JP2007271318A - 接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法 - Google Patents

接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法 Download PDF

Info

Publication number
JP2007271318A
JP2007271318A JP2006094243A JP2006094243A JP2007271318A JP 2007271318 A JP2007271318 A JP 2007271318A JP 2006094243 A JP2006094243 A JP 2006094243A JP 2006094243 A JP2006094243 A JP 2006094243A JP 2007271318 A JP2007271318 A JP 2007271318A
Authority
JP
Japan
Prior art keywords
probe
cantilever
initial
displacement
initial position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006094243A
Other languages
English (en)
Other versions
JP4705870B2 (ja
Inventor
Nariaki Sasaki
成朗 佐々木
Tadataka Takahashi
忠孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006094243A priority Critical patent/JP4705870B2/ja
Publication of JP2007271318A publication Critical patent/JP2007271318A/ja
Application granted granted Critical
Publication of JP4705870B2 publication Critical patent/JP4705870B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/36DC mode
    • G01Q60/363Contact-mode AFM

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】相互作用を持つ表面と探針との凝着特性をシミュレートする。
【解決手段】処理部は、カンチレバーの探針の取り付けられていない側が、設定された探針の初期位置に応じた位置にある場合の探針の運動方程式を、設定された時間まで解くことで、探針の変位と探針の速度を求める(S203〜S207)。処理部は、設定された時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力を求める(S208)。処理部は、求められた相互作用力を、設定された探針の初期位置に対応させて記憶する(S209)。処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、求められた探針の変位及び探針の速度の最終時刻での値に設定する(S211)。処理部は、カンチレバーが下がる動作になるように新たな探針の初期位置を設定し(S215、S203)、上記処理を繰り返す。
【選択図】図7

Description

本発明は、接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法に係り、特に、ナノテクノロジーにおける有力な計測手法である走査プローブ顕微鏡のシミュレータ技術のうち、接触モード原子間力顕微鏡による試料表面の凝着特性シミュレートするための接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法に関する。
接触モード原子間力顕微鏡(接触モードAFM:Atomic Force Microscopy)は、探針を先端に取り付けたカンチレバーと呼ばれる板バネを試料表面に接触させて走査し、レバーが試料表面から受ける相互作用力をプロットする事により、表面の凹凸構造をナノ〜マイクロスケールで観察する走査プローブ顕微鏡の一種である。接触モードAFMは、CDやDVDなどの表面の微細構造やコーティング状態の評価から、タンパク質など生体材料の剛性の評価まで幅広く利用されている。
レバーが十分柔らかい場合、探針を試料表面に一様な速度で接近させていくと、試料表面から受ける引力のためレバーは徐々に試料方向に傾き、ある点で探針は不連続的に下方にジャンプして試料表面に接触する。この状態から更にレバーを表面に押し付けて再び引き離すと、接近させる時とは別の点で再び探針は不連続的に上方にジャンプして試料表面から離れる。この時探針が受ける力をレバーの位置でプロットするとヒステリシス(履歴)を伴うフォースカーブ(力曲線)が得られ、ここに探針の表面へのくっつき易さ、つまり凝着特性が現れる。従来、フォースカーブは探針−表面間相互作用力と、カンチレバーの復元力との間の静的釣り合いの関係から導出されてきたが、実際には個々の回路系に特有なカンチレバーの表面への接近・離脱速度に由来して生じる探針の動力学がフォースカーブの形状に大きな影響を与える事が予測される。
従来、接触モード原子間力顕微鏡(接触モードAFM)におけるフォースカーブの解釈は、探針−表面間相互作用力とカンチレバーの復元力との静的釣り合いの関係から議論されてきた(例えば、非特許文献1のFig.2、 Fig.3、非特許文献2のFig.1等参照)。また、数値的には、カンチレバー基底部の位置を決めると、それに対して探針の安定位置、探針−表面間相互作用力Fが求まり、探針の位置u0−Fの関係がフォースカーブを与えるものが知られている(例えば、非特許文献3のFig.4参照)。フォースカーブは、原子間力顕微鏡で凝着、吸着特性を議論する最も基本的なデータとなる。
A.L.Weisenhorn、P.K.Hansma、T.R.Albrecht、and C.F.Quate、Appl.Phys.Lett.54、2651−2653(1989). A.L.Weisenhorn、P.Maivald、H.−J.Butt、P.K.Hansma、Phys.Rev.B45、11226−11232(1992). N.Sasaki、K.Kobayashi、and M.Tsukada、Phys.Rev.B54、2138(1996).
実際には、カンチレバーはフィードバック回路の影響を受けながらもある速度で表面に接近、離脱を繰り返す。これは実際にはフォースカーブには探針(カンチレバー)の動力学の効果が現れる事を意味するが、この点について理論的・数値的な議論は多くは無い。
すなわち、これまでフォースカーブは、個々の実験に対して特化したパラメータの範囲内で静的に議論される事が多かったが、探針−表面間相互作用力の性質の変化や環境の変化(溶液中、空気中、真空中など)によって探針の動力学に極めて顕著な変化が生じ、それがフォースカーブに特異な振動構造やヒステリシスの擾乱を誘起する可能性がある。これは、Q値で規定されるカンチレバーのダンピング特性、探針と表面との間に働く相互作用力の非線形性、複数の静的釣り合いの位置間での揺らぎに由来し、レバーの非線形振動の緩和時間が著しく変化するためである。
本発明は、以上の点に鑑み、カンチレバーの操作速度を導入して探針の動力学に着目し、種々の相互作用を持つ表面と探針との凝着特性をシミュレートして効率的に解析するためのナノスケール凝着・吸着解析支援システム、接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法を提供することを目的とする。また、本発明は、探針の動力学をフォースカーブと共に議論出来るシミュレータ等を提供することを目的とする。
本発明は、フォースカーブの形状のカンチレバー速度依存性を議論出来るシミュレータ等を提供することも目的のひとつである。ここで、接触モードAFMを安定に制御して、凝着力の測定に関して最適な分解能を得るためのパラメータ領域(例えば、カンチレバーの変位u、探針の初期位置u0、バネ定数k、探針の曲率半径R、Q値、カンチレバーの接近・離脱速度v、探針−表面間相互作用力Fなど)を探索する事が必要であるが、膨大なパラメータ群のデータを系統的かつ効率的にまとめるのは困難な作業である。
従って本発明は、任意の動作パラメータ(特に(u0、k、R、Q、v)に対する接触モードAFMの凝着特性をシミュレートして、1)フォースカーブの速度v依存性、すなわち探針動力学のレバー速度v依存性を知ること、2)特定のパラメータの組(u0、k、R、Q、v)に対するフォースカーブを計算して凝着特性の解析を行うこと、3)広範囲なパラメータ領域に対するフォースカーブ及び凝着特性の分類を系統的かつ効率的に行うことをも目的のひとつとする。
本発明では接触モードAFM探針の動力学(ダイナミクス)を考えるが、後に述べるように探針はカンチレバーの先端に付いているので、探針のダイナミクスとカンチレバーのダイナミクスとは本質的に等価である。そこで、本明細書等では「探針」のダイナミクス、という呼び方をする。また、ここで言うパラメータとは、例えば、探針の初期位置u0、バネ定数k、探針の曲率半径R、Q値、カンチレバーの接近・離脱速度v(試料表面に垂直方向の速度)、探針−表面間相互作用力F等を指す。これらの定義と図示は後に述べる。
探針の水平位置に対する付着力マップは、例えばディスク上に磁性膜が一様に塗布されているかどうかの重要な判断基準となる。そこで接触モードAFMのカンチレバーの接近・引き離しサイクルに伴う凝着・吸着現象をシミュレートし、効率的に解析するためのナノスケール凝着・付着解析支援システム・ソフトウェアを提供する。
本発明では、先ず任意の動作パラメータ(u0、k、R、Q、v)に対してシミュレーションを行う。次に、探針の初期位置u0毎の探針の変位u、探針−表面間相互作用力Fの情報を記録したファイル(初期位置u0−変位u関係、初期位置u0−相互作用力F関係)をGUI(グラフィックユーザーインターフェース)で表示されたファイルリストから選んで実行することにより、特定のパラメータ(u0、k、R、Q、v)に対する探針の運動を可視化し、凝着特性を瞬時に理解し、解析する事が出来る。
すなわち、探針(カンチレバー)の表面への接近及び引き離し運動をグラフィックで表示すると同時に、対応するスペクトロスコピー、すなわちフォースカーブ(初期位置u0−相互作用力F)と変位曲線(初期位置u0−変位u)を探針(カンチレバー)の表面への接近および引き離し運動のアニメーションに同期させてリアルタイムで描画する事が出来る。
本発明の第1の解決手段によると、
突起のついた探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーション方法、これら各処理をコンピュータに実行させるための接触モード原子間力顕微鏡の凝着シミュレーションプログラム、そのプログラムを記憶したコンピュータ読み取り可能な記録媒体であって、
処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、探針についている突起の曲率半径R2と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、突起の曲率半径R2と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
Figure 2007271318
[ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、R2:突起の曲率半径、u0:探針の初期位置]
処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力を、F(R1、u+u0)+F(R2、u+u0−2R2)により求める第2演算ステップと、
処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
を含む前記接触モード原子間力顕微鏡の凝着シミュレーション方法、これら各処理をコンピュータに実行させるための前記接触モード原子間力顕微鏡の凝着シミュレーションプログラム、そのプログラムを記憶したコンピュータ読み取り可能な記録媒体が提供される。
本発明の第2の解決手段によると、
探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーション方法、これら各処理をコンピュータに実行させるための接触モード原子間力顕微鏡の凝着シミュレーションプログラム、そのプログラムを記憶したコンピュータ読み取り可能な記録媒体であって、
処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
Figure 2007271318
[ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、u0:探針の初期位置]
処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力F(R1、u+u0)を求める第2演算ステップと、
処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
を含む前記接触モード原子間力顕微鏡の凝着シミュレーション方法、これら各処理をコンピュータに実行させるための前記接触モード原子間力顕微鏡の凝着シミュレーションプログラム、そのプログラムを記憶したコンピュータ読み取り可能な記録媒体が提供される。
本発明の第3の解決手段によると、
突起のついた探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレータであって、
パラメータを入力するための入力部と、
前記入力装置から入力されたパラメータに基づき、接触モード原子間力顕微鏡による試料表面の凝着特性をシミュレートする処理部と、
前記処理部により求められたデータを記憶するための記憶部と、
シミュレート結果を表示するための表示部と
を備え、
前記処理部は、
カンチレバーの接近の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、探針についている突起の曲率半径R2と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを前記入力部又は前記記憶部から入力する手段と、
探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定手段と、
カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定手段と、
設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、突起の曲率半径R2と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算手段と、
Figure 2007271318
[ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、R2:突起の曲率半径、u0:探針の初期位置]
前記第1演算手段における計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力を、F(R1、u+u0)+F(R2、u+u0−2R2)により求める第2演算手段と、
求められた前記相互作用力を、設定された探針の初期位置u0に対応させて前記記憶部に記憶する手段と、
次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算手段において求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定手段と、
設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定手段で設定された探針の変位及び速度の初期値とを用いて、前記第1演算手段、前記第2演算手段、前記記憶する手段及び前記第3設定手段を実行することと、を繰り返す手段と
記憶された各探針の初期位置u0と、対応する前記相互作用力とを前記記憶部から読み出し、前記表示部に表示若しくはグラフィック表示する、又は、出力する手段と
を有する前記接触モード原子間力顕微鏡の凝着シミュレータが提供される。
本発明の第4の解決手段によると、
探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレータであって、
パラメータを入力するための入力部と、
前記入力装置から入力されたパラメータに基づき、接触モード原子間力顕微鏡による試料表面の凝着特性をシミュレートする処理部と、
前記処理部により求められたデータを記憶するための記憶部と、
シミュレート結果を表示するための表示部と
を備え、
前記処理部は、
カンチレバーの接近の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを前記入力部又は前記記憶部から入力する手段と、
探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定手段と、
カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定手段と、
設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算手段と、
Figure 2007271318
[ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、u0:探針の初期位置]
前記第1演算手段における計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力F(R1、u+u0)を求める第2演算手段と、
求められた前記相互作用力を、設定された探針の初期位置u0に対応させて前記記憶部に記憶する手段と、
次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算手段において求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定手段と、
設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定手段で設定された探針の変位及び速度の初期値とを用いて、前記第1演算手段、前記第2演算手段、前記記憶する手段及び前記第3設定手段を実行することと、を繰り返す手段と
記憶された各探針の初期位置u0と、対応する前記相互作用力とを前記記憶部から読み出し、前記表示部に表示若しくはグラフィック表示する、又は、出力する手段と
を有する前記接触モード原子間力顕微鏡の凝着シミュレータが提供される。
本発明によると、カンチレバーの操作速度を導入して探針の動力学に着目し、種々の相互作用を持つ表面と探針との凝着特性をシミュレートして効率的に解析するためのナノスケール凝着・吸着解析支援システム、接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法を提供することができる。また、本発明によると、探針の動力学をフォースカーブと共に議論出来るシミュレータ等を提供することができる。
本発明によると、フォースカーブの形状のカンチレバー速度依存性を議論出来るシミュレータ等を提供することができる。ここで、接触モードAFMを安定に制御して、凝着力の測定に関して最適な分解能を得るためのパラメータ領域(例えば、カンチレバーの変位u、探針の初期位置u0、バネ定数k、探針の曲率半径R、Q値、カンチレバーの接近・離脱速度v、探針−表面間相互作用力Fなど)を探索する事が必要であるが、膨大なパラメータ群のデータを系統的かつ効率的にまとめるのは困難な作業である。
本発明によると、任意の動作パラメータ(特に(u0、k、R、Q、v)に対する接触モードAFMの凝着特性をシミュレートして、1)フォースカーブの速度v依存性、すなわち探針動力学のレバー速度v依存性を知ること、2)特定のパラメータの組(u0、k、R、Q、v)に対するフォースカーブを計算して凝着特性の解析を行うこと、3)広範囲なパラメータ領域に対するフォースカーブ及び凝着特性の分類を系統的かつ効率的に行うことができる。
本発明によると、例えば、さらに以下のような効果がある。
(1)接触モードAFM探針のナノサイズの運動の解析に特化したシミュレータである。
具体的には、実験のカンチレバー動作に対応するシミュレーションから探針運動の可視化及び凝着特性の解析まで、接触モードAFM探針運動の解析をパソコン上で系統的にそして効率的に行う事が出来る。その意味でナノスケールの接触モードAFMの凝着運動のシミュレータ&解析支援ソフトウェアである。計算結果をフォルダごとに整理することができ、データベース構築に役立つ。また、接触モード原子間力顕微鏡探針の接近・引き離しに伴う凝着の動力学の解析に特化したシミュレータである。
(2)フォースカーブのカンチレバーの速度依存性、すなわち探針動力学のレバー速度v依存性を求めることが出来る。なお、従来はフォースカーブに対する速度の効果は系統的に議論されていない。
(3)接触モードAFMの探針サイズ、及び探針先端の突起構造のサイズ効果を、曲率半径R1、R2を与える事で解析出来る。
(4)任意のパラメータ領域から、欲しいフォースカーブ(u−Fの関係)のデータの組(u0、k、R、Q、v)を自由に取り出し、探針運動をアニメーションで可視化可能なため、凝着・吸着の特徴を視覚的に理解する事が出来る。例えば、任意の探針サイズ、カンチレバーの位置を入力し、その出力をするGUIを有し、カンチレバーのナノサイズの凝着の動力学が視覚的に把握できる。特に探針先端が試料表面から受ける相互作用力(引力又は斥力)を図示することにより、探針と表面の「非接触」と「接触」をビジュアルで区別する事が出来る。つまり、「衝突」現象をナノサイズで可視化出来る。このように可視化・解析したいデータフォルダを指定することによって、シミュレーションの結果をすぐに確認することができる。
(5)任意のパラメータ領域の接触モードAFMの凝着・吸着特性のデータを効率的にまとめ、解析する事が可能である。このため、理論の側から接触モードAFMを稼動するのに最適なパラメータセットを提示する事が可能である。力F−探針位置u0、探針変位u−探針位置u0など、種々のスペクトル情報を図示する事が出来る。
(6)任意のパラメータを計算に組み込む事が出来、拡張性がある。
(7)描画は任意のフリーウェア、シェアウェアのソフトを使って容易に行うことができる。
(8)いままで数値シミュレーションをしたことのないユーザに対して、簡易に使用できるような教育用のソフトを提供することができる。
(9)探針先端の付着物の効果を調べることが出来る。
(10)さまざまなパラメータに対応する出力結果がリストになっており、そこからGUIで呼び出し、結果を解析することができる。任意の探針−表面間相互作用力に対するフォースカーブの解析、分類がユーザの負担が少なく行える。
このように本発明によって、従来、系統的な解析が困難であったナノスケールの凝着特性と探針先端ナノ突起との関係をシミュレートし、かつ解析する研究が推進出来、今後、接触型力学的プローブ法の解析法の基礎として重要な技術となることが期待される。
1.第1の実施の形態
(ハードウェア構成)
図1は、本実施の形態のシミュレータ環境を実現するハードウェア構成図である。
接触モードAFMシミュレータは、例えば、主制御部(CPU、処理部)1と、実行ファイルプログラムが記憶されるメモリ2と、入出力制御部3と、入力装置(入力部)4と、表示装置(表示部)5と、出力装置6(記憶部)とを備える。
主制御部(CPU)1は、メモリ2に記憶された実行ファイルプログラムに従い、処理を実行する。なお、実行ファイルプログラムは、例えば、Fortran等の言語で書かれることができるが、これに限らず、C、Visual Basic(以下、VBと記す)等適宜の言語であってもよい。入出力制御部3は、画像処理を行う。例えば、GUI(VB)によりファイルリストの表示、ファイルの選択、実行などを行う。なお、GUIは、VB以外にも、適宜のGUIを用いることができる。
入力装置4は、例えば、キーボード、マウス、ポインティングデバイスなど適宜の入力手段を用いることができる。また、表示装置5は、例えば、ディスプレイを用いることができる。出力装置6は、例えば、ハードディスク等の記憶部を用いることができる。また、適宜の出力部を備えてもよい。なお、入力装置4、表示装置5、出力装置6は、これ以外にも適宜の手段を用いることができる。
この図に示されているように、この接触モードAFMシミュレータでは、主制御部(CPU)1とFortran実行ファイルプログラム2が、AFM探針初期位置u0別のスペクトロスコピーファイル61(例えば、初期位置u0−変位uファイル、及び、初期位置u0−相互作用力Fファイル)を、テキスト形式の出力ファイルとしてハードディスク6上に作成する。
スペクトロスコピーファイル61のリストはVBのGUI環境3を用いてディスプレイ5に表示される。任意の探針位置u0に対応するスペクトロスコピーファイル61をGUIで選択・実行すれば、探針運動のアニメーションがディスプレイ5上に表示される。また、任意の描画ソフトが起動しスペクトロスコピーのグラフがディスプレイ5上にリアルタイムで描画される。これらは、同時に表示されることができる。
CPU1は、Fortranの実行ファイルを、Visual BasicのGUIを用いて実行し、ハードディスク6上にデータファイルを作成する。また、CPU1は、データファイルを選択、実行し、ディスプレイ5上にアニメーション表示するか、グラフとして描画する。
(接触モードAFMシステムの運動方程式及び使用するパラメータ)
本実施の形態では、探針先端に突起がある場合について説明する。
図2は、接触モードAFMのシステムの説明図(1)である。まず、本シミュレータが対象とする接触モードAFMのシステム及び探針の運動方程式の導出について説明する。図2(a)は、カンチレバー−探針・突起−表面系の位置関係、及び、探針の初期位置u0の定義を示す。図2(b)は、探針の変位uの定義と探針・突起−表面間相互作用力を示す。図2(c)は、接触モードAFMの駆動モード、カンチレバー基底部をy01+2R1<u0<y02+2R1の間で一往復させる動きを示す。図17は、探針−表面間相互作用ポテンシャルエネルギー上の探針−表面間衝突点Pと、表面の位置u=−u0の関係を示している。
図2(a)に示すように、カンチレバーと呼ばれる、先端に探針を付着させた板状のバネと、試料表面とからなるシステムを考える。探針の形状としては例えば球体を考え、サイズのパラメータとして曲率半径R1を与える。更に探針の先端に球体の突起がついた場合を取り扱えるようにし、突起の曲率半径R2を仮定する。この突起が、本実施の形態の特徴のひとつである。
ここで、カンチレバーが伸びたり縮んだりしていない時の探針先端の初期位置をu0とおくと、カンチレバーの基底部はu0+2R1と書ける。この基底部がu0+2R1の位置にある場合に対する探針の運動方程式は、次式のように時刻τに関する二階の非線形常微分方程式として書ける。
Figure 2007271318
ここで、uは図2(b)に示すように、カンチレバーが伸びたり縮んだりしていない時の探針初期位置u0からの探針の変位u=z−u0である。なお、図2(b)は、探針が初期位置u0から変位uだけ移動した図である。zは時刻τでの探針位置z(τ)である。また、F(R、z)は曲率半径Rの球形探針先端に働くファンデルワールス力を表す。ここでは図2(b)に示すように探針先端に働く力F1=F(R1、z)(=F(R1、u+u0))と突起先端に働く力F2=F(R2、z−2R2)(=F(R2、u+u0−2R2))の和を考える。また、QはカンチレバーのQ値、kはバネ定数を表す。ρは探針と表面の原子の数密度、σはL−Jポテンシャル(Lennard−Jonesポテンシャル)の原子半径に関わるパラメータ、εはL−Jポテンシャルの原子の結合エネルギーに関わるパラメータを表す。
式(1)で表される接触モードAFMシステムを図2(c)に示すように動作させる場合を考える。これは実験でフォースカーブを測定する場合に対応する。すなわち、カンチレバー基底部を一定の速度vで、出発点y02+2R1と折り返し点y01+2R1との間で一往復させる。この時、探針−表面間相互作力Fを数値計算して探針の初期位置u0(y01<u0<y02)の関数としてプロット又は記憶すれば、探針位置u0の関数としての力Fのグラフ、すなわちフォースカーブ(力のスペクトロスコピー)が得られる。また、力Fの代わりに、探針の安定位置uをプロットすれば変位のスペクトロスコピーが得られる。
図3に、本実施の形態における接触モードAFMシステムの方程式中に含まれる変数、定数を示す。図3に示す通り、上述のパラメータのうちu、τは計算の過程で決まる変数である。またρ、σ、εは定数として予め与える。ここでは、一例としてε=0.01としており、これは化学的に不活性な相互作用(原子間で強い結合が生じないレベル)を想定している。なお、ρ、σ、εは、図に示す値以外にも適宜の値を用いてもよい。
一方、入力が必要なパラメータとして、u0=y02(探針のスタート位置)、u0=y01(探針の折り返し位置)、k(カンチレバーのバネ定数[N/m])、R1(探針の曲率半径[nm])、R2(探針先端に付着した突起の曲率半径[nm])、カンチレバーのQ値、カンチレバー基底部u0+2R1の各位置での滞在時間(数値計算のための計算時間)τ’が挙げられる。なお、これらのパラメータは予め定められた値を記憶部に記憶しておき、必要に応じて読み込むようにしてもよい。入力に関しての詳細は後述する。
(出力データファイルの構成)
図4は、スペクトロスコピーファイル61の説明図である。
例えば、出力フォルダにデータファイルがテキスト形式で出力される。図4(a)は、本実施の形態の出力データファイルの構成、図4(b)はファイルの具体的な名称及び内容の一例を示している。
スペクトロスコピーファイル61は、各探針位置u0(y01<u0<y02)に対するデータファイルを含む。すなわち出発位置y02と折り返し位置y01の間を、例えば移動刻み幅Δ=0.01[nm]刻みで動かす場合を想定し、各々のu0に対して、時刻τ=0からτ=τ’までの探針運動計算を行い、時刻τ’における探針の変位u、相互作用力F1(探針が受ける力)、F2(突起が受ける力)、F1+F2などを探針の初期位置u0に対応して格納する。図4(b)のファイル名の頭に付いている符号「−」は、探針を試料表面に近づける時のデータに対応し、「+」は探針を試料表面から遠ざける時のデータに対応している。これらは接触モードAFM探針の運動特性を解析するためのデータ群である。なお、パラメータを記憶したパラメータファイルを有してもよい。
特に、CPU1は、探針の初期位置u0に対して探針変位uと相互作用力F=F1+F2(F1、F2はそれぞれ探針、探針先端突起が受ける力)をデータセット(u0、u、F)の形式で例えば図4のVBTF1.datのファイルに記録し、これが選択されると、データセット(u0、u、F)に基づいて探針運動のアニメーションを表示する。なお、図4(b)に示すファイル名は一例であり、適宜のファイル名を用いてもよい。
(接触モードAFMシミュレータの動作)
図5及び図6は、接触モードAFMシミュレータの処理フロー図(1)及び(2)である。図7、図18はそれぞれ、ステップS104、S205の詳細フロー図である。また、図8乃至図14に接触モードAFMシミュレータの表示例を示す
図5〜7、図18の、接触モードAFMシミュレータの処理フローに従って、本シミュレータの具体的な動作について説明する。まず、アニメーションや解析の対象となる計算データが無い場合、接触モードAFMシミュレータはデータを作成する必要がある。
そこで、本シミュレータが起動されると、CPU1は、メニュー画面をディスプレイ5に表示する。メニュー画面の例を図8に示す。例えば、「パラメータを設定して計算出力」、「シミュレートする」、「解析する(グラフソフト起動)」等のメニュー項目が表示される。これらの中から、操作者によりメニュー項目のいずれかが選択され、CPU1は、入力装置4から選択指示を入力する。計算データがない場合、操作者は「パラメータを設定して計算出力」を選択することになる。CPU1は、入力装置4(例えば、キーボード、マウス等)より、例えば図8の「パラメータを設定して計算出力」が選択されたことを入力すると(S102)、例えば図9(a)に示すように計算に必要なパラメータ値を入力するための画面を表示する。一方、CPU1は、「パラメータを設定して計算出力」以外が選択された場合(S102)、ステップS106の処理へ移る。なお、ステップS102、S106、S110は、ステップS101の下に操作者の操作によりパラレルに処理されるフローとしてもよい。
CPU1は、(a)探針の出発位置y02と折り返し位置y01、(b)カンチレバーのバネ定数k、(c)探針の曲率半径R1と付着突起の曲率半径R2、(d)カンチレバー基底部の各位置での滞在時間τ’を入力装置4から入力する(S103)。また、探針の出発位置と折り返し位置を入力する代わりに、カンチレバー基底部の出発位置y02+2R1と、折り返し位置y01+2R1とを入力してもよい。
さらに、CPU1は、(e)カンチレバーのQ値をさらに入力してもよい。例えば、シミュレートする環境が溶液中又は湿気が多い環境であればQ値を小さくし(例えば1)、真空に近い環境であればQ値を大きく(例えば1000)できる。空気中であれば、例えばQ値を100等とすることができる。また、環境条件(例えば、溶液中、空気中、真空中)に対応してQ値を記憶部に予め記憶しておき、操作者により入力される環境条件に応じたQ値を適宜読み出して、これを用いるようにしてもよい。
ユーザによりデータを出力するフォルダ名が「操作するフォルダ名」のウインドウ内に入力され、データフォルダ作成ボタンIが押されたことをCPU1が入力装置4から入力すると(S103)、CPU1は、例えば図9(b)のようにDOSプロンプトを表示し、計算を始める(S104)。この時AFM3/dataフォルダ以下にフォルダが作成され、計算結果が出力されることができる。フォルダを削除したい場合は、操作するフォルダ名を入力してフォルダ削除ボタンIIが押されることで、CPU1は該当するフォルダを削除する。なお、フォルダ名は入力装置4から入力する以外にも、通し番号、日付とするなどの予め定められた規則に従いCPU1が適宜名前をつけてもよい。
計算は、上述の式(1)の探針の運動方程式を、前述のように4次のRunge−Kutta(ルンゲクッタ)法と呼ばれる数値積分法で解いて行う(S104)。なお、CPU1は、DOSプロンプト以外にも計算中であることや計算経過を示す適宜の表示をしてもよく、また、何の表示をしなくてもよい。また、運動方程式の解法としては、4次のルンゲクッタ法以外にも、6次のルンゲクッタ法、オイラー法等適宜の方法を用いることができる。
図7に、ステップS104の詳細フローを示す。まず、CPU1は、初期設定を行う(S201)。例えば、CPU1は、探針の変位の初期値をu=0、探針の速度の初期値をdu/dτ=0、i=0、j=0とする。ここで、i、jは、繰り返し計算のためのパラメータである。また、CPU1は、例えば、u0の移動刻み幅ΔをΔ=0.01とする。なお、刻み幅Δの値は、適宜の値を設定することができる。また、運動方程式の解法等により必要な場合には探針の加速度の初期値を例えば0と設定してもよい。
次に、CPU1は、探針の初期位置u0を設定する(S203)。例えば、CPU1は、u0=y02−iΔと設定する。計算開始時には、i=0であるので、探針の初期位置u0=入力された出発位置y02となる。
なお、本実施の形態では、カンチレバーの上下動の初期位置を出発点(出発位置)y02と記し、探針を移動刻み幅Δで移動させたときの各位置を探針の初期位置u0と記す。また、探針の初期位置u0は、カンチレバーが下がる又は上がるように移動刻み幅Δに従って順次設定され、各探針の初期位置について、上述の運動方程式(1)を数値計算により解く。
CPU1は、入力された各パラメータ及び設定された探針の初期位置u0及び初期値に基づき、上述の式(1)を例えばルンゲクッタ法により解き、時刻τ毎の探針の変位uと探針の速度du/dτを求める(S205)。
CPU1は、時刻τが、設定された滞在時間τ’以上(τ≧τ’)となるまでステップS205のルンゲクッタ法の処理を繰り返し(S207)、τ≧τ’となった段階でステップS208へ移る。ステップS208では、CPU1は探針の半径R1、突起の半径R2、設定された滞在時間τ’における探針の変位u等に基づき、探針と表面間の相互作用力F1、突起と表面間の相互作用力F2及びこれらの和Fを求める(S208)。なお、探針と表面間の相互作用力Fは、次式に従い求めることができる。
F1=F(R1、u+u0)
F2=F(R2、u+u0−2R2)
F=F1+F2
=F(R1、u+u0)+F(R2、u+u0−2R2)
ここで、F(R、z)は、上述の式(2)により求めることができる。なお、相互作用力F1、F2、Fは、ステップS205において運動方程式を解く際に求めた時刻τ’のF1、F2、Fをメモリ等に記憶しておき、これを用いてもよい。この場合、ステップS208を省略できる。なお、設定された滞在時間τ’以外にも、計算最終時刻又は予め定められた時刻における探針の変位u等に基づき、相互作用力を求めてもよい。
CPU1は、u−u0関係、F−u0関係等を図4のスペクトロスコピーファイル61に出力(記憶)する(S209)。例えば、時刻τ’における計算で求められた探針の変位u、相互作用力Fをそれぞれ、設定された探針の初期位置u0に対応させて記憶する。また、CPU1は、シミュレーション用のデータとして、u0、u、F1+F2を対応して記憶する。CPU1は、さらに、探針が受ける相互作用力F1とu0を対応して記憶してもよいし、突起から受ける相互作用力F2とu0を対応して記憶してもよい。例えば、図4(a)に示す各データが出力又は記憶される。
また、u−u0関係、F−u0関係の他、F−u関係、u−τ関係、F−τ関係、E−u0関係、E−τ関係、E−u関係など、任意の組み合わせの出力が可能である。ここで、Eは探針の全エネルギー
Figure 2007271318
である。
CPU1は、探針の変位u、探針の速度du/dτの最後の出力を、i=i+1のループにおける処理のために、探針の変位u、探針の速度du/dτの初期値に返す(S211)。つまり、このループ(i)の最終値(最終時刻τ’の値)を次のループ(i+1)の初期値とする。この設定が、カンチレバーを連続的にダウン及びアップさせる手順に対応する。なお、ループ(i)の最終値以外にも、予め定められた時刻(例えば、設定された滞在時間)における変位u、速度du/dτの値を用いてもよい。
CPU1は、ステップS203で設定された探針の初期位置u0が入力された折り返し位置y01以下(u0≦y01)であるか判断する(S213)。なお、探針の初期位置u0が折り返し位置y01未満(u0<y01)であるかを判断してもよい。CPU1は、設定された探針の初期位置u0が折り返し位置y01以下(又は未満)であれば(S213)、ステップS217へ移る。一方、設定された探針の初期位置u0が折り返し位置y01以下(又は未満)でなければ(S213:NO)、パラメータiを例えばひとつ増加し(i=i+1)(S215)、ステップS203の処理へ戻る。
以上の処理により、カンチレバーの基底部がy02+2R1からy01+2R1へ下がる場合のシミュレーション結果が得られる。なお、本実施の形態では、カンチレバーを上下動させているが、下がる場合、又は、上がる場合のみをシミュレートすることもできる。
次に、CPU1は、カンチレバーがy01+2R1からy02+2R1へ上がる場合について、シミュレートする。
まず、CPU1は、探針の初期位置u0を設定する(S217)。ここでは、CPU1は、例えば、u0=y01+jΔと設定する。なお、繰り返し処理の最初では、j=0であるのでu0=y01となる。また、これ以外にも例えばCPU1は、上述の処理又は後述する処理により設定された探針の初期位置u0に、移動刻み幅Δを加えて、新たな探針の初期位置u0としてもよい。次に、CPU1は、ステップS219〜S225の処理を実行する。なお、ステップS219〜S225の各処理は、上述のステップS205〜S211の各処理と同様であるので説明を省略する。ステップS223の処理により、カンチレバーが上がる場合のu−u0関係、F−u0関係等がスペクトロスコピーファイル61に記憶されていく。
また、u−u0関係、F−u0関係の他、F−u関係、u−τ関係、F−τ関係、E−u0関係、E−τ関係、E−u関係など、任意の組み合わせの出力が可能である。ここで、Eは探針の全エネルギー
Figure 2007271318
である。
CPU1は、ステップS217で設定された探針の初期位置u0が入力された出発位置y02以上(u0≧y02)であるか判断する(S227)。なお、探針の初期位置u0が出発位置y02より大きいか(u0>y01)を判断してもよい。CPU1は、設定された探針の初期位置u0が出発位置y02以上の場合(又は出発位置y02より大きい場合)(S227:YES)、処理を終了して図5のステップS105へ移る。一方、CPU1は、設定された探針の初期位置u0が出発位置y02以上でない場合(又は出発位置y02より大きくない場合)(S227:NO)、パラメータjを例えばひとつ増加し(j=j+1)(S229)、ステップS217の処理へ戻る。
以上まとめると、出発位置y02と折り返し位置y01の間をΔ=0.01[nm]刻みで接触モードAFMのカンチレバーを動かす場合を想定し、各々のu0に対して、時刻τ=0からτ=τ’までの探針運動計算を行い、時刻τ’における相互作用力F1(探針が受ける力)、F2(突起が受ける力)、F1+F2等をファイルに出力する。そしてカンチレバー基底部がu0+2R1の位置からu0+2R1+Δuの位置(Δuは探針及びカンチレバーの移動量であり、図7のΔ=0.01に相当)に移動する際に、カンチレバー基底部の位置u0+2R1での探針の変位u及び速度du/dtの最終値をu0+2R1+Δuにおけるシミュレーションの初期値として受け継ぎ、各々の位置u0で0<τ<τ’の時刻で計算を行う。探針はQ値に依存する微小な減衰振動を行うが、解析を行う際には、各々のu0に対して時刻τ’の探針座標u(τ’)を参照している。
この処理によれば、垂直方向のカンチレバーの操作速度v(nm/s)は、
Figure 2007271318
と書ける。ここで、ωはカンチレバーの共振周波数である。例えば、メモリ等に記憶された予め定められた値を用いることができる。凝着シミュレータでのウインドウ上の速度表示では、一例としてカンチレバーの共振周波数ωを100kHzとして計算している。
ここでカンチレバーのy01+2R1〜y02+2R1間の上下動のシミュレーションの境界条件について付け加えておく。カンチレバーの下降時、上昇時、及び試料表面に探針が点Pで衝突する時のいずれも、式(1)を境界条件z=u+u0−2R2>0即ちu>−u0+2R2で解く必要がある(図17)。
図17に示すように、時刻τ=τに探針が表面と点Pで衝突する時、真の衝突点(転回点)P、u=u(τ)では
Figure 2007271318
が成立する。(点Pは探針−表面間相互作用ポテンシャルエネルギー上にある。)
実際の数値シミュレーションでは有限の時間刻みΔτで運動方程式を解くため、近似的な衝突点P’を数値的に求める事になる。具体的には
Figure 2007271318
となるような時刻の区間[τ’、τ’+Δτ]で
Figure 2007271318
となるようなτ’を求め、衝突点(転回点)P’、u(τ’)を求める。
従って十分小さなΔτを用いれば、境界条件u>−u0+2R2を満たす衝突点(転回点)u(τ’)(u(τ)とほぼ同じ)を数値的に求める事が出来る。
一方どの程度Δτを小さくして良いか分からない場合は図7のS205のループに、例えば、「u≦−u0+2R2となったら、刻み幅Δτを順次半分にする処理」を用意して適切なΔτで近似的な衝突点P’を求める事が可能である。その処理を図18の詳細フローに示す。
まず、CPU1は、初期設定を記憶する(S301)。例えば、τinit=τ、uinit=u、Δτinit=Δτ等である。CPU1は、式(1)の数値計算をルンゲ・クッタ法を使って行い、Δτだけ時刻を進める(S302)。ここでu>−u0+2R2である場合にはΔτ=Δτinitの処理(S305)を行って、再びS205、S207のループに戻る。一方、CPU1は、u>−u0+2R2を満たさない場合には(S303)、τ=τinit、u=uinit、Δτ=0.5*Δτの処理(S304)を経て式(1)の計算(S302)に戻り、u>−u0+2R2が成立するまで計算を繰り返す。
図5に戻り、CPU1は、ステップS104の計算が終わるとDOSプロンプトを消失する(S105)。この時点で出力フォルダに全てのデータファイルがテキスト形式で出力されている。次に、CPU1は、メニューを表示し(又は表示されたメニューにより)、探針運動のアニメーションを見るか否かの選択を指示する(S106)。例えば、図8のメニューから「シミュレートする」が選択されたことを、CPU1が入力装置4から入力すると(S106:YES)、CPU1は、出力フォルダのファイルリストをGUIを介してディスプレイ5に表示する。CPU1は、ユーザにより入力されたパラメータの組(u0、k、R、Q、v)に対するシミュレーション用のファイル(VBTF1.dat)が“AFM3/data”フォルダ以下から選択されたことを入力装置4から入力する(S108)。なお、CPU1は、自動的にシミュレーション用のファイルを選択してもよい。このファイルには、探針初期位置u0(ただしy01<u0<y02)、探針変位u、探針−試料表面間相互作用力Fが書き込まれている。また、CPU1は、選択されたファイルに含まれるデータに基づいて、探針運動のアニメーションを実行する(S109)。例えば図10に示すようなシミュレーション画面を表示する。図10に示されているウインドウ内の最初ボタンIIIを押すことで、シミュレーションを書き込まれたデータの最初(最も早い時刻のデータ)から始めることができる。また、stop/restartボタンIVを押すことで、シミュレーションをストップ、再スタートすることができる。また、CPU1は、上述の式(3)に従いカンチレバーの操作速度vを計算し、表示する。ここで、ωは予め定められた適宜の値を用いることができる。また、求められたカンチレバーの操作速度に応じて、探針の運動または試料表面付近の探針の運動をアニメーション表示してもよい。
こうして図10〜13に示すように探針運動のアニメーションが実行される。図10〜図13は突起がない場合のアニメーション表示である。ただし、突起が例えば半径R2=0.1程度の場合、探針(半径R1=10)に比べて小さいため、突起はアニメーションでは見えにくくなる場合がある。従って図10、図11〜13は突起が無い場合の動力学のアニメーションで代用する。一方、大きい突起(例えば、半径R2=10nm)の場合は、突起の絵がアニメーションに明確に追加されるので、使用事例として、図19に大きい突起のアニメーションを示す。
さて、図10、図19は接近過程で探針が表面から遠い場所にある時、図11は表面に近付いた探針が表面に吸着した直後、図12は表面に押し込まれて斥力を受けている時、図13は引き離し過程で表面に強く凝着している時の画面を表している。いずれの場合も、一番左の図が接触モードAFMシステム全体のアニメーション、中央の図が試料表面付近を拡大したアニメーションである。アニメーションと同期させて、CPU1は、一番右の図の上半分に力曲線(フォースカーブ:探針位置u0(横軸)−探針・表面間相互作用力F(縦軸)の関係)、右の図の下半分に探針の変位曲線(探針位置u0(横軸)−探針の変位u(縦軸)の関係)を描画する。なお、探針位置u0以外にも、カンチレバーの根元の位置u0+2R1が表示されてもよい。これらの表示により、探針の凝着特性を一目で把握する事が出来る。
左の図及び中央の図で鉛直上方の矢印は探針と試料表面との間に働く斥力を示し、鉛直下方の矢印は引力を示している。従って、探針と表面がナノサイズで凝着して表面と接触しているのか、いないのかがすぐに分かるのが本シミュレータの大きなメリットのひとつである。この矢印は、求められた相互作用力Fの大きさ及び符号に応じて、矢印の長さ及び向きを定めることができる。なお、図10は非接触状態なので一番左の図及び中央の図で下向きの矢印になっており(引力を受けており)、中央の図で表面に探針が近付いていない(接触していない)事が確認出来る。一方、図11は、探針が試料表面に吸着した直後なので強い引力を受けている事が分かる。更に図12は探針が表面に押し込まれている状態なので一番左の図及び中央の図で上向きの矢印になっており(斥力を受けており)、中央の図で表面付近に探針が非常に近付いている事が分かる。このように原子レベルで凝着、接触の特徴を把握できるのがこのシミュレータの特長である。なお、図10〜図13では、突起を表示していないが、探針の先端に突起を表示してもよい。さらに、突起が受ける相互作用力F2を探針が受ける相互作用力と同様に矢印で表示してもよい。
このように、アニメーション表示がマイクロメートル〜ナノメートルサイズのミクロ世界の衝突を表している。その証拠に図12の中央で上向きの力(斥力)が示されている。また右上のウィンドウでも振動しながら相互作用力が斥力(正の力)の領域に入っている事が分かる。このようにミクロな世界での衝突を可視化する事もまた本シミュレータの役割のひとつである。図17から分かるように、探針は探針−表面間相互作用ポテンシャルエネルギー上の衝突点(転回点)Pで跳ね返されるので、衝突点Pと表面の位置u=−u0は一致しない事に注意したい。
図5に戻り、計算したデータの解析を行うため、図8のメニューから「解析する(グラフソフトを起動)」が選択されたことを、CPU1が入力装置4から入力すると(S110:YES)、CPU1は、GUIでデータファイルリストをディスプレイ5に表示する。例えば、図14に示すリストが表示される。CPU1は、スペクトロスコピーのデータが選択されたことを入力装置4より入力すると(S111)、入力されたファイルをハードディスク6から読み出し、読み出されたファイルのデータに基づき、任意のグラフソフトによってy01<u0<y02の領域の各種スペクトロスコピーをディスプレイ5に描画する(S112)。例えば、探針の初期位置u0と相互作用力Fとが記憶されたファイル+F1.dat、−F1.datが選択されると、CPU1は、例えばグラフソフトを用いて、探針−表面間相互作用力Fが探針位置u0の関数としてディスプレイ5にグラフィック表示する。図16に、本実施の形態における探針−表面間相互作用力Fを探針位置u0の関数として描画したフォースカーブを示す。なお、図16の詳細については後述する。
2.第2の実施の形態
本実施の形態では、探針先端に突起がない場合について説明する。
本シミュレータのハードウェア構成、出力データファイルの構成は、上述の第1の実施の形態と同様である。なお、突起が受ける相互作用力に関する出力データファイル(u0、F2)、(u0、F1+F2)は省略することができる。
(接触モードAFMシステムの運動方程式及び使用するパラメータ)
まず、本シミュレータが対象とする接触モードAFMのシステム及び探針の運動方程式の導出について説明する。
図15は、接触モードAFMのシステムの説明図(2)である。図15(a)は、カンチレバー−探針−表面系の位置関係、及び、探針の初期位置u0の定義を示す。図15(b)は、探針の変位uの定義と探針−表面間相互作用力を示す。図15(c)は、接触モードAFMの駆動モード、カンチレバー基底部をy01+2R1<u0<y02+2R1の間で一往復させる動きを示す。図20は、探針−表面間相互作用ポテンシャルエネルギー上の探針−表面間衝突点Pと、表面の位置u=−u0の関係を示している。
図15に示すように、カンチレバーと呼ばれる、先端に探針を付着させた板状のバネと、試料表面とからなるシステムを考える。探針の形状としては例えば球体を考え、サイズのパラメータとして曲率半径R1を与える。ここで、カンチレバーが伸びたり縮んだりしていない時の探針先端の初期位置をu0とおくと、カンチレバーの基底部はu0+2R1と書ける。この基底部がu0+2R1の位置にある場合に対する探針の運動方程式は、次式のように時刻τに関する二階の非線形常微分方程式として書ける。
Figure 2007271318
ここで、uは図15(b)に示すように、カンチレバーが伸びたり縮んだりしていない時の探針初期位置u0からの探針の変位u=z−u0である。なお、図15(b)は、探針が初期位置u0から変位uだけ移動した図である。zは時刻τでの探針位置z(τ)である。また、F(R、z)は、曲率半径R(ここでは探針の半径R1)の球形探針先端に働くファンデルワールス力を表す。また、QはカンチレバーのQ値、kはバネ定数を表す。ρは探針と表面の原子の数密度、σはL−Jポテンシャルの原子半径に関わるパラメータ、εはL−Jポテンシャルの原子の結合エネルギーに関わるパラメータを表している。
式(4)で表される接触モードAFMシステムを図15(c)に示すように動作させる場合を考える。これは、実験でフォースカーブを測定する場合に対応する。すなわち、カンチレバー基底部を一定の速度vで、出発点y02+2R1と折り返し点y01+2R1との間で一往復させる。この時、探針‐表面間相互作力Fを数値計算して探針の初期位置u0(y01<u0<y02)の関数としてプロット又は記憶すれば、探針位置u0の関数としての力Fのグラフ、すなわちフォースカーブ(力のスペクトロスコピー)が得られる。また、力Fの代わりに探針位置uをプロットすれば、変位のスペクトロスコピーが得られる。
本実施の形態における接触モードAFMシステムの方程式中に含まれる変数、定数は、上述の第1の実施の形態(例えば、図3参照)と同様である。図3に示す通り、上述のパラメータのうちu、τは計算の過程で決まる変数である。なお、探針先端に付着した突起の曲率半径R2については省略できる。
また、ρ、σ、εは定数として予め与える。ここでは一例としてε=0.01としており、これは化学的に不活性な相互作用(原子間で強い結合が生じないレベル)を想定している。なお、ρ、σ、εは、図に示す値以外にも適宜の値を用いてもよい。
一方、入力が必要なパラメータとして、例えば、u0=y02(探針のスタート位置)、u0=y01(探針の折り返し位置)、k(カンチレバーのバネ定数[N/m])、R1(探針の曲率半径[nm])、カンチレバーのQ値、カンチレバー基底部u0+2R1の各位置での滞在時間τ’が挙げられる。入力に関しての詳細は後に述べる。なお、これらのパラメータは予め定められた値を記憶部に記憶しておき、必要に応じて読み込むようにしてもよい。入力に関しての詳細は後述する。
(接触モードAFMシミュレータの動作)
本シミュレータのフローチャートは、第1の実施の形態と同様とすることができる。例えば、曲率半径R2の入力を省略し、また、R2についての項を0として計算することができる。以下、第1の実施の形態における図5〜図7のフローチャートを参照し、本シミュレータの具体的な動作について説明する。なお、第1の実施の形態と異なる処理については、対応するステップ番号に「’」を付して説明する。
ステップS101、S102の処理は、第1の実施の形態と同様である。ステップS103では、CPU1は、計算に必要なパラメータ値を入力するための画面を表示する(S103’)。表示される画面は、図9(a)と同様とすることができるが、突起の曲率半径R2については省略できる。
ステップ103では例えば、CPU1は、(a)探針の出発位置y02と折り返し位置y01、(b)カンチレバーのバネ定数k、(c)探針の曲率半径R1(d)カンチレバー基底部の各位置での滞在時間τ’を入力装置4から入力する。また、探針の出発位置と折り返し位置を入力する代わりに、カンチレバー基底部の出発位置y02+2R1と、折り返し位置y01+2R1とを入力してもよい。さらに、CPU1は、(e)カンチレバーのQ値をさらに入力してもよい。
ユーザによりデータを出力するフォルダ名が「操作するフォルダ名」のウインドウ内に入力され、データフォルダ作成ボタンIが押されたことをCPU1が入力装置4から入力すると(S103’)、CPU1は、例えば図9(b)のようにDOSプロンプトを表示し、計算を始める(S104’)。この時AFM3/dataフォルダ以下にフォルダが作成され、計算結果が出力されることができる。フォルダを削除したい場合は、操作するフォルダ名を入力してフォルダ削除ボタンIIが押されることで、CPU1は該当するフォルダを削除する。なお、フォルダ名は入力装置4から入力する以外にも、通し番号、日付とするなどの予め定められた規則に従いCPU1が適宜名前をつけてもよい。
計算は、上述の式(4)の探針の運動方程式を、前述のように4次のRunge−Kutta(ルンゲクッタ)法と呼ばれる数値積分法で解いて行う(S104’)。なお、CPU1は、DOSプロンプト以外にも計算中であることや計算経過を示す適宜に表示をしてもよく、また、何の表示をしなくてもよい。また、運動方程式の解法としては、4次のルンゲクッタ法以外にも、6次のルンゲクッタ法、オイラー法等適宜の方法を用いることができる。
ステップS104’の詳細フローを、図7のフローを参照して説明する。ステップS201、S203の処理は第1の実施の形態と同様である。
CPU1は、入力された各パラメータ及び設定された探針の初期位置u0及び初期値に基づき、上述の式(4)を例えばルンゲクッタ法により解き、時刻τ毎の探針の変位uと探針の速度du/dτを求める(S205’)。また、ステップS207の処理は第1の実施の形態と同様である。
ステップS208では、CPU1は探針の半径R1、探針の変位u等に基づき、探針と表面間の相互作用力F1を求める(S208’)。なお、探針と表面間の相互作用力Fは、次式に従い求めることができる。
F1=F(R1、u+u0)
ここで、F(R、z)は、上述の式(5)により求めることができる。
CPU1は、u−u0関係、F−u0関係等を図4のスペクトロスコピーファイル61に出力(記憶)する(S209’)。例えば、時刻τ’における計算で求められたu、Fをそれぞれ、設定された探針の初期位置u0に対応させて記憶する。また、CPU1は、シミュレート用のデータとして、u0、u、F1を対応して記憶する。
また、u−u0関係、F−u0関係の他、F−u関係、u−τ関係、F−τ関係、E−u0関係、E−τ関係、E−u関係など、任意の組み合わせの出力が可能である。ここで、Eは探針の全エネルギー
Figure 2007271318
である。
ステップS211〜S217の処理は第1の実施の形態と同様である。ステップS219では、CPU1は、上述のステップS205’と同様に、式(4)の運動方程式を解く(S219’)。ステップS221の処理は第1の実施の形態と同様である。
CPU1は、u−u0関係、F−u0関係等を図4のスペクトロスコピーファイル61に出力(記憶)する(S223’)。例えば、時刻τ’における計算で求められたu、Fをそれぞれ、設定された探針の初期位置u0に対応させて記憶する。また、CPU1は、シミュレート用のデータとして、u0、u、F1を対応して記憶する。
また、u−u0関係、F−u0関係の他、F−u関係、u−τ関係、F−τ関係、E−u0関係、E−τ関係、E−u関係など、任意の組み合わせの出力が可能である。ここで、Eは探針の全エネルギー
Figure 2007271318
である。
ステップS225〜S229の処理は第1の実施の形態と同様である。図5に戻り、ステップS105〜S112の処理は、第1の実施の形態と同様である。
以上まとめると、出発位置y02と折り返し位置y01の間をΔ=0.01[nm]刻みで接触モードAFMのカンチレバーを動かす場合を想定し、各々のu0に対して、時刻τ=0からτ=τ’までの探針運動計算を行い、時刻τ’における相互作用力F1(探針が受ける力)等をファイルに出力する。そしてカンチレバー基底部がu0+2R1の位置からu0+2R1+Δuの位置(Δuは移動量であり、図7のΔに相当)に移動する際に、u0+2R1での探針の変位u及び速度du/dtの最終値をu0+2R1+Δuにおけるシミュレーションの初期値として受け継ぎ、各々の位置u0で0<τ<τ’の時刻で計算を行う。探針はQ値に依存する微小な減衰振動を行うが、解析を行う際には、各々のu0に対して時刻τ’の探針座標u(τ’)を参照している。なお、この処理によれば、垂直方向のカンチレバーの操作速度v(nm/s)は、上述の式(3)により求めることができる。凝着シミュレータでのウインドウ上の速度表示では、一例としてカンチレバーの共振周波数ωを100kHzとして計算している。
ここでカンチレバーのy01+2R1〜y02+2R1間の上下動のシミュレーションの境界条件について付け加えておく。カンチレバーの下降時、上昇時、及び試料表面に探針が点Pで衝突する時のいずれも、式(4)を境界条件z=u+u0即ちu>−u0で解く必要がある(図20)。
図20に示すように、時刻τ=τに探針が表面と点Pで衝突する時、真の衝突点(転回点)P、u=u(τ)では
Figure 2007271318
が成立する。(点Pは探針−表面間相互作用ポテンシャルエネルギー上にある。)
実際の数値シミュレーションでは有限の時間刻みΔτで運動方程式を解くため、近似的な衝突点P’を数値的に求める事になる。具体的には
Figure 2007271318
となるような時刻の区間[τ’、τ’+Δτ]で
Figure 2007271318
となるようなτ’を求め、衝突点(転回点)P’、u(τ’)を求める。
従って十分小さなΔτを用いれば、境界条件u>−u0を満たす衝突点(転回点)u(τ’)(u(τ)とほぼ同じ)を数値的に求める事が出来る。
一方どの程度Δτを小さくして良いか分からない場合は図7のS205’のループに、例えば、「u≦−u0となったら、刻み幅Δτを順次半分にする処理」を用意して適切なΔτで近似的な衝突点P’を求める事が可能である。その処理を図18の詳細フローに示す。
まず、CPU1は、初期設定を記憶する(S301’)。例えば、τinit=τ、uinit=u、Δτinit=Δτ等である。CPU1は、式(1)の数値計算をルンゲ・クッタ法を使って行い、Δτだけ時刻を進める(S302’)。ここで、CPU1は、u>−uである場合にはΔτ=Δτinitの処理(S305’)を行って、再びS205’、S207のループに戻る。一方、CPU1は、u>−uを満たさない場合には(S303’)τ=τinit、u=uinit、Δτ=0.5*Δτの処理(S304’)を経て式(1)の計算(S302’)に戻り、u>−u0が成立するまで計算を繰り返す。
3.データの解析及び考察
図16は、探針−表面間相互作用力(F)を探針位置(u0−2R2)の関数として描画したフォースカーブの表示例である。
探針位置u0を変えて、探針が表面から受ける相互作用力Fを計算したのが図16である。探針に突起がない場合(左図(a))と、ある場合(右図(b))を示した。探針の位置を下げて表面に近づけていく場合をdown(実線)、上げて表面から遠ざける場合をup(破線)としている。接近‐引き離し過程においてヒステリシスが生じている事が分かる。接近過程での吸着直後の極小点が吸着力を、引き離し過程での離脱直前の極小点が凝着力を示している。明らかに突起がある場合にヒステリシスが小さくなることが、この表示例から分かる。これは力が突起先端に集中する事により全相互作用力は逆に小さくなるため、探針の凝着特性に顕著な変化が現れた事を意味している。
4.変形例
上述の第1及び第2の実施の形態では、予め設定されたΔ(式(3)のΔu)と、入力される計算終了時刻τ’とに基づいて、カンチレバーの操作速度vを式(3)により求めて表示部に表示しているが、例えば、CPU1が操作速度vと計算終了時刻τ’とを入力装置4から入力して、これらに基づいて式(3)によりカンチレバーの移動刻み幅Δ(式(3)のΔu0)を設定してもよい。また、例えば、CPU1が操作速度vとカンチレバーの移動刻み幅Δとを入力装置4から入力して、これらに基づいて式(3)により計算終了時刻τ’を設定してもよい。
5.付記
本発明の接触モード原子間力顕微鏡の凝着シミュレーション方法又は凝着シミュレータは、その各手順をコンピュータに実行させるための凝着シミュレーションプログラム、凝着シミュレーションプログラムを記録したコンピュータ読み取り可能な記録媒体、凝着シミュレーションプログラムを含みコンピュータの内部メモリにロード可能なプログラム製品、そのプログラムを含むサーバ等のコンピュータ、等により提供されることができる。
本発明は、例えば、ナノテクノロジーにおける接触モード原子間力顕微鏡に関する産業に利用可能である。
接触モード原子間力顕微鏡 凝着シミュレータのハードウェア構成図。 接触モードAFMのシステム(探針先端に突起がある場合)の構成図。 接触モードAFMシミュレータで用いたパラメータ。 スペクトロスコピーファイルの構成図。 接触モードAFMシミュレータの処理フロー(1)。 接触モードAFMシミュレータの処理フロー(2)。 接触モードAFMシミュレータの処理フロー(3)。 作業の選択画面(メニュー画面)の表示例。 パラメータ設定画面の表示例。 接近過程1:探針が表面から遠い場所にある時(引力領域)のアニメーション表示例(突起がない又は小さい場合)。 接近過程2:探針が表面に吸着した直後(引力領域)のアニメーション表示例。 接近過程3:探針が表面に押し込まれている時(斥力領域)のアニメーション表示例。 引き離し過程:探針が表面に凝着している時(引力領域)のアニメーション表示例。 出力ファイルリスト。 接触モードAFMのシステム(探針先端に突起が無い場合)の構成図。 探針‐表面間相互作用力(F)を探針位置(u0−2R2)の関数として描画したフォースカーブ。 探針−表面間相互作用ポテンシャルエネルギー上の探針−表面間衝突点Pと、表面の位置u=−u0の関係図。 S205の詳細フロー図。 接近過程1:探針が表面から遠い場所にある時(引力領域)のアニメーション表示例(突起が大きい場合)。 探針−表面間相互作用ポテンシャルエネルギー上の探針−表面間衝突点Pと、表面の位置u=−u0の関係図。
符号の説明
1 主制御部(CPU)
2 実行ファイルプログラムが記憶されるメモリ
3 入出力制御
4 入力装置
5 表示装置
6 出力装置
61 スペクトロスコピーファイル

Claims (15)

  1. 突起のついた探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーション方法であって、
    処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、探針についている突起の曲率半径R2と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
    処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
    処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
    処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、突起の曲率半径R2と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、R2:突起の曲率半径、u0:探針の初期位置]
    処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力を、F(R1、u+u0)+F(R2、u+u0−2R2)により求める第2演算ステップと、
    処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
    処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
    処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
    処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
    を含む前記接触モード原子間力顕微鏡の凝着シミュレーション方法。
  2. 探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーション方法であって、
    処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
    処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
    処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
    処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、u0:探針の初期位置]
    処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力F(R1、u+u0)を求める第2演算ステップと、
    処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
    処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
    処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
    処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
    を含む前記接触モード原子間力顕微鏡の凝着シミュレーション方法。
  3. 処理部が、設定された探針の初期位置の値u0が、入力された出発位置の値y02以上になるまで又は出発位置の値y02より大きくなるまで、(c)入力された折り返し位置y01に移動刻み幅を順次加えて、又は、設定された探針の初期位置u0に移動刻み幅を加えて、新たな探針の初期位置u0を設定することと、(d)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
    をさらに含む請求項1又は2に記載の接触モード原子間力顕微鏡の凝着シミュレーション方法。
  4. 前記記憶するステップは、処理部が、計算最終時刻又は前記所定計算時間の探針の変位uを、設定された探針の初期位置u0に対応させて記憶部に記憶することを含み、
    処理部が、記憶された各探針の初期位置u0と、該探針の初期位置に対応する探針の変位uとを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップ
    をさらに含む請求項1又は2に記載の接触モード原子間力顕微鏡の凝着シミュレーション方法。
  5. 前記記憶するステップは、処理部が、求められた前記相互作用力と、計算最終時刻又は前記所定計算時間の探針の変位uと、設定された探針の初期位置u0とを対応させて記憶部に記憶することを含み、
    処理部が、記憶された各探針の初期位置u0と、該探針の初期位置に対応する探針の変位uと、該探針の初期位置に対応する相互作用力とに基づき、探針の運動又は試料表面付近の探針の運動を表示部にアニメーション表示するステップ
    をさらに含む請求項1又は2に記載の接触モード原子間力顕微鏡の凝着シミュレーション方法。
  6. 処理部が、求められた前記相互作用力の大きさに応じた長さで、かつ、前記相互作用力の符号に応じた向きの矢印を、アニメーション表示された探針表面に表示するステップ
    をさらに含む請求項5に記載の接触モード原子間力顕微鏡の凝着シミュレーション方法。
  7. 処理部は、カンチレバーの移動刻み幅と、予め定められたカンチレバーの共振周波数との積を、前記所定計算時間で割ることで、垂直方向のカンチレバーの速度を求めるステップと、
    処理部は、求められた速度を表示部に表示するステップと
    をさらに含む請求項1又は2に記載の接触モード原子間力顕微鏡の凝着シミュレーション方法。
  8. 処理部は、カンチレバーの移動刻み幅と、予め定められたカンチレバーの共振周波数との積を、前記所定計算時間で割ることで、垂直方向のカンチレバーの速度を求めるステップ
    をさらに含み、
    処理部は、求められた速度に応じて探針の運動又は試料表面付近の探針の運動をアニメーション表示する請求項5に記載の接触モード原子間力顕微鏡の凝着シミュレーション方法。
  9. 前記入力するステップは、
    処理部が、カンチレバーのQ値を入力することを含む請求項1又は2に記載の接触モード原子間力顕微鏡の凝着シミュレーション方法。
  10. 突起のついた探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーションプログラムであって、
    処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、探針についている突起の曲率半径R2と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
    処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
    処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
    処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、突起の曲率半径R2と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、R2:突起の曲率半径、u0:探針の初期位置]
    処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力を、F(R1、u+u0)+F(R2、u+u0−2R2)により求める第2演算ステップと、
    処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
    処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
    処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
    処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
    をコンピュータに実行させるための前記接触モード原子間力顕微鏡の凝着シミュレーションプログラム。
  11. 探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーションプログラムであって、
    処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
    処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
    処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
    処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、u0:探針の初期位置]
    処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力F(R1、u+u0)を求める第2演算ステップと、
    処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
    処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
    処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
    処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
    をコンピュータに実行させるための前記接触モード原子間力顕微鏡の凝着シミュレーションプログラム。
  12. 突起のついた探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーションプログラムを記憶したコンピュータ読み取り可能な記録媒体であって、
    処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、探針についている突起の曲率半径R2と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
    処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
    処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
    処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、突起の曲率半径R2と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、R2:突起の曲率半径、u0:探針の初期位置]
    処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力を、F(R1、u+u0)+F(R2、u+u0−2R2)により求める第2演算ステップと、
    処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
    処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
    処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
    処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
    をコンピュータに実行させるための接触モード原子間力顕微鏡の凝着シミュレーションプログラムを記憶したコンピュータ読み取り可能な記録媒体。
  13. 探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレーションプログラムを記憶したコンピュータ読み取り可能な記録媒体であって、
    処理部が、カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを入力部又は記憶部から入力するステップと、
    処理部が、探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定ステップと、
    処理部が、カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定ステップと、
    処理部が、設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算ステップと、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、u0:探針の初期位置]
    処理部が、前記第1演算ステップにおける計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力F(R1、u+u0)を求める第2演算ステップと、
    処理部が、求められた前記相互作用力を、設定された探針の初期位置u0に対応させて記憶部に記憶するステップと、
    処理部が、次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算ステップにおいて求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定ステップと、
    処理部が、設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定ステップで設定された探針の変位及び速度の初期値とを用いて、前記第1演算ステップ、前記第2演算ステップ、前記記憶するステップ及び前記第3設定ステップを実行することと、を繰り返すステップと
    処理部が、記憶された各探針の初期位置u0と、対応する前記相互作用力とを記憶部から読み出し、表示部に表示若しくはグラフィック表示する、又は、出力部に出力するステップと
    をコンピュータに実行させるための接触モード原子間力顕微鏡の凝着シミュレーションプログラムを記憶したコンピュータ読み取り可能な記録媒体。
  14. 突起のついた探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレータであって、
    パラメータを入力するための入力部と、
    前記入力装置から入力されたパラメータに基づき、接触モード原子間力顕微鏡による試料表面の凝着特性をシミュレートする処理部と、
    前記処理部により求められたデータを記憶するための記憶部と、
    シミュレート結果を表示するための表示部と
    を備え、
    前記処理部は、
    カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、探針についている突起の曲率半径R2と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを前記入力部又は前記記憶部から入力する手段と、
    探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定手段と、
    カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定手段と、
    設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、突起の曲率半径R2と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算手段と、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、R2:突起の曲率半径、u0:探針の初期位置]
    前記第1演算手段における計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力を、F(R1、u+u0)+F(R2、u+u0−2R2)により求める第2演算手段と、
    求められた前記相互作用力を、設定された探針の初期位置u0に対応させて前記記憶部に記憶する手段と、
    次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算手段において求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定手段と、
    設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定手段で設定された探針の変位及び速度の初期値とを用いて、前記第1演算手段、前記第2演算手段、前記記憶する手段及び前記第3設定手段を実行することと、を繰り返す手段と、
    記憶された各探針の初期位置u0と、対応する前記相互作用力とを前記記憶部から読み出し、前記表示部に表示若しくはグラフィック表示する、又は、出力する手段と
    を有する前記接触モード原子間力顕微鏡の凝着シミュレータ。
  15. 探針が先端に取り付けられたカンチレバーが試料表面に接近並びに接触させ及び/又は引き離されて、試料表面の構造を観察する接触モード原子間力顕微鏡探針による試料表面の凝着特性をシミュレートするための接触モード原子間力顕微鏡の凝着シミュレータであって、
    パラメータを入力するための入力部と、
    前記入力装置から入力されたパラメータに基づき、接触モード原子間力顕微鏡による試料表面の凝着特性をシミュレートする処理部と、
    前記処理部により求められたデータを記憶するための記憶部と、
    シミュレート結果を表示するための表示部と
    を備え、
    前記処理部は、
    カンチレバーが変形していない場合の探針の出発位置y02と、引き離しのための折り返し位置y01と、探針の曲率半径R1と、カンチレバーのバネ定数kと、数値計算のための所定計算時間とを前記入力部又は前記記憶部から入力する手段と、
    探針の初期位置に対する変位uの初期値と、探針の速度の初期値とをそれぞれ設定する第1設定手段と、
    カンチレバーが変形していない場合の探針の初期位置u0を、入力された出発位置y02に設定する第2設定手段と、
    設定された探針の初期位置u0と、設定された探針の変位及び速度の初期値と、入力された探針の曲率半径R1と、カンチレバーのバネ定数kとに基づき、カンチレバーの根元が設定された探針の初期位置u0に応じた位置にある場合の探針の次式で表す運動方程式を、少なくとも前記所定計算時間まで解くことで、探針の変位と探針の速度を求める第1演算手段と、
    Figure 2007271318
    [ここで、u:カンチレバーが伸び縮みしていない時の探針の初期位置u0からの探針の変位、z:時刻τでの探針位置z(τ)、F(R、z):曲率半径Rの球形探針先端及び突起に働くファンデルワールス力又は相互作用力、Q:カンチレバーのQ値、k:カンチレバーのバネ定数、ρ:探針と表面の原子の数密度、σ:原子半径に関わるパラメータ、ε:原子の結合エネルギーに関わるパラメータ、R1:探針の曲率半径、u0:探針の初期位置]
    前記第1演算手段における計算最終時刻又は前記所定計算時間での探針の変位に基づき、探針及び突起と試料表面間の相互作用力F(R1、u+u0)を求める第2演算手段と、
    求められた前記相互作用力を、設定された探針の初期位置u0に対応させて前記記憶部に記憶する手段と、
    次の繰り返し処理における探針の変位の初期値及び探針の速度の初期値をそれぞれ、前記第1演算手段において求められた計算最終時刻又は前記所定計算時間の探針の変位及び探針の速度に設定する第3設定手段と、
    設定された探針の初期位置u0の値が、入力された折り返し位置y01の値以下になるまで又は折り返し位置y01の値より小さくなるまで、(a)入力された出発位置y02から予め定められたカンチレバーの移動刻み幅を順次差し引いて、又は、設定された探針の初期位置u0から移動刻み幅を差し引いて、新たな探針の初期位置u0を設定することと、(b)設定された新たな探針の初期位置u0と前記第3設定手段で設定された探針の変位及び速度の初期値とを用いて、前記第1演算手段、前記第2演算手段、前記記憶する手段及び前記第3設定手段を実行することと、を繰り返す手段と、
    記憶された各探針の初期位置u0と、対応する前記相互作用力とを前記記憶部から読み出し、前記表示部に表示若しくはグラフィック表示する、又は、出力する手段と
    を有する前記接触モード原子間力顕微鏡の凝着シミュレータ。
JP2006094243A 2006-03-30 2006-03-30 接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法 Expired - Fee Related JP4705870B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094243A JP4705870B2 (ja) 2006-03-30 2006-03-30 接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094243A JP4705870B2 (ja) 2006-03-30 2006-03-30 接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法

Publications (2)

Publication Number Publication Date
JP2007271318A true JP2007271318A (ja) 2007-10-18
JP4705870B2 JP4705870B2 (ja) 2011-06-22

Family

ID=38674289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094243A Expired - Fee Related JP4705870B2 (ja) 2006-03-30 2006-03-30 接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法

Country Status (1)

Country Link
JP (1) JP4705870B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054417A1 (ja) * 2007-10-26 2009-04-30 Mizuho Information & Research Institute, Inc. カンチレバー評価システム、カンチレバー評価方法、およびカンチレバー評価プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238342A (ja) * 1990-02-16 1991-10-24 Nippon Telegr & Teleph Corp <Ntt> 表面機械特性測定装置
JPH05296918A (ja) * 1992-04-15 1993-11-12 Tanaka Kikinzoku Kogyo Kk 凝着力測定装置
JP2000180340A (ja) * 1998-12-11 2000-06-30 Shimadzu Corp 走査型原子間力顕微鏡
JP2002148175A (ja) * 2000-11-10 2002-05-22 Inst Of Physical & Chemical Res マイクロ凝着力の測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238342A (ja) * 1990-02-16 1991-10-24 Nippon Telegr & Teleph Corp <Ntt> 表面機械特性測定装置
JPH05296918A (ja) * 1992-04-15 1993-11-12 Tanaka Kikinzoku Kogyo Kk 凝着力測定装置
JP2000180340A (ja) * 1998-12-11 2000-06-30 Shimadzu Corp 走査型原子間力顕微鏡
JP2002148175A (ja) * 2000-11-10 2002-05-22 Inst Of Physical & Chemical Res マイクロ凝着力の測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054417A1 (ja) * 2007-10-26 2009-04-30 Mizuho Information & Research Institute, Inc. カンチレバー評価システム、カンチレバー評価方法、およびカンチレバー評価プログラム
JP2009109235A (ja) * 2007-10-26 2009-05-21 Mizuho Information & Research Institute Inc カンチレバー評価システム、カンチレバー評価方法及びカンチレバー評価プログラム
US8332187B2 (en) 2007-10-26 2012-12-11 Mizuho Information & Research Institute, Inc. Cantilever evaluation system, cantilever evaluation method, and cantilever evaluation program

Also Published As

Publication number Publication date
JP4705870B2 (ja) 2011-06-22

Similar Documents

Publication Publication Date Title
Jacobs et al. On the application of transition state theory to atomic-scale wear
Haugstad Atomic force microscopy: understanding basic modes and advanced applications
US11328103B2 (en) Inverse simulating a plurality of fibers
Korayem et al. Dynamic analysis of tapping-mode AFM considering capillary force interactions
Rega et al. Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy
Melcher et al. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
JP4550831B2 (ja) 動的モード原子間力顕微鏡探針の振動シミュレーション方法、プログラム、記録媒体、振動シミュレータ
JP2012063255A (ja) 表面分析装置
Mohammadi et al. Dynamical modeling of manipulation process in trolling-mode AFM
Korayem et al. Coarse-grained molecular dynamics simulation of automatic nanomanipulation process: The effect of tip damage on the positioning errors
JP4705870B2 (ja) 接触モード原子間力顕微鏡の凝着シミュレータ、凝着シミュレーションプログラム、凝着シミュレーションプログラムを記憶した記録媒体及び凝着シミュレーション方法
Stark et al. Velocity dependent friction laws in contact mode atomic force microscopy
Sitti et al. Tele-nanorobotics using an atomic force microscope as a nanorobot and sensor
Korayem et al. The effect of surface roughness on the vibration behavior of AFM piezoelectric MC in the vicinity of sample surface in air environment based on MCS theory
WO2008035473A1 (en) Simulator, simulation method and simulation program
Chen et al. An interactive nanomanipulation visualization based on molecular dynamics simulation and virtual reality
Lee et al. Virtual environment for manipulating microscopic particles with optical tweezers
Korayem et al. Exploring the tip-sample interaction regimes in the presence of hysteretic forces in the tapping mode atomic force microscopy
JP3980600B2 (ja) 紐状ミセル系の運動およびレオロジー解析方法および解析プログラム
Mohammadi et al. Controlled manipulation of a bio-particle using trolling mode atomic force microscope: a simulation study
Liu et al. Simulating the approach-retract phenomenon of AFM in virtual environment with haptic interface
Saeedi et al. Analytical solution for size-dependent nonlinear behavior of AFM microcantilever with assembled probe in liquid environments
Mehlman et al. Scanning probe microscope force reconstruction algorithm via time-domain analysis of cantilever bending motion
Huang et al. Influence of local material properties on the nonlinear dynamic behavior of an atomic force microscope probe
Kucera Electrical analogy to an atomic force microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

LAPS Cancellation because of no payment of annual fees