シマクラ(T.Shimakura)、エイチ・スズキ(H.Suzuki)共著、「マグネチック・フィールド・メジャメント・フォー・アナリシス・オブ・ギガヘルツ・レスポンス・イン・エスピーティ・ヘッド・ユージング・エレクトロン・ビーム・トモグラフィ(Magnetic field measurement for analysis of GHz response in SPT headusing electron beam tomography)」、ジェイ・マグネティズム・アンド・マグネティック・マテリアルズ(J.MAGNETISM AND MAGNETIC MATERIALS)、2005年、第287巻、p333-338 エイチ・クラモチ(H.Kuramochi)、ティ・ウズマキ(T.Uzumaki)、エム・ヤスタケ(M.Yasutake)、エイ・タナカ(A.Tanaka)、エイチ・アキナガ(H.Akinaga)、エイチ・ヨコヤマ(H.Yokoyama)共著、「ア・マグネチック・フォース・マイクロスコープ・ユージング・コバルト−鉄コーテッド・カーボン・ナノチューブ・プローブズ(A magnetic force microscope using CoFe-coated carbon nanotubeprobes)」、ナノテクノロジー(NANOTECHNOLOGY)、2005年、16巻、1号、p24-27 クラモチ・エイチ(KuramochiH.)、アキナガ・エイチ(Akinaga H.)、センバ・ワイ(Semba Y.)、キジマ・エヌ(Kijima N.)、ウズマキ・ティ(Uzumaki T.)、ヤスタケ・エム(Yasutake M.)、タナカ・エイ(Tanaka A.)、ヨコヤマ・エイチ(Yokoyama H.)共著、「コバルト−鉄コーテッド・カーボン・ナノチューブ・プローブズ・フォー・マグネチック・フォース・マイクロスコープ(CoFe-coated carbon nanotube probes for magnetic force microscope)」、ジャパニーズ・ジャーナル・オブ・アプライド・フィジクス(Japanese Journal of Applied Physics)、2005年、第44巻、4A号、p2079-2082 福村知昭、長谷川哲也:走査型プローブ顕微鏡の磁性半導体及び超巨大磁気抵抗材料への適用、表面科学、2002年、第23巻、4号、p233-238 ビー・ヴェイシック(B.Vasic)、イー・エム・カータス(E.M.Kurtas)共著、「コーディング・アンド・シグナル・プロセシング・フォー・マグネチック・レコーディング・システムズ(Coding and signal processing for magnetic recording systems)」、シーアールシー・プレス・エルエルシー(CRC Press LLC)、2005年、Sec.1/Sec.2 アール・エル・コムストック(R.L.Comstock)、「イントロダクション・トゥー・マグネティズム・アンド・マグネチック・レコーディング(Introductionto Magnetism and Magnetic Recording)」、ジョン・ウィリー・アンド・サンズ・インク(John Wiley & Sons.Inc.)、1999年、p353-417
At present, magnetic sensors using thin film technology are widely used including HDD heads (see Non-Patent Documents 7 and 8). Thin film magnetic sensors include those using an induced electromotive force and those using a magnetoresistive effect (MR effect). The MR effect is a phenomenon in which the resistance of the element changes due to an external magnetic field. Anisotropic magnetoresistance in read head of the HDD using the MR effect (Anisotropic Magnetoresistive) head, and the like giant magnetoresistance (G iant M agneto r esistive) head. The GMR head, which is the mainstream of current HDD read heads, has a film thickness of 10 nm or less, and reads the magnetization distribution on the disks arranged at intervals of several tens of nm.
Co-authored by H. Suzuki, T. Shimakura, K. Itoh, K. Nakamura, “Magnetic Head Field Over the Air” -Bearing surface as a visualized by the projection of a patterned electron beam '', Eye Triple Transactions on Magnetics (IEEE TRANSACTIONS ON MAGNETICS), 2000 Part 1, Volume 36, Issue 5, p3614-3617 Co-authored by CH.Back, J.Heidmann, and J.McCord, “Time Resolved Car Microscopy: Magneticization Dynamics in Thin Film”・ Time resolved Kerr microscopy: Magnetization dynamics in thin filmwrite heads ”, IEEE TRANSACTIONS ON MAGNETICS, 1999 Part 1, Vol. 35, No. 2, p. 637 -642 Co-authored by K. Nakamura, T. Shimakura, and H. Suzuki, “Magnetic Field Measurement for Analysis of Gigahertz Response in Spirit”・ Head-using electron beam tomography (Magnetic field measurement for analysis of GHz response in SPT headusing electron beam tomography), J. MAGNETISM AND MAGNETIC MATERIALS, 2005 Year, Vol. 287, p333-338 H. Kuramochi, T. Uzumaki, M. Yasutake, A. Tanaka, H. Akinaga, H. Yokoyama (H Yokoyama), "A magnetic force microscope using CoFe-coated carbon nanotubeprobes", NANOTECHNOLOGY, 2005 , Volume 16, Issue 1, p24-27 Kuramochi H., Akinaga H., Semba Y., Kijima N., Uzumaki T., Yasutake M ), Tanaka A., and Yokoyama H., "CoFe-coated carbon nanotube probes (CoFe-coated carbon nanotube probes) for magnetic force microscope), Japanese Journal of Applied Physics, 2005, 44, 4A, p2079-2082 Fukumura Tomoaki, Hasegawa Tetsuya: Application of scanning probe microscopes to magnetic semiconductors and supergiant magnetoresistive materials, Surface Science, 2002, Vol. 23, No. 4, p233-238 Co-authored by B. Vasic and EMKurtas, “Coding and signal processing for magnetic recording systems”, CRC・ CRC Press LLC, 2005, Sec.1 / Sec.2 RLComstock, `` Introduction to Magnetism and Magnetic Recording '', John Wiley & Sons. Inc. ), 1999, p353-417

本発明は、かかる従来技術の問題点に鑑み、電子線を利用する方法や磁化したナノプローブを利用する方法に代わるものとして、薄膜磁気センサを利用することにより、高分解能(10nm以下)で、かつプローブの位置制御を簡略化した磁界分布計測装置を提供することを目的とする。   In view of the problems of the prior art, the present invention provides a high resolution (10 nm or less) by using a thin film magnetic sensor as an alternative to a method using an electron beam or a magnetized nanoprobe. It is another object of the present invention to provide a magnetic field distribution measuring apparatus in which the position control of the probe is simplified.

本発明は、被計測対象物から空間に漏れ出す磁界の分布を計測する磁界分布計測装置に関し、本発明の上記目的は、前記被計測対象物の極近傍の磁界分布を電圧又は電流の出力信号として検出する薄膜磁気センサから成るプローブと、前記プローブを前記薄膜磁気センサの膜厚方向に一次元並進スキャンさせるアクチュエータと、前記被計測対象物を水平面内で回転させる回転機構と、前記被計測対象物の回転角を検出する角度センサと、前記プローブからの出力信号、前記アクチュエータから出力される前記プローブの位置信号及び前記角度センサから出力される回転角信号に基づいて、前記磁界分布を再構成する磁界分布再構成手段とを備えたことを特徴とする磁界分布計測装置によって達成される。   The present invention relates to a magnetic field distribution measuring apparatus that measures the distribution of a magnetic field that leaks into the space from an object to be measured. A probe composed of a thin film magnetic sensor for detecting the probe, an actuator for causing the probe to perform a one-dimensional translational scan in the film thickness direction of the thin film magnetic sensor, a rotating mechanism for rotating the measurement target in a horizontal plane, and the measurement target Reconstructing the magnetic field distribution based on an angle sensor that detects the rotation angle of an object, an output signal from the probe, a position signal of the probe output from the actuator, and a rotation angle signal output from the angle sensor This is achieved by a magnetic field distribution measuring apparatus comprising a magnetic field distribution reconstructing means.

また、本発明の上記目的は、前記被計測対象物の極近傍の磁界分布を電圧又は電流の出力信号として検出する薄膜磁気センサを2つ以上重ねられて多層に構成されたプローブと、前記被計測対象物を水平面内で回転させる回転機構と、前記被計測対象物の回転角を検出する角度センサと、前記各プローブからの出力信号、前記各プローブの位置信号、及び前記角度センサから出力される回転角信号に基づいて、前記磁界分布を再構成する磁界分布再構成手段とを備えたことを特徴とする磁界分布計測装置によって達成される。   In addition, the object of the present invention is to provide a probe having a multilayer structure in which two or more thin film magnetic sensors for detecting a magnetic field distribution in the vicinity of the object to be measured as a voltage or current output signal are stacked, and the object to be measured. A rotation mechanism that rotates the measurement object in a horizontal plane, an angle sensor that detects a rotation angle of the measurement object, an output signal from each probe, a position signal of each probe, and an output from the angle sensor This is achieved by a magnetic field distribution measuring device comprising a magnetic field distribution reconstruction means for reconstructing the magnetic field distribution based on a rotation angle signal.

さらに、本発明の上記目的は、前記被計測対象物を水平面内で所定の方向に一次元並進させるアクチュエータと、前記被計測対象物の極近傍の磁界分布を電圧又は電流の出力信号として検出する薄膜磁気センサを、前記水平面内の前記所定の方向に、所定の間隔でかつ互いに異なる角度で複数配列したプローブ群と、前記プローブ群の各プローブからの出力信号、各プローブの位置情報、各プローブの傾斜角度及び前記アクチュエータから出力される前記被計測対象物の位置信号に基づいて、前記磁界分布を再構成する磁界分布再構成手段とを備えたことを特徴とする磁界分布計測装置によって達成される。   Furthermore, the object of the present invention is to detect an actuator for one-dimensional translation of the object to be measured in a predetermined direction in a horizontal plane and a magnetic field distribution in the vicinity of the object to be measured as an output signal of voltage or current. A probe group in which a plurality of thin film magnetic sensors are arranged in the predetermined direction in the horizontal plane at predetermined intervals and at different angles, output signals from the probes of the probe group, position information of the probes, and probes And a magnetic field distribution reconstructing means for reconstructing the magnetic field distribution based on a tilt angle of the measured object and a position signal of the measurement object output from the actuator. The

本発明に係る薄膜磁気センサを用いた磁界分布計測装置によれば、回転する試料上で薄膜磁気センサを1次元方向に並進スキャンし、様々な回転角度と並進位置での計測データを得、次に、得られた計測データから一般的に利用されているCTアルゴリズムを用いて磁界分布の再構成を行うので、薄膜磁気センサの膜厚(10nm以下)と同等の分解能を得ることができる。
また、薄膜磁気センサとして用いられるGMRヘッドは、ヘッドの長手方向を試料に対して十分大きく取ることで、長手方向の精密な位置制御を必要とせず、従来の磁気力顕微鏡で使用される針状のプローブのような水平面内での2次元の精密位置制御が不要となり、プローブの位置制御が簡単になるという効果がある。
一方、角度は無次元数であるためその制御は比較的容易である。従って、薄膜磁気センサを用いた場合、ナノスケールの精密な制御が必要な次元数を1次元減らすことができる。これは実際の計測システムを構築する上で大きな利点となる。
According to the magnetic field distribution measuring apparatus using the thin film magnetic sensor according to the present invention, the thin film magnetic sensor is translationally scanned in a one-dimensional direction on the rotating sample to obtain measurement data at various rotation angles and translation positions. In addition, since the magnetic field distribution is reconstructed from the obtained measurement data using a CT algorithm generally used, a resolution equivalent to the film thickness (10 nm or less) of the thin film magnetic sensor can be obtained.
In addition, GMR heads used as thin-film magnetic sensors do not require precise position control in the longitudinal direction by making the longitudinal direction of the head sufficiently large with respect to the sample, and are needle-shaped used in conventional magnetic force microscopes. This eliminates the need for two-dimensional precise position control in the horizontal plane as in the case of this probe, and has an effect of simplifying the position control of the probe.
On the other hand, since the angle is a dimensionless number, its control is relatively easy. Therefore, when a thin film magnetic sensor is used, the number of dimensions that require precise nanoscale control can be reduced by one dimension. This is a great advantage in constructing an actual measurement system.

本発明に係る磁界分布計測装置は、HDDなどに用いられている薄膜磁気センサをプローブに利用したものであり、試料を水平面内で回転させ、薄膜磁気センサを回転する試料の極近傍でその厚さ方向に1次元並進スキャンを行い計測データを得るものである。様々な試料の回転角度、並進位置でのスキャンによる計測データから磁界分布を再構成する。
図1は本発明に係る磁界分布計測装置の構成を示すブロック図である。
被計測対象物の極近傍の磁界分布を電圧信号(ΔV)として検出する薄膜磁気センサから成るプローブと、支持部材を介してプローブを前記薄膜磁気センサの膜厚方向に一次元並進スキャンさせるアクチュエータと、被計測対象物を水平面内で回転させるターンテーブル及びモータからなる回転機構と、被計測対象物の回転角を検出する角度センサと、前記プローブからの電圧信号(ΔV)、前記アクチュエータから出力される前記プローブの位置信号(X)及び前記角度センサから出力される回転角信号(θ)に基づいて、磁界分布を再構成する磁界分布再構成手段とを備えている。
なお、本実施の形態では、薄膜磁気センサに定電流を供給し、磁界による抵抗変化を電圧変化信号(ΔV)として取り出して、磁界分布の再構成の計算に利用しているが、定電圧を印加して、磁界による抵抗変化を電流変化信号(ΔI)として取り出して磁界分布の再構成の計算に利用するようにしてもよい。
薄膜磁気センサとしてはGMRヘッドが好ましい。また、アクチュエータとしては電圧印加によって変形するピエゾ素子が利用可能である。
また、磁界分布再構成手段としては、所定の再構成アルゴリズムによるプログラムがインストールされたパソコンが利用可能である。また、パソコンのディスプレイを再構成された磁界分布の表示手段として利用することができる。再構成アルゴリズムとしては一般的に広く知られているX線CTアルゴリズム(Computed Tomography)を利用することができる。従来、センサの代表長さで制限されていた分解能を、本発明による方法では薄膜センサの膜厚と同等にすることができる。提案する方法ではHDDの分野で著しく進歩した計測技術をそのまま利用できるため、安価、簡便に高分解能の計測が期待できる。
ここでは、現在HDDで用いられている薄膜磁気センサを利用し、薄膜センサの膜厚と同等の分解能で磁界分布を得る手法の詳細を述べる。まず、薄膜磁気ヘッドを試料上でスキャンした模擬計測データを得る順解析を示し、次に模擬計測データから磁界分布を再構成する手法を示す。最後に本手法の数値シミュレーションを行った結果を示す。
The magnetic field distribution measuring apparatus according to the present invention uses a thin film magnetic sensor used in an HDD or the like as a probe, rotates the sample in a horizontal plane, and the thickness of the thin film magnetic sensor near the sample rotates. Measurement data is obtained by performing a one-dimensional translation scan in the vertical direction. The magnetic field distribution is reconstructed from measurement data obtained by scanning at various sample rotation angles and translational positions.
FIG. 1 is a block diagram showing a configuration of a magnetic field distribution measuring apparatus according to the present invention.
A probe comprising a thin film magnetic sensor for detecting a magnetic field distribution in the vicinity of the object to be measured as a voltage signal (ΔV), and an actuator for performing a one-dimensional translational scan in the film thickness direction of the thin film magnetic sensor via a support member; A rotation mechanism comprising a turntable and a motor for rotating the object to be measured in a horizontal plane, an angle sensor for detecting the rotation angle of the object to be measured, a voltage signal (ΔV) from the probe, and output from the actuator Magnetic field distribution reconstruction means for reconstructing the magnetic field distribution based on the position signal (X) of the probe and the rotation angle signal (θ) output from the angle sensor.
In this embodiment, a constant current is supplied to the thin film magnetic sensor, and the resistance change due to the magnetic field is extracted as a voltage change signal (ΔV) and used for the calculation of the reconstruction of the magnetic field distribution. The change in resistance due to the magnetic field may be applied and taken out as a current change signal (ΔI) and used for the calculation of the reconstruction of the magnetic field distribution.
A GMR head is preferred as the thin film magnetic sensor. As the actuator, a piezoelectric element that is deformed by voltage application can be used.
As the magnetic field distribution reconstruction means, a personal computer installed with a program based on a predetermined reconstruction algorithm can be used. Moreover, the display of a personal computer can be used as a display means for reconstructed magnetic field distribution. As a reconstruction algorithm, an X-ray CT algorithm (Computed Tomography) that is generally widely known can be used. Conventionally, the resolution limited by the representative length of the sensor can be made equal to the film thickness of the thin film sensor by the method according to the present invention. Since the proposed method can use the measurement technology that has been remarkably advanced in the field of HDD as it is, it can expect high-resolution measurement easily and inexpensively.
This section describes the details of the method for obtaining the magnetic field distribution with the resolution equivalent to the film thickness of the thin film sensor using the thin film magnetic sensor currently used in the HDD. First, forward analysis for obtaining simulated measurement data obtained by scanning a thin film magnetic head on a sample is shown, and then a technique for reconstructing the magnetic field distribution from the simulated measurement data is shown. Finally, the result of numerical simulation of this method is shown.

〔1.薄膜磁気センサを用いた観測の原理〕
薄膜磁気センサとしては様々なものが利用できるが、本発明では現在HDDの読み取りヘッドの主流となっているGMRヘッドを例として以下原理を述べる。
(1.1 GMRヘッドの説明)
巨大磁気抵抗効果(GMR)を利用したHDDの読み取りヘッドについて簡単に説明する。HDDヘッドを拡大した概略図を図2に示す。図2では垂直磁気記録方式の書き込み用ヘッドと読み取り用のGMRヘッドがディスクの極近傍を浮遊して磁気データを読み書きする様子を示している。
図2のGMRヘッドを拡大した概略図を図3に示す。GMRヘッドは非磁性金属層(Spacer)を2枚の強磁性体で挟み込んだ多層膜の構造である。GMR効果は2枚の強磁性体の磁化方向が平行と反平行の場合で多層膜の抵抗率が変化する現象である。HDDの読み取りヘッドとして用いる場合には、2枚の強磁性体のうち1枚(Pinned layer)の磁化方向は固定され、もう一枚(Free layer)がディスクからの磁界により磁化方向が変化するようになっている。多層膜に一定の電流を流し、磁界による抵抗変化を電圧変化として観測する。GMRヘッドの大きさは現在、厚さが数ナノメートル(nm)、幅が数百nmであり、今後HDDの更なる高密度化のため、さらに微細化が進む傾向にある。
HDDでは図2に示すように書き込みヘッド、読み取りヘッド共に細長い形状をしているため、ディスク上の磁化は短冊状の分布となる。短冊の厚さ方向には高い記録密度が得られるが、長手方向の記録密度は低下する。一方、GMRヘッドをプローブとして利用する場合、GMRヘッドの厚さ方向には高い分解能が得られるが。長手方向の分解能はヘッドの幅で制限を受ける問題がある。
[1. Principle of observation using thin film magnetic sensor)
Various thin film magnetic sensors can be used. In the present invention, the principle will be described below using the GMR head, which is the mainstream of HDD read heads, as an example.
(1.1 Explanation of GMR head)
A brief description of the HDD read head using the giant magnetoresistive effect (GMR) will be given. An enlarged schematic view of the HDD head is shown in FIG. FIG. 2 shows a state in which a perpendicular magnetic recording type writing head and a reading GMR head float in the vicinity of the disk and read and write magnetic data.
An enlarged schematic view of the GMR head of FIG. 2 is shown in FIG. The GMR head has a multilayer structure in which a nonmagnetic metal layer (Spacer) is sandwiched between two ferromagnetic materials. The GMR effect is a phenomenon in which the resistivity of a multilayer film changes when the magnetization directions of two ferromagnetic materials are parallel and antiparallel. When used as an HDD read head, the magnetization direction of one of the two ferromagnets (Pinned layer) is fixed, and the magnetization direction of the other (Free layer) changes due to the magnetic field from the disk. It has become. A constant current is passed through the multilayer film, and the resistance change due to the magnetic field is observed as a voltage change. The GMR head is currently several nanometers (nm) thick and several hundred nanometers wide, and there is a trend toward further miniaturization in order to further increase the density of HDDs.
In the HDD, as shown in FIG. 2, since the writing head and the reading head are elongated, the magnetization on the disk has a strip-like distribution. Although a high recording density is obtained in the thickness direction of the strip, the recording density in the longitudinal direction is lowered. On the other hand, when a GMR head is used as a probe, high resolution can be obtained in the thickness direction of the GMR head. There is a problem that the resolution in the longitudinal direction is limited by the width of the head.

(1.2 観測手法)
GMRヘッドを磁界分布計測装置のプローブとして利用する手法の詳細を示す。磁化分布をもった試料上を図4に示すようにGMRヘッドでスキャンし、計測データを得る。試料を水平面内で回転させ、GMRヘッドをその厚さ方向に1次元並進スキャンする。ヘッドに流れる電流値を一定に保ち、試料からの磁界による抵抗変化をヘッドの両端での電圧変化として観測する。様々な回転角度、並進位置で得られる複数の観測量から、磁界分布を未知数とする連立方程式を構成する。
この連立方程式の構造はX線CT法で取り扱われているものと同様であるので、方程式の求解には既存のX線CT法の様々な再構成アルゴリズムが利用できる。連立方程式を解いて得られる磁界分布の分解能は、GMRヘッドの膜厚に依存する。膜厚が薄いと得られる分解能は向上し、厚いと分解能は低下する。膜厚が厚くなると連立方程式が悪条件となるため、得られる分解能が低下する。
(1.2 Observation method)
Details of the method of using the GMR head as a probe of the magnetic field distribution measuring apparatus are shown. A sample having a magnetization distribution is scanned with a GMR head as shown in FIG. 4 to obtain measurement data. The sample is rotated in the horizontal plane, and the GMR head is scanned one-dimensionally in the thickness direction. The current value flowing through the head is kept constant, and the resistance change due to the magnetic field from the sample is observed as a voltage change at both ends of the head. A simultaneous equation with the magnetic field distribution as an unknown is constructed from a plurality of observation amounts obtained at various rotational angles and translational positions.
Since the structure of the simultaneous equations is the same as that handled by the X-ray CT method, various reconstruction algorithms of the existing X-ray CT method can be used for solving the equations. The resolution of the magnetic field distribution obtained by solving the simultaneous equations depends on the film thickness of the GMR head. When the film thickness is thin, the resolution obtained is improved, and when it is thick, the resolution is lowered. As the film thickness increases, the simultaneous equations become ill-conditioned, resulting in a decrease in resolution.

(1.3 数理モデル)
GMRヘッドをプローブとして用いて並進と回転のスキャンを行い、試料からの磁界変化を電圧変化として観測する数理モデルを以下に示す。図4を上から見た様子が図5である。ヘッドはXY座標系でX軸方向に並進スキャンし、試料はXY座標系の原点を中心にθだけ回転している。xy座標系は試料に固定された座標系である。z軸、Z軸を共に試料面から垂直上方向にとる。試料からある一定の距離だけZ軸方向に離れた付置での磁界分布のZ軸成分をh(x,y)とし、ヘッドの両端で観測される電圧変化をg(X,θ)とする。θだけ回転した試料上をヘッドがX軸方向にスキャンし、電圧変化g(X,θ)を観測する。電圧変化g(X,θ)はヘッドの膜厚が薄いため、ヘッドの下端面での磁界分布h(x,y)のY方向の積分値として式(1)のように得ることができる。

Figure 2007271465
電圧変化g(X,θ)が磁界分布h(x,y)の積分値として近似できる理由は後述(段落0018)する。 (1.3 Mathematical model)
The following is a mathematical model that uses a GMR head as a probe to scan translation and rotation and observe magnetic field changes from the sample as voltage changes. FIG. 5 is a view of FIG. 4 viewed from above. The head performs translational scanning in the X-axis direction in the XY coordinate system, and the sample rotates by θ around the origin of the XY coordinate system. The xy coordinate system is a coordinate system fixed to the sample. Both the z-axis and the Z-axis are taken vertically upward from the sample surface. Assume that the Z-axis component of the magnetic field distribution at a certain distance from the sample in the Z-axis direction is h (x, y), and the voltage change observed at both ends of the head is g (X, θ). The head scans the sample rotated by θ in the X-axis direction, and the voltage change g (X, θ) is observed. Since the film thickness of the head is thin, the voltage change g (X, θ) can be obtained as an integral value in the Y direction of the magnetic field distribution h (x, y) at the lower end surface of the head as shown in Expression (1).
Figure 2007271465
The reason why the voltage change g (X, θ) can be approximated as an integral value of the magnetic field distribution h (x, y) will be described later (paragraph 0018).

(1.4 再構成手法)
観測量g(X,θ)から試料上の磁界分布の推定値

Figure 2007271465
を再構成する手法を示す。
g(X,θ)から
Figure 2007271465
の再構成には、一般的に広く利用されているX線CT法を利用することができる。CT法の手法にはFBP法(Filtered Backprojection)、CBP法(Convolution Backprojection)、EL−ME法等様々な手法があるが、ここでは例としてFBP法の適用例について説明する。
磁界分布h(x,y)の2次元フーリエ変換H(ξ,η)は式(4)のように表される。
Figure 2007271465
ここで、ξ=ωcosθ,η=ωsinθとして極座標(ω,θ)で表すと次式となる。
Figure 2007271465
さらに、式(5)を変形すると、以下のようになる。
Figure 2007271465
式(10)は、磁界分布の2次元フーリエ変換H(ωcosθ,ωsinθ)と観測値の1次元フーリエ変換G(ω,θ)が等しいことを表している。H(ξ,η)の2次元フーリエ逆変換は極座標(ω,θ)で表すと式(11)となる。
Figure 2007271465
式(11)は式(10)を用いて以下のように変形できる。
Figure 2007271465
式(12)の|ω|は高周波数成分を拡大し解が不安定となるため、実際には様々なフィルタ関数のフーリエ変換が用いられている。本発明では、式(14)で表されるShepp-Loganフィルタをフィルタ関数として用いる。従って、式(12)より磁界分布の推定値
Figure 2007271465
を式(13)のように求めることができる。
Figure 2007271465
(1.4 Reconstruction method)
Estimated magnetic field distribution on sample from observed quantity g (X, θ)
Figure 2007271465
The method of reconstructing is shown.
From g (X, θ)
Figure 2007271465
In general, the X-ray CT method widely used can be used for the reconstruction. There are various methods such as an FBP method (Filtered Backprojection), a CBP method (Convolution Backprojection), and an EL-ME method. Here, an application example of the FBP method will be described as an example.
The two-dimensional Fourier transform H (ξ, η) of the magnetic field distribution h (x, y) is expressed as in equation (4).
Figure 2007271465
Here, when expressed in polar coordinates (ω, θ) as ξ = ω cos θ and η = ω sin θ, the following equation is obtained.
Figure 2007271465
Furthermore, when equation (5) is transformed, it becomes as follows.
Figure 2007271465
Expression (10) indicates that the two-dimensional Fourier transform H (ωcosθ, ωsinθ) of the magnetic field distribution is equal to the one-dimensional Fourier transform G (ω, θ) of the observed value. The two-dimensional inverse Fourier transform of H (ξ, η) is expressed by Equation (11) in terms of polar coordinates (ω, θ).
Figure 2007271465
Equation (11) can be modified as follows using Equation (10).
Figure 2007271465
Since | ω | in equation (12) enlarges the high frequency component and the solution becomes unstable, the Fourier transform of various filter functions is actually used. In the present invention, the Shepp-Logan filter represented by Expression (14) is used as a filter function. Therefore, the estimated magnetic field distribution from equation (12)
Figure 2007271465
Can be obtained as shown in Equation (13).
Figure 2007271465

〔2.数値シミュレーション〕
数値シミュレーションを行い、GMRヘッドを用いた磁界分布再構成法の有効性を確認する。まず、GMRヘッドを試料上でスキャンして磁界分布による電圧変化を得る順解析を行う。次に順解析で求めた結果を模擬計測データとして再構成を行う。
[2. Numerical simulation)
A numerical simulation is performed to confirm the effectiveness of the magnetic field distribution reconstruction method using a GMR head. First, forward analysis is performed in which the GMR head is scanned over the sample to obtain voltage changes due to magnetic field distribution. Next, the results obtained by forward analysis are reconstructed as simulated measurement data.

(2.1 順解析)
GMRヘッドを試料上でスキャンし、磁界分布から電圧変化を観測する順解析を行う。磁界分布を図6に示す。分布の中央に約90nm×20nmの大きさのN極(白)、S極(黒)の磁界分布がそれぞれ存在する。図6の磁界分布を1°間隔で0°〜180°までスキャンした模擬計測データを図7に示す。図7の縦軸はスキャン角度θ、横軸はスキャン位置Xを示す。さらに、スキャン画像図7に10%の誤差を加えた模擬計測データを図8に示す。
ここで、計測データの計算にはGMRヘッドの膜厚dを考慮して、式(1)の代わりに式(15)を用いた。

Figure 2007271465
式(15)は磁界のY方向の積分値をそれぞれ膜厚dの範囲で平均した値を観測値として用いている。 (2.1 forward analysis)
The GMR head is scanned over the sample and forward analysis is performed to observe voltage changes from the magnetic field distribution. The magnetic field distribution is shown in FIG. At the center of the distribution, there are magnetic field distributions of N pole (white) and S pole (black) each having a size of about 90 nm × 20 nm. FIG. 7 shows simulated measurement data obtained by scanning the magnetic field distribution of FIG. 6 from 0 ° to 180 ° at 1 ° intervals. In FIG. 7, the vertical axis represents the scan angle θ, and the horizontal axis represents the scan position X. Further, FIG. 8 shows simulated measurement data obtained by adding a 10% error to the scanned image in FIG.
Here, in calculating the measurement data, equation (15) was used instead of equation (1) in consideration of the film thickness d of the GMR head.
Figure 2007271465
Equation (15) uses the average value of the integral value in the Y direction of the magnetic field in the range of the film thickness d as the observed value.

(2.2 再構成結果)
模擬計測データ図7、図8から、式(13)を用いて磁界分布を再構成した結果を示す。
図7を基に再構成した磁界分布を図9に示し、10%の誤差を加えた図8を基に再構成した磁界分布を図10に示す。誤差の有無に関わらず、磁界分布を再構成できていることがわかる。
正解の磁界分布(○印)、誤差無しの再構成磁界分布(×印)、10%誤差を加えた再構成磁界分布(□印)の横方向の中心の分布を図11に示す。誤差がある場合でも誤差がない場合と比べて大きな違いは見られない。
(2.2 Reconstruction results)
Simulated Measurement Data FIG. 7 and FIG. 8 show the result of reconstructing the magnetic field distribution using equation (13).
FIG. 9 shows the magnetic field distribution reconstructed based on FIG. 7, and FIG. 10 shows the magnetic field distribution reconstructed based on FIG. 8 with 10% error added. It can be seen that the magnetic field distribution can be reconstructed regardless of the presence or absence of errors.
FIG. 11 shows the distribution of the center in the horizontal direction of the correct magnetic field distribution (◯ mark), the reconstructed magnetic field distribution without error (x mark), and the reconstructed magnetic field distribution with 10% error (□ mark). Even when there is an error, there is no significant difference compared to when there is no error.

〔3.磁界分布と電圧変化の関係〕
GMRヘッドの下端面に分布する磁界とヘッドの両端で観測される電圧変化の関係を示す式(1)の数理モデルについて考察する。試料からの磁界は図12に示すようにヘッド中に磁化分布を作り、磁化分布に比例した抵抗率変化の分布が現れる。ヘッドに一定の電流を流すと抵抗率変化の分布によりヘッドの両端で電圧変化が発生する。これらの過程を以下のようにモデル化する。
[3. (Relationship between magnetic field distribution and voltage change)
We consider a mathematical model of equation (1) that shows the relationship between the magnetic field distributed on the bottom surface of the GMR head and the voltage change observed at both ends of the head. As shown in FIG. 12, the magnetic field from the sample forms a magnetization distribution in the head, and a distribution of change in resistivity proportional to the magnetization distribution appears. When a constant current is passed through the head, a voltage change occurs at both ends of the head due to the distribution of resistivity change. These processes are modeled as follows.

前述(段落0013)と同様にヘッドの下端面での磁界分布のz成分をh(x,y)とする。ヘッドの膜厚が十分薄いとして厚さ方向の磁化分布は一様であると仮定し、ヘッドの磁化分布のZ成分をm(Y,Z)とすると磁化分布m(Y,Z)は磁界に比例し、次の式(16)のように級数展開で表すことができる。

Figure 2007271465
ただし、aはGMRヘッドの長手方向の長さで、d、g、μはそれぞれ図13に示すようにGMRヘッドの膜厚、ヘッドとシールドとのギャップ、ヘッドの透磁率である。
ヘッドの電位分布をφ(Y,Z)とすると、φは式(19)で表される偏微分方程式を満たす。
Figure 2007271465
ただし、κは電気伝導率である。ヘッドの電気伝導率が既知であれば、図14と以下に示すような境界条件のもとで式(19)を解き、ヘッドの電位分布を求めることができる。ヘッドの両端の電位一定の境界をΓ、Γ、それ以外の絶縁の境界をΓとした。
Figure 2007271465
ヘッドの抵抗率変化の分布は磁化分布m(Y,Z)に比例するため、抵抗率ρ(Y,Z)は式(23)で表される。
Figure 2007271465

ただし、Δρは抵抗率変化の範囲を示す。従って、電気伝導率κ(Y,Z)は抵抗率の逆数となり、
Figure 2007271465
となる。 Similarly to the above (paragraph 0013), the z component of the magnetic field distribution at the lower end surface of the head is assumed to be h (x, y). Assuming that the head thickness is sufficiently thin and the magnetization distribution in the thickness direction is uniform, and the Z component of the head magnetization distribution is m (Y, Z), the magnetization distribution m (Y, Z) It is proportional and can be expressed by series expansion as in the following equation (16).
Figure 2007271465
Where a is the length of the GMR head in the longitudinal direction, and d, g, and μ are the thickness of the GMR head, the gap between the head and the shield, and the magnetic permeability of the head, as shown in FIG.
When the potential distribution of the head is φ (Y, Z), φ satisfies the partial differential equation expressed by the equation (19).
Figure 2007271465
However, (kappa) is electrical conductivity. If the electrical conductivity of the head is known, Equation (19) can be solved under the boundary conditions as shown in FIG. 14 and the following to obtain the potential distribution of the head. The constant potential boundaries at both ends of the head were Γ 1 and Γ 2 , and the other insulating boundaries were Γ 3 .
Figure 2007271465
Since the distribution of the change in resistivity of the head is proportional to the magnetization distribution m (Y, Z), the resistivity ρ (Y, Z) is expressed by Expression (23).
Figure 2007271465

However, (DELTA) (rho) shows the range of a resistivity change. Therefore, the electrical conductivity κ (Y, Z) is the reciprocal of the resistivity,
Figure 2007271465
It becomes.

式(16)のAnを仮定して磁化分布を計算し、式(19)、式(23)、式(24)を用いて静電場解析を行うと、仮定した磁界に対するヘッドの電位分布と電流密度分布が得られる。電位分布と電流密度分布からヘッド全体の抵抗を求め、抵抗と係数A0との関係を図15に示す。ただし、式(16)が十分収束するAn(n=0〜5)に対し、−0.1〜0.1の範囲の一様乱数を与え、サンプル点は200点とした。
ヘッド全体の抵抗は乱数で発生させた様々なAn(n=1〜5)に関わらず、A0のみに比例していることが図15からわかる。ここで、A0は式(17)より磁界分布h(x,y)のGMRヘッド下端での平均値となる。従って、GMRヘッドの両端で観測される電圧変化はヘッドの下端での磁界分布の積分値として式(1)のようにモデル化できることになる。
The magnetization distribution calculated assuming the A n of formula (16), equation (19), equation (23), when the electrostatic field analysis using Equation (24), the potential distribution of the head relative to the assumed magnetic field A current density distribution is obtained. The resistance of the entire head is obtained from the potential distribution and the current density distribution, and the relationship between the resistance and the coefficient A 0 is shown in FIG. However, with respect to A n which formula (16) is sufficiently converged (n = 0 to 5), giving a uniform random number between -0.1~0.1 sample points was 200 points.
Resistance of the entire head, regardless of the various A n which is generated by the random number (n = 1~5), that is proportional only to A 0 is seen from FIG. 15. Here, A 0 is an average value of the magnetic field distribution h (x, y) at the lower end of the GMR head from the equation (17). Therefore, the voltage change observed at both ends of the GMR head can be modeled as an integral value of the magnetic field distribution at the lower end of the head as shown in Equation (1).

図16は本発明に係る磁界分布計測装置の他の構成例を示す図であり、請求項2に係る発明に相当するものである。すなわち、薄膜磁気センサを一次元並進スキャンさせる代わりに、センサを多層に重ねたものである。なお、被計測対象物を水平面内で回転させるターンテーブル及びモータからなる回転機構と、被計測対象物の回転角を検出する角度センサと、前記プローブからの電圧信号(ΔV)、前記プローブの位置情報(X)及び前記角度センサから出力される回転角信号(θ)に基づいて、磁界分布を再構成する磁界分布再構成手段とを備えている点については図1と同じであるので、図示を省略している。   FIG. 16 is a diagram showing another configuration example of the magnetic field distribution measuring apparatus according to the present invention, and corresponds to the invention according to claim 2. That is, instead of one-dimensional translation scanning of the thin film magnetic sensor, the sensors are stacked in multiple layers. A rotation mechanism including a turntable and a motor for rotating the measurement target object in a horizontal plane, an angle sensor for detecting a rotation angle of the measurement target object, a voltage signal (ΔV) from the probe, and the position of the probe Since it has the same magnetic field distribution reconstructing means for reconstructing the magnetic field distribution based on the information (X) and the rotation angle signal (θ) output from the angle sensor, it is the same as FIG. Is omitted.

図17は、本発明に係る磁界分布計測装置のさらに他の構成例を示す図であり、請求項3に係る発明に相当するものである。すなわち、試料を回転させる代わりに、所定の角度、間隔ごとに配置された複数の薄膜磁気センサ(プローブ)を一直線上に配置し、アクチュエータ等で試料を順次送っていきながら磁界分布を計測するものである。そして、各プローブの位置情報、角度情報、及び試料の位置信号と、各プローブからの出力信号とから磁界分布を再構成する磁界分布再構成手段とを備えている点については図1と同じであるので、図示を省略している。   FIG. 17 is a diagram showing still another configuration example of the magnetic field distribution measuring apparatus according to the present invention, and corresponds to the invention according to claim 3. In other words, instead of rotating the sample, a plurality of thin film magnetic sensors (probes) arranged at predetermined angles and intervals are arranged on a straight line, and the magnetic field distribution is measured while the sample is sequentially sent by an actuator or the like. It is. 1 is the same as FIG. 1 in that it comprises magnetic field distribution reconstruction means for reconstructing the magnetic field distribution from the position information of each probe, the angle information, the position signal of the sample, and the output signal from each probe. Since it is, the illustration is omitted.

なお、本発明に係る磁界分布計測装置は、磁気で記録された情報媒体の高分解能な磁気読み取り装置として利用できることは言うまでもない。   Needless to say, the magnetic field distribution measuring apparatus according to the present invention can be used as a high-resolution magnetic reading apparatus for an information medium recorded magnetically.

本発明に係る磁界分布計測装置の構成例を示す図である。It is a figure which shows the structural example of the magnetic field distribution measuring apparatus which concerns on this invention. HDDヘッドを拡大した概略図である。It is the schematic which expanded the HDD head. GMRヘッドの構造を示す図である。It is a figure which shows the structure of a GMR head. GMRヘッドを用いて磁化分布を持つ試料をスキャニングして磁界分布を計測する方法を説明するための図である。It is a figure for demonstrating the method of scanning the sample which has a magnetization distribution using a GMR head, and measuring a magnetic field distribution. 図4を上から見た様子を示す図である。It is a figure which shows a mode that FIG. 4 was seen from the top. 試料の磁界分布を示す図である。It is a figure which shows the magnetic field distribution of a sample. 図6の磁界分布を1度間隔で0〜180度までスキャンしたときの模擬計測データを示す図である。縦軸がスキャン角度θ、横軸がスキャン位置Xを示す。FIG. 7 is a diagram showing simulated measurement data when the magnetic field distribution of FIG. 6 is scanned from 0 to 180 degrees at intervals of 1 degree. The vertical axis represents the scan angle θ, and the horizontal axis represents the scan position X. 図7のスキャン画像に10%の誤差を加えた場合の模擬計測データを示す図である。It is a figure which shows the simulation measurement data at the time of adding 10% of error to the scan image of FIG. 図7のデータに基づいて再構成した磁界分布を示す図である。It is a figure which shows the magnetic field distribution reconfigure | reconstructed based on the data of FIG. 図8のデータに基づいて再構成した磁界分布を示す図である。It is a figure which shows the magnetic field distribution reconfigure | reconstructed based on the data of FIG. 正解の磁界分布(図6、○印)、誤差無しの再構成磁界分布(図9、×印)、10%誤差を加えた再構成磁界分布(図10、□印)の横方向の中心の分布を示す図である。Correct magnetic field distribution (Fig. 6, circle), reconstructed magnetic field distribution without error (Fig. 9, x), reconstructed magnetic field distribution with 10% error (Fig. 10, □) It is a figure which shows distribution. GMRヘッドの下端面に分布する磁界と、ヘッドの両端で観測される電圧変化の関係を示す図である。It is a figure which shows the relationship between the magnetic field distributed on the lower end surface of a GMR head, and the voltage change observed at the both ends of a head. GMRヘッドとシールドの断面を示す図である。It is a figure which shows the cross section of a GMR head and a shield. 電界計算のためのモデルを示す図である。It is a figure which shows the model for electric field calculation. 抵抗変化と係数Aの関係を示す図である。Is a diagram showing the relationship between the resistance change and the coefficient A 0. 本発明に係る磁界分布計測装置の他の構成例を示す図である。It is a figure which shows the other structural example of the magnetic field distribution measuring apparatus which concerns on this invention. 本発明に係る磁界分布計測装置のさらに他の構成例を示す図である。It is a figure which shows the further another structural example of the magnetic field distribution measuring apparatus which concerns on this invention.

Claims (7)

被計測対象物から空間に漏れ出す磁界の分布を計測する磁界分布計測装置であって、該装置は、
前記被計測対象物の極近傍の磁界分布を電圧又は電流の出力信号として検出する薄膜磁気センサから成るプローブと、
前記プローブを前記薄膜磁気センサの膜厚方向に一次元並進スキャンさせるアクチュエータと、
前記被計測対象物を水平面内で回転させる回転機構と、
前記被計測対象物の回転角を検出する角度センサと、
前記プローブからの出力信号、前記アクチュエータから出力される前記プローブの位置信号及び前記角度センサから出力される回転角信号に基づいて、前記磁界分布を再構成する磁界分布再構成手段とを備えたことを特徴とする磁界分布計測装置。
A magnetic field distribution measuring device that measures the distribution of a magnetic field leaking into a space from an object to be measured, the device comprising:
A probe comprising a thin film magnetic sensor for detecting a magnetic field distribution in the vicinity of the object to be measured as a voltage or current output signal;
An actuator that causes the probe to scan one-dimensionally in the film thickness direction of the thin film magnetic sensor;
A rotation mechanism for rotating the object to be measured in a horizontal plane;
An angle sensor for detecting a rotation angle of the measurement object;
Magnetic field distribution reconstruction means for reconstructing the magnetic field distribution based on an output signal from the probe, a position signal of the probe output from the actuator, and a rotation angle signal output from the angle sensor. Magnetic field distribution measuring device characterized by.
被計測対象物から空間に漏れ出す磁界の分布を計測する磁界分布計測装置であって、該装置は、
前記被計測対象物の極近傍の磁界分布を電圧又は電流の出力信号として検出する薄膜磁気センサを2つ以上重ねられて多層に構成されたプローブと、
前記被計測対象物を水平面内で回転させる回転機構と、
前記被計測対象物の回転角を検出する角度センサと、
前記各プローブからの出力信号、前記各プローブの位置信号、及び前記角度センサから出力される回転角信号に基づいて、前記磁界分布を再構成する磁界分布再構成手段とを備えたことを特徴とする磁界分布計測装置。
A magnetic field distribution measuring device that measures the distribution of a magnetic field leaking into a space from an object to be measured, the device comprising:
Two or more thin film magnetic sensors for detecting a magnetic field distribution in the vicinity of the object to be measured as an output signal of voltage or current, and a multilayered probe,
A rotation mechanism for rotating the object to be measured in a horizontal plane;
An angle sensor for detecting a rotation angle of the measurement object;
Magnetic field distribution reconstructing means for reconstructing the magnetic field distribution based on an output signal from each probe, a position signal of each probe, and a rotation angle signal output from the angle sensor; Magnetic field distribution measuring device.
被計測対象物から空間に漏れ出す磁界の分布を計測する磁界分布計測装置であって、該装置は、
前記被計測対象物を水平面内で所定の方向に一次元並進させるアクチュエータと、
前記被計測対象物の極近傍の磁界分布を電圧又は電流の出力信号として検出する薄膜磁気センサを、前記水平面内の前記所定の方向に、所定の間隔でかつ互いに異なる角度で複数配列したプローブ群と、
前記プローブ群の各プローブからの出力信号、各プローブの位置情報、各プローブの傾斜角度及び前記アクチュエータから出力される前記被計測対象物の位置信号に基づいて、前記磁界分布を再構成する磁界分布再構成手段とを備えたことを特徴とする磁界分布計測装置。
A magnetic field distribution measuring device that measures the distribution of a magnetic field leaking into a space from an object to be measured, the device comprising:
An actuator that translates the object to be measured one-dimensionally in a predetermined direction in a horizontal plane;
A group of probes in which a plurality of thin film magnetic sensors for detecting magnetic field distribution in the vicinity of the object to be measured as voltage or current output signals are arranged in the predetermined direction in the horizontal plane at predetermined intervals and at mutually different angles. When,
Magnetic field distribution for reconstructing the magnetic field distribution based on the output signal from each probe of the probe group, the position information of each probe, the tilt angle of each probe, and the position signal of the measurement object output from the actuator A magnetic field distribution measuring apparatus comprising a reconfiguring means.
前記アクチュエータがピエゾ素子で構成されていることを特徴とする請求項1又は3に記載の磁界分布計測装置。   The magnetic field distribution measuring apparatus according to claim 1, wherein the actuator is configured by a piezo element. 前記磁界分布を再構成するアルゴリズムが、CTアルゴリズムである請求項1乃至4のいずれかに記載の磁界分布計測装置。   The magnetic field distribution measuring apparatus according to claim 1, wherein the algorithm for reconstructing the magnetic field distribution is a CT algorithm. 薄膜磁気センサがGMRヘッドである請求項1乃至5のいずれかに記載の磁界分布計測装置。   6. The magnetic field distribution measuring apparatus according to claim 1, wherein the thin film magnetic sensor is a GMR head. 前記再構成された磁界分布を表示する表示部を備えたことを特徴とする請求項1乃至6のいずれかに記載の磁界分布計測装置。   The magnetic field distribution measuring apparatus according to claim 1, further comprising a display unit that displays the reconstructed magnetic field distribution.
JP2006097698A 2006-03-31 2006-03-31 Magnetic field distribution measuring instrument Pending JP2007271465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097698A JP2007271465A (en) 2006-03-31 2006-03-31 Magnetic field distribution measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097698A JP2007271465A (en) 2006-03-31 2006-03-31 Magnetic field distribution measuring instrument

Publications (1)

Publication Number Publication Date
JP2007271465A true JP2007271465A (en) 2007-10-18

Family

ID=38674416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097698A Pending JP2007271465A (en) 2006-03-31 2006-03-31 Magnetic field distribution measuring instrument

Country Status (1)

Country Link
JP (1) JP2007271465A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095660B1 (en) * 2009-12-28 2011-12-19 콘티넨탈오토모티브코포레이션코리아 (주) Gauss measurement apparutus of magnet
CN103777155A (en) * 2014-02-14 2014-05-07 奥泰医疗系统有限责任公司 Positioning frame for superconducting magnet magnetic field measurement and superconducting magnet magnetic field measurement device
WO2014129151A1 (en) 2013-02-25 2014-08-28 国立大学法人神戸大学 Distribution analyzing device and distribution analyzing method
EP2544016A4 (en) * 2010-03-01 2015-09-30 Nat Univ Corp Univ Kobe Potential obtaining device, magnetic field microscope, inspection device and method of obtaining potential
KR20160133329A (en) * 2015-05-12 2016-11-22 송교형 Magnetism inspection device for reading magnet assembly of semiconductor sputtering machinery and magnetism inspection system using the same
US9568567B2 (en) 2011-05-09 2017-02-14 National University Corporation Kobe University Distribution analysis device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095660B1 (en) * 2009-12-28 2011-12-19 콘티넨탈오토모티브코포레이션코리아 (주) Gauss measurement apparutus of magnet
EP2544016A4 (en) * 2010-03-01 2015-09-30 Nat Univ Corp Univ Kobe Potential obtaining device, magnetic field microscope, inspection device and method of obtaining potential
US9568567B2 (en) 2011-05-09 2017-02-14 National University Corporation Kobe University Distribution analysis device
WO2014129151A1 (en) 2013-02-25 2014-08-28 国立大学法人神戸大学 Distribution analyzing device and distribution analyzing method
KR20150125931A (en) 2013-02-25 2015-11-10 고쿠리츠다이가쿠호진 고베다이가쿠 Distribution analyzing device and distribution analyzing method
US10295617B2 (en) 2013-02-25 2019-05-21 Kenjiro Kimura Distribution analyzing device and distribution analyzing method
CN103777155A (en) * 2014-02-14 2014-05-07 奥泰医疗系统有限责任公司 Positioning frame for superconducting magnet magnetic field measurement and superconducting magnet magnetic field measurement device
KR20160133329A (en) * 2015-05-12 2016-11-22 송교형 Magnetism inspection device for reading magnet assembly of semiconductor sputtering machinery and magnetism inspection system using the same
KR101720691B1 (en) 2015-05-12 2017-03-28 송교형 Magnetism inspection device for reading magnet assembly of semiconductor sputtering machinery and magnetism inspection system using the same

Similar Documents

Publication Publication Date Title
Kazakova et al. Frontiers of magnetic force microscopy
JP4878063B2 (en) Apparatus and method for acquiring a field by measurement
US7023204B2 (en) Magnetic imaging microscope test system and its application for characterization of read and write heads for magnetic recording
Yamamoto et al. Scanning magnetoresistance microscopy
JP2007271465A (en) Magnetic field distribution measuring instrument
JP4245951B2 (en) Electrical property evaluation equipment
Mitin et al. Scanning magnetoresistive microscopy: An advanced characterization tool for magnetic nanosystems
JP5713246B2 (en) Potential acquisition apparatus, magnetic field microscope, inspection apparatus, and potential acquisition method
Matteucci et al. Flux measurements on ferromagnetic microprobes by electron holography
Dunaevskiy et al. Analysis of the lateral resolution of electrostatic force gradient microscopy
JP2008065898A (en) Method for evaluating magnetoresistance effect type reproduction head
US9837108B2 (en) Magnetic sensor and a method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
Yamamoto et al. Scanning magnetoresistance microscopy (SMRM): Imaging with a MR head
US6297630B1 (en) Method and device for measuring the distribution of magnetic fields
Costa et al. Integration of magnetoresistive sensors with atomic force microscopy cantilevers for scanning magnetoresistance microscopy applications
JP4485393B2 (en) Magnetic force measurement method
JP3521755B2 (en) Method and apparatus for measuring magnetic domain control bias magnetic field of magnetoresistive element
Rice et al. Magnetic imaging reference sample
Richarz et al. Moiré fringes in conductive atomic force microscopy
Bromwich et al. Remanent magnetization states and interactions in square arrays of 100-nm cobalt dots measured using transmission electron microscopy
JP2002202238A (en) Spin polarized scanning tunneling microscope, and regenerator
US7138797B2 (en) Reverse magnetic reset to screen for weakly pinned heads
Liu et al. Characteristics of magnetic force microscopy magnetics on high moment perpendicular magnetic recording writers with high coercivity probes
US20230368974A1 (en) Edge-milled magnetic wire and manufacture thereof
Yamakawa et al. A nano-resolution method for magnetic-field reconstruction using a thin-film magnetic sensor